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Abstract. The modelling of pattern formation in biological systems using various models of reaction-diffusion
type has been an active research topic for many years. We here look at a parameter identification (or PDE-constrained
optimization) problem where the Schnakenberg and Gierer-Meinhardt equations, two well-known pattern formation
models, form the constraints to an objective function. Our main focus is on the efficient solution of the associated
nonlinear programming problems via a Lagrange-Newton scheme. In particular we focus on the fast and robust
solution of the resulting large linear systems, which are of saddle point form. We illustrate this by considering several
two- and three-dimensional setups for both models. Additionally, we discuss an image-driven formulation that allows
us to identify parameters of the model to match an observed quantity obtained from an image.

Key words. PDE-constrained optimization, reaction-diffusion, pattern formation, Newton iteration, precondi-
tioning, Schur complement.

AMS subject classifications. 65F08, 65F10, 65F50, 92-08, 93C20

1. Introduction. One of the fundamental problems in developmental biology is to understand
how spatial patterns, such as pigmentation patterns, skeletal structures, and so on, arise. In 1952,
Alan Turing [36] proposed his theory of pattern formation in which he hypothesized that a system of
chemicals, reacting and diffusing, could be driven unstable by diffusion, leading to spatial patterns
(solutions which are steady in time but vary in space). He proposed that these chemical patterns,
which he termed morphogen patterns, set up pre-patterns which would then be interpreted by cells
in a concentration-dependent manner, leading to the patterns that we see.

These models have been applied to a very wide range of areas (see, for example, Murray [23])
and have been shown to exist in chemistry [5, 26]. While their applicability to biology remains
controversial, there are many examples which suggest that Turing systems may be underlying key
patterning processes (see [1, 7, 34] for the most recent examples). Two important models which
embody the essence of the original Turing model are the Gierer-Meinhardt [13] and Schnakenberg
models [33] and it is upon these models which we focus.1 In light of the fact that to date, no Turing
morphogens have been unequivocally demonstrated, we do not have model parameter values so a
key problem in mathematical biology is to determine parameters that give rise to certain observed
patterns. It is this problem that the present study investigates.

More recently, an area in applied and numerical mathematics that has generated much research
interest is that of optimal control problems (see [35] for an excellent introduction to this field). It
has been found that one key application of such optimal control formulations is to find solutions to
pattern formation problems [10, 11], and so it is natural to explore this particular application here.
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In this paper, we consider the numerical solution of optimal control (in this case parameter
identification) formulations of these Turing models – in particular we wish to devise preconditioned
iterative solvers for the matrix systems arising from the application of Newton and Gauss-Newton
methods to the problems. The crucial aspect of the preconditioners is the utilization of saddle point
theory to obtain effective approximations of the (1, 1)-block and Schur complement of these matrix
systems. The solvers will incorporate aspects of iterative solution strategies developed by the first
and second authors to tackle simpler optimal control problems in literature such as [28, 29, 30, 31].

This paper is structured as follows. In Section 2 we introduce the Gierer-Meinhardt (GM1)
and Schnakenberg (GM2) models that we consider, and outline the corresponding optimal control
problems. In Section 3 we discuss the outer (Newton-type) iteration that we employ for these
problems, and state the resulting matrix systems at each iteration. We then motivate and derive
our preconditioning strategies in Section 4. In Section 5 we present numerical results to demonstrate
the effectiveness of our approaches, and finally in Section 6 we make some concluding remarks.

2. A parameter identification problem. Parameter identification problems are crucial in
determining the setup of a mathematical model, often given by a system of differential equations,
that is best suited to describe measured data or an observed phenomenon. These problems are often
posed as PDE-constrained optimization problems [19, 35]. We here want to minimize an objective
function of misfit type, i.e., the function is designed to penalize deviations of the function values
from the observed or measured data. The particular form is given by [13]

J(u, v, a, b) =
β1

2
‖u(x, t) − û(x, t)‖

2
L2(Ω×[0,T ]) +

β2

2
‖v(x, t) − v̂(x, t)‖

2
L2(Ω×[0,T ]) (2.1)

+
βT,1

2
‖u(x, T ) − ûT ‖

2
L2(Ω) +

βT,2

2
‖v(x, T ) − v̂T ‖

2
L2(Ω)

+
ν1

2
‖a(x, t)‖

2
L2(Ω×[0,T ]) +

ν2

2
‖b(x, t)‖

2
L2(Ω×[0,T ]) ,

where u, v are the state variables, and a, b the control variables, in our formulation. This is to say
we wish to ensure that the state variables are as close as possible in the L2-norm to some observed
or desired states û, v̂, ûT , v̂T , but at the same time penalize the enforcement of controls that have
large magnitudes in this norm.

Our goal is to identify the parameters of classical pattern formation equations such that the
resulting optimal parameters allow the use of these models for real-world data. We here use models
of reaction-diffusion type typically exploited to generate patterns seen in biological systems. The
two formulations we consider are the GM1 model [13, 23]

ut −Du∆u−
ru2

v
+ au = r, on Ω × [0, T ], (2.2)

vt −Dv∆v − ru2 + bv = 0, on Ω × [0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x), on Ω,

∂u

∂ν
=
∂v

∂ν
= 0, on ∂Ω × [0, T ],
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and the GM2 model [23, 33]

ut −Du∆u+ γ(u− u2v) − γa = 0, on Ω × [0, T ], (2.3)

vt −Dv∆v + γu2v − γb = 0, on Ω × [0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x), on Ω,

∂u

∂ν
=
∂v

∂ν
= 0, on ∂Ω × [0, T ],

where r and γ are non-negative parameters involved in the respective models.

Both the GM1 and GM2 formulations are models of reaction-diffusion processes occurring
in many types of pattern formation and morphogenesis processes [13, 23, 33]. The GM1 model
relates to an “activator-inhibitor” system, whereas the GM2 model represents substrate-depletion.
Within both models the variables u and v, the state variables in our formulation, represent the
concentrations of chemical products. The parameters Du and Dv denote the diffusion coefficients
– typically it is assumed that v diffuses faster than u, so Du < Dv [13]. The parameters r and γ

are positive parameters: the value r in the GM1 model denotes the (small) production rate of the
activator [13], and the parameter γ in the GM2 model is the Hill coefficient, which describes the
cooperativity within a binding process. The variables a and b, the control variables in our problem,
represent the rates of decay for u and v, respectively.

Throughout the remainder of this article we will consider the minimization of the cost func-
tional (2.1), with PDE constraints taking the form of the GM1 model or the GM2 model. PDE-
constrained optimization problems of similar form have been considered in the literature, such as
in [10, 11].

As the optimization problem min(u,v,a,b) J(u, v, a, b) subject to (2.2) or (2.3) is nonlinear due
to the nature of the constraints, we have to apply nonlinear programming [25] algorithms. Many
of these are generalizations of Newton’s method [25]. We here focus on a Lagrange-Newton (or
basic SQP) scheme and a Gauss-Newton method. At the heart of both approaches lies the solution
of large linear systems, which are often in saddle point form [3, 8], that represent the Hessian or
an approximation to it. In order to be able to solve these large linear systems we need to employ
iterative solvers [8, 32], which can be accelerated using effective preconditioners.

3. Nonlinear programming. A standard way of how to proceed with the above nonlinear
program is to consider a classical Lagrangian approach [35]. In our case with a nonlinear constraint
we apply a nonlinear solver to the first order conditions. Hence, we start by deriving the first order
conditions or Karush-Kuhn-Tucker conditions of the Lagrangian

L(u, v, a, b, p, q) = J(u, v, a, b) + (p,R1(u, v, a, b)) + (q,R2(u, v, a, b)) ,

where R1(u, v, a, b) and R2(u, v, a, b) represent the first two equations of both GM1 and GM2
models. Note that for convenience our Lagrangian ignores the boundary and initial conditions. In
general form the first order conditions are given by

Lu = 0, Lv = 0,
La = 0, Lb = 0,
Lp = 0, Lq = 0.
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The equations are in general nonlinear and a standard Newton method can be applied to them to
give the following Lagrange-Newton or SQP scheme:




Luu Luv Lua Lub Lup Luq
Lvu Lvv Lva Lvb Lvp Lvq
Lau Lav Laa Lab Lap Laq
Lbu Lbv Lba Lbb Lbp Lbq
Lpu Lpv Lpa Lpb Lpp Lpq
Lqu Lqv Lqa Lqb Lqp Lqq







δu

δv

δa

δb

δp

δq




= −




Lu
Lv
La
Lb
Lp
Lq



, (3.1)

where δu, δv, δa, δb, δp, δq denote the Newton updates for u, v, a, b, p, q.
Note that our formulation does not include any globalization techniques such as trust region

or line search approaches [24]. In order for the optimization algorithm to converge these should
in general be incorporated. As our focus here is on large-scale linear systems we do not focus on
these approaches at this point. At this stage we simply state the systems obtained for both GM1
and GM2 models and refer the interested reader to Appendix A where all quantities are derived
in detail. The system given in (3.1) represents the most general Newton system but it is often
possible to only use approximations to this system. The Gauss-Newton method [15] is often used
as the corresponding system matrix in (3.1) – this ignores the mixed derivatives with respect to the
primal variables, i.e.,




L̂uu 0 0 0 Lup Luq
0 L̂vv 0 0 Lvp Lvq
0 0 L̂aa 0 Lap Laq
0 0 0 L̂bb Lbp Lbq

Lpu Lpv Lpa Lpb Lpp Lpq
Lqu Lqv Lqa Lqb Lqp Lqq




,

where the matrices denoted by L̂:,: do not contain second derivative information (see [15, 25] for
more details). Additionally, to derive the infinite-dimensional Newton system we discretize the
resulting equations using finite elements in space and a backward Euler scheme in time. The
resulting system for the GM1 model is given by




Au,GM1 −2τrMup/v2 −τMp 0 −LTu,GM1 2τrMu

−2τrMup/v2 Av,GM1 0 −τMq −τrMu2/v2 −LTv,GM1

−τMp 0 τν1M 0 −τMu 0
0 −τMq 0 τν2M 0 −τMv

−Lu,GM1 −τrMu2/v2 −τMu 0 0 0
2τrMu −Lv,GM1 0 −τMv 0 0




︸ ︷︷ ︸
A




δu

δv

δa

δb

δp

δq




= f ,

where

Au,GM1 = τβ1M + βT,1MT + 2τrMp/v + 2τrMq,

Av,GM1 = τβ2M + βT,2MT + 2τrMu2p/v3 ,

Lu,GM1 = ME + τDuK− 2τrMu/v + τMa,

Lv,GM1 = ME + τDvK + τMb.
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Note that M and K denote standard finite element mass and stiffness matrices, respectively. Here
the matrices

ME :=




M

−M M

−M M
. . .

. . .

−M M



, MT :=




0
0

. . .

0
M



,

correspond to, respectively, the time-stepping scheme used, and the values at the final time t = T .
All other mass matrices Mψ = blkdiag(Mψ, . . . ,Mψ) are obtained from evaluating integrals of the
form [Mψ]ij =

∫
ψφiφj for each matrix entry, where φi denote the finite element basis functions

used. Furthermore, the matrix K = blkdiag(K, . . . ,K). The vector f is the discrete representation
at each Newton step of




β1

∫
(û − ū) +

∫
(−p̄t −Du∆p̄− 2r ūv̄ p̄+ āp̄− 2rūq̄)

β2

∫
(v̂ − v̄) +

∫
(−q̄t −Dv∆q̄ + r ū

2

v̄2 p̄+ b̄q̄)∫
(ūp̄− ν1ā)∫
(v̄q̄ − ν2b̄)∫

(ūt −Du∆ū− rū2

v̄ + āū− r)∫
(v̄t −Dv∆v̄ − rū2 + b̄v̄)



,

where ū, v̄, ā, b̄, p̄, q̄ denote the previous Newton iterates for u, v, a, b, p, q.
The Gauss-Newton type matrix for this problem now becomes




β1τM 0 0 0 −LTu,GM1 2τrMu

0 β2τM 0 0 −τrMu2/v2 −LTv,GM1

0 0 ν1τM 0 −τMu 0
0 0 0 ν2τM 0 −τMv

−Lu,GM1 −τrMu2/v2 −τMu 0 0 0
2τrMu −Lv,GM1 0 −τMv 0 0




︸ ︷︷ ︸
A




δu

δv

δa

δb

δp

δq




= fGN ,

with all matrices as previously defined (see [4, 15] for details on the Gauss-Newton matrix structure).
We consider this matrix system as well as the “pure Newton” formulation of the GM1 model, as we
find that the Gauss-Newton method often results in favourable properties from an iterative solver
point-of-view.

Moving on to the GM2 model, Appendix A reveals the following structure of the Newton
system:




Au,GM2 −2τγMu(q−p) 0 0 −LTu,GM2 −2τγMuv

−2τγMu(q−p) Av,GM2 0 0 τγMu2 −LTv,GM2

0 0 τν1M 0 τγM 0
0 0 0 τν2M 0 τγM

−Lu,GM2 τγMu2 τγM 0 0 0
−2τγMuv −Lv,GM2 0 τγM 0 0




︸ ︷︷ ︸
A




δu

δv

δa

δb

δp

δq




= g,
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with

Au,GM2 = τβ1M + βT,1MT + 2τγMv(q−p),

Av,GM2 = τβ2M + βT,2MT ,

Lu,GM2 = ME + τDuK + τγM − 2γMuv,

Lv,GM2 = ME + τDvK + τγMu2 ,

and g the discrete representation of



β1

∫
(û− ū) +

∫
(−p̄t −Du∆p̄+ 2γūv̄(q̄ − p̄) + γp̄)

β2

∫
(v̂ − v̄) +

∫
(−q̄t −Dv∆q̄ + γū2(q̄ − p̄))
−

∫
(ν1ā+ γp̄)

−
∫
(ν2b̄+ γq̄)∫

(ūt −Du∆ū+ γ(ū− ū2v̄) − γā)∫
(v̄t −Dv∆v̄ + γū2v̄ − γb̄)



.

The main challenge is now the numerical evaluation of the discretized problems. As we here opt
for an all-at-once approach where we discretize in space and time and then solve the resulting linear
system for all time steps simultaneously, we need to be able to perform this operation efficiently.
Similar approaches have recently been considered in [29]. The goal of the next section is to introduce
the appropriate methodology.

4. Preconditioning and Krylov subspace solver. The solution of large-scale linear sys-
tems of saddle point form is a topic of major interest within the numerical analysis community
[3, 8]. Due to the vast dimensionality of the systems derived earlier we cannot use factorization-
based approaches [6]. We hence employ a Krylov subspace method [32] where we construct a Krylov
subspace of the form

span
{
r0,Ar0,A

2r0, . . .
}
,

within which we seek an approximation to the solution of the linear system. These methods are
cheap as they only require multiplication with the system matrix, which is often possible to perform
in a matrix-free way, i.e., the matrix A can be a black-box that only computes Aw for some vector w.
As a rule-of-thumb (rigorously in the case of symmetric A) the eigenvalues of A determine how fast
the approximate solution converges towards the true solution. As for our problem the eigenvalues
of A depend on the mesh-parameter and all the other parameters describing the PDE and the
objective function, the convergence can be very slow. The goal is hence to find a preconditioning
matrix P such that we can solve the equivalent preconditioned system

P−1Ax = P−1b.

For a saddle point problem in the form of
[
A BT

B 0

]
,

this is typically achieved by preconditioners of the form

P =

[
Ã 0

0 S̃

]
, P =

[
Ã 0

B −S̃

]
,
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where Ã approximates the (1, 1)-block of the saddle point matrix A and S̃ approximates the (neg-
ative) Schur complement BA−1BT . This is motivated by results obtained in [20, 22] where it is

shown that the exact preconditioners Ã = A and S̃ = BA−1BT lead to a very small number of
eigenvalues and hence iteration numbers. The choice of the outer Krylov subspace solver typically
depends on the nature of the system matrix and the preconditioner. For symmetric indefinite
systems such as the ones presented here we usually choose Minres [27] based on a three-term re-
currence relation. However as Minres typically needs a symmetric positive definite preconditioner,
in the case of an indefinite preconditioner P we cannot use this method. We then need to apply a
nonsymmetric solver of which there exist many, and it is not obvious which of them is best suited
to any particular problem. Our rule-of-thumb is that if one carefully designs a preconditioner such
that the eigenvalues of the preconditioned system are tightly clustered (or are contained within a
small number of clusters), many different solvers perform in a fairly similar way. For simplicity we
here choose Bicg [9], which is the extension of cg [16] to nonsymmetric problems and is based on
the nonsymmetric Lanczos process [14].

In the following working we wish to derive preconditioners for all of the above linear systems.
For the GM1 model the matrix A is approximated as follows:

A =




Au,GM1 −2τrMup/v2 −τMp 0
−2τrMup/v2 Av,GM1 0 −τMq

−τMp 0 τν1M 0
0 −τMq 0 τν2M


 ≈




Ã1 0 0 0

0 Ã2 0 0
0 0 τν1M 0
0 0 0 τν2M


 =: Ã,

where Ã1 and Ã2 are (double) Schur complement approximations defined by

Ã1 = Au,GM1 − (2τr)2Mup/v2A
−1
v,GM1Mup/v2 − τν−1

1 MpM
−1Mp, (4.1)

Ã2 = Av,GM1 − τν−1
2 MqM

−1Mq.

We then use Ã within the approximation of the Schur complement, i.e.,

S ≈ BÃ−1BT =

[
−Lu,GM1 −τrMu2/v2

2τrMu −Lv,GM1

] [
Ã−1

1 0

0 Ã−1
2

][
−LTu,GM1 2τrMu

−τrMu2/v2 −LTv,GM1

]

+

[
τMu 0

0 τMv

] [
(τν1M)−1 0

0 (τν2M)−1

] [
τMu 0

0 τMv

]
, (4.2)

which we approximate using

S̃ =

[
Lu,GM1 + M̂

(1)
1 τrMu2/v2

−2τrMu Lv,GM1 + M̂
(1)
2

][
Ã−1

1 0

0 Ã−1
2

][
LTu,GM1 + M̂

(2)
1 −2τrMu

τrMu2/v2 LTv,GM1 + M̂
(2)
2

]
,

with M̂
(1)
1 :=

√
τ
ν1

MuM
−1/2Ã1, M̂

(2)
1 :=

√
τ
ν1

M−1/2Mu, M̂
(1)
2 :=

√
τ
ν2

MvM
−1/2Ã2, and M̂

(2)
2 :=

√
τ
ν2

M−1/2Mv. These approximations are based on a ‘matching strategy’ to incorporate both terms

of Equation (4.2) into the Schur complement approximation [29, 30, 31]. For any practical method
we are only interested in the inverse of the Schur complement approximation

S̃−1 =

[
LTu,GM1 + M̂

(2)
1 −2τrMu

τrMu2/v2 LTv,GM1 + M̂
(2)
2

]−1 [
Ã1 0

0 Ã2

][
Lu,GM1 + M̂

(1)
1 τrMu2/v2

−2τrMu Lv,GM1 + M̂
(1)
2

]−1

,
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where we can evaluate the inverse of the first and last block by a fixed number of steps of a Uzawa
method [32] with block diagonal (possibly block triangular) preconditioner

P−1
BD = blkdiag

(
(Lu,GM1 + M̂

(1)
1 )AMG, (Lv,GM1 + M̂

(2)
2 )AMG

)
,

with (·)AMG denoting the application of an algebraic multigrid (AMG) method to the relevant
matrix.

For the Gauss-Newton case the derivation of the preconditioners is more straightforward. The
approximation of the Hessian is typically not as good as in the Newton setting but the Gauss-
Newton matrices are easier to handle from a preconditioning viewpoint. To approximate A we
write




β1τM 0 0 0
0 β2τM 0 0
0 0 ν1τM 0
0 0 0 ν2τM


 ≈




β1τM̃ 0 0 0

0 β2τM̃ 0 0

0 0 ν1τM̃ 0

0 0 0 ν2τM̃


 =: Ã,

where M̃ is equal to M for lumped mass matrices. If consistent mass matrices are used instead,
some approximation such as the application of Chebyshev semi-iteration [37] is chosen. The inverse
of the Schur complement approximation

[
LTu,GM1 + M̂

(2)
1 −2τrMu

τrMu2/v2 LTv,GM1 + M̂
(2)
2

][
β1τM 0

0 β2τM

]−1
[

Lu,GM1 + M̂
(1)
1 τrMu2/v2

−2τrMu Lv,GM1 + M̂
(1)
2

]
,

with M̂
(1)
1 = M̂

(2)
1 := τ

√
β1

ν1
Mu, and M̂

(1)
2 = M̂

(2)
2 := τ

√
β2

ν2
Mv, is applied at each step of our

iterative method.
In a completely analogous way we can derive preconditioners for the GM2 model. We approx-

imate the matrix A as follows:

A =




Au,GM2 −2τγMu(q−p) 0 0
−2τγMu(q−p) Av,GM2 0 0

0 0 τν1M 0
0 0 0 τν2M




≈




Ã1 0 0 0
0 Av,GM2 0 0
0 0 τν1M 0
0 0 0 τν2M


 =: Ã,

with Ã1 = Au,GM2 − (2τγ)2Mu(q−p)A
−1
v,GM2Mu(q−p). We follow a similar strategy as before to

approximate the Schur complement

BÃ−1BT =

[
−Lu,GM2 τγMu2

−2τγMuv −Lv,GM2

] [
Ã−1

1 0

0 Ã−1
2

][
−LTu,GM2 −2τγMuv

τγMu2 −LTv,GM2

]

+

[
τγM 0

0 τγM

] [
(τν1M)−1 0

0 (τν2M)−1

] [
τγM 0

0 τγM

]
.
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Again using the matching strategy from [29, 30, 31] we obtain the following approximation

S̃ =

[
Lu,GM2 + M̂

(1)
1 −τγMu2

2τγMuv Lv,GM2 + M̂
(1)
2

][
Ã−1

1 0

0 Ã−1
2

][
LTu,GM2 + M̂

(2)
1 2τγMuv

−τγMu2 LTv,GM2 + M̂
(2)
2

]
,

with M̂
(1)
1 =

√
τ
ν1
γM1/2Ã1, M̂

(2)
1 =

√
τ
ν1
γM1/2, M̂

(1)
2 =

√
τ
ν2
γM1/2Ã2, and M̂

(2)
2 =

√
τ
ν2
γM1/2.

In each of our suggested iterative methods, we insert our approximations of A and BA−1BT

into general preconditioners for saddle point systems stated in (4.1).

5. Numerical results. We now wish to apply our methodology to a number of test problems.
All results presented in this section are based on an implementation of the given algorithms and
preconditioners within the deal.II [2] framework using Q1 finite elements. The AMG preconditioner
we use is part of the Trilinos ML package [12] that implements a smoothed aggregation AMG. Within
the algebraic multigrid routine we typically apply 10 steps of a Chebyshev smoother in combination
with the application of two V-cycles. For our implementation of Bicg we use a stopping tolerance
of 10−4. Our experiments are performed for T = 1 and τ = 0.05, i.e. 20 time-steps. Typically, the
spatial domain Ω is considered to be the unit square or cube. All results are performed on a Centos
Linux machine with Intel(R) Xeon(R) CPU X5650 @ 2.67GHz CPUs and 48GB of RAM.

5.1. GM2 model. For both GM2 and GM1 models we start creating desired states using
Gaussians placed at different positions in the unit square/cube that might depend on the time t.
In Figure 5.1 we illustrate two instances of the desired state and computed results for the GM2
formulation, with the parameters set to Du = 1, Dv = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6.

As the regularization parameters become smaller we see that the desired and computed states are
very close. This is reflected in the third set of images within Figure 5.1 where the control is shown
with sometimes rather high values. In Table 5.1 we present iteration numbers for solving this test
problem for a range of degrees of freedom and regularization parameters.

DoF Bicg Bicg Bicg

ν1 = ν2 = 1e− 2 ν1 = ν2 = 1e− 4 ν1 = ν2 = 1e− 6

507 000 step 1 18 step 1 16 step 1 16
step 2 20 step 2 15 step 2 15
step 3 20 step 3 15 step 3 15
step 4 20 step 4 15 step 4 15
step 5 20 step 5 15

1 996 920 step 1 23 step 1 17 step 1 17
step 2 23 step 2 18 step 2 16
step 3 24 step 3 18 step 3 16
step 4 23 step 4 18 step 4 16
step 5 23 step 5 18

Table 5.1: Results on unit square with Du = 1, Dv = 10, β1 = β2 = 1, and γ = 50.
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(a) First Desired State bu8 (b) First Desired State bu12

(c) First Computed State u8 (d) First Computed State u12

(e) First Computed Control a8 (f) First Computed Control a12

Fig. 5.1: Desired state for 8th and 12th grid points in time (upper two), computed state using the
GM2 model (middle two), and the computed control (lower two) for two reactants using the GM2
model. The parameters are set to be Du = 1, Dv = 10, β1 = β2 = 1, γ = 50, and ν1 = ν2 = 10−6.
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(a) First Desired State (b) Computed First State (c) Computed Control

Fig. 5.2: Desired state, computed state and computed control for the first reactant in the GM1
model with parameters at β1 = 102, β2 = 102, ν1 = 10−2, ν2 = 10−2, Du = 1, Dv = 10, and
r = 10−2.

5.2. GM1 model with Newton and Gauss-Newton methods. For the next problem we
examine, the desired state for the GM1 model is created using Gaussian functions placed in the
three-dimensional unit cube. This is illustrated in Figure 5.2, where we present the desired state
for the first component, the computed first state variable and the corresponding control variable.
The parameters for this case are chosen to be β1 = 102, β2 = 102, ν1 = 10−2, ν2 = 10−2, Du = 1,
Dv = 10, and r = 10−2. For many interesting parameter setups (including for a range of values
of r) it is not trivial to find a configuration of the Newton scheme that demonstrates satisfying
convergence properties. We instead focus on the Gauss-Newton method here, and we illustrate the
iteration numbers achieved for a range of problems in Table 5.2.

We also wish to highlight that it is possible to include additional control constraints a ≤ a ≤ ā

and b ≤ b ≤ b̄, to be enforced along with the systems of PDEs (2.2) or (2.3). Our approach to
deal with these additional bounds is to include a Moreau-Yosida penalization [17] that can be used
with a non-smooth Newton scheme. The structure of the Newton system is very similar to the one
without control constraints, and we refer to [28] for more details on the derivation of the non-smooth
Newton system and the choice of preconditioner. In Table 5.3 we present some results for the setup
0 ≤ a and 0 ≤ b, where the Gauss-Newton scheme is used in conjunction with Bicg.

5.3. Image-driven desired state and GM1 model. An attractive feature of this method-
ology is that it is also possible to obtain desired states by reading in pattern information from an
image. This may be done for the GM1 and GM2 models, whether or not control constraints are
included. Image-driven parameter estimation techniques can also be found in [18]. For this prob-
lem, we choose to take an image similar to those used in [21] – this involves reading in a pattern
found on a mature jaguar. As this problem is not necessarily time-dependent we wish to illustrate
the performance of our method by scaling the desired pattern by τi, where i denotes the relevant
index in time. The results for applying the Gauss-Newton scheme to this image-driven problem are
shown in Figure 5.3.

In Figure 5.3b the desired state is shown. The computed state is shown in Figure 5.3a and the
associated control in Figure 5.3c.
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DoF Bicg Bicg Bicg

ν1 = ν2 = 1e− 2 ν1 = ν2 = 1e− 4 ν1 = ν2 = 1e− 6

43740 step 1 11 step 1 11 step 1 9
step 2 11 step 2 11 step 2 9
step 3 11 step 3 11 step 3 9
step 4 11 step 4 11
step 5 11 step 5 11

294780 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

2156220 step 1 11 step 1 13 step 1 11
step 2 11 step 2 12 step 2 11
step 3 11 step 3 12 step 3 11
step 4 11 step 4 12 step 4 11
step 5 11 step 5 12

Table 5.2: Results on unit cube β1 = 102, β2 = 102, Du = 1, Dv = 10, and r = 10−2. We here vary
the mesh-size and the regularization parameters ν1 and ν2.

DoF Bicg Bicg

ν1 = ν2 = 1e− 2 ν1 = ν2 = 1e− 4

253500 step 1 8 step 1 8
step 2 11 step 2 15
step 3 11 step 3 15

998460 step 1 16 step 1 16
step 2 26 step 2 23
step 3 20 step 3 55

3962940 step 1 30 step 1 30
step 2 31 step 2 35
step 3 31 step 3 34

Table 5.3: Results on unit cube β1 = 102, β2 = 102, Du = 1, Dv = 10, and r = 10−2. We here vary
the mesh-size and the regularization parameters ν1 and ν2.

The parameters for this setup are β1 = 102, β2 = 102, ν1 = 10−7, ν2 = 10−7, Du = 1, Dv = 10,
and r = 10−5. For the computations from which Figure 5.3 is generated, a tolerance of 10−2 is taken
for the Gauss-Newton scheme. Within these computations 8 steps of the Gauss-Newton iteration
are required, with an average of 20.5 Bicg iterations per Gauss-Newton step.
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(a) Computed State (b) Desired State (c) Computed Control

Fig. 5.3: Results for image-driven model: Shown are computed state, desired state, and computed
control for the parameter setups using β1 = 102, β2 = 102, ν1 = 10−7, ν2 = 10−7, Du = 1, Dv = 10,
and r = 10−5.

Overall the numerical results presented for the above test problems indicate that we are able to
solve a wide range of parameter identification problems from pattern formation, with our observed
iteration numbers (as well as computation times) being low for a large number of parameter regimes.
Furthermore, the iteration numbers behave in a fairly robust way as the parameters involved in the
problem are varied.

6. Concluding remarks and future work. In this article, we have considered the devel-
opment of preconditioned iterative methods for the numerical solution of parameter identification
problems arising from pattern formation. We have constructed our methods using effective strate-
gies for approximating the (1, 1)-block and Schur complement of the saddle point systems that
result from these problems.

The numerical results we have obtained when applying our techniques to a number of test
examples (using both GM1 and GM2 models) indicate that out proposed solvers are effective
ones for a wide range of parameter setups. Another key aspect of our methodology is that we are
able to feed desired states (or “target patterns”) into our implementation using experimental or
computational data, and use this to obtain appropriate solutions to the Turing model in question.
Furthermore, our solvers are found to be effective at handling additional inequality constraints for
the control variables.

There are a number of related areas of research which we hope to consider, including the
incorporation of additional constraints on the state or control variables (for instance integral con-
straints, or bounds on the state variables), different time-stepping schemes, and possibly different
techniques for the outer iteration. We also wish to investigate a version of the problem where the
L2-distance between the states and desired states is only measured at the final time t = T (i.e.
where β1 = β2 = 0), as we find that such problems have considerable physical applicability. Fur-
thermore, we now hope to tackle other problems of significant interest to the mathematical biology
community using the methodology presented in this paper.
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neering and Physical Sciences Research Council (EPSRC) Grant EP/P505216/1, and by an EPSRC
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Exchange Grant under the OPTPDE programme, and express their thanks to the Max Planck
Institute in Magdeburg.

Appendix A. Derivation of the Newton systems. For the Gierer-Meinhardt (GM1)
formulation, we examine the forward equations

ut −Du∆u−
ru2

v
+ au = r, on Ω × [0, T ],

vt −Dv∆v − ru2 + bv = 0, on Ω × [0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x), on Ω,

∂u

∂ν
=
∂v

∂ν
= 0, on ∂Ω × [0, T ],

and the adjoint equations (see [10])

−pt −Du∆p− 2r
u

v
p+ ap− 2ruq = β1(u− û), on Ω × [0, T ],

−qt −Dv∆q + r
u2

v2
p+ bq = β2(v − v̂), on Ω × [0, T ],

p(x, T ) = βT,1(u(x, T ) − û(x, T )), q(x, T ) = βT,2(v(x, T ) − v̂(x, T )), on Ω,

∂p

∂ν
=
∂q

∂ν
= 0, on ∂Ω × [0, T ],

where p and q denote the adjoint variables.

We now employ a Newton iteration, by writing at each Newton step

u = ū+ δu, v = v̄ + δv, a = ā+ δa, b = b̄+ δb, p = p̄+ δp, q = q̄ + δq,

where ū, v̄, ā, b̄, p̄, q̄ denote the most recent iterates of u, v, a, b, p, q, with δu, δv, δa, δb, δp, δq
denoting the changes in the solutions at each Newton step.

Applying this to the forward equations yields

(ū+ δu)t −Du∆(ū + δu) −
r(ū + δu)2

v̄ + δv
+ (ā+ δa)(ū + δu) = r, on Ω × [0, T ],

(v̄ + δv)t −Dv∆(v̄ + δv) − r(ū + δu)2 + (b̄+ δb)(v̄ + δv) = 0, on Ω × [0, T ],

(ū+ δu)(x, 0) = u0(x), (v̄ + δv)(x, 0) = v0(x), on Ω,

∂(ū+ δu)

∂ν
=
∂(v̄ + δv)

∂ν
= 0, on ∂Ω × [0, T ],

whereupon we can use the assumption (ū+ δu)2 ≈ ū2 + 2ū · δu and the resulting derivation

(ū+ δu)2

v̄ + δv
≈
v̄ − δv

v̄2
(ū2 + 2ū · δu) ≈

ū2v̄ − ū2 · δv + 2ūv̄ · δu

v̄2
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to write

(δu)t −Du∆(δu) + r
ū2 · δv − 2ūv̄ · δu

v̄2
+ ū · δa+ ā · δu (A.1)

= r −

(
ūt −Du∆ū−

rū2

v̄
+ āū

)
, on Ω × [0, T ],

(δv)t −Dv∆(δv) − 2rū · δu+ v̄ · δb+ b̄ · δv (A.2)

= − (v̄t −Dv∆v̄ − rū2 + b̄v̄), on Ω × [0, T ],

(δu)(x, 0) = 0, (δv)(x, 0) = 0, on Ω, (A.3)

∂(δu)

∂ν
=
∂(δv)

∂ν
= 0, on ∂Ω × [0, T ]. (A.4)

Considering now a Newton iteration applied to the adjoint equations, we have

−(p̄+ δp)t −Du∆(p̄+ δp) − 2r
ū+ δu

v̄ + δv
(p̄+ δp) + (ā+ δa)(p̄+ δp)

−2r(ū+ δu)(q̄ + δq) = β1((ū + δu) − û), on Ω × [0, T ],

−(q̄ + δq)t −Dv∆(q̄ + δq) + r
(ū + δu)2

(v̄ + δv)2
(p̄+ δp) + (b̄+ δb)(q̄ + δq)

= β2((v̄ + δv) − v̂), on Ω × [0, T ],

(p̄+ δp)(x, T ) = βT,1((ū + δu)(x, T ) − û(x, T )), on Ω,

(q̄ + δq)(x, T ) = βT,2((v̄ + δv)(x, T ) − v̂(x, T )), on Ω,

∂(p̄+ δp)

∂ν
=
∂(q̄ + δq)

∂ν
= 0, on ∂Ω × [0, T ].

Now, using the approximations

ū+ δu

v̄ + δv
(p̄+ δp) ≈

(ū + δu)(v̄ − δv)(p̄ + δp)

v̄2

≈
ūv̄p̄+ v̄p̄ · δu− ūp̄ · δv + ūv̄ · δp

v̄2
,

(ū+ δu)2

(v̄ + δv)2
(p̄+ δp) ≈

(ū + 2ū · δu)(v̄2 − 2v̄ · δv)(p̄+ δp)

v̄4

≈
ū

v̄3
(ūv̄p̄+ 2v̄p̄ · δu− 2ūp̄ · δv + ūv̄ · δp),
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we may write

− (δp)t −Du∆(δp) − 2r
ūp̄ · δv − v̄p̄ · δu− ūv̄ · δp

v̄2
(A.5)

+ p̄ · δa+ ā · δp− 2r(ū · δq + q̄ · δu) − β1δu

= β1(ū− û) −
(
−p̄t −Du∆p̄− 2r

ū

v̄
p̄+ āp̄− 2rūq̄

)
, on Ω × [0, T ],

− (δq)t −Dv∆(δq) + rū
2v̄p̄ · δu+ ūv̄ · δp− 2ūp̄ · δv

v̄2
+ q̄ · δb+ b̄ · δq − β2δv (A.6)

= β2(v̄ − v̂) −

(
−q̄t −Dv∆q̄ + r

ū2

v̄2
p̄+ b̄q̄

)
, on Ω × [0, T ],

(δp)(x, T ) = βT,1(δu)(x, T ), (δq)(x, T ) = βT,2(δv)(x, T ), on Ω, (A.7)

∂(δp)

∂ν
=
∂(δq)

∂ν
= 0, on ∂Ω × [0, T ]. (A.8)

Now, the forward and adjoint equations can clearly be derived by differentiating the Lagrangian

JGM1(u, v, a, b, p, q) =
β1

2
‖u− û‖

2
L2(Ω×[0,T ]) +

β2

2
‖v − v̂‖

2
L2(Ω×[0,T ])

+
βT,1

2
‖u(x, T ) − ûT ‖

2
L2(Ω) +

βT,2

2
‖v(x, T ) − v̂T ‖

2
L2(Ω)

+
ν1

2
‖a‖

2
L2(Ω×[0,T ]) +

ν2

2
‖b‖

2
L2(Ω×[0,T ])

−

∫

Ω×[0,T ]

p

(
ut −Du∆u −

ru2

v
+ au− r

)

−

∫

Ω×[0,T ]

q
(
vt −Dv∆v − ru2 + bv

)
,

with respect to the adjoint variables p, q and the state variables u, v, respectively. Within this cost
functional, we have excluded the constraints on the boundary conditions for readability reasons.
To obtain the gradient equations we require for a closed system of equations, we also need to
differentiate the above cost functional with respect to the control variables a and b. Differentiating
with respect to a gives the requirement

∫

Ω×[0,T ]

(up− ν1a) = 0,

and differentiating with respect to b yields similarly that
∫

Ω×[0,T ]

(vq − ν2b) = 0.

Applying a Newton iteration to these equations will give constraints of the form
∫

Ω×[0,T ]

(p̄ · δu+ ū · δp− ν1δa) = −

∫

Ω×[0,T ]

(ūp̄− ν1ā), (A.9)

∫

Ω×[0,T ]

(q̄ · δv + v̄ · δq − ν2δb) = −

∫

Ω×[0,T ]

(v̄q̄ − ν2b̄), (A.10)
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at each Newton step.
Therefore the complete system which we will need to solve at each Newton step corresponds

to the adjoint equations (A.5)–(A.8), the gradient equations (A.9) and (A.10), and the forward
equations (A.1)–(A.4).

We now turn our attention to the Schnakenberg (GM2) model, where we wish to deal with the
forward equations

ut −Du∆u+ γ(u− u2v) − γa = 0, on Ω × [0, T ],

vt −Dv∆v + γu2v − γb = 0, on Ω × [0, T ],

u(x, 0) = u0(x), v(x, 0) = v0(x), on Ω,

∂u

∂ν
=
∂v

∂ν
= 0, on ∂Ω × [0, T ],

and the adjoint equations (see [10])

−pt −Du∆p+ 2γuv(q − p) + γp = β1(u− û), on Ω × [0, T ],

−qt −Dv∆q + γu2(q − p) = β2(v − v̂), on Ω × [0, T ],

p(x, T ) = βT,1(u(x, T ) − û(x, T )), q(x, T ) = βT,2(v(x, T ) − v̂(x, T )), on Ω,

∂p

∂ν
=
∂q

∂ν
= 0, on ∂Ω × [0, T ].

Now, substituting

u = ū+ δu, v = v̄ + δv, a = ā+ δa, b = b̄+ δb, p = p̄+ δp, q = q̄ + δq,

into the forward equations at each Newton step gives

(ū+ δu)t −Du∆(ū+ δu) + γ((ū+ δu) − (ū + δu)2(v̄ + δv))

−γ(ā+ δa) = 0, on Ω × [0, T ],

(v̄ + δv)t −Dv∆(v̄ + δv) + γ(ū+ δu)2(v̄ + δv) − γ(b̄+ δb) = 0, on Ω × [0, T ],

(ū+ δu)(x, 0) = u0(x), (v̄ + δv)(x, 0) = v0(x), on Ω,

∂(ū+ δu)

∂ν
=
∂(v̄ + δv)

∂ν
= 0, on ∂Ω × [0, T ],

which we may expand and simplify to give

(δu)t −Du∆(δu) + γ(δu− ū2 · δv − 2ūv̄ · δu) − γδa (A.11)

= − (ūt −Du∆ū+ γ(ū− ū2v̄) − γā), on Ω × [0, T ],

(δv)t −Dv∆(δv) + γ(ū2 · δv + 2ūv̄ · δu) − γδb (A.12)

= − (v̄t −Dv∆v̄ + γū2v̄ − γb̄), on Ω × [0, T ],

(δu)(x, 0) = 0, (δv)(x, 0) = 0, on Ω, (A.13)

∂(δu)

∂ν
=
∂(δv)

∂ν
= 0, on ∂Ω × [0, T ]. (A.14)
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Applying the same substitutions to the adjoint equations gives

−(p̄+ δp)t −Du∆(p̄+ δp) + 2γūv̄((q̄ + δq) − (p̄+ δp)) + γ(p̄+ δp)

= β1((ū + δu) − û), on Ω × [0, T ],

−(q̄ + δq)t −Dv∆(q̄ + δq) + γū2((q̄ + δq) − (p̄+ δp))

= β2((v̄ + δv) − v̂), on Ω × [0, T ],

(p̄+ δp)(x, T ) = βT,1((ū + δu)(x, T ) − û(x, T )), on Ω,

(q̄ + δq)(x, T ) = βT,2((v̄ + δv)(x, T ) − v̂(x, T )), on Ω,

∂(p̄+ δp)

∂ν
=
∂(q̄ + δq)

∂ν
= 0, on ∂Ω × [0, T ],

which may then be expanded and simplified to give

− (δp)t −Du∆(δp) + 2γ(v̄q̄ · δu+ ūq̄ · δv + ūv̄ · δq (A.15)

− v̄p̄ · δu− ūp̄ · δv − ūv̄ · δp) + γδp− β1δu

= β1(ū− û) − (−p̄t −Du∆p̄+ 2γūv̄(q̄ − p̄) + γp̄), on Ω × [0, T ],

− (δq)t −Dv∆(δq) + γ(ū2 · δq + 2ūq̄ · δu− ū2δp− 2ūp̄ · δu) − β2δv (A.16)

= β2(v̄ − v̂) − (−q̄t −Dv∆q̄ + γū2(q̄ − p̄)), on Ω × [0, T ],

(δp)(x, T ) = βT,1(δu)(x, T ), (δq)(x, T ) = βT,2(δv)(x, T ), on Ω, (A.17)

∂(δp)

∂ν
=
∂(δq)

∂ν
= 0, on ∂Ω × [0, T ]. (A.18)

The forward and adjoint equations can be derived by differentiating the Lagrangian

JGM2(u, v, a, b, p, q) =
β1

2
‖u− û‖2

L2(Ω×[0,T ]) +
β2

2
‖v − v̂‖2

L2(Ω×[0,T ])

+
βT,1

2
‖u(x, T ) − ûT ‖

2
L2(Ω) +

βT,2

2
‖v(x, T ) − v̂T ‖

2
L2(Ω)

+
ν1

2
‖a‖

2
L2(Ω×[0,T ]) +

ν2

2
‖b‖

2
L2(Ω×[0,T ])

−

∫

Ω×[0,T ]

p
(
ut −Du∆u + γ(u− u2v) − γa

)

−

∫

Ω×[0,T ]

q
(
vt −Dv∆v + γu2v − γb

)
,

with respect to u, v, p and q, similarly as for the GM1 model. The gradient equations for this
problem may be derived by differentiating this Lagrangian with respect to the control variables a
and b, which gives the conditions

∫

Ω×[0,T ]

(ν1a+ γp) = 0,

∫

Ω×[0,T ]

(ν2b+ γq) = 0.

Applying Newton iteration to these equations gives
∫

Ω×[0,T ]

(ν1δa+ γδp) = −

∫

Ω×[0,T ]

(ν1ā+ γp̄), (A.19)

∫

Ω×[0,T ]

(ν2δb+ γδq) = −

∫

Ω×[0,T ]

(ν2b̄+ γq̄), (A.20)



FAST SOLVERS FOR PATTERN FORMATION 19

at each Newton step.

Hence the system of equations which need to be solved at each Newton step are the adjoint
equations (A.15)–(A.18), the gradient equations (A.19) and (A.20), and the forward equations
(A.11)–(A.14).

REFERENCES

[1] A. Badugu, C. Kraemer, P. Germann, D. Menshykau, and D. Iber, Digit patterning during limb develop-

ment as a result of the BMP-receptor interaction, Sci. Rep., 991 (2012), pp. 1–13.
[2] W. Bangerth, R. Hartmann, and G. Kanschat, deal.II—a general-purpose object-oriented finite element

library, ACM Trans. Math. Software, 33 (2007), pp. Art. 24, 27.
[3] M. Benzi, G. H. Golub, and J. Liesen, Numerical solution of saddle point problems, Acta Numer, 14 (2005),

pp. 1–137.
[4] M. Benzi, E. Haber, and L. Taralli, A preconditioning technique for a class of PDE-constrained optimization

problems, Adv. Comput. Math., 35 (2011), pp. 149–173.
[5] V. Castets, E. Dulos, J. Boissonade, and P. De Kepper, Experimental evidence of a sustained standing

Turing-type nonequilibrium chemical pattern, Phys. Rev. Lett., 64 (1990), pp. 2953–2956.
[6] I. S. Duff, A. M. Erisman, and J. K. Reid, Direct methods for sparse matrices, Monographs on Numerical

Analysis, The Clarendon Press Oxford University Press, New York, 1989.
[7] A. D. Economou, A. Ohazama, T. Porntaveetus, P. T. Sharpe, S. Kondo, M. A. Basson, A. Gritli-

Linde, M. T. Coburne, and J. B. A. Green, Periodic stripe formation by a Turing mechanism operating

at growth zones in the mammalian palate, Nat. Genet., 44 (2012), pp. 348–351.
[8] H. C. Elman, D. J. Silvester, and A. J. Wathen, Finite elements and fast iterative solvers: with applications

in incompressible fluid dynamics, Numerical Mathematics and Scientific Computation, Oxford University
Press, New York, 2005.

[9] R. Fletcher, Conjugate gradient methods for indefinite systems, in Numerical Analysis (Proc. 6th Biennial
Dundee Conf., Univ. Dundee, Dundee, 1975), Springer, Berlin, 1976, pp. 73–89. Lecture Notes in Math.,
Vol. 506.

[10] M. R. Garvie, P. K. Maini, and C. Trenchea, An efficient and robust numerical algorithm for estimating

parameters in Turing systems, J. Comput. Phys., 229 (2010), pp. 7058–7071.
[11] M. R. Garvie and C. Trenchea, Identification of space-time distributed parameters in the Gierer-Meinhardt

reaction-diffusion system, SIAM J. Appl. Math., 74–1 (2014), pp. 147–166.
[12] M.W. Gee, C.M. Siefert, J.J. Hu, R.S. Tuminaro, and M.G. Sala, ML 5.0 smoothed aggregation user’s

guide, Tech. Report SAND2006-2649, Sandia National Laboratories, 2006.
[13] A. Gierer and H. Meinhardt, A theory of biological pattern formation, Biol. Cybernet., 12 (1972), pp. 30–39.
[14] G. H. Golub and C. F. Van Loan, Matrix computations, Johns Hopkins Studies in the Mathematical Sciences,

Johns Hopkins University Press, Baltimore, MD, third ed., 1996.
[15] E. Haber, U. M. Ascher, and D. Oldenburg, On optimization techniques for solving nonlinear inverse

problems, Inverse Probl., 16 (2000), pp. 1263–1280.
[16] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems, J. Res. Nat. Bur.

Stand., 49 (1952), pp. 409–436 (1953).
[17] M. Hinze, R. Pinnau, M. Ulbrich, and S. Ulbrich, Optimization with PDE constraints, Mathematical

Modelling: Theory and Applications, Springer-Verlag, New York, 2009.
[18] C. Hogea, C. Davatzikos, and G. Biros, An image-driven parameter estimation problem for a reaction–

diffusion glioma growth model with mass effects, J. Math. Biol., 56 (2008), pp. 793–825.
[19] K. Ito and K. Kunisch, Lagrange multiplier approach to variational problems and applications, vol. 15 of

Advances in Design and Control, Society for Industrial and Applied Mathematics (SIAM), Philadelphia,
PA, 2008.

[20] Y. A. Kuznetsov, Efficient iterative solvers for elliptic finite element problems on nonmatching grids, Russ.
J. Numer. Anal. M., 10 (1995), pp. 187–211.

[21] R. T. Liu, S. S. Liaw, and P. K. Maini, Two-stage Turing model for generating pigment patterns on the

leopard and the jaguar, Phys. Rev. E, 74 (2006), pp. 011914–1.
[22] M. F. Murphy, G. H. Golub, and A. J. Wathen, A note on preconditioning for indefinite linear systems,

SIAM J. Sci. Comput, 21 (2000), pp. 1969–1972.
[23] J. D. Murray, Mathematical biology. Vol. 2: Spatial models and biomedical applications. 3rd revised ed., New

York, NY: Springer, 2003.



20 M. STOLL, J. W. PEARSON, AND P. K. MAINI

[24] J. Nocedal and S. J. Wright, Numerical optimization, Springer Series in Operations Research, Springer-
Verlag, New York, 1999.

[25] , Numerical optimization, Springer Series in Operations Research and Financial Engineering, Springer,
New York, second ed., 2006.

[26] Q. Ouyang and H. L. Swinney, Transition from a uniform state to hexagonal and striped Turing patterns,
Nature, 352 (1991), pp. 610–612.

[27] C. C. Paige and M. A. Saunders, Solutions of sparse indefinite systems of linear equations, SIAM J. Numer.
Anal., 12 (1975), pp. 617–629.

[28] J. W. Pearson and M. Stoll, Fast iterative solution of reaction-diffusion control problems arising from

chemical processes, SIAM J. Sci. Comp, 35 (2013), pp. B987–B1009.
[29] J. W. Pearson, M. Stoll, and A. J. Wathen, Regularization-robust preconditioners for time-dependent

PDE-constrained optimization problems, SIAM J. Matrix Anal. Appl., 33 (2012), pp. 1126–1152.
[30] J. W. Pearson and A. J. Wathen, A new approximation of the Schur complement in preconditioners for

PDE-constrained optimization, Numer. Linear Algebra Appl., 19 (2012), pp. 816–829.
[31] , Fast iterative solvers for convection-diffusion control problems, Electron. Trans. Numer. Anal., 40

(2013), pp. 294–310.
[32] Y. Saad, Iterative methods for sparse linear systems, Society for Industrial and Applied Mathematics, Philadel-

phia, PA, 2003.
[33] J. Schnakenberg, Simple chemical reaction systems with limit cycle behaviour, J. Theoret. Biol., 81 (1979),

pp. 389–400.
[34] R. Sheth, L. Marcon, M. F. Bastida, M. Junco, L. Quintana, R. Dahn, M. Kmita, J. Sharpe, and

M. A. Ros, Hox genes regulate digit patterning by controlling the wavelength of a Turing-type mechanism,
Science, 338 (2012), pp. 1476–1480.
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