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ABSTRACT

Utilising a fleet of commercial airliners, MOZAIC/IAGOS provides atmospheric composition data on a

regular basis that are widely used for modelling applications. Due to the specific operational context of the

platforms, such observations are collected close to international airports and hence in an environment

characterised by high anthropogenic emissions. This provides opportunities for assessing emission inventories

of major metropolitan areas around the world, but also challenges in representing the observations in typical

chemical transport models. We assess here the contribution of different sources of error to overall model�data
mismatch using the example of MOZAIC/IAGOS carbon monoxide (CO) profiles collected over the European

regional domain in a time window of 5 yr (2006�2011). The different sources of error addressed in the present

study are: 1) mismatch in modelled and observed mixed layer height; 2) bias in emission fluxes and 3) spatial

representation error (related to unresolved spatial variations in emissions). The modelling framework combines

a regional Lagrangian transport model (STILT) with EDGARv4.3 emission inventory and lateral boundary

conditions from the MACC reanalysis. The representation error was derived by coupling STILT with emission

fluxes aggregated to different spatial resolutions. We also use the MACC reanalysis to assess uncertainty

related to uncertainty sources 2) and 3). We treat the random and the bias components of the uncertainty

separately and found that 1) and 3) have a comparable impact on the random component for both models,

while 2) is far less important. On the other hand, the bias component shows comparable impacts from each

source of uncertainty, despite both models being affected by a low bias of a factor of 2�2.5 in the emission

fluxes. In addition, we suggested methods to correct for biases in emission fluxes and in mixing heights. Lastly,

the evaluation of the spatial representation error against model�data mismatch between MOZAIC/IAGOS

observations and the MACC reanalysis revealed that the representation error accounts for roughly 15�20% of

the model�data mismatch uncertainty.
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1. Introduction

Presently, the lion’s share of atmospheric observations

comes from two main sources: in-situ measurements from

ground-based observational networks and remote sensing

from satellite-borne instruments.

Globally distributed ground-based networks measure

atmospheric mixing ratios of a number of atmospheric

species, including greenhouse gases (GHG) such as CO2

(Rödenbeck et al., 2003) or CH4 (Hein et al., 1997; Bousquet

et al., 2006), but also chemically active species such as CO

(Bergamaschi et al., 2000). Modellers trying to tease apart

different sources and sinks in a certain spatial domain often

use atmospheric observations from the global network

as top-down constraint in inverse modelling. Inverse model-

ling simulates atmospheric transport using a general circula-

tion model to track different air parcels that are observed.

In this way it is possible to deduce magnitude and spatial

distribution of sources and sinks in a global domain.

As for data from space-borne platforms, the combination

of several sensors on different satellites allow for daily global

coverage of different species, including the above mentioned

CO2, CH4 (SCIAMACHY, GOSAT) and CO (MOPITT,

AURA) from low orbit. Albeit of lower quality in terms

of the measurement uncertainty, due to their coverage also

in otherwise inaccessible and sparsely sampled regions,

those observations have a large potential for inferring,

for example, emissions of CH4 (Bergamaschi et al., 2009),

CO emissions (Kopacz et al., 2009), or sources and sinks

of CO2 (Nassar et al., 2011).

An interesting recent alternative is represented by aircraft-

measured profiles, which allows for gathering mixing ratio

information across the whole vertical path of the flight,

leading to a detailed description of the internal structure

of the troposphere. Many recent studies made use of aircraft

profiles alone or in combination with other data sources

(e.g.: Gourdji et al., 2012; Brioude et al., 2013). However,

mainly due to the cost of a rental aircraft, the number

of flights is usually quite limited, with direct consequences

on data availability. A way of overcoming such a limitation

is to make use of commercial airliners. This approach makes

available atmospheric concentration measurements on a

regular basis and has been selected from research projects

such asCONTRAIL (Comprehensive ObservationNetwork

for Trace Gases) (Machida et al., 2008) and MOZAIC/

IAGOS (Measurements of Ozone and water vapour by in-

service AIrbus aircraft/In-service Aircraft for a Global

Observing System) (Marenco et al., 1998; Volz-Thomas

et al., 2009). MOZAIC/IAGOS has been active for more

than two decades by now and is widely recognised as an

important data provider for atmospheric modelling applica-

tions and for calibration/validation (Cal/Val) of satellite

observations. Among others, observations from MOZAIC

have been used in an attempt to describe global vertical

profiles CO climatology (Zbinden et al., 2013). A more

detailed and recent description of the project is available in

the overview paper of this special issue (Petzold et al., 2015).

MOZAIC/IAGOS provides atmospheric composition

data collected from long-haul passenger aircraft. This

implies that these observations are made in a quite specific

context: taking off and landing at major airports, and

cruising in flight corridors in the upper troposphere and

lower stratosphere. In addition, the observations are made

in-situ, as point observations along the flight track.

It is obvious that MOZAIC/IAGOS observations are

influenced by this specific context, which is characterised by

high local anthropogenic emissions. Thus, it is possible that

MOZAIC/IAGOS observations are representative only at

local scale and hence high-resolution models are needed to

capture these local features, with direct impact on computa-

tional effort. For this reason, understanding the sources

of error of such observations is crucial for a successful use

of their information content in the context of modelling or

Cal/Val.

In the context of modelling, it is paramount to assess how

well models can reproduce observations; the difference

between model outputs and retrieved measurements (ob-

servations) is hereafter referred to as model�data mismatch.

Model�data mismatch composes of different error sources,

for example:

� Observation uncertainty

� Mixed layer (ML) height mismatch

� Uncertainty of the bottom-up derived emission

fluxes

� Unresolved spatial variations in emission fluxes

The present study is focused on a quantitative descrip-

tion of the above-mentioned four sources of error related to

model imperfection in the frame of the IGAS project. The

aim of IGAS (IAGOS for GMES Atmospheric Service)

is to improve connections between data collected by

MOZAIC/IAGOS and the Copernicus Atmosphere Mon-

itoring Service (CAMS), where the data are used for model

evaluation. CAMS is intended to provide continuous

data and information on atmospheric composition, in

both hindcasting and forecasting a few days ahead.

TheML is usually defined as the part of the troposphere in

which a compound is well mixed due to turbulent convection

in the time scale of an hour or less (Seibert et al., 2000), and

for this reason it is the part of the troposphere in which

surface influence from anthropogenic emissions is strongest.

A poor modelling of the vertical mixing transport is well

known for being one of the most important sources of error

in atmospheric modelling and has already been investigated

in at least one recent paper (Kretschmer et al., 2012).
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In simulating atmospheric composition, not only trans-

port but also emission fluxes need to be modelled based on

emission inventories. Uncertainty in the simulated fluxes

from emission inventories is not a completely new issue.

Underestimation of CO mixing ratios by most atmospheric

models has led some authors to investigate the accuracy of

emission inventories (Stein et al., 2014).

Effects from spatial resolution of simulated fluxes can

be described in different ways; the quantitative indicator

for this source of uncertainty is hereafter referred to as

representation error. Assessments of representation error

for airborne measurements have been made for several

research campaigns by applying spatial statistic methods to

densely distributed profiles of CO2 mixing ratios (Gerbig

et al., 2003a; Lin et al., 2004). This empirically derived

representation error was shown to be consistent with a

model-based analysis, that combines a Lagrangian transport

model with spatially resolved surface�atmosphere fluxes

at different spatial resolutions (Gerbig et al., 2003b); this

indicated that most of the observed spatial variability of

trace gases in the ML is explained by spatial variability in

surface�atmosphere fluxes.

Here we use a similar approach: we combine the STILT

(Stochastic Time Inverted Lagrangian Transport) model

(Lin et al., 2003) with high-resolution fossil fuel emission

inventories, in order to assess the impact of the spatial

resolution on simulated mixing ratios within the PBL, and

ultimately on the representativeness of profile observations

for specific spatial scales. We use standard deviations of

differences resulting from different spatial resolution in

simulated CO to quantify the spatial representation error.

The central question for this thirdmodel-derived source of

uncertainty is to which degree spatial and temporal varia-

tions in the representation error are meaningful to describe

and ideally predict corresponding spatial and temporal

variations in the model�data mismatch. If successful, the

knowledge of such a representation error would allow for

a more quantitative comparison between point observations

of mixing ratios and corresponding simulations at coarser

spatial scales.

This paper addresses the partitioning of uncertainties

for one of the main parts of the MOZAIC/IAGOS ob-

servations: vertical profile data collected during take-off

and landing. The focus of the work is on carbon monoxide

(CO), a non-greenhouse gas that is of interest as a tracer for

anthropogenic emissions as emission fluxes of COaremostly

collocated with those of CO2 from fossil fuel combustion.

The paper is structured as follows. In Section 2, we

describe the treatment of the observations and the main

components of the modelling framework. In addition, we

give an account on the first two model-derived sources

of uncertainty, and the way the biases they introduce can

be dealt with. Section 2 also includes a detailed description

of the statistical methods used to estimate and validate

the spatial representation error and describes amethodology

to compare the different sources of error. In Section 3, we

present and analyse our results. Finally, Section 4 presents

our conclusions, provides recommendations on future

research and shows possible applications of ourmain results.

2. Materials and methods

2.1. Observations

In this study observations are collected from the MOZAIC/

IAGOS fleet of commercial airliners; more precisely, we

made use of CO mixing ratio profiles.

Measurement technique is described in Nedelec (2003),

whereas extensive MOZAIC CO databases have been

already used in different studies (Nedelec et al., 2005;

Elguindi et al., 2010; Zbinden et al., 2013). Measurement

precision from CO analyser is 95 ppbv CO for a 30-second

response time (Nedelec et al., 2003), with an accuracy of

within 5%.

We considered only airports in the European domain

with a significant number of observations (Frankfurt,

London and Vienna) in the 2006�2011 time frame for all

hours of the day; we did not use 2010 as observations are

available for only 6 months and this may affect seasonality.

In the profiles, continuous observations are averaged into

150m intervals with each value referring to the mean height

of the interval. Data were downloaded from IAGOS

database (www.iagos.fr/).

Flight tracks of commercial airliners usually extend up to

12 km of height, but here we limit the vertical extent to

4 km as the focus is on surface influence on atmospheric

concentration.

We focus on the ML as the part of the troposphere in

which the contribution of local anthropogenic emissions to

atmospheric mixing ratio is dominant. Conversely, above

the ML, the atmosphere is mostly stably stratified, and CO

mixing ratios depend mainly on long-range transport from

distant emission sources. We assume that at 2 km above the

top of the ML, the influence of regional surface emissions is

small, and we refer to this portion of the atmosphere as free

troposphere (FT). Due to the difference of transport regime

in ML and FT, CO mixing ratio is usually higher in

ML; the difference between mixing ratio in ML and FT

is referred to as CO enhancement and is used here as a

main indicator for the signal from regional surface fluxes

(Fig. 1). Although due to the chaotic nature of turbulent

transport and convection enhanced CO can also be found

above the ML, we focus here on the much stronger

enhancement within the ML.

There are many ways to calculate the depth of theML (zi),

but most of them are variations of the Bulk Richardson’s
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numbermethod or of the parcelmethod (Seibert et al., 2000).

To establish the method of choice for theMOZAIC/IAGOS

observations, we selected a sample of profiles for which it

was possible to estimate the actual mixing height from the

tracer’s concentration profiles, and we compared the results

from eight different methods with the tracer-based zi treated

as true value. The method that proved to be better in

reproducing the tracer-based zi was the parcel method with a

2K excess temperature, which was therefore used to

calculate the ML depth for each of the observed profiles.

2.2. Modelling framework

The modelling framework combines a regional transport

model (STILT) with an anthropogenic emission model

(EDGAR) and output from a global transport model for

lateral boundary conditions (MACC). For regional atmo-

spheric transport we use the STILT (Stochastic Time-

Inverted Lagrangian Transport) model, a Lagrangian

particle dispersion model. Starting from each measurement

(receptor) points, STILT uses analysed wind fields from

ECMWF (European Centre for Medium-range Weather

Forecasts) to drive back in time for a period of 10 d

ensembles of simulated particles representing air parcels of

equal mass (cf. Lin et al., 2003). The model uses the back-

trajectories of said particles to derive sensitivity maps of

the atmospheric mixing ratio measurement to the up-

stream surface�atmosphere fluxes (Fig. 2, right). By matrix-

multiplication with a map of surface�atmosphere fluxes

(e.g. from an emission inventory), this sensitivity map

returns the simulated mixing ratio corresponding to the

time and location of the observation (Fig. 2, left andmiddle).

This allows for creating simulated profiles that can be

analysed in the same way as the measured ones as shown

in Fig. 3, where a few exemplary profiles are given. In the

following, we will refer to the Lagrangian modelling system

as ‘STILT/EDGAR’.

Contributions to atmospheric concentrations can be

either from sources and sinks close to the receptor point

or from far field advection. In modelling, the former is

given from the simulated fluxes in the defined horizontal

domain, whereas the latter is specified by lateral boundary

conditions. STILT/EDGAR-derived profiles are obtained

by summing the contributions from both within-domain

fluxes and boundary conditions. Figure 3 shows profiles

from observations compared with the corresponding

profiles derived from STILT/EDGAR and the boundary

condition derived from the MACC reanalysis (Inness et al.,

2013). The difference between the latter two should give an

idea of the increase in tropospheric CO mixing ratio due to

the simulated fluxes close to the measurement locations.

From the figure is possible to infer that there is indeed

an increase from the boundary condition in the lower part

of the profile, with only exception the rightmost panel in

which the STILT/EDGAR profile is indistinguishable from

its boundary condition. In both modelled and observed

profiles, by subtracting the free tropospheric CO value

from the corresponding value in the ML, the region of

Fig. 1. Illustration of the CO enhancement in the mixed layer

(height zi) above the CO in the free troposphere.

Fig. 2. MOZAIC/IAGOS flight tracks below 4km altitude shown on a map with CO emissions based on the EDGAR version 4.3

emissions at 10 km horizontal resolution (left), MOZAIC observation locations during 2007 in the vicinity of Frankfurt, coloured by

altitude (middle), and STILT/EDGAR-derived footprint (sensitivity to upstream fluxes) for a single measurement location/time near

Frankfurt airport (right).
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influence is limited to more recent emissions. A mean

sensitivity map for the receptor points in the ML and FT is

presented in Fig. 4, together with the sensitivity for mixed-

layer enhancements computed as the difference between the

above-mentioned maps for ML and FT.

We use STILT/EDGAR for a regional domain that

covers most of Europe with a spatial resolution of 1/8 deg.

latitude and 1/12 deg. longitude, corresponding to 10 km

(Fig. 2, left). As lateral boundary condition for CO mixing

ratios the MACC reanalysis (downloaded from www.

ecmwf.int) was used.

Photochemical loss due to reaction with OH and

production from CH4 oxidation was implemented follow-

ing Gerbig et al. (2003b). More detailed, the contribution

to modelled CO from the advected lateral boundary

condition was subject to photochemistry, but no chemical

loss was included for the contribution from regional

emissions, which was dominated by recent input close

to the observation location with an age of typically a few

hours.

For fossil fuel emissions we use EDGAR (Emission

Database for Global Atmospheric Research); specifically

we follow the approach taken in the COFFEE (CO2 release

and Oxygen uptake from Fossil Fuel Emission Estimate)

(Steinbach et al., 2011) dataset by combining EDGARv4.3

annual global emission maps at 0.1 deg. spatial resolution

for the base year 2010 provided by EDGAR (EDGARv4.2

and 4.1 are available under www.edgar.jrc.ec.europa.eu),

specific for IPCC emission categories and fuel types, based

on IEA (2014) fuel consumption data and EMEP/EEA

(2013) emission factors. In the model, we use specific

temporal factors (seasonal, weekly and daily cycles) for

different emission categories, and with country and fuel

type specific year-to-year changes for different fuel types at

national level from the BP statistical review of World

Energy 2014 (BP 2014). The basic difference to COFFEE is

that here the focus is on CO rather than on CO2 and on

oxygen. This resulted in hourly resolved CO emissions,

which were projected to the STILT/EDGAR EU domain.

Wind fields from ECMWF have a spatial resolution of

0.25 deg. with 61 vertical levels, and a temporal resolution

of 3 hours. As already mentioned in the introduction,

model�data mismatch can include different aspects in

both the horizontal and vertical domain, for example

spatial and temporal resolution of the modelled fluxes,

poorly represented convective transport in the boundary

layer or biased fluxes in the emission inventory.

Even though the main focus here is on characterising

error contributions from different sources, we also deem

particularly important to investigate the effect of spatial

resolution of simulated fluxes on model�data mismatch.

As the STILT/EDGAR simulations are of course affected

also by the other sources of error, we need to implement

specific corrections accounting for the other dominant

sources of error in order to single out the representation

error. The following sections describe implemented correc-

tions for the mismatch in observed and simulated depth of

the ML, and for bias in the emission fluxes.

2.2.1. Mismatch in mixing height. The depth of the ML

(zi) is a very important variable in atmospheric modelling.

In fact, in a one-dimensional model, the change in atmo-

spheric mixing ratio of a trace gas due to underlying

emissions is directly proportional to the ratio between

emission flux and zi (apart from the minor influence from

the change in air density with altitude). Even assuming

perfectly simulated fluxes, if the model returns a zi that is

Fig. 3. Vertical profiles from MOZAIC/IAGOS observations (red), STILT/EDGAR simulations (blue) and boundary conditions from

the MACC reanalysis (black) for different locations and times. Note that observations have been plotted both as continuous data

(continuous red line) and averaged over 150m intervals (red dots). The dashed lines indicate the value of zi and zi�2 km for the observed

(red) and modelled (blue) profile, respectively.
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higher (or lower) than the observed one, the simulated

tracer in the ML will be too diluted (or too concentrated),

leading to a net underestimate (overestimate) in the mixing

ratio enhancement. Thus, tracer enhancements within the

ML directly depend on the thickness of the ML itself;

the same emission will lead to a larger enhancement the

lower the ML depth zi is.

STILT diagnoses zi values from ECMWF’s meteorolo-

gical fields using the Bulk Richardson’s number method

(Lin et al., 2003). The comparisons show that in general,

STILT-derived values for zi are lower than the correspond-

ing values diagnosed from MOZAIC/IAGOS meteorologi-

cal profiles.

To account for this effect we apply a first-order correction

to the simulated enhancements that adjusts modelled zi
while maintaining the column-integrated tracer amount

(Kretschmer et al., 2012). Such correction is specific for

each different profile and is applied only to profiles in which

the simulated zi value exceeded 225m (the second vertical

level in the MOZAIC/IAGOS profiles).

When this condition is not met in fact, the uncertainty in

the observed zi itself is expected to be too high to justify the

use of a correction that adjusts the modelled value to match

the observed one. Note that this situation of a simulated

ML height lower than 225m occurs predominantly at night

or during winter time.

Fig. 4. Illustration for STILT-derived mean surface influence for receptor points collected near Frankfurt in 2007 for the mixed layer

(top left) and free troposphere (top right). The bottom panels show the enhancements from the troposphere (the difference between the

former two), with different zoom.
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2.2.2. Flux error. Emission inventories are widely recog-

nised as important tools for atmospheric modelling. The

estimated fluxes they provide are coupled with atmospheric

transport in order to simulate mixing ratios that can be

compared with observations. Note that spatial distribu-

tions of population density and economic activities are

often used as a proxy for emissions to downscale national

emission inventories. For example, an urban population

gridmap, different road maps (for the four different types

of streets) and different international aviation maps (at

three different heights) of Janssens-Maenhout et al. (2013)

are used in this paper for gridding the CO emissions in the

region around Frankfurt. Such downscaling process is not

perfect and can result in biased fluxes. Differences between

simulated and observed mixing ratios can then be used to

quantitatively assess the emission inventories (Stein et al.,

2014). In fact, as boundary condition profiles are relatively

constant with height, the lion’s share in the CO enhance-

ment is accounted for by regional emissions from the

emission inventories. Hence, the difference between ob-

served and modelled enhancements reflects the difference

between actual and estimated emissions.

Here we do something similar, but we take the investiga-

tion one step further. After applying the correction for ML

height mismatch, we assess to which degree the emission

inventory correctly simulates the emission fluxes by deriving

scaling factors representing the ratio between observed

and modelled CO enhancements. Secondly, we apply the

obtained scaling factors to correct the model output. Using

these flux-corrected CO enhancements to calculate the

residuals between model and observations, we remove the

flux-bias contribution to the model�data mismatch, which

allows to single out the spatial representation error.

To better describe this bias, observed CO enhancements

are fitted against modelled enhancements using a non-

linear regression model that involves three scaling factors:

COenh;obs ¼ sfall � sfloc � sfmonth � COenh;stilt þ e (1)

Here sfall is an overall scaling factor and represents the

bias component in the second source of uncertainty.

Conversely, sfloc is specific for different airports (Frankfurt,

London and Vienna) and thus represents spatial varia-

tions in the scaling factor while sfmonth varies according to

the month and allows for adjusting the seasonality of

anthropogenic emissions; together, they introduce a random

component in the flux error.Weighted least-squares are used

to estimate the scaling factors and their uncertainties;

a random error term is here indicated by o.
Note that large areas with low emissions and small

areas with strong emissions typically characterise fossil

fuel emissions, which leads to a log-normal distribution of

the enhancements. However, a least-squares optimisation

of the scaling factors requires a normal distribution of

the dependent variable. To account for this effect, modelled

and observed enhancements were log-transformed before

the optimisation of the scaling factors. As furthermore the

log-transformation does not allow negative enhancements,

the analysis was limited to the central 80% of the CO

enhancements.

This method can be affected by biases related to the

representation of photochemistry and of the lateral bound-

ary condition. To assess this, we performed two additional

STILT/EDGAR simulations: one without taking into

account any photochemistry and one using a flat (zero)

lateral boundary condition instead of MACC reanalysis

fields for CO.

2.2.3. Representation error estimation. Spatial variations

in emissions or fluxes at scales not resolved by a given

tracer transport model are responsible for at least a large

fraction of the spatial representation error (cf. Gerbig et al.,

2003a,b). Principally such representation errors can be esti-

mated from comparisons of simulations made at different

spatial resolutions. By using a Lagrangian transport model,

the grid scale at which transport is combined with the emis-

sions is flexible. STILT has a feature that allows for

transport-flux coupling at resolutions of n times the highest

resolution of 10 km (the resolution of the emission inven-

tory); here n can assume values of 1, 2, 4, 8, 16 and 32. As

coarser resolved fluxes are the result of averaging over

highly resolved fluxes, the effects from localised strong emis-

sion sources are reduced with decreasing spatial resolution.

The representation error can thus be written in a general

way as

COrepr:errðn � 10 kmÞ ¼ rðCOðn � 10kmÞ � COð10kmÞÞ (2)

Here CO is the simulated CO enhancement after correction

for mixing height mismatch and flux error. For each

location and time, the difference between the simulated

CO mixing ratio at the highest and a lower resolution can

be interpreted as a single realisation of the representation

error for a specific spatial scale.

Because the representation error is defined as the

standard deviation of several realisations, the data need

to be divided into different groups such that the represen-

tation error is not estimated as a single number, but spe-

cific for different situations. As the CO enhancements for

the different airports show a strong dependence on wind

direction (see results Section 3.3), we decided to group into

308 circular sectors. In addition, as wind direction determi-

nation is difficult at low wind speed, a further group ‘low

wind’ was formed for wind speeds of less than 3m/s.

As the representation error is also expected to be in some

way proportional to the enhancement (in the sense that
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larger enhancements are associated with larger errors), we

estimate a relative representation error for each airport

and wind sector. For this the airport and wind sector

specific data were sorted by the simulated enhancement

and grouped into 10 bins of equal size. For each bin, we

calculate the standard deviation of the error realisation.

The random component of the relative representation error

is then derived as the slope of a linear model fitting the

within-bin standard deviations of the realisations against

the median enhancement of the bin. The bias component

was computed in a similar way, but using within-bin

median instead of the standard deviation. That way each

profile is associated with a relative representation error

that varies between airports and wind sector. The random

component corresponds to the noise in the representation

error whereas the bias component represents a systematic

error.

The presence of a bias component for the high-resolution

STILT/EDGAR simulation after applying the correction

for the flux error may seem surprising; however, it is to

some degree expected: due to the log-normal distribution

of the enhancements the bias correction is unbiased only

for the log-transformed values, not for the enhancements

themselves.

The absolute (as opposed to relative) representation

error for each profile is then derived as the product

between the relative representation error and the simulated

CO enhancement of the considered profile.

2.2.4. Representation error validation. In order to eval-

uate to which degree the estimated representation error can

be useful to describe and ideally predict model�data
mismatch for an independent model, the representation

error was compared with residuals between the MACC

reanalysis and observations from MOZAIC/IAGOS.

Here we assess the dependence on wind direction and on

time (month) for the random component. This was done in

order to validate whether or not the representation error

has any capability to describe spatial or temporal varia-

tions in model�data mismatch. The validation analysis

was limited to the city of Frankfurt due to the better data

coverage.

The slope of the linear regression indicates the fraction

of variance and bias in the model�data mismatch that is

accounted for by representation error and was derived

using the Theil-Sen estimator. Such a method calculates the

median of all the slopes of the lines passing through a

couple of points in the graph and is therefore less sensitive

to outliers. Validation results are shown only for a single

spatial resolution of the STILT/EDGAR simulation

(80 km). This resolution was chosen as it is closest to the

MACC reanalysis horizontal resolution of 1.125 deg.

2.2.5. Contribution from different error categories. After

the different sources of error (mismatch in the ML depth,

bias in the emission fluxes and spatial representation error)

contributing to model�data mismatch have been quanti-

fied, they can be compared to each other in order to arrive

at a quantitative estimate of each source’s contribution and

thus to assess their relative importance.

For ML height mismatch and emission bias, the random

and bias components are derived separately from mean

and standard deviation respectively of the relative residuals

between simulated CO enhancements before and after cor-

rections according to eqns. (3) and (4), respectively.

R:C: ¼ 1

N

XN

i¼1

COenh;corr � COenh;uncorr

COenh;corr

 !
(3)

B:C: ¼ r
COenh;corr � COenh;uncorr

COenh;corr

 !
(4)

In assessing the contributions from the corrections, we con-

sider the modelled values before the correction as stronger

biased compared to the corresponding corrected values

(in other words, corrected values are expected to be closer

to the truth). The calculation was performed separately

for both STILT/EDGAR and MACC. Contribution from

representation error for each of the considered resolu-

tions was derived from the mean of both random and bias

component of representation error.

3. Results and discussion

3.1. Observed mixing ratios

Regular observations from MOZAIC/IAGOS allows for a

thorough description of the internal structure of the tropo-

sphere. Figure 5 shows mean monthly values for CO mixing

ratios collected around Frankfurt at four different heights

each 1000m. A strong seasonal cycle is present in all the

investigated years, with higher mixing ratios in winter�
spring and lower mixing ratios in summer�fall. CO mixing

ratios around Frankfurt range between 115 and 205 ppb

at 1000m height and between 90 and 155 ppb at 4000m.

In addition, atmospheric concentration values decrease with

increasing heights. It is worth pointing out that the decrease

in mixing ratio between 1000 and 2000m is much larger than

the same decrease in the 2000�3000m and 3000�4000m
step. London and Vienna have similar patterns (not shown)

but different concentration ranges. In London, CO mixing

ratios range from 100 to 210 ppb at 1000m height, and

from 85 to 160 ppb at 4000m, whereas for Vienna the range

is 130�220 ppb at 1000m and 105�170 ppb at 4000m of

height.

Abnormal high concentration values in the spring of years

2007 and 2008 at 3000 and 4000m altitude are due to a

8 F. BOSCHETTI ET AL.



much higher number of spring wildfires in many European

countries in both years compared to other years. More

precisely, in 2007 the affected countries were Portugal,

Spain, Austria, Hungary, Germany and Czech Republic,

whereas in 2008 they were Portugal, Spain, Turkey and

Cyprus (Camia et al., 2009).

After presenting some observational results, a compar-

ison between observation and model time series may

be helpful to introduce some general remarks. Figure 6

shows an overview over 4 yr (2006�2009) of profiles between
the surface and 4 km over Frankfurt. It is clear by

comparing the top panel with the two middle panels that

both models correctly simulate the CO seasonal cycle,

although with a low-biased magnitude. The difference of

observations andMACC reanalysis (bottom panel of Fig. 6)

shows that larger differences are mostly located in the lower

atmosphere.

As both models returned a net underestimate of

the observed mixing ratio, an attempt to evaluate their

ability to simulate observations was conducted. Figure 7

shows the coefficient of determination (R2) between

modelled and observed CO mixing ratio for the different

intervals of the vertical profiles derived for both STILT/

EDGAR and MACC. It is evident that the models’

performance is very dependent on height and that they

both perform similarly within the crucial area of the

boundary layer, characterised by strong variability in the

vertical transport.

Fig. 5. Observed CO mixing ratio for the years 2006�2011 in the lower troposphere around Frankfurt. The plots show mean monthly

values at four different heights. Note that values collected at 1000m differ strongly from values collected at higher levels. In the spring

(March and April) of 2007 and 2008, higher values were collected at 2000m and above. This is likely due to an unusually high number of

spring wildfires in many European countries.
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3.2. Corrections for mismatch in mixed layer heights

Comparisons between observed and model-derived heights

of the ML (zi) show that the modelled values are biased

low for both STILT/EDGAR and MACC, although for

the latter the mismatch is lower (Fig. 8 shows an example

limited to 1 yr of Frankfurt data). More precisely, zi
modelled by STILT/EDGAR underestimates the observed

value by 43% in Frankfurt, 53% in London and 29% in

Vienna, while for MACC these values are 37% for

Frankfurt, 46% for London and 17% for Vienna, respec-

tively. From this low bias in simulated zi one would expect

a high bias in CO enhancements, corresponding to a

correction that lowers the original CO enhancement.

These values translate into average corrections for the

CO enhancement simulated by STILT/EDGAR of �6.8%

(Frankfurt), �2.8% (London) and �9.3% (Vienna).

Note that when limiting the statistics to only include those

cases where modelled zi is above 225m (see 2.2.1), these

values change to �29.9%, �15% and �29.3%, respec-

tively. The corresponding values for the MACC reanalysis

are 0.3% (Frankfurt), 6.5% (London) and 5.1% (Vienna)

if all the dataset are considered, and �1%, 17.8% and

8.5% if the 225m filter is applied.

3.3. Corrections for flux error

It is clear from Fig. 9 (left) that the CO enhancements from

our STILT/EDGAR simulations are biased low. From the

optimisation of the modelled fluxes using eq. (1), we found

that both STILT/EDGAR simulated emissions of CO for

Fig. 6. Observed MOZAIC/IAGOS profiles of CO near Frankfurt (first panel, on top), together with simulated profiles of CO from

STILT/EDGAR coupling and MACC reanalysis (second and third panel, respectively). The bottom panel shows the absolute value of the

residuals between MOZAIC/IAGOS and MACC profiles.

10 F. BOSCHETTI ET AL.



both STILT/EDGAR and MACC reanalysis are biased

low by a factor of 2�2.5 (Fig. 9, right). There is no

significant difference in the scaling factors for STILT/

EDGAR and MACC, as there is an overlap in the error

bars of each specific correction factor. As error bars for the

scaling factors of different cities also overlap, we can claim

that there is no significant spatial correction. However, it

is worth pointing out that a slightly significant seasonal

correction is indeed present, as error bars for the scaling

factors of months belonging to different seasons do not

always overlap. Values for different months range from

about 0.8 during summer to 1.3 during winter. The

relevance of the seasonal pattern in the bias of emission

models has been found to be important by Stein et al.

(2014). However, their scaling factors for Europe range

between 1 and 4.5 for monthly values (Table 4 from Stein

et al., 2014), which corresponds to a range from 0.4 to

2.0 when separating out the overall scaling factor of 2.3,

showing much stronger temporal variability than in the

present study.

In this study, temporal emission factors for different

months, days of the week and hour of the day were applied

to EDGAR annual fluxes specific for both emission

category and fuel. Conversely, MACCity emissions data-

sets used by Stein (2014) are developed on a decadal basis,

with a linear interpolation applied to obtain yearly fluxes.

A source-specific seasonality was then implemented.

3.4. Evaluation of simulated CO enhancement

Before quantitatively evaluating the representation error,

we evaluated the statistical model with respect to ML

enhancements. We are especially interested in how well the

STILT/EDGAR simulations and the MACC reanalysis

can reproduce the observed enhancements before and

after being corrected for bias in simulated fluxes. As a

high-resolution transport/flux coupling, STILT/EDGAR is

expected to detect the near-field influence of emissions on

the tracer enhancement.

Observed values for CO enhancements range between

30 and 130 ppb (Fig. 10) and are strongly dependent on wind

direction. For all three cities, maximum values are observed

when the wind blows from East, whereas minimum values

are usually observed when wind blows from West. More

precisely, observed enhancements over Frankfurt experience

a maximum when wind direction is 45�75 deg., and a

minimum when wind direction is in the interval of 255�315
deg. For London, maximum and minimum values are

observed when wind direction is 75�105 and 225 deg.,

respectively. For Vienna data are not available for many

wind sectors; among the available sectors, maximum values

are collected when wind direction is 105�165 deg., whereas

minimum values are collected when wind direction is 285

deg. For both Frankfurt and London, maximum enhance-

ments correspond to situations when measurements are

recorded downwind the main source region (the city centre).

Fig. 8. Comparison of simulated vs. observation-derived mixing

heights for MOZAIC profiles near Frankfurt in 2007. The red line

is drawn from the origin and through the centre of mass of the

scatter plot, so its slope represents the ratio of the mean simulated

and observed value.

Fig. 7. Coefficient of determination (R2) between modelled and

observed CO mixing ratio for both STILT/EDGAR and MACC

using profiles collected around Frankfurt’s airport during 2006�
2011.
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In addition for Frankfurt, where data coverage is better,

enhancements observed under low wind conditions tend

to be similar to the maximum values observed for the other

sectors. This suggests that the emissions from the city centre

and from the airport itself have the same potential to

influence observations.

It is clear from the same plot that both STILT/EDGAR

and MACC need to be corrected to avoid a severe under-

estimation of the observed enhancement values. As for the

corrected modelled outputs, they range between 30 and

130 ppb (median over the years 2006�2011); the STILT/

EDGAR simulation usually performs similarly to the

MACC reanalysis in reproducing the observed enhance-

ments in their dependence from wind direction. However,

interpretation is not trivial, as the flight path depends

strongly on wind direction (aircraft typically take off into

the wind). It is worth noting that the enhancements derived

from STILT/EDGAR for different spatial resolutions

Fig. 9. In the left panel the comparison of simulated vs. observed mixed layer CO enhancements for Frankfurt profiles in 2007 during

daytime (10:30�17:30 UTC) is shown. The red line is drawn from the origin and through the centre of mass of the scatter plot, so its slope

represents the ratio of the mean simulated and observed value. The right panel shows the correction factors to compensate for a bias in

STILT/EDGAR and MACC emission flux (right). Both correction factors and error bars (standard deviations) were derived using a

weighted least-squares estimate of the parameters of a non-linear model.

Fig. 10. Median enhancements of CO for the years 2006�2011 in the mixed layer for Frankfurt (left), London (middle) and Vienna

(right), as a function of wind direction. The rightmost x-values indicated ‘low’ represent low wind speeds (B3m/s). Observations are show

in blue, STILT/EDGAR simulations in different grey tones (light for coarse, dark for high resolution), and MACC reanalysis results are

shown in red. STILT/EDGAR and MACC uncorrected enhancements are shown in green and ochre, respectively.
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usually share a similar pattern, with a relative difference

inmagnitude up to 30% for Frankfurt, 50% for London and

20% for Vienna.

Note also that corrected STILT/EDGAR simulations

at lower resolutions occasionally show better agreement

with observations than their counterpart derived with more

highly resolved fluxes. In fact, low-resolution CO enhance-

ments tend to be reduced due to horizontal averaging of

strongly localised sources; as uncorrected models system-

atically underestimate observed CO enhancement values,

low-resolution uncorrected simulations will agree even less

with observed values. However, after correction for flux

error, STILT/EDGAR simulations can either overestimate

or underestimate observations, which leads to the above-

mentioned effect.

Standard deviation results are shown in Fig. 11. It is

found that corrected models have a higher standard devia-

tion than the observations whereas uncorrected models have

lower standard deviations. MACC and STILT/EDGAR

at highest spatial resolution (10 km) have similar standard

deviations, while STILT/EDGAR’s standard deviation

decreases together with spatial resolution.

3.5. Representation error realisations

After applying the corrections for ML depth and flux error

to the simulations, we plotted the realisations of representa-

tion error against the low resolution enhancements in the

ML (Fig. 12). Plots were done seasonally or by location;

the spatial scale of 80 km was chosen as the closest to the

MACChorizontal resolution (1.125 deg.). It is clear from the

plot that higher enhancements will lead to higher realisations

for the representation error (see 5th�95th percentile envel-

opes as grey lines in Fig. 12). In addition to a larger variance,

the mean of the error realisations for different simulated

enhancements also shows a slight decrease for larger

enhancements. In other words, the high-resolution simula-

tions result on average in larger enhancements compared

to coarser resolutions. This is related to the fact that local

emissions near the IAGOS/MOZAIC observations made

within the ML are strong and extend over small areas,

whereas they become more diluted when using coarser

resolution. Results do not show any clear dependence on

the season, but slight differences can be seen for different

airports.

3.6. Representation error

Both random and bias component of the representation

error are highly variable with spatial resolution (Figs. 13

and 14). More precisely, representation error tends to

increase with decreasing resolution even though the general

dependence on wind direction is conserved.

Comparing the absolute representation error associated

with the highest spatial resolution (20 km) with the repre-

sentation error associated with the lowest spatial resolution

(320 km), we found that such an increase can be by a factor

of 4�5 for the random component, and more than 10 for the

Fig. 11. As Fig. 10, but for the standard deviation of the enhancements of CO for the different wind sectors.
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bias component. For the random component, the represen-

tation error is around 2�10% for 20 km, and with few

exception increases to around 10�100% for 320km (Fig. 13),

while the range for the bias component, the representa-

tion error is from �2 to �1% at the highest resolution, and

from �50 to �50% at the lowest resolution (not shown).

Most of the remarks for the relative representation error

also hold for the absolute representation error, especially the

strong dependence on spatial resolution. For the random

component, representation error is around 2�8 ppb for

20 km and increases to around 10�50 ppb for 320 km

(Fig. 14). For the bias component, values can be negative;

the representation error ranges from �3 to 1 ppb at highest

resolution and from �40 to 40 ppb for the lowest resolution

(not shown).

Note that the random component of the representation

error increases from 160 to 320 km spatial resolution for

London and Vienna, but decreases for Frankfurt; this effect

Fig. 12. Realisations of representation error (i.e. differences between STILT simulations at different resolutions, here 10 and 160 km) for

CO plotted against simulated enhancement, and colour-coded by season (left) and by airport location (right). Grey lines indicate the 5th

and 95th percentile of the distribution within 10 bins of simulated enhancement; the yellow line indicates the mean.

Fig. 13. Random component of the relative representation error for CO for the years 2006�2011 in the mixed layer for Frankfurt (left),

London (middle) and Vienna (right), as a function of wind direction. The rightmost x-values indicated ‘low’ represent low wind speeds

(B3m/s). STILT/EDGAR simulations are shown in different grey tones (light for coarse, dark for high resolution). Maximum relative

error for Vienna at 105 degrees is up to 4.8.
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is probably a result of specific property of the emission

pattern around the Frankfurt airport, with local emissions

(which have a strong influence on the CO enhancement)

being more comparable to emissions aggregated to large

scale than to those aggregated to intermediate scales.

The strong dependence of representation error on both

spatial resolution and wind direction indicates that coarser

models are expected to have difficulties representing the

small spatial scale of the emissions around strong localised

sources, for example those originating in the cities. This

is most likely due to the effect of horizontal dilution that

such averaging has on the emissions.

3.7. Validation

In order to evaluate to which degree the representation

error can be useful to describe and ideally predict model�
data mismatch for an independent model, the representa-

tion error derived from STILT/EDGAR was compared

with residuals between the MACC reanalysis and observa-

tions from MOZAIC/IAGOS.

Here we assess the dependence on wind direction and on

time (month) in order to evaluate whether or not the

representation error has any capability to describe spatial

or temporal variations in model�data mismatch (Fig. 15).

The analysis is limited Frankfurt due to the better data

coverage.

The slope of the linear regression indicates the ratio of

variance in the model�data mismatch that is accounted for

by representation error and was derived using the Theil-Sen

estimator. Such a method calculates the median of all the

slopes of the lines passing through a couple of points in

the graph and is therefore less sensitive to outliers.

As mentioned in Section 2.2.4, enhancements are ex-

pected to be more or less bias free after flux error

correction. Hence bias component for representation error

cannot be validated and for this reason, only results for the

random component are shown. In Fig. 15 it is shown that

random representation error allows for describing 15�21%
of the variance with good correlation coefficient returned

for both wind and temporal grouping (0.58 and 0.67,

respectively). Model�data mismatch ranges roughly over

60 and 180 ppb.

This result suggests that the representation error pro-

vided by STILT/EDGAR can explain a significant fraction

of the random component in the model�data mismatch

for MACC, and therefore, can be regarded as useful infor-

mation for better understanding causes for model�data
mismatch in other models.

3.8. Error contributions

After the individual errors related to mismatch in mixing

height, bias in emission fluxes and spatial representation

have been quantified, they can be compared to determine

their relative importance. As mentioned before (Section

2.2.1), due to uncertainty in observations, we apply the

correction for ML depth only when the observed zi is

Fig. 14. As Fig. 13, but for absolute representation error.
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higher than 225m, which is 55% of the cases. Note that of

the remaining cases, only 35% for STILT/EDGAR and

25% of MACC occur during daytime (11:00�17:00), and
the rest during night-time or transition periods. This means

that for almost half of the data the zi correction factor

equals one, which from the model’s perspective is the same

as saying that they don’t need to be corrected although this

is certainly not the case. To account for this effect, when we

evaluate the error contributions from different categories of

uncertainty, we perform our investigation only on the sub-

dataset in which both the ML mismatch and flux correction

are implemented.

The assessment of contribution of different error cate-

gories to model�data mismatch for the city of Frankfurt is

shown in Fig. 16. Here the random and bias components

are treated separately. Random and bias component for

mixing layer mismatch and flux correction are here cal-

culated according to eqns. (3) and (4), whereas both com-

ponents for the spatial representation error are calculated

as the mean of respective component derived in Section

2.2.3.

The fact that the second source of uncertainty (flux error)

also has a random component is related to the fact that

simulated fluxes are also corrected with a time dependent

(monthly) factor. Thus, when comparing simulated CO

enhancements before and after correction for flux error

(overall and monthly), the standard deviation of the

introduced relative differences reflects the temporally vary-

ing flux corrections.

Note the different contributions are calculated as relative

errors for each category, not as the fractional contribution

to the total error (i.e. the sum of the contributions is

not necessarily equal to one). Random components for the

mixing layer mismatch are about 83% for STILT/EDGAR

simulation and 70% for MACC. The random component

for flux correction is around 8% for STILT/EDGAR and

5% for MACC. Contributions from representation error

range from 14 to 89% according to the considered resolu-

tion. The bias component of model�data mismatch is

positive for zi mismatch and negative for flux correction.

More detailed, the relative error for ML depth is 55%

for STILT/EDGAR and 26% for MACC, while for in-

accuracies in simulated fluxes such values are �44% and

�55%, respectively. Note that both random and bias

component of the representation error increase with decreas-

ing resolution up to 160 km, a feature observed also in

the Frankfurt panel of both Figs. 13 and 14.

Fig. 15. Random component for representation error of Frankfurt for different wind directions (left) and months (right), plotted against

the corresponding model�data mismatch error.

Fig. 16. Assessment of contribution of different error categories

for the city of Frankfurt. The assessment is treated separately for

random (upper tab) and bias (lower tab) component. For each

component the uncertainty of the correction for mismatch in the

mixing height (zi) and bias in the emission inventories (flux) is

shown for both STILT (left) and MACC (centre) models; the

contribution from the spatial resolution of EDGAR fluxes to

STILT/EDGAR uncertainty is shown for each of the considered

resolutions (right).
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Further sources of error with relatively small impact are

photochemistry and uncertainty due to boundary condi-

tions. As stated in Section 2.2, the contribution to modelled

CO from the advected lateral boundary condition was

subject to photochemistry (reaction with OH and produc-

tion from CH4 oxidation), whereas no chemical loss was

assumed for the additional CO from emissions within

the domain. In fact, observations tend to be influenced the

most from local sources, with the median of the time (prior

to measurement) needed to account for 90% of the CO

contribution from emissions is 15 hours, and with half of the

CO contribution to each trajectory ensemble captured in

25 hours for 90% of the measurements. According to

Protonatariou et al. (2010), CO lifetime during summer in

Europe ranges from weeks to months. Using 14 d as an

extreme value for CO lifetime, the amount of COoxidised by

OH in 15 hours would be to roughly 4.4% of the enhance-

ment. We regard this as the upper limit of the uncertainty

(both bias and random) introduced by neglecting photo-

chemistry for CO from emissions within the domain.

The change in the simulated CO enhancements due to

photochemistry (taken as the difference between simulations

with and without photochemistry) are shown in Fig. 17

(left); the mean and standard deviation of these changes

amounts to �0.7 and 2.6 ppb, respectively. Note that

the photochemistry not only accounts for losses in CO,

but also for CO generated by the oxidation of methane. We

regard these differences as upper limit for the bias and

random error resulting from imperfection in the chemistry

as applied to the lateral boundary condition. Together with

the uncertainty due to neglecting photochemistry for the

CO emitted within the domain, the overall uncertainty in

photochemistry is estimated to be on the order of 5.5%

(random) and 8.9% (bias) for the CO enhancement.

For the uncertainty due to boundary conditions we

follow a similar approach by calculating residuals between

STILT/EDGAR with MACC boundary condition and

corresponding simulations with zero boundary condition

(Fig. 17, right). The mean of the residuals is 2.9 ppb, while

the standard deviation is 11.1 ppb, corresponding to 4

and 17.1% in relative terms, given average enhancements

of 64 ppb. Again we regard these as upper limits for

the corresponding uncertainty due to imperfect lateral

boundary conditions.

Random contributions to uncertainty in the CO enhance-

ments from both photochemistry and boundary conditions

(5.5 and 4%) are comparable to those from flux correction,

butmuch smaller than contributions from theMLdepth and

representation error. Note that the random error contribu-

tion from flux error is only related to the monthly variations

in the correction factors, which are relatively small. As for

the bias contributions from photochemistry and boundary

conditions (8.9 and 17.1%), they are small compared to the

other error contributions.

Other sources of error not explicitly taken into account

here include uncertainty in horizontal transport and the

occurrence of deep convection due to the presence of clouds.

Uncertainty in simulated transport related to poor model-

ling of advection was thoroughly described by Lin and

Gerbig (2005), where the (relatively favourable) comparison

between modelled wind from the Eta Data Assimilation

System (EDAS) with observation from radiosondes was

used to specify uncertainty in simulated winds. Unfortu-

nately the MOZAIC/IAGOS wind observations do not

Fig. 17. Absolute change in CO enhancements due to photochemistry (left) and boundary condition (right) on the whole dataset.

Standard deviation of residuals is quantified as 2.6 ppb for photochemistry and 11.1 ppb for the boundary condition. Note the different

scale on the x-axis of the two plots.
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show a nearly as good agreement with the ECMWF

simulated winds, most likely due to observational difficulties

for airborne platforms as compared to radiosondes.We thus

refrain from attempting to quantify this source of uncer-

tainty. Uncertainty related to imperfect representation of

vertical transport by deep convection is not likely to

contribute strongly, as it occurs relatively infrequent.

4. Conclusion

We quantitatively described the contribution of the three

major model-derived uncertainty sources: mismatch in the

ML depth (related to uncertainty in the transport model),

bias in the fluxes provided by the emission inventories and

spatial representation error. We have shown the contribu-

tion for both random and bias component of the different

model-derived error categories for both STILT/EDGAR

simulations and MACC reanalysis.

Both models show similar contributions for the random

component of ML depth and flux accuracy with the former

clearly dominating on the latter. For both models, the bias

component for ML depth has positive sign, whereas the

bias component for flux accuracy has negative sign in both

models. In addition, it is comparable in magnitude for

STILT/EDGAR whereas in MACC the flux error is clearly

more important. Contributions from spatial representation

error tend to increase with degraded resolutions.

The clear dependence of representation error on both

spatial resolution and wind direction shows that observa-

tions are influenced by local emissions; so high-resolution

emission inventories are to be preferred for modelling

applications such as inverse modelling. However, it is worth

pointing out that a higher resolutionmodel will have a direct

impact on the computational effort and hence temporal

and financial resources are required to carry out such

simulations.

However, in this paper we have shown that spatial and

temporal variation in the representation error allows for

describing about one sixth to one fifth of the variance in

model�data mismatch. Therefore, it is likely that informa-

tion on temporal and spatial variation of representation

error derived from the STILT/EDGAR simulations can be

used to improve quantitative analyses when using coarse

models. On the other hand, given that the spatial repre-

sentation error, though significant, does not dominate the

model�data mismatch, MOZAIC/IAGOS profile data can

be regarded as spatially representative to a certain degree.

This is good news for such a dataset, which has been

collected at many locations around the globe in the vicinity

of major metropolitan areas.

When considering the whole dataset, uncertainty in

simulated vertical transport showed that a low bias in ML

depth of 43% for EDGAR/STILT and 37% for MACC

results in a reduction of CO enhancements of 6.9% and

0.3% respectively in the most representative location.

We also provided evidence that the modelled outputs for

COunderestimate observations by a factor 2�2.5, suggesting
a bias in the emission inventories. As most of the CO

enhancements in the ML are caused by regional fluxes,

rather than advected contributions from the lateral bound-

ary, the difference between observed and modelled enhance-

ments can be seen as the difference between actual and

estimated emissions. Observations are needed to correct

this underestimation, as current emission inventories are

likely to perform poorly, e.g. in forecasting of regional air

pollution.

Flux error is targeted in modelling to provide top-down

constraint on emission inventories; however, the accuracy

in top-down constrained emissions is affected by the

other sources of model�data mismatch error. For example,

uncertainties in ML heights and spatial representation

error limit the accuracy to 30�60% (bias components in

Fig. 16), thus they need to be taken into account in order to

provide a more accurate top-down constraint. Note that

uncertainties introduced by the (simplified) representation

of photochemistry and by the choice of lateral boundary

condition are rather small.

Airborne measurements are not often used for inverse

(top-down) modelling of fluxes. However, given that ob-

servations from commercial airliners provide vertical profile

information near major cities around the globe, and given

that the emissions can be constraint by the enhancement

within the boundary layer as shown here, we argue that

they should be considered in inverse modelling. The method

of error partitioning described in this paper will be espe-

cially important in the context of the upcoming availability

of CO2 and CH4 profile data within IAGOS. In fact, the

availability of three carbon-based tracer gases (CO, CO2

and CH4) will allow for multi-species inversion studies

making use of a transport-flux coupling as the one described

here. In this context, with different tracers that share the

same transport, and that share part of their emission

categories, the ability to discriminate between different

sources of uncertainty will be useful. Also the use of CO

as a proxy for the anthropogenic emission contribution to

the CO2 mixing ratio will be improved with the better

described contributions of uncertainties to model�data
mismatch.

Furthermore, as MOZAIC/IAGOS is also an important

data provider for validation of satellite observations (Cal/

Val), a possible future study is to perform a similar analysis

aiming to assess the contributions of different sources of

uncertainty contributing to satellite�airborne mismatches.

A feasible option for the satellite data are the measurements

from the MOPITT sensor onboard the NASA’s Earth

Observing System Terra spacecraft. A further alternative is

18 F. BOSCHETTI ET AL.



represented by the IASI sensor onboard the ESA’s MetOp

satellite. The implementation into the IAGOS database of

the information on part of the error partitioning presented

in this study is envisioned in the frame of the IGAS project

as a first application of our results.
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