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Hot temperature extremes have increased substantially in frequency and3

magnitude over past decades. A widely used approach to quantify this phe-4

nomenon is standardizing temperature data relative to the local mean and5

variability of a reference period. Here we demonstrate that this conventional6

procedure leads to exaggerated estimates of increasing temperature variabil-7

ity and extremes. For example, the occurrence of ‘2-sigma extremes’ would8

be overestimated by 48.2% compared to a given reference period of 30 years9
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with time-invariant simulated Gaussian data. This corresponds to an increase10

from a 2.0% to 2.9% probability of such events. We derive an analytical cor-11

rection revealing that these artifacts prevail in recent studies. Our analyses12

lead to a revision of earlier reports [e.g. Huntingford et al., 2013]: For instance13

we show that there is no evidence for a recent increase in normalized tem-14

perature variability. In conclusion, we provide an analytical pathway to de-15

scribe changes in variability and extremes in climate observations and model16

simulations.17
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1. Introduction

Quantifying to what extent the magnitude and frequency of extreme events are changing18

is a priority in climate change research [IPCC , 2012; Seneviratne et al., 2014]. In recent19

years, unusually hot temperature extremes have occurred and these events are increasingly20

exceeding the range of historical variability [Rahmstorf and Coumou, 2011; Mora et al.,21

2013]. Considerable scientific debate has sparked around whether present-day changes in22

extreme events are due to the shifting mean climatology, or whether we are also confronted23

with changing variability [Hansen et al., 2012; Huntingford et al., 2013; Alexander and24

Perkins , 2013; Mora et al., 2013; Seneviratne et al., 2014]. Of particular focus in this25

context are changes in temperature extremes, which have direct impacts upon human26

wellbeing and likewise a↵ect ecosystem services and global biogeochemical cycles [IPCC ,27

2012; Reichstein et al., 2013].28

A widely used approach to address this question relies on normalizing climate data rel-29

ative to a reference period [Hansen et al., 2012; Coumou and Robinson, 2013; Huntingford30

et al., 2013; Kamae et al., 2014; Curry et al., 2014] aiming to objectively compare tem-31

perature variability and extremes across space and time. This approach conventionally32

derives standardized anomalies by locally subtracting the mean (µ
ref

) from and dividing33

the observations by the standard deviation (�
ref

) estimated from some reference period:34

z =
X � µ

ref

�
ref

(1)

The idea is to rank or count events based on departures from the local climatology (as35

defined by the reference period) in units of standard deviation (�). Transformations of36
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this kind underpin studies of changes in the occurrence of monthly or seasonal temper-37

ature extremes [Hansen et al., 2012; Coumou and Robinson, 2013; Kamae et al., 2014;38

Curry et al., 2014] and variability [Huntingford et al., 2013]. Further, so-derived stan-39

dardized anomalies have been used to determine continental-scale rankings of the most40

significant meteorological or geophysical extreme events [Grumm and Hart , 2001; Hart41

and Grumm, 2001; Root et al., 2007; Graham and Grumm, 2010], and Kodra and Ganguly42

[2014] study asymmetry in the distributions of temperature extremes using a variant of43

this methodology.44

In this paper, we demonstrate that this conventional normalization procedure inevitably45

leads to erroneous and exaggerated estimates of temperature extremes and variability46

outside a specified ‘reference period’. Furthermore, we derive an analytical correction47

that accounts for these statistical artifacts and allows for an accurate quantification of48

large-scale climate variability and extremes.49

2. Methodology and Results

2.1. Normalization-induced artefacts and an analytical correction for

quantifying extremes

To test the suitability of the reference-period normalization, we conduct Monte-Carlo50

simulations with independent and identically distributed random variables drawn from51

a standard Gaussian distribution (N (µ = 0, �2 = 1)). This numerical experiment is52

set-up in analogy to investigations of monthly or seasonally standardized extremes [see53

Hansen et al., 2012, for an example] in gridded temperature data with k = 104 time series54

(‘grid cells’) and n = 60 data points per time series (‘years of data’), but consisting of55
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purely random Gaussian variables (i.i.d.). For each time series we generate anomalies and56

subsequently standardize these based on the conventional procedure (Eq. 1). Both mean57

(µ̂
ref

) and standard deviation (�̂
ref

) are estimated from each time series’ first 30 values58

(i.e. n
ref

= 30). The number of values exceeding � extremes are counted at each time59

step in the original and normalized dataset (Figure 1, grey and red line, respectively).60

Given that the statistical properties of the artificial data are time-invariant, there should61

be no change in the number of extremes across the dataset. However, in fact we find62

substantial increases in the number of extreme events outside the reference period along63

with a reduction in extremes within the reference period (Figure 1a, R code to reproduce64

these results in Text S1). A quantification of 2� extremes across all grid cells in the65

artificial dataset leads to a considerable increase (red line in Figure 1a) in the out-of-base66

period relative to the reference period of about 48.2%. Considering only the out-of-base67

period the number of 2� (3�) events would be overestimated by 29.1% (131.0%) relative68

to the original Gaussian data (black line in Figure 1a), which corresponds to an increase69

from a 2.3% (1.3‰) chance to 2.9% (3.1‰). For illustration purposes, the distributions at70

a random time step inside and outside the reference period across all time series is shown71

in Figure 1b and 1c for anomalies and standardized variables, respectively. Overall, the72

artificial experiment reveals potentially severe artefacts in the widely applied reference73

period normalization. In the following paragraphs, we reveal the consequences of this74

conventional normalization and derive an analytical solution for the induced artefacts.75

To understand the origin of the apparent increase in extremes we have to consider that

the ‘true’ values for mean and variability are inherently unknown, which changes Eq. 1
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to:

z =
X � µ̂

ref

�̂
ref

. (2)

The estimates of the mean (µ̂
ref

) and standard deviation (�̂
ref

) are random variables76

with well-known statistical properties [Von Storch and Zwiers , 2001], drawn from an inde-77

pendent sample in case of analyzing the out-of-base period [Zhang et al., 2005] (see Text78

S2 for a detailed statistical description), and subsequently pooled in space. Consequently,79

the biases between both periods are induced by a combination of two e↵ects, firstly the80

generation of anomalies (X
anom

= X�µ̂
ref

), and secondly the standardization (z = X

anom

�̂

ref

)81

(Figure 1b,c): The generation of anomalies systematically increases (decreases) the vari-82

ance across grid cells in the out-of-base (reference) period [Tingley , 2012], but does not83

a↵ect the underlying distribution (Text S2). However, the local standardization of each84

time series induces qualitative changes to the (spatial) distribution (for an analytical85

derivation see Text S2) such that heavier tails outside the reference period are induced86

(Figure 1c). This qualitative di↵erence stems from the fact that any time point in the out-87

of-base period follows a t-distribution with n
ref

� 1 degrees of freedom (Text S2). Hence,88

the heavier tails generated by the conventional standardization lead to a consistent and89

potentially severe overestimation of extreme events in the out-of-base period (Figure 1a)90

for relatively short, but in practice often used, sometimes unavoidable, reference periods.91

However, the distribution after normalization can be derived analytically (Text S2), and92

hence the biases can be rectified separately both for the reference and the out-of-base93

periods. Specifically, instead of counting 2� (3�) extremes in the out-of-base period, a94

search for the corresponding percentile threshold in the variance-adjusted t-distribution95
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(2.12� (3.32�), respectively, if n = 30) would allow for the detection of the correct number96

of events (Figure 2a, Figure S1 for an illustration of the correction procedure). Further,97

it is worth noting that even with an increasing number of samples in the reference period,98

the convergence to small biases is slow. For autocorrelated data the artefacts are even99

more pronounced owing to a smaller e↵ective sample size (Figure S2a and Figure S2b,100

respectively).101

Before applying the proposed analytical correction we have to consider that tempera-102

tures at monthly or seasonal time scales are typically non-stationary [Ji et al., 2014], i.e.103

simulated or observed time series might contain spatially and temporarily diverse trends.104

Using Monte-Carlo type simulations of normalized Gaussian time series with changing105

trends and variability we find that both exerts strong influence on the magnitude of the106

biases (Text S3). Increasing (decreasing) trends or variability in the out-of-base period107

severely deflates (inflates) the biases for the upper tail (Figure S2a,b). These insights are108

equally applicable to the lower tail of the distribution if the sign of the trend is reversed.109

To assess the issue of non-stationarity in more detail, we consider trends and changes in110

variability in the artificial dataset introduced in Figure 1. First, random linear trends are111

added in the out-of-base period to each random Gaussian time series, where the magni-112

tudes of the trends at the last time step are drawn randomly for each grid cell from a113

uniform distribution in the interval [�1  �  1] in units of � (Figure 2b). Second, we114

investigate a trend in the out-of-base period coinciding with randomly assigned changes115

in variability (0.8  �  1.2, Figure 2c).116
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Following the solution for stationary time series outlined above, we o↵er an analytical117

correction that allows handling of the additional artefacts induced by non-stationarities118

(Text S4). In essence, normalizing non-stationary data induces a non-central version of119

Student’s t-distribution. This analytical distribution can be used to avoid normalization-120

induced biases entirely if changes in the trend or variability are known (Figure 2b,c).121

Likewise, estimating the trend and/or changes in variability largely allowes for removing122

the biases (Figure 2b,c). As above, �-extremes are counted based on the biased estimate123

of the conventional procedure (red line), and based on the application of the suggested124

correction procedure using known (blue) and estimated (green) trends and changes in125

variability. Throughout this paper, Singular Spectrum Analysis (SSA), a non-linear spec-126

tral decomposition methodology [Golyandina and Zhigljavsky , 2013; von Buttlar et al.,127

2014] is used to estimate trend components, before the analytical correction procedure128

based on the noncentral t-distribution is applied. Trends are extracted as 31-year and129

larger components using a 45-year SSA window length (L = 45).130

2.2. Quantifying extremes in Earth observation data

In this subsection, we assess how monthly temperature extremes on land have changed131

over the second half of the 20th century in the Northern hemisphere up to present by ap-132

plying the statistical approach outlined above. In order to avoid potential inhomogeneities133

related to gridded observations, we analyze the state-of-the-art Twentieth Century Re-134

analysis dataset [Compo et al., 2011] (Version 2). The reanalysis dataset assimilates only135

surface pressure measurements and monthly sea surface temperatures into an atmosphere136

and land general circulation model [Compo et al., 2011] and is hence independent from137
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station temperature measurements. The dataset has been specifically designed to assess138

climate variability and extremes statistics ‘spanning the instrumental record’, and has139

been demonstrated to reproduce the observed temperature trends and variability to a140

very large extent [Compo et al., 2011].141

In our analysis, we first interpolate the dataset to a 2� x 2� regular latitude-longitude142

grid, and mask ocean pixels. Second, we estimate separately for each month and grid cell143

the trend component, local mean and (non-detrended and detrended) standard deviation144

in two di↵erent reference periods (1921-1950 and 1951-1980). Thirdly, each pixel time145

series is normalized using both reference periods and the detrended and non-detrended146

�
ref

estimates. For each month we calculate the area a↵ected by 2� and 3� extremes,147

using the conventional normalization approach and our correction. We use the trend148

estimates for our correction, but assume an approximately unchanged variance over the149

past decades [Huntingford et al., 2013]. Lastly, we derive seasonal averages of the ‘area150

a↵ected by extremes’ for Northern hemisphere summer (JJA, Figure 3).151

Our analysis reveals that the exceedance of monthly 2� and 3� temperature extremes in152

summer has indeed increased substantially over the Northern hemisphere (Figure 3a,b for153

land areas in the NH outer tropics). However, the bias-adjusted time series show a consis-154

tently slower and smoother increase as compared to the conventionally applied uncorrected155

normalization procedure. A break point analysis using piecewise linear regression [Toms156

and Lesperance, 2003] based on our revised figures indicates that the recent rapid increase157

in hot summer months in the Northern hemisphere (2� and 3� events) started to emerge158

around the late 1980s or early 1990s (Figure 3b).159
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The magnitude of the biases and the discontinuities at the reference and out-of-base160

period are robust across di↵erent reference periods, and also hold if trends are subtracted161

before estimating local variability [Coumou and Robinson, 2013] (Figure S3 and Fig-162

ure S4). Increases in extremes relative to local variability show a clear zonal pattern163

(Figure 3c) with the largest increases in the tropics and subtropics. Therefore, biases164

induced by the normalization are largest in areas where the trend is relatively small com-165

pared to local variability (Figure 3d). However, it is worth noting that peculiarities of the166

station-based observational record such as urban heat islands or local land-use changes167

are not accounted for in the 20th Century Reanalysis [Parker , 2011]. In addition, the168

availability of pressure observations varies through time [Compo et al., 2011]. As such,169

the main purpose of the present analysis is to illustrate the potential biases induced by170

reference period standardization in spatio-temporal datasets.171

2.3. Implications for large-scale assessments of variability and asymmetry

Normalization-induced biases are not only relevant for assessments of extremes, but a172

careful consideration of such statistical pre-processing techniques is equally important for173

analysis of variability and asymmetry in spatio-temporal datasets. An example is provided174

by a recent study that investigated whether temperature variability has changed over the175

second half of the 20th century on global and continental scales [Huntingford et al., 2013].176

The authors argue that annual temperatures in low-variance regions have become more177

variable over the past decades, whilst global temperature variability has remained near178

constant. This explanation stems from the authors’ observation that normalized variabil-179

ity has increased more than absolute (spatial) variability (16% vs. 2% increases between180
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1963-1980 and 1981-1996). Using the 20th Century reanalysis dataset we reproduce the181

increases in the annual, global, area-weighted standard deviation (12.9% vs. 1.8% in-182

creases, when using the conventional data processing scheme [Huntingford et al., 2013],183

Figure 4).184

However, an artificial experiment in analogy to the previous subsection shows that the185

conventional normalization procedure changes the standard deviation of the data (Fig-186

ure 4a), and in particular yields an increase in standard deviation between the reference187

and the out-of-base period. Therefore, we correct the conventionally normalized stan-188

dard deviation of annual temperatures in the 20th Century Reanalysis dataset empiri-189

cally and analytically. The former is achieved by simulating the reduction in standard190

deviation in artificial Gaussian data (Fig. 4a), whereas the latter is achieved by using191

an earlier reference period (1921-1950) and the application of our analytical correction.192

The empirical and analytical corrections reduce the increase in normalized variability193

from 12.9% to 5.6% and 6.0%, respectively (see Fig. 4b). A permutation-based signif-194

icance test [Fay and Shaw , 2010] shows that the increases in mean corrected normal-195

ized standard deviation between both periods are not significant (p
empirical

= 0.147 and196

p
analytical

= 0.110), whereas conventional normalization yields a highly significant increase197

(p
conventional

= 0.004). Hence, the relatively small and non-significant di↵erence between198

the increases in standardized and absolute variability might indeed be due to the explana-199

tion o↵ered previously [Huntingford et al., 2013], and potentially related to major El-Niño200

events in the latter period [Fedorov and Philander , 2000]. If the periods before and after201

1980 are extended to derive a larger sample, this reduces the increase in normalized vari-202
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ability to only 2% (1981-2006 vs. 1955-1980). Thus, based on our proposed normalization203

we cannot confirm that changes across low-variance regions have occurred over the past204

decades. Nonetheless, our results underpin that global temperature variability has not205

changed [Huntingford et al., 2013], and additionally show that this finding holds both in206

absolute and normalized terms.207

Finally, another recent study [Kodra and Ganguly , 2014] reports that asymmetry in208

temperature distributions of seasonal extreme values at daily time scale (both minima209

and maxima, i.e. the hottest and coldest day per season) is strongly increasing towards210

both the cold and hot tails in model projections of future climate conditions relative to211

a recent period. As a pre-processing step, the authors derive ‘anomalies’ of seasonal ex-212

tremes by subtracting the mean of the recent (historical) climatology of seasonal extremes213

from both periods. This procedure leads to narrower distributions in the reference period214

and a broader distribution in the future (independent) period (see Text S2). This vari-215

ance inflation in skewed extreme value distributions leads to the observed e↵ect even in216

stationary time series, and should hence be interpreted with caution (Figure S5, and Text217

S6).218

3. Outlook and Conclusion

The observation that a commonly used normalization of temperature data is inappro-219

priate for assessing changes in variability, extremes, and asymmetry is of general validity220

and should also be considered in investigations of other climatological and Earth obser-221

vations. The steadily growing archives of Earth observations derived from both ground222

based as well as satellite remote sensing data requires reconsidering conventional data an-223
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alytic approaches such as standardization. For instance, extremes in gridded standardized224

anomalies of rainfall and storms [Grumm and Hart , 2001; Hart and Grumm, 2001; Root225

et al., 2007; Graham and Grumm, 2010; Curry et al., 2014] have been studied using va-226

rieties of the conventional standardization procedure and are potentially distorted by the227

artefacts discussed in this paper. Further, our results might facilitate the interpretation228

of single climatic extreme events or trends that are frequently characterized in terms of229

standardized departure from climatology, both inside and/or outside the climatological230

reference period [Schär et al., 2004; Barriopedro et al., 2011; Xu et al., 2012; Ramos et al.,231

2014; Cook et al., 2015]. Although our analytical treatment using the t-distribution is232

confined to distributions that can be approximated as Gaussian, we emphasize that the233

induction of biases in the tails due to dependent/independent estimators of location and234

scale are fundamental and hold indeed across a wide range of distributions. Furthermore,235

because temperature extremes are bounded [Nogaj et al., 2006], approximations of temper-236

ature values by distributions with infinite tails (such as Gaussian and the t-distribution)237

might poorly estimate the most extreme temperatures. Here we o↵er a correction which238

adjusts biases in variability and extremes induced by a widely used data preprocessing239

approach. Alternatively, statistically more advanced but readily available tools, such as240

the theory of extreme values [Katz et al., 2013; Nogaj et al., 2006] o↵er complementary ap-241

proaches to quantify extreme events under non-stationary conditions that are not a↵ected242

by the statistical issues reported in this paper.243

In conclusion, data normalization for the detection of changes in extremes or variability244

has to be applied with caution: otherwise there is a risk to arbitrarily inflate both extremes245
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and variability in the time periods under scrutiny. Our study demostrates how to avoid246

biases of this kind. However, our analyses do not call into question the major qualitative247

results that were outlined in previous studies [Hansen et al., 2012; Seneviratne et al.,248

2014]: hot temperature extremes have increased considerably on the global scale, a trend249

which is most likely to continue throughout the 21st century [Coumou and Robinson,250

2013; Sillmann et al., 2013].251

Acknowledgments. We thank Fabian Gans, Jannis von Buttlar, Jens Schumacher,252

Markus Reichstein, Sonia Seneviratne, Myles Allen and two anonymous referees for help-253

ful comments that strongly helped to improve the manuscript; and we are grateful to254

Silvana Schott for graphical support. This study was supported by the European Space255

Agency ESA support to science element CAB-LAB: Coupled Atmosphere Biosphere Vir-256

tual LABoratory and the European Commission project BACI ‘Detecting changes in es-257

sential ecosystem and biodiversity properties towards a Biosphere Atmosphere Change258

Index’ (grant ID 640176). S.S. is grateful to the ‘German National Academic Foundation’259

(Studienstiftung des Deutschen Volkes) for support and the International Max Planck260

Research School for Global Biogeochemical Cycles (IMPRS-gBGC) for training. Support261

for the Twentieth Century Reanalysis Project dataset (http://www.esrl.noaa.gov/psd/262

data/gridded/data.20thC_ReanV2.html) is provided by the U.S. Department of Energy,263

O�ce of Science Innovative and Novel Computational Impact on Theory and Experiment264

(DOE INCITE) program, and O�ce of Biological and Environmental Research (BER),265

and by the National Oceanic and Atmospheric Administration Climate Program O�ce.266

D R A F T November 4, 2015, 5:26pm D R A F T



X - 16 SIPPEL ET AL.: CLIMATE VARIABILITY AND EXTREMES

References

Alexander, L., and S. Perkins (2013), Debate heating up over changes in climate variabil-267

ity, Environ. Res. Lett., 8 (4), 041,001.268

Barriopedro, D., E. Fischer, J. Luterbacher, R. Trigo, and R. Garćıa-Herrera (2011),269
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Schär, C., P. Vidale, D. Lüthi, C. Frei, C. Häberli, M. Liniger, and C. Appenzeller (2004),334

The role of increasing temperature variability in European summer heatwaves, Nature,335

427 (6972), 332–336.336

Seneviratne, S. I., M. G. Donat, B. Mueller, and L. V. Alexander (2014), No pause in the337

increase of hot temperature extremes, Nature Clim. Change, 4 (3), 161–163.338

Sillmann, J., V. Kharin, F. Zwiers, X. Zhang, and D. Bronaugh (2013), Climate extremes339

indices in the CMIP5 multimodel ensemble: Part 2. future climate projections, J. Geo-340

phys. Res. Atmos., 118 (6), 2473–2493.341

Tingley, M. P. (2012), A Bayesian ANOVA scheme for calculating climate anomalies, with342

applications to the instrumental temperature record, J. Clim., 25 (2), 777–791.343

Toms, J., and M. Lesperance (2003), Piecewise regression: a tool for identifying ecological344

thresholds, Ecology, 84 (8), 2034–2041.345

von Buttlar, J., J. Zscheischler, and M. Mahecha (2014), An extended approach for spa-346

tiotemporal gapfilling: dealing with large and systematic gaps in geoscientific datasets,347

Nonlinear Processes Geophys., 21, 203–215.348

Von Storch, H., and F. W. Zwiers (2001), Statistical Analysis in Climate Research, Cam-349

bridge University Press.350

D R A F T November 4, 2015, 5:26pm D R A F T



X - 20 SIPPEL ET AL.: CLIMATE VARIABILITY AND EXTREMES

Xu, X. T., S. L. Piao, X. H. Wang, A. P. Chen, P. Ciais, and R. B. Myneni (2012),351

Spatio-temporal patterns of the area experiencing negative vegetation growth anomalies352

in china over the last three decades, Environ. Res. Lett., 7 (3).353

Zhang, X. B., G. Hegerl, F. W. Zwiers, and J. Kenyon (2005), Avoiding inhomogeneity354

in percentile-based indices of temperature extremes, J. Clim., 18 (11), 1641–1651.355

D R A F T November 4, 2015, 5:26pm D R A F T



SIPPEL ET AL.: CLIMATE VARIABILITY AND EXTREMES X - 21

Figure 1

0 10 20 30 40 50 60
time steps

�í
VL
JP

D�
ex

tre
m

es

100

150

200

250

300

350
*DXVVLDQ��L�L�G��vDrLDbles
NorPDOLzHG�extremes

a

í� í� í� 0 2 4 6
]íVFRUHV

$QRPDOLHV

í� í� í� 0 2 4 6
]íVFRUHV

6WDQGDUGL]DWLRQ�RI�DQRPDOLHV

6WDQGDUGL]DWLRQ�RI�DQRPDOLHV
OrLJLQDO�*DXVVLDQ�3')
2XWíRI�EDVH�3')
ReIHUHQFH�SHrLRG�3')

b c

Reference period out-of base

Figure 1. Biases in the detection of extreme events in stationary and independent Gaussian

data induced by normalization. a) Occurrences of positive 2-sigma extremes in artificial Gaussian

time series based on 10,000 replicates over 60 time-points before normalizing the data (black line),

and after normalizing each replicate using the first 30 samples as reference period. b) Illustration

of variance inflation and reduction through the generation of anomalies in the out-of-base (blue)

vs. reference period (red) PDF (n
ref

= 8 for illustration). c) Changing tails in normalized (i.e.,

divided by the SD estimate) Gaussian variables (n
ref

= 8 for illustration). Coloured shading in

(a) indicates the 5th to 95th percentile in repeated simulations.
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Figure 2. Correction of normalization-induced biases in stationary and non-stationary time

series consisting of independent random variables. Detecting 2-sigma extreme events in a) Sta-

tionary Gaussian time series, b) Gaussian time series with random linear trends added in the

out-of-base period (�1 < �
t=60 < 1, in units of �), c) Gaussian time series with random linear

trends (�1 < �
t=60 < 1, in units of �) and changing variance (0.8�

ref

< ��
ref

< 1.2�
ref

) in

the out-of-base period. In each panel, coloured shading indicates the 5th to 95th percentile in

repeated simulations (k = 104 simulated time series in all panels).
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Figure 3

Figure 3. Increase in normalized hot temperature extremes in a spatio-temporal dataset (20th

Century Reanalysis [Compo et al., 2011]). a,b) Time series of fraction of extratropical Northern

hemisphere land area covered by positive monthly 2� (a) and 3� (b) events in summer (reference

period: 1951-1980). Horizontal lines indicate decadal averages for the conventional normalization

procedure (light blue) and our proposed correction (orange). c) Zonal evolution of fraction of

land area covered by monthly positive 2� extremes in Northern hemisphere summer. d) Zonal

evolution of relative biases induced by the conventional normalization approach.
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Figure 4. Normalization-induced changes in variability. a,b) Time series of normalized vari-

ability following the data processing scheme of Huntingford et al. [2013] in an artificial example

(k = 104 time series) with i.i.d. Gaussian variables (a) and in the 20th Century Reanalysis

dataset (b).
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Text S1. Guide to the artificial normalization example

We provide the original source code that was used to carry out the artificial normalization

example shown in Figure 1 in a step-by-step guide using the R Statistical Programming

Environment [R Core Team, 2013]. We first generate an artificial dataset containing

10,000 time series, where each time series consists of n = 60 independent and identically

distributed Gaussian variables. As stated in the main text, this can be understood as an

analogy to a spatio-temporal temperature dataset that comprises 60 years of data across

10,000 geographical grid cells. Subsequently, each time series is centered and scaled with

estimates of the mean and standard deviation as derived from a reference period of length

n

ref

= 30 (here, the first 30 values of each time series are chosen). For each time point t,

we then count the number of �-extremes in the original Gaussian data and the normal-

ized data (Figure 1 in the main paper). Lastly, the proposed correction (for a formal

derivation see Text S2) leads to the corrected normalized time series shown in Figure 2a.

# Define parameters for normalization example:

nref = 30; # Length of reference period

ngridcells = 10000; # Number of independent grid cells

sigma = 2; # Sigma threshold

# Generate Gaussian time series each of which consists of 60 values:

data.orig = sapply(1:ngridcells, FUN=function(x) rnorm(60));

# Estimate the mean and standard deviation of each time series

# based on the reference period (first 30 values):

mean.estimate = sapply(1:ngridcells, FUN=function(x) mean(data.orig[1:nref,x]));

sd.estimate = sapply(1:ngridcells, FUN=function(x) sd(data.orig[1:nref,x]));

# Generate anomalies, and normalize each time series with its sample mean
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# and sample standard deviation:

data.anom = sapply(1:ngridcells, FUN=function(x) data.orig[,x]-mean.estimate[x]);

data.norm = sapply(1:ngridcells, FUN=function(x) data.anom[,x]/sd.estimate[x]);

# count +2sigma events throughout each time series and at each time step, for the

# original and normalized data:

data.orig.2sigma.extremes = apply(X=data.orig, 1, function(x) length(which(x > 2)));

data.norm.2sigma.extremes = apply(X=data.norm, 1, function(x) length(which(x > 2)));

# Compute the corrected number of sigma extremes:

# Out-of-base period:

data.norm.2sigma.extremes.obase.cor = apply(X=data.norm, MARGIN=c(1),

FUN=function(x) length(which((x / sqrt(1+1/nref)) > qt(pnorm(sigma), df=nref-1))));

# Reference period:

data.norm.2sigma.extremes.ibase.cor = apply(X=data.norm, MARGIN=c(1),

FUN=function(x) length(which(((x*x)*nref/((nref-1)*(nref-1))) > qbeta(pnorm(sigma),

shape1 = 0.5, shape2 = nref/2-1))));

# Plot the number of sigma extremes:

plot(data.norm.2sigma.extremes, col=’darkred’, pch=8)

points(data.orig.2sigma.extremes, col=’black’, pch=8)

points(x = 1:nref, data.norm.2sigma.extremes.ibase.cor[1:nref], col=’darkblue’,

pch=8)

points(x = c(1:60)[-(1:nref)], data.norm.2sigma.extremes.obase.cor[-(1:nref)],

col=’darkgreen’, pch=8)

legend(’topleft’, c(’Conventional normalization’, ’i.i.d. Gaussian variables’,

’Normalization + correction, reference period’, ’Normalization + correction,

out-of-base’), col=c(’darkred’, ’black’, ’darkblue’, ’darkgreen’), pch=8)
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Text S2. Normalization-induced changes to stationary and independent Gaus-

sian time series

At any grid cell i, time series of the form X

t,i

; t = 1, ..., n; i = 1, ..., k are normalized to

yield standardized ‘z-scores’ with respect to a defined reference period as a subset of the

full record:

z

t,i

=
X

t,i

� µ̂

ref,i

�̂

ref,i

. (1)

In this example, each sample in each time series X

t,i

is drawn independently from a

Gaussian distribution with the expected value E[X
t,i

] = µ

i

and the variance given by

V ar(X
t,i

) = �

2
i

. Thus, the estimators µ̂

i

for the mean µ

i

and the estimator �̂

2
i

for the

variance �

2
i

satisfy [Von Storch and Zwiers , 2001] in each grid cell

µ̂

i

=
1

n

nX

t=1

X

t,i

⇠ N (µ
i

,

�

2
i

n

) and (2)

�̂

2
i

=
1

n� 1

nX

t=1

(X
t,i

� µ̂

i

)2 ⇠ �

2
i

�

2
n�1

1

n� 1
. (3)

Hence, the collection of sample means µ̂
ref,i

follows a normal distribution with expected

value E[µ̂
ref,i

] = µ

i

and variance V ar(µ̂
ref,i

) = �

2
i

n

ref

(Eq. 2) across grid cells. Here we

show that this widely used normalization approach changes the statistical properties of

the distribution across grid cells. This extends an issue previously discussed [Zhang et al.,

2005], but here we are not confined to percentile-based estimates of temperature extremes.

In the following subsections we distinguish normalization in the reference period (where
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the estimators are dependent on the samples) from the normalization in the out-of-base

period, where the estimators are independent from the samples.

In the following sections we consider each grid cell independently. In order to improve

readability, we therefore omit the index i for the grid cells and simply write X

t

.

Text S2a. Normalization in the out-of-base period

At any time t in the (independent) out-of-base period, the anomalies are given by the

random variable

X

anom,t

= X

t

� µ̂

ref

, (4)

with di↵erent realizations across grid cells. Consequently, anomalies that are generated

by subtracting the reference period (that is, independent) sample mean follow again a

Gaussian distribution, because the di↵erence between two Gaussian variablesX = X1�X2

is Gaussian distributed [Johnson et al., 1994] with µ = µ1�µ2 and variance �2 = �

2
1 +�

2
2,

i.e.,

X

anom,t

⇠ N (0, �2(1 +
1

n

ref

)) . (5)

Please note that the increase in variance caused by deriving anomalies and implied by

Eq. 5 holds for any distribution with finite variances, i.e. not only Gaussian distributions.

Dividing anomalies by the estimated standard deviation (‘standardizing’) yields stan-

dardized ‘z-scores’:

z

t

=
X

anom,t

�̂

ref

. (6)
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Following Eq. 3, the ‘z-scores’ are characterized by Student’s t-distribution with ⌫ = n�1

degrees of freedom (cf. the definition of the t-distribution [Fisher , 1925]), which is scaled

by the variance inflation given in Eq. 5:

z

t

⇠

s

1 +
1

n

ref

· t(n
ref

� 1) . (7)

Hence, after normalization, we expect the grid cell values at any given time step t in

the out-of-base period to follow a scaled t-distribution (Eq. 7), rather than the Gaussian

distribution as implied in earlier reports [Hansen et al., 2012; Coumou and Robinson,

2013]. Although the t-distribution converges against the Gaussian distribution for a large

number of degrees of freedom (i.e. increasing n

ref

, see Figure 1 and Figure S1), its tails

are considerably heavier even for a relatively large number of degrees of freedom. This

well-known distribution allows us to derive a correction based on quantiles for normalized

z-scores that can be constructed by adjusting the ‘�-extreme’ of interest using Eq. 7 (see

Figure S1 for an illustration). For example, the probability of a 2�-extreme in a Gaussian

distribution corresponds to a 2.12� event in the scaled t-distribution (for n

ref

= 30,

Section S1).

Text S2b. Normalization in the reference period

In the reference period, the estimators of mean and variance are not independent from

the samples. This fact causes the underestimation of extremes in the reference period, as

illustrated for instance in Figure 1 in the main paper. In this subsection, we first discuss

the changes induced to the distribution by deriving anomalies (i.e. Eq. 4), and secondly

demonstrate how changes induced by normalization according to Eq. 6 in the reference

period can be analytically corrected.
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The generation of anomalies in the reference period in analogy to Eq. 4 reduces the

variability across grid cells to V ar(X
anom,t

) = �

2(1 � 1
n

ref

). Note that this result does

not only hold for the Gaussian distribution but for any distribution with finite second

moments:

V ar(X
anom,t

) = V ar(X
t

� µ̂

ref

(X))

= V ar(X
t

)� 2Cov(X
t

, µ̂

ref

(X
t

)) +
V ar(X

t

)

n

ref

= V ar(X
t

)� 2
1

n

ref

n

refX

s=1

Cov(X
t

, X

s

) +
V ar(X

t

)

n

ref

= �

2 � 2
�

2

n

ref

+
�

2

n

ref

= �

2(1� 1

n

ref

) .

A subsequent standardization of anomalies following Eq. 6 in the reference period

changes the sample distribution across grid cells qualitatively to a non-Gaussian distri-

bution. The resulting distribution follows a beta-distribution [Thompson, 1935; Johnson

et al., 1995]

(
X

anom,t

�̂

ref

)2 ⇠ n

ref

Beta(0.5,
n

ref

� 1

2
) . (8)

Alternatively, the distribution of standardized anomalies within the reference period

has been described as a ‘tau-distribution’ [Thompson, 1935], where ⌧ is defined as

⌧ = X

anom,t

�̂

ref

. Here, tau is related to a t-distribution with ⌫ = n

ref

� 2 degrees of freedom

by ⌧ = t

⌫

q
n

ref

�1
n

ref

�2+t

2
⌫

. Similarly to above, the transformation given by Eq. 8 can be

used to adjust the detection of normalized extremes within the reference period by quan-

tile adjustments (see Figure S1). From the quantile-quantile plots shown in Figure S1
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it becomes obvious that a normalization across time-invariant Gaussian data yields an

underestimation of extremes in the reference period (a), and an overestimation in the

out-of-base (independent) period (b).

Text S3. Monte Carlo simulations

In order to test how specific features that are present in climatic data might a↵ect the

biases in normalized tails in the detection of spatially aggregated extremes, we conduct a

variety of Monte-Carlo type simulations.

Each simulation is set up as follows:

• Generate k = 105 time series, each of which with n = 130 data points, drawn

independently from a Gaussian distribution (exception: autocorrelated time series, see

below).

• Define a reference period length of n
ref

= 30, which has been used in climatological

studies [Hansen et al., 2012] (exception: experiment using a variable reference period

length, see below).

• Define remaining 100 data points in each time series as the out of base period.

• Detect extremes by counting ‘� extremes’ in normalized and original time series for

each time step t.

• Calculate the biases in the tails as relative di↵erences (in percent) between the con-

ventionally normalized time series (Eq. 2 in the main text) and the original time series

(i.e. without normalization).

First, we test how the length of the reference period influences biases in the tails. It

can be seen from the analytical argument put forward in section S2 that the biases in the
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normalized tails are a function of sample size in the reference period. To illustrate this,

we vary the length of the reference period (Figure S2a). The biases are decreasing for

longer reference periods. However, in practical terms relatively large sample sizes in the

reference period are needed in order to detect relatively rare events with small biases if

the conventional normalization scheme is used.

Second, we assess the e↵ect of autocorrelation on the biases in the normalized tails.

Autocorrelation is a feature frequently present in climatic time series [Zwiers and von

Storch, 1995], and hence should be accounted for in statistical analyses. We simulate

time series from an AR(1) process as

X

AR1(t) = ↵X

AR1(t� 1) + Z(t), (9)

with white noise innovations Z ⇠ N (0, ⌧ 2). The model’s parameter ↵ determines the

strength of the autocorrelation and is varied in the range 0  ↵  0.9. The overestimation

of extremes strongly increases for autocorrelated data, which urges for caution in using

a normalization scheme in such time series. The reason for the stronger overestimation

compared to the standard normalization procedure is three-fold: Firstly, the variance of

the sample mean of autocorrelated data [Zieba, 2010] is larger as compared to Eq. 2:

µ̂

X

AR1,ref = N (0, [n+ 2
n�1X

k=1

(n� k)⇢
k

]
�

2

n

2
), (10)

where ⇢

k

denotes the autocorrelation coe�cient of the AR(1) model.

Secondly, the standard variance estimator (Eq. 3) is biased for autocorrelated data

[Bayley and Hammersley , 1946]. The construction of an unbiased variance estimator is

possible [Zieba, 2010], but requires the autocorrelation structure to be known exactly.
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Thirdly, the normalized distributions follow Student’s t-distribution (as above), if the

variance and mean estimates are derived from an independent sample. Hence, these three

issues are causing the drastically increasing biases seen in Figure S2b for autocorrelated

data.

Furthermore, trends and changing variance are common features in climatic time series

[Ji et al., 2014; Huntingford et al., 2013; Screen, 2014]. We test empirically how changes

in the mean or variance in the independent period are changing the detection biases in

normalized extremes. To do so, we add various o↵sets in the range �1  �  +2[�].

Similarly, we change the variance in the out-of-base period to 0.5  �  2. Subsequently,

the relative di↵erence between the standard normalization scheme and the true number

of extremes is calculated (Figure S2c). Our Monte-Carlo simulations reveal that normal-

ization biases (as discussed in the main text of this paper) are not constant under changes

of the mean and variance of the time series. Although an analytical treatment is possible

(see Section S4), this empirical exercise allows to illustrate the sensitivity of the biases

to both sign and magnitude of trends and changes in variance. Positive changes in the

mean or variance are reducing the observed biases in the upper tail of the distribution,

because any positive � extreme would ‘shift’ towards the center of the distribution in this

case. However, negative trends or changes in variance would induce the opposite e↵ect

and lead to a drastic overestimation in the upper tail. These results are equally applicable

to the lower tail if the sign of the trend is reversed. We conclude that any assessment

of extremes or the tails of normalized climatic data across di↵erent spatial or temporal

domains needs to take potential non-stationarities into account.
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Text S4. Normalization bias in non-stationary and independent time series

This section is motivated by the fact that normalization-induced biases are sensitive to

trends or changes in variance (see Section S3). Here, we outline a correction method

that takes such non-stationarities into account. Consider any random variable X

orig

⇠

N (µ
ref

, �

2
ref

), from which µ̂

ref

and �̂

2
ref

are estimated. Assume that at any time t outside

the reference period the mean changes to µ

t,obase

= µ

ref

+ �

t

and the standard deviation

changes to �

obase

= � · �
ref

.

Non-stationarity in the out-of-base period would change the Gaussian distribution to

X

t

⇠ N (µ+ �

t

,�

2 · �2). (11)

The generation of anomalies for Gaussian data is given in Eq. 4 and the sample means

follow Eq. 2. Put together, this yields a distribution of anomalies across grid cells given

by

X

anom,t

⇠ N (�
t

, �

2(�2 +
1

n

ref

). (12)

Accordingly, and similar to Eq. 5, the spatial aggregation for the detection of extremes in

the tails would result in a broader (but qualitatively unchanged) distribution. A search

for non-adjusted � extremes becomes hence inadequate.

However, the subsequent standardization of non-stationary and independent time series

is more important for biases in the tails. A generalization of Student’s t-distribution is

the non-central t-distribution [Johnson et al., 1995], which is skewed and results from Eq.

6, if X
anom,t

is replaced by a random Gaussian variable with non-zero mean [Von Storch

and Zwiers , 2001]. Hence, a standardization of non-stationary Gaussian time series based
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on Eq. 6 yields a spatial distribution of

X

anom,t

�̂

ref

=

s

�

2 +
1

n

ref

·
[ Xanom

��

tq
�

2+ 1
n

ref

+ �

tq
�

2+ 1
n

ref

]

�̂

ref

(13)

) z =
X

anom,t

�̂

ref

⇠

s

�

2 +
1

n

ref

· t0(⌫ = n� 1, ncp =
�

tq
�

2 + 1
n

ref

) . (14)

This can be seen as a centering and scaling of the enumerator in Eq. 13 to yield a

unit normal variable and an additive non-centrality-parameter. Hence, the division by

the estimates of the standard deviation �̂

ref

yields a scaled version of the non-central t-

distribution (Eq. 14), implying k = n

ref

� 1 degrees of freedom. Therefore, an analytical

correction similar to Section S2 can be constructed if the change in location and scale

outside the reference period can be estimated (see also Figure 2, main text). However,

since estimates of trends or variance changes are made on relatively short time series, and

because these are not independent from the estimated mean or variability, some minor

biases remain (Figure 2, main text). These biases are negligible if only the mean has

changed, and they are much smaller than biases in the tails induced by an uncorrected

normalization procedure if variance changes are estimated as well. Nevertheless, we argue

for some caution if very rare events are to be detected based on the application of a

normalization transformation.

Text S5. Subtraction of trend components before computing standard devia-

tion estimates

Several previous papers have used detrending procedures before estimating the standard

deviation in a reference period [Coumou and Robinson, 2013; Huntingford et al., 2013].

This data preprocessing step is assumed to avoid an overestimation of variability due to
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potential trends in time series in the (arbitrarily chosen) reference period. Others have

used the period 1951-1980 as the reference, because this period is widely assumed to

be associated with largely stationary temperatures [Hansen et al., 2012]. The removal

of trends before computing the standard deviation of each time series reveals only very

minor changes both in terms of the overall increase in extremes and the preprocessing-

induced biases. We estimate trends in each time series using Singular Spectrum Analysis

as described in the Methodology section of the main paper, but other methodologies are

likewise applicable. Next, we standardize each time series with the standard deviation

estimates computed from detrended series and reproduce Figure 3 from the main paper

(Figure S3).

To test the sensitivity of the biases and extremes to the choice of reference period, we

repeat the previous analysis by normalizing the data based on mean and detrended SD

estimates calculated for 1921-1950 (Figure 4). Although the choice of reference period

influences the absolute number of � extremes (because 1951-1980 had been warmer than

1921-1950), the biases that are induced by the normalization procedure are still in a

similar magnitude (Figure 4).
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Text S6. Asymmetry in temperature distributions

Another important question to test is whether recent estimates of asymmetry [Kodra and

Ganguly , 2014] in seasonal extreme value distributions might be a↵ected by subtracting

a ‘historical climatology’, estimated from each time series. For this purpose, we follow

the methodology of an earlier study [Kodra and Ganguly , 2014] but with i.i.d. Gaussian

variables:

• We generate 60 seasons with each 90 days in k = 10, 000 time series (that is, in

analogy to spatial replicates)

• For each season, we only retain the maximum value. This procedure yields a dis-

tribution that can be approximated by a Weibull type extreme value distribution [Coles

et al., 2001]

• Now, each time series is split into a historical and future period (first and second half

of the time series, respectively)

• Following Kodra and Ganguly [2014], we compute the mean of the ‘historical’ period

and subtract it from each times series.

• Subsequently, percentiles of the future and historical period are computed across all

time series, and percentile-wise di↵erences between the future and historical period are

analyzed (Figure 5)

• We compare the so-derived percentile-wise changes to simply generating the dif-

ferences between future and historical percentiles without the previous transformation

(Figure S5a)
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As shown in Section S2, this procedure invariably leads to an inflation (reduction) of the

variance in the surrogate ‘future’ (‘historical’) period. Hence, the upper tail of the ‘future’

extreme value distribution has increased, whereas the lower tail has decreased relative to

untransformed changes (see red and grey lines in Figure S5a). However, since extreme

value distributions are skewed, the change in variability also explains the observation

of increased assymetry, if the changes in both tails are compared (Figure S5b). This

increased asymmetry is not observed if the analysis is conducted without subtracting

historical means (grey line in Figure 5b). These results are shown for extreme value

distributions generated by retaining the highest value in each season, but would apply

equally if only seasonal minima were retained (but with reversed changes in asymmetry).
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Figure S1. Proposed analytical correction for normalization-induced artefacts. Quantile-

quantile plots of original Gaussian distributions vs. a) tau-distribution and b) the corresponding

t-distribution after normalization. The reference period length was chosen as n = 15 for illustra-

tion purposes. The simple quantile correction proposed is illustrated for the normalization within

a reference period (a) and in the out-of-base (independent) period (b) for 2� and 3� extremes.
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Figure S2. Sensitivity tests of normalization-induced biases in the tails. Monte-Carlo type

simulations are conducted to show how the biases in the upper tail are a↵ected by a) varying

sample size, b) di↵erent degrees of autocorrelation, c,d) trends and changing variance in the

out-of-base period, respectively.
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Figure S3. Increase in normalized hot temperature extremes in a spatio-temporal dataset (20th

Century Reanalysis). a,b) Time series of fraction of extratropical Northern hemisphere land area

covered by positive monthly 2� (a) and 3� (b) extremes in summer (reference period: 1951-

1980). Horizontal lines indicate decadal averages for the conventional normalization procedure

(light blue) and our proposed correction (orange). c) Zonal evolution of fraction of land area

covered by monthly positive 2� extremes in Northern hemisphere summer. d) Zonal evolution of

relative biases induced by the conventional normalization approach. In all panels, the time series

have been detrended before estimating the estimate of the standard deviation in the reference

period (1951-1980).
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Figure S4. Increase in normalized hot temperature extremes in a spatio-temporal dataset (20th

Century Reanalysis). a,b) Time series of fraction of extratropical Northern hemisphere land area

covered by positive monthly 2� (a) and 3� (b) extremes in summer (reference period: 1951-

1980). Horizontal lines indicate decadal averages for the conventional normalization procedure

(light blue) and our proposed correction (orange). c) Zonal evolution of fraction of land area

covered by monthly positive 2� extremes in Northern hemisphere summer. d) Zonal evolution of

relative biases induced by the conventional normalization approach. In all panels, the time series

have been detrended before estimating the estimate of the standard deviation in the reference

period (1921-1950).
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Figure S5. Spurious increase in asymmetry due to data pre-processing. a) Percentile-wise

changes across a large number of time series, expressed as the di↵erence between a ‘historical’ and

‘future’ period. Induction of asymmetry occurs only if a historical mean climatology is estimated

and subtracted from each time series. b) Like above, but di↵erences in symmetric percentiles

between the upper and lower tail, further illustrating induced asymmetry in the upper tail.

Results are likewise applicable to the lower tail (with reversed asymmetry), if extreme value

distribution are generated from minimum values.
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