
Juliane Dinse: A Model-Based Cortical Parcellation Scheme for 
High-Resolution 7 Tesla MRI Data. Leipzig: Max Planck Institute 
for Human Cognitive and Brain Sciences, 2015 (MPI Series in 
Human Cognitive and Brain Sciences; 168)



A M O D E L - B A S E D C O RT I C A L PA R C E L L AT I O N S C H E M E F O R
H I G H - R E S O L U T I O N 7 T E S L A M R I D ATA



Impressum

Max Planck Institute for Human Cognitive and Brain Sciences, 2015

Diese Arbeit ist unter folgender Creative Commons-Lizenz lizenziert:
http://creativecommons.org/licenses/by-nc/3.0

Druck: Sächsisches Druck- und Verlagshaus Direct World, Dresden

Titelbild: © Juliande Dinse, 2015

ISBN 978-3-941504-53-0



A M O D E L - B A S E D C O RT I C A L
PA R C E L L AT I O N S C H E M E F O R
H I G H - R E S O L U T I O N 7 T E S L A

M R I D ATA

Dissertation
zur Erlangung des akademischen Grads

Doktoringenieurin (Dr.-Ing.)

angefertigt am Max-Planck-Institut für Kognitions-
und Neurowissenschaften, Leipzig

angenommen durch die Fakultät für Informatik der
Otto-von-Guericke Universität Magdeburg

von Dipl.-Ing. Juliane Dinse
geb. am 04.08.1985 in Wolgast

Gutachterinnen/Gutachter:
Prof. Dr.-Ing. Bernhard Preim

Prof. Dr.-Ing. Dorit Merhof
Prof. Dr. habil. Guido Gerig

Magdeburg, 30. Juli 2015





Wenn du über irgendeine Frage im Zweifel bist und still hältst und zwingst dich
nicht zu glauben, dass etwas Unerwiesenes bewiesen sei, und du versuchst nicht,

etwas zu verwerfen, oder als falsch zu erklären, wovon das Gegenteil nicht
bewiesen ist, und du trachtest nicht, das zu erkennen, was du nicht zu erkennen

vermagst, so hast du damit bereits die menschliche Vollkommenheit erreicht.

— moses maimonides (1135 - 1204)

Ich widme diese Arbeit meiner Mutter und meiner Oma, weil sie immer für mich
da sind und sie mir gezeigt haben, dass es im Leben nicht darauf ankommt, was

man hat, sondern was man daraus macht.





E H R E N E R K L Ä R U N G

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Drit-
ter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe;
verwendete fremde und eigene Quellen sind als solche kenntlich gemacht. Insbe-
sondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in An-
spruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar geld-
werte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt der
vorgelegten Dissertation stehen. Ich habe insbesondere nicht wissentlich:

• Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,

• statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertig-
ter Weise zu interpretieren,

• fremde Ergebnisse oder Veröffentlichungen plagiiert,

• fremde Forschungsergebnisse verzerrt widergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und Scha-
densersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im In-
land noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht
und ist als Ganzes auch noch nicht veröffentlicht.

Magdeburg, 30. Juli 2015

Juliane Dinse





A B S T R A C T

This thesis originates from the increasing interest in advanced methods in brain
segmentation and cortical architectural studies. The aim of the presented work is
to bridge the gap between the cortical microanatomy revealed by classical histology
and the macroanatomy visible in Magnetic Resonance Imaging (MRI).

This thesis presents a novel approach to model laminar myelin patterns in the
human cortex as measured using brain MRI on the basis of known cytoarchitec-
ture. For the first time, it is possible to estimate intracortical contrast visible in
quantitative ultra-high resolution MRI data in specific primary and secondary cy-
toarchitectonic areas. These estimated patterns are used in automated cortical
parcellation and applied to study the quantitative T

1

values within the cortex. The
presented technique reveals different area-specific signatures which may help to
investigate the relationship between the distribution of cortical T

1

values and of
cortical myelin in general. It may lead to a new discussion on the concordance of
cyto- and myeloarchitectonic boundaries, given the absence of such concordance
atlases.

The modelled myelin patterns are quantitatively compared with data from hu-
man ultra-high resolution in-vivo 7 Tesla brain MRI (19 subjects). For verification,
the results are compared to one postmortem brain sample and its ex-vivo MRI
and histological data. Additional experiments are carried out to investigate the
discriminative power of such a model in future applications.

Details of the analysis pipeline are provided and discussed.
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Z U S A M M E N FA S S U N G

Diese Arbeit ist aufgrund des steigenden Interesses sowohl an modernen und
hochleistungsfähigen Segmentierungsmethoden für Gehirndaten als auch an Stu-
dien über den kortikalen Aufbau entstanden. Ziel ist es, die bestehende Lücke
zwischen mikrozellulärer Anatomie, beschrieben durch Histologie, und makrosko-
pischer Anatomie, gemessen mit MRT, zu schließen.

In dieser Arbeit wird ein neues Verfahren vorgestellt, welches MRT-relevante
laminare Myelinmuster im menschlichen Kortex auf Grundlage von zytoarchitek-
tonischem Wissen modelliert. Mit dieser Arbeit wird erstmals gezeigt, dass der
in quantitativen hochaufgelösten MRT-Daten sichtbare intra-kortikale Kontrast in
Primär- und Sekundärarealen abschätzbar ist. Die modellierten Muster werden für
i) kortikale Parzellierungen sowie ii) der Analyse von kortikalen T

1

Relaxations-
zeiten im Kortex eingesetzt. Die vorgestellte Methodik lässt erste areal-spezifische
Signaturen erkennen. Diese Signaturen erlauben es, die Beziehung zwischen der
Verteilung der T

1

Relaxationszeiten im Kortex und der generellen Verteilung von
Myelin im Kortex zu untersuchen. Die Ergebnisse dieser Arbeit erlauben neue Ein-
blicke in der Überlappung von zytoarchitektonischen und myeloarchitektonischen
arealen Grenzen. Atlanten, die diese Korrespondenzen beschreiben, sind gegen-
wärtig nicht existent.

Die Methodik wird auf hochaufgelösten 7 Tesla MRT-Daten von menschlichen
Gehirnen (19 Probanden) quantitativ analysiert. Zur weiteren Prüfung wird die
Methodik mit MRT- sowie Histologiedaten eines postmortalen Gewebeblockes ver-
glichen. Zusätzlich durchgeführte Experimente zeigen das Differenzierungspoten-
tial einer solchen Methodik im Hinblick auf zukünftige Anwendungen.

Details zur Umsetzung und Implementierung werden intensiv beschrieben und
diskutiert.
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1
M O T I VAT I O N A N D C O N T R I B U T I O N S

1.1 introduction

The human brain is the most complex organ in the human body. It serves as the
center of the nervous system and, as such, it is responsible for vital functioning
of other organs. It is in close vicinity to primary organs associated with sensory
functioning such as vision, hearing, taste, smell, and balance.

The brain mainly consists of two structures: the cerebrum, i. e., the superior-
most region of the central nervous system (CNS) and the cerebellum, i. e., a smaller
inferior region of the CNS. Cognitive processing of information occurs in the cortex,
a 2–5mm thick sheet representing the outer surface of the brain. Most research
focuses on the cerebral cortex, i. e., the outer sheet of the cerebrum.

The cerebral cortex is the largest part of the cerebrum, consisting of millions of
neuronal cells. These cells change in type, number and size through the depth of
the cortex, providing a layered structure. Each cell is further associated with a
single myelinated axon perpendicularly leaving the cortex and myelinated axonal
collaterals running parallel within it. These parallel fiber structures change in num-
ber and size through the depth of the cortex, replicating a slightly similar layered
pattern as represented by cells. The cortical architecture can thus be described
by the cytoarchitecture, representing the cell organisation, or by the myeloarchi-
tecture, representing the corresponding fiber organisation within the layers of the
cortex.

It is known today that these representations change across the cortex, yielding
a subdivision of the brain’s surface into distinct areas. This is called a cortical
parcellation. The structural subdivision into cortical areas is related to specific
functional processing. Investigating these structure-function relationships led to a
better understanding on how the brain works in tasked- or resting states and in
healthy and diseased states.

The cytoarchitecture of the brain is well studied and cellular-based parcellations
presented by different scientists are in agreement on the spatial arrangement of the
cells. However, the research in the field of myeloarchitecture is difficult and par-
cellations based on the fiber distribution in the cortex are incomplete, inconclusive,
or even contradictory.

But cyto- and myeloarchitecture are two aspects of the same anatomical reality,
both reflecting cortical microarchitecture. It is reasonable to assume that there is
a relationship between these two microstructural domains. This is supported by
findings related to neurodegenerative diseases that are linked to cellular death or
fiber deformation. However, it is currently impossible to image the living brain
at the resolution of cells, although the cortical cytoarchitecture is well defined. In
contrast, myelin is measurable in the brain using Magnetic Resonance Imaging
(MRI) methods, although a defined knowledge on the myeloarchitecture is only
available in fragments.

1
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A correspondence mapping between cyto- and myeloarchitecure depends on a
precise parcellation. A complete parcellation based on myeloarchitectonic criteria
does not exist. Thus, analysing correspondences between the two architectures is
possible in very limited ways today. But mapping myelin in the brain would allow
one to study myeloarchitecture. Most importantly, it would enable researchers to
draw conclusions from changes in myelin to changes in the cell configuration in
the cortex.

1.2 motivation and leading questions of the thesis

The aim of this thesis is to provide an architecture-based methodology to parcellate
the human cortex based on myeloarchitectonic features. The parcellation scheme
builds on an existing concept by Hellwig [1993].

When building such an architecture-based parcellation method, problems arise
from three different aspects:

structural imaging Currently, the gold standard in architectural studies
still refers to analysing postmortem brain tissue on two-dimensional sections. These
techniques are inadequate due to their two-dimensional and only limited qualita-
tive nature. Additionally, histological stainings allow no corresponding studies on
brain function. Measuring structure and function of the living brain using MRI
methods is very difficult. The in-vivo techniques used to acquire whole-brain data
are not able to exhibit a resolution in the sub-millimetre range which would allow
one to sample intracortical features. Research into the direction of MRI methods
that are capable of detecting quantitative features associated with myelin just re-
cently started.

parcellation schemes Existing (semi-)automatic parcellation schemes are
based on morphological shape features or connectivity properties of the brain.
Morphology-based parcellation methods are too constrained by marcoscopical fea-
tures, which are insufficient to reliably detect cortical areas. Connectivity-based
methods may be limited by the input data. Both morphology- and connectivity-
based approaches are often outperformed by manual segmentations.

cortical layering Analysing properties of the cortical areas based on the
layered nature of the cortex requires an appropriate layering model. However, cur-
rent layering models are not able to follow the true anatomical layering found in
the cortex. Samples derived from data using these models are highly distorted.

Therefore, an architecture-based parcellation method applied to in-vivo MRI data
may only be successful when two prerequisites are fulfilled:

1. a MRI method needs to be developed that reflects myeloarchitectonic patterns
at a resolution that allows sub-millimetre sampling of these features, and,

2. a layering model needs to be designed that follows the real anatomical layer-
ing in the cortex.

2
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Given the prerequisites, the leading questions of this thesis are:

• Is it possible to build an architecture-based model that describes intracortical
myelin as measured in MRI and histology?

• Is the model able to automatically parcellate the human cortex and reliably
detect cortical areas in in-vivo MRI data?

• Which parameters of the model define its performance?

• What other causes, such as MRI artefacts, may influence the performance of
the model?

• What is the theoretical performance of such a model to be expected in fu-
ture applications under the condition of even higher resolution data being
available?

1.3 contributions

Based on the aforementioned motivation and leading questions, this thesis pro-
vides the following results and novel contributions:

• a reimplementation and adaptation of an existing concept provided by Hell-
wig [1993]. In general, the method transforms area-specific cytoarchitectural
a-priori information into information regarding the myelin content.

• the development of a normalization pipeline that allows an application of
Hellwig’s concept to in-vivo MRI data. The pipeline transforms the myelin
content profiles into profiles described by the T

1

relaxation time which is
assumed to reflect myelin in the cortex. The pipeline considers area-specific
differences in terms of these T

1

times and respects limitations set by the
image acquisition such as resolution and partial voluming effects.

In addition, to make an application of such an architecture-based parcellation
method possible, the following results and contributions considering the prerequi-
sites are achieved in collaborative projects:

• an optimisation of an in-vivo MRI sequence at 7T to measure whole-brain
data at an unprecedented resolution of 0.5mm.

• the development of additional processing steps necessary to efficiently and
accurately compute the new high-resolution MRI data.

• the implementation and validation of a novel layering technique that allows
proper sampling of image intensities in the cortex. The layering model is
able to follow the shifting behaviour of anatomical layers in gyral crowns
and sulcal fundi.

This thesis represents the first contribution towards an automatic architecture-
based parcellation model being applied to in-vivo MRI data. The work gives clear

3



4 motivation and contributions

indication that it may overcome the limitations of existing parcellation schemes. In-
corporating architecture-relevant information such as the geometry of anatomical
layers plays a key role for the success of this model.

This thesis is part of fundamental research and dedicated to emblase new in-
sights to myeloarchitecture. Therefore, only healthy human subjects have been
considered. Further research investigations are needed to discover additional archi-
tectural properties that may improve such architecture-based parcellation schemes.

1.4 structure of the thesis

The thesis is structured into three parts and nine chapters. At first, background
information is given about brain anatomy, brain imaging and the context of cor-
tical parcellations. The main part outlines the actual contributions followed by a
summary and discussion. The last part comprises the Appendix which includes
general illustrative information and information relevant to this thesis’s prerequi-
site about the layering model.

chapter 2 describes the brain anatomy. It presents macroscopical as well as mi-
croscopical properties such as cytoarchitecture and myeloarchitecture. The
chapter also encompasses and describes classical findings taken from his-
torical literature. The relationship between the architectures is briefly high-
lighted in the context of neurodegenerative diseases.

chapter 3 presents the physical background on Magnetic Resonance Imaging
and highlights the latest developments leading to quantitative anatomical
data assessment. The focus is on myelin mapping. Although cyto- and
myeloarchitecture are interlinked, MRI is currently not able to image at cell
size resolution. In addition, other MRI methods as well as classical histologi-
cal staining methods are explained.

chapter 4 provides a general overview on methods commonly used in image
segmentation and analysis. The chapter concentrates on deformable models
in particular. It is fundamental for the next chapters.

chapter 5 describes the current state-of-the-art in cortical parcellation meth-
ods. With the increasing diversity on brain data, many different parcellation
methods have evolved. The advantages and disadvantages of the methods
are discussed to draw conclusions for a new parcellation scheme.

chapter 6 deals with the data acquisition and processing. It outlines the ac-
quisition parameters of in-vivo MRI as well as ex-vivo MRI and histology
data. This chapter also illustrates the data processing pipeline and describes
the individual steps of it including preprocessing, brain segmentation, and
cortical surface reconstruction on high-resolution MRI data. In particular, it
introduces and explains the new layering model developed.

chapter 7 presents the architecture-based cortical parcellation model which
has been developed in this project. The model aims at overcoming limita-
tions set by current parcellation methods.

4
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chapter 8 describes the experimental design of the validation. The validation
targets three major fields: the application of the model to in-vivo data, the
comparison to classically-derived histological data and, finally, theoretical
experiments on the discriminative power in the light of different imaging
resolutions. It presents and discusses all results.

chapter 9 summarises the work conducted in this thesis. In addition, it dis-
cusses future work tasks and remaining challenges in order to develop more
sophisticated parcellation methods.
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Part I

Background
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2
A N AT O M Y O F T H E H U M A N B R A I N A N D T H E C E R E B R A L
C O RT E X

This chapter shall give a general overview on the brain, its anatomy and function
(Section 2.1). Specifically, the focus is put on the cerebral cortex, i. e., a 2–5mm
outer tissue surface of the brain. Since more than 200 years, scientists try to relate
structure and function to investigate brain development in normal healthy and dis-
eased states (see Section 2.2). The discussions on the structure-function relation-
ship in the brain evolve from analysing the cortical architecture (see Section 2.3).
The two most commonly known architectures are the cytoarchitecture which de-
scribes the neuronal cell configuration within the cortex, and the myeloarchitecture
which describes the intracortical myelinated fibre network. The interplay between
these architectures is highlighted in Section 2.4. It is followed by a short overview
of the clinical perspective. Finally, a summary of relevant information is presented
and conclusions considering this thesis are drawn.

Detailed reading on neuroanatomy and brain function are provided in Bear et al.
[2007]. All other literature is cited accordingly in the text.

2.1 gross organisation of the human brain

The nervous system of all mammals has two main divisions: the central nervous
system and the peripheral nervous system (PNS). The brain together with the
spinal cord form the CNS which consists of the parts of the nervous system that
are encased in bone. The brain lies entirely within the skull. On a sideview of the
brain, it becomes apparent that the brain consists of three parts: the cerebrum, the
cerebellum and the brain stem (see Fig. 2.1).

the cerebrum (Latin for brain) is, phylogenetically seen, the newest structure,
with mammals having the largest and best-developed structures among all
species. It has a complex folded outer surface called cerebral cortex. The
cerebrum is clearly split down in the middle into two cerebral hemispheres,
separated by a deep sagittal groove called medial longitudinal fissure. The
right cerebral hemisphere receives sensations from, and controls movements
of, the left side of the body. Respectively, the left cerebral hemisphere receives
sensations from, and controls movements of, the right side of the body.

the cerebellum (Latin for little brain): is behind the cerebrum, and is split sagit-
tally by a fissure as well. Although this structure is very small and dwarfed
by the cerebrum, it contains as many neurons as the cerebrum. Like the
cerebrum, it has a complex folded outer surface called cerebellar cortex. Pri-
marily, it is a movement control center and is extensively connected with the
cerebrum and brain stem. In contrast to the cerebrum, the right cerebellar
hemisphere controls movements of the right side of the body. Respectively,
the left cerebellar hemisphere controls movements of the left side of the body.
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Figure 2.1: Lateral view onto the human brain consisting of the cerebrum, the cerebel-
lum and the brain stem. The coloured regions depict the different func-
tional lobes of the cerebral cortex. Lines indicate folds. The central sulcus
divides the frontal and the parietal lobe while the Sylvian fissure separates
frontal and temporal lobe. Image is a reproduction of a lithograph plate from
Gray [1918]. (Image source: Wikepedia: http://en.wikipedia.org/wiki/File:
Lobes_of_the_brain_NL.svg)

the brain stem forms the stalk from which the cerebrum and cerebellum origi-
nate. It is a complex nexus of fibres and cells and serves to relay information
from the cerebrum to the spinal cord and cerebellum, and vice versa. The
brain stem regulates vital functions, such as breathing, consciousness, and
the control of body temperature. It is considered the most primitive part of
the brain, but at the same time it is the most important to life. One can sur-
vive damage to the cerebrum and cerebellum, but damage to the brain stem
usually leads to rapid death.

The largest distinction between the brain stem and both the cerebrum and the
cerebellum is the outer appearance of these structures. The cortical surfaces of
the cerebrum and the cerebellum reveal a highly complex folding pattern (see Fig.
2.1). Outward folded structures are called gyri (singular: gyrus) and the grooves
inbetween are called sulci (singular: sulcus). Specifically, the top of a gyrus is
called crown while the deepest point of a sulcus is called fundus of a sulcus
(plural: fundi). The stretch reaching down from the crown to the fundus is called
sulcal wall.

2.1.1 Meninges and the Cerebrospinal Fluid

The CNS, i. e., the brain and the spinal cord, are enveloped by meninges (Ancient
Greek meaning membranes) filled with cerebrospinal fluid (CSF). Taken together, the
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2.1 gross organisation of the human brain 11

meninges and the CSF act as primary mechanical and immunological protectors
of the brain. The membranes are located between brain matter and skull (see
Fig. 2.2A). In mammals, the meninges consist of three layers: the dura mater, the
arachnoid mater, and the pia mater. The dura mater (Latin for tough mother, also
meaning hardest or thickest tissue) is attached to the skull and is comparable to a
"sac" that envelops the arachnoid mater. The dura mater consists of two layers:
an thin membrane that covers the outer surface of all bones, and a meningeal
layer, i. e., the actual dura mater. The dura mater is composed of dense fibrous
tissue and surrounds and supports the CNS. It holds the cerebrospinal fluid in
which large vascular vessels reside which provide blood supply to the brain. The
arachnoid mater is between dura mater and pia mater, but attached to the dura
mater. Both dura mater and arachnoid mater do not follow the folding of the
cortex, except for the longitudinal fissure which separates the cerebrum into the
left and the right hemisphere. The space between arachnoid mater and pia mater is
called subarachnoid space. It acts as an effective morphological and physiological
meningeal barrier that allows the blood circulation to the brain and holds the CSF.
The pia mater (Latin for soft mother, meaning softest or thinnest tissue) is firmly
connected to the surface of the brain, and in contrast to dura mater and arachnoid
mater, it follows the cortex’s complex folded contours of gyri and sulci. Pia mater
and arachnoid mater are in close contact on gyral crowns. In the sulcal basins
between two gyral crowns the subarachnoid space opens up in which the vascular
tissue and the CSF interface each other and constitute the blood brain barrier.

The CSF can be found in the ventricular system inside and around the brain and
spinal cord. This bodily fluid fills the ventricles which reside in the brain, the sulci
of the brain, as well as the central canal of the spinal cord.

2.1.2 Vasculature of the Brain

The brain’s vasculature plays another important role. Blood supply is provided
by two main sets of vessels: the right and left common carotid arteries and the
right and left vertebral arteries. The common carotid arteries divide further into
the external carotid arteries, i. e., supplying the face and the meninges with blood.
The internal carotid arteries supply blood to the anterior 60% of cerebrum. The
vertebral basilar arteries supply the posterior 40% of the cerebrum, part of the
cerebellum, and the brain stem.

At the base of the brain, the carotid and vertebral basilar arteries form a circle of
communicating arteries known as the Circle of Willis. These circular arteries work
as a "back-up system" and presumably improve the chances of any brain region to
continuously receive blood if one of the major arteries is occluded. The anterior
cerebral artery (ACA), the middle cerebral artery (MCA), and the posterior cere-
bral artery (PCA) arise from the Circle of Willis and travel to all parts of the brain.
The anterior cerebral artery extends upward and forward and supplies the frontal
parts of the brain. The middle cerebral artery is the largest branch of the internal
carotid and supplies a portion of the frontal brain and the brain’s lateral surface.
The posterior cerebral artery stems in most individuals from the basilar artery but
sometimes originates from the internal carotid artery. The posterior cerebral artery
supplies the posterior parts of the two cerebral hemispheres. The comparatively
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Figure 2.2: The images depict surrounding structures and tissues of the brain. A: The
meninges of the brain enclosed in the skull. The dura mater and the CSF in
the subarachnoid space are important in this thesis as they influence the data
processing. (Image created by Blausen Medical Communications, Inc.. Image
source: http://goo.gl/FDmIHQ) B: Medial view onto the human brain showing
a vessel tree of the cerebral arteries. Larger vessels run on the gyral crowns and
bifurcate into the sulci. (Image published in Sobotta and Playfair McMurrich
[1908]. Image source: http://goo.gl/gPYjAC)

smaller lenticulostriate arteries branch from the middle cerebral artery and pene-
trate deep into the brain.

The arteries bifurcate to a vascular tree spanning the whole cortical surface (see
Fig. 2.2B). The main vessels run on the gyral crowns, and their branches reach
down into the sulcal basins. With each branch, the diametre of the blood vessels
decreases, finally allowing small arteries to penetrate into the brain tissue.

2.1.3 Structural Organisation of the Cerebrum

When the cerebrum is cut in any direction, the inside reveals two main tissue
divisions: the white matter (WM) and the grey matter (GM). The GM, the outer
cortical surface of the cerebrum, is composed of numerous nerve cells arranged
in six cellular layers and primarily associated with processing and cognition of
incoming information. The WM forms the inner part of the cerebrum and is com-
posed of many myelinated nerve cell processes, i. e., called axons. These axons are
also called fibres, fibre bundles, or tracts, and carry nerve impulses between the
neurons.

Neurons are the main component of the CNS. The cerebral cortex contains 19–
23 billion nerve cells which make up only 20% of the total number of nerve cells
in human brains [Pakkenberg et al., 2003; Pakkenberg and Gundersen, 1997]. The
nerve cells process and transmit information through electric and chemical signals
within the brain and between brain and peripheric organs. In this section, a brief
and schematic description of a typical cell structure and its function is given, as
there are many exceptions to it.

The neuron usually consists of a cell body, called soma, which contains the nu-
cleus (see Fig. 2.3). The soma can reach a size of 4–100µm. A typical neuronal cell
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Figure 2.3: Left: The image schematically illustrates a neuronal cell with its dendritic tree,
its axon and axonal collaterals. The enlargement to the right shows the myelin
sheaths around the axon. These are produced by the oligodendrocytes and are
arranged in segments that are interrupted by the node of Ranvier. (Left image
is created by Pearson Scott Foresman. Image source: http://goo.gl/Cye2qc.
Right image is derivative work of image by Mariana Ruiz Villarreal: http://
goo.gl/eBkAkn. Image source: http://goo.gl/IG8hna)

has many dendrites and an axon, also known as nerve fibre. Soma and dendrites
receive signals from other neurons while the axon transmits information signals to
other neurons, muscles and glands. The transmitting element sending the signals
from an axon of a nerve cell to the dendrites of another cell is called synapse. In
the cerebral cortex 1015 synapses can be found.

The drendrites and axons serve different functions, but they vary a lot in fea-
tures such as shape and length. Dendrites are thin unmyelinated structures which
arise from the cell body multiple times. They branch into a "dendritic tree", be-
coming thinner and thinner with every branch and extending only hundreds of
micrometre in the cortex. Thus, they act in a very restricted area around the cell
body. Axons are myelinated nerve cell processes which arise only once at the axon
hillock. They have a diametre of <1–6µm. Like dendrites, they branch but main-
tain their diametre along the distance they travel. Myelinated branches of an axon
within the cortex are called axonal collaterals. Usually, axons can extend out of
the brain as far as 1m. Within the brain, axons can span a network of 150.000–
180.000km [Pakkenberg et al., 2003; Pakkenberg and Gundersen, 1997].

The myelin around the axon is a layer of insulating substance composed of 70–
80% lipids and 20–30% protein. The purpose of the so-called myelin sheath is
to increase the speed of the propagated signals along the myelinated fibre. The
myelin itself decreases the capacity across cell membranes and increases the elec-
trical resistance. Thus, the electrical impulses cannot leave the axon. The myelin
sheath gets produced by oligodendrocytes and the process of it is called myelina-
tion.
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14 anatomy of the human brain and the cerebral cortex

Each axon shows short myelinated segments, periodically interrupted by un-
myelinated segments, i. e., the nodes of Ranvier (see Fig. 2.3). At these nodes, the
axon diametre is decreased and an action potential can be generated. These elec-
trical currents are conducted with little attenuation to the next node in transmit di-
rection where they are strong enough to generate another action potential. Rather
than following the myelinated fibre directly as a line, action potentials "jump" from
node to node, bypassing the myelinated segments in between. This saltatory con-
duction results in an even faster propagation speed. The diametre of an axon is
known to be directly linked to the conduction velocity [Hursh, 1939].

The white matter has long been understood as a passive part of the brain, but
it actually has an active influence on how the brain learns and functions. The
WM modulates the distribution of action potentials. Thus, it acts as a relay and
coordinates communication between different brain regions. The so-called fibre
tracts can be categorised into three different types:

projection tracts connect regions within the brain as well as with spinal cord.
They transmit information between the cerebrum and the peripherals of the
body.

commissural tracts pass through the corpus callosum which connects the
two cerebral hemispheres and enable them to communicate with each other.
Others tracts pass through the anterior and posterior commissures, i. e., struc-
tures serving as a bridge between hemispheres.

association tracts connect regions within the same hemisphere and usually
link memory and perceptual regions of the brain. There are two types of
association tracts: long range association tracts connect different lobes of the
same cerebral hemisphere to each other, and short range association fibres
connect folds within a single lobe.

2.1.4 Functional Organisation of the Cerebrum

The cerebral cortex is only present in mammals. In larger mammals, the cerebral
cortex is highly folded which have allowed the cortex to expand in surface area
without taking up much greater volume. Therefore, it is proportionally the largest
in humans.

Deeper sulci are called fissures. The biggest of them is the (medial) longitudinal
fissure dividing the cerebrum into the two cerebral hemispheres. Fissures and
sulci divide each hemisphere into conventionally five different lobes named after
the bones of the skull that lie over them (see Fig. 2.1):

• the central sulcus divides the frontal lobe from the parietal lobe.

• the temporal lobe lies ventrally to the deep lateral (Sylvian) fissure.

• the occipital lobe forms the very back of the cerebrum. It borders directly to
the temporal lobe. The parieto-occipital sulcus separates the occipital lobe
from the parietal lobe.

14
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• the limbic lobe consists of the cortex around the corpus callosum, primarily
the cingulate gyrus, the cingulate sulcus, the isthmus of cingulate gyrus, the
rhinal sulcus and some substructures of the hippocampal formation (accord-
ing to Terminologia Anatomica).

In addition to the five mentioned lobes, scientists regard the insular cortex as
separate lobe. If margins of the lateral fissure are pulled apart, a portion of the
cortex folded deep within the lateral sulcus is revealed, called the insular (Latin for
island), or insular cortex or even insulae. Thus, it somehow borders and separates
the temporal and frontal lobe.

In these different lobes, the organisation of cells and axonal collaterals changes,
yielding a subdivision of the cortex into structurally and functionally distinct cor-
tical areas. The structural division relates to specific functional processing in the
areas of these lobes [Bear et al., 2007]. Considering the areas, we distinguish be-
tween primary, secondary, and tertiary areas. Usually, primary cortical areas
receive raw information and deliver processed information to the secondary areas,
which, in turn, deliver further processed information to the tertiary areas. Hence,
primary, and secondary areas process raw information while tertiary areas are re-
sponsible for higher order functional processing. Tertiary areas are therefore called
association areas.

From here on, the focus is on the cerebrum, and in particular, on the outer
surface, i. e., the cerebral cortex. In the literature, the cerebral cortex is often called
neocortex, isocortex, cortical sheet, cortical ribbon or cortical surface. In this work,
the term cerebral cortex or cortex will be used.

2.2 mapping structure and function in the cortex

The cerebral cortex of humans is topologically seen a thin sheet that is on average
3mm thick and has a surface area of around 900 cm2 per hemisphere of which only
one third is visible because the remaining two thirds are buried in the sulcal folds
[Henery and Mayhew, 1989; Ono et al., 1990; Makris et al., 2005]. The complex
convolutions of the cortical surface allow the brain to fit into a compact space of
about 18 cm length, 13 cm height and 14 cm total width.

The main goal in neuroscientific research is to correlate the structure and func-
tion in the cortex in order to understand how the brain works in different func-
tional states (rest vs. task-evoked states) or how it changes in pathology. These
structure-function mappings have been a topic of investigation since more than
two hundred years. Over the 20

th century, cortical cartographers1 investigated the
number, arrangement, and laminar and internal organisation of anatomically and
functionally distinct areas of the cortex. Two main disciplines evolved: the stud-
ies of cytoarchitecture and myeloarchitecture. The cytoarchitecture deals with the
cellular arrangement and organisation of neuronal cells in the brain, and more
specifically in the cortex. The discipline of myeloarchitecture examines the cortical

1 Early brain scientists studied the brain from the outside to the inside. The first descriptions are
reported in terms of the topology of the brain. Thus, the scientists "cartographed" the shape of
the brain like geographers the landscape of countries, and like-wise they called themselves "car-
tographers". Later, the study of brains lead to an independent discipline, nowadays known as
Neuroanatomy.
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Figure 2.4: The images depict the layering in the cortex and its shifting behaviour in gyral
crowns and fundi of sulci. A) Cortical layering schematically illustrated by Bok
[1929]. B) and C) show myelin stains of a coronal section taken in the primary
visual area. Here, the calcarine sulcus region is depicted which includes the
stria of Gennari, a densely and distinct myelinated band. The WM boundary is
shown in yellow. B) In the gyral crown, the inner cortical layers near the WM
become thick and push the stria towards the outer cortical boundary. C): In
the sulcus, the inner cortical layers become thin and the stria lies more towards
the WM boundary. The changing thickness of the layers obeys the equi-volume
principle as proposed by Bok [1929]. (Myelin stains kindly provided by Dr.
Stefan Geyer and Katja Reimann.)

structures and anatomical features associated with the myelin sheaths of neuronal
axons.

2.2.1 Macroscopical Features: Cortical Layering, Thickness and Gyrification

The main interest in cortical architectural studies was to investigate the lamination
pattern of the six cortical layers. Bok [1929] found that to compensate cortical
folding, cortical layer segments preserve their local volume fraction while the layer
thickness adapts to local cortical curvature (see Fig. 2.4).

Bok studied cyto- and myeloarchitectonic layers in the fully developed adult
human brain and analysed the relationship between cortical folds and layer ge-
ometry. Specifically, he investigated the question how the cortical layers behave in
locations of gyri and sulci in different cortical areas. Bok divided each cortical layer
into segments that were bounded by the principal dendrites of neurons. He found
by measurements on postmortem histological cell-stained sections that the volume
of a segment within a given layer is kept constant with respect to curvature. As
a result, neighboring segments in one layer have the same volume, whether they
are located on a gyral crown or in the fundus of a sulcus. The thickness of the
cortical segment adjusts to adapt to the curvature, thus compensating for the fold-
ing. Simply said: Going along a cortical boundary surface, the layers appear to be
squeezed and are relatively thick in locations with high curvature. Layer segments
at places of small curvature appear to be stretched and are relatively thin.

Besides the lamination pattern, other macroscopical features have been inten-
sively studied, too: the cortical thickness and cortical folding pattern, i. e., gyri-
fication. The variability of thickness within the cortex is large and ranges from
4.5mm in locations of thick cortex to 1.5mm in locations of thinner cortex. There
is no correlation between cortical thickness and cortical areas. The thickness is
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Figure 2.5: The variability of areal extent of 10 postmortem brains according to gyral or
sulcal landmarks: in primary visual (17) and anterior and posterior motor (4a
and 4p) areas the variability of the areal extent is small. In secondary cortices
of vision (18), sense (2) or premotor function (6) the variability increases at the
boundaries of each area. But in association areas such as Broca’s region (44 and
45), the variability of areal extent is very high. (Image published in Geyer and
Turner [2013] and by courtesy of Springer Verlag, Berlin-Heidelberg)

smallest in medial sides of the brain. Towards the occipital and frontal poles, the
cortical thickness decreases. Locally, the cortical thickness is larger in gyral crowns
than in sulcal fundi. The cortical thickness progressively and gradually decreases
from gyral crown to sulcal fundi, in some locations by 40–50%. This decrease
depends on the depth of the sulcus: the deeper the sulcal fundus, the larger the
decrease of cortical thickness. The largest cortical thickness of up to > 4mm can
be found in the precentral gyrus, especially, in its posterior wall, i. e., the primary
motor region. In location of the calcarine sulcus in the primary visual region the
cortical thickness can even be as small as 1.2mm.

Measuring cortical folding patterns has gained increased interest in the study of
cortical areas. The boundaries of primary areas in mammals consistently coincide
with cortical folds:

• the primary motor area is contained in the precentral gyrus (frontal lobe),

• the primary somatosensory area is located in the postcentral gyrus (parietal
lobe), and,

• the primary visual area is contained in the calcarine sulcus (occipital lobe).

However, the variability of gyrification increases in association cortical areas,
i. e., the areal extent of these areas coincide not necessarily with cortical folds (see
Fig. 2.5). The characteristic shape of cortical folds and the arrangement of the
cortical areas may be explained by an evolutionary design strategy for the min-
imisation of axonal length [Van Essen, 1997; Kennedy et al., 1998; Klyachko and
Stevens, 2003; Karbowski, 2003]. Cortical areas process information through inter-
areal and inter-hemispheric connections, e. g., the cortical network. These cortical
networks are optimised in such a way that they reduce the wiring costs and save
energy and time during the signaling process. In larger brains, longer fibres are
required to communicate between distant cortical areas. Theoretically, there must
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be a decrease in inter-hemispheric connectivity when brain size increases, due to
the increasing time constraints related to the inter-hemispheric conduction delay.
Hence, a larger local clustering of inter-areal connections is required [Ringo, 1991;
Ringo et al., 1994]. The tension-based theory by Van Essen [1997] suggests that ten-
sion along axons in the WM between nearby cortical areas is the primary driving
force for cortical folds at specific locations in relation to its areal boundaries.

Today, we know that age has a profound influence of all the measures [Hogstrom
et al., 2013]. Cortical thickness, gyrification, as well as cortical surface area are
negatively correlated with age. The reduced gyrification in aging appears to par-
allel reductions in surface area. Both surface area and thickness change contin-
uously with age, but the relationship between these two measures is relatively
stable throughout healthy adulthood. Yeatman et al. [2014] found that properties
of human brain tissue change across the lifespan. Specific properties of growth
of new brain tissue during the maturation approaching maturity may predict the
rate of degeneration in aging. According to Yeatman et al. [2014] the relationship
is mirror-symmetric. In contrast, fibre development in WM follows an asymmetric
behaviour: while changes in childhood happen at a very rapid rate, the decline
in old age happens at a slow rate. All together, Yeatman et al. [2014] showed that
several biological processes define changes in WM over lifespan.

2.2.2 Classical Works

Structural changes within the cortex have been observed even before Brodmann’s
well-known studies on cytoarchitecture [Brodmann, 1909]. In 1858, Berlin [1858]
has provided descriptions on six cortical layers in the human cortex which change
their lamination pattern based on variations in cell size and type. A decade later,
Meynert [1868] published a subdivision of the cortex into various functional re-
gions. Other early investigations include the work of Betz [1874], who discovered
the giant pyramidal cells in the primary motor region. Many publications deal-
ing with the change in cellular lamination pattern in the cerebral cortex followed
[Lewis, 1878, 1880; Hammarberg, 1895].

Brodmann [1909] considered the published work of his colleagues in detail and
investigated their inconsistencies. He discovered 44 functional areas which match
in their areal extent as well as their cell configuration (see Fig. 2.6).

Smith [1907] presented a detailed atlas of human cortical localisation encom-
passing 50 areas (see Fig. 2.7). He distinguished the areas based on architectural
patterns on freshly cut brains. Publications by Campbell [1904] and Flechsig [1920]
follow the same trends.

Oskar and Cécile Vogt followed a different concept: parcellating the cortical
surface based on myeloarchitecture. According to Vogt, myeloarchitecture reveals
more details than cellular localisation. The Vogts provided the most circumstantial
descriptions of myeloarchitecture by subdividing the cerebral cortex into more
than 200 areas (see Fig. 2.8).

Von Economo and Koskinas [1925] reviewed the publications. They studied
the quantitative cellular configuration and accordingly reviewed the myeloarchi-
tectonic descriptions by the Vogts in over 107 cortical and subcortical areas. They
merged the findings in their own mapping (see Fig. 2.9). In addition, they pub-
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Figure 2.6: Brodmann’s cytoarchitectonic parcellation of the brain surface. The division
into 52 areas is based on structural changes in the cellular composition within
the cortex. Lateral view onto the surface highlighting the primary motor-
somatosensory areas 4, 3, 1 and 2, and Broca’s region consisting of areas 44

and 45. (Image source: von Economo and Koskinas [1925])

Figure 2.7: Grafton Elliot Smith parcellation of the brain surface. The division into 50 areas
is related to different architectonic patterns visible on fresh cut brain material.
Lateral view onto the surface highlighting the primary motor-somatosensory
areas 4, 3, 1 and 2, and Broca’s region consisting of areas 44 and 45 (nomencla-
ture and colour coding adopted from Fig. 2.6). (Image source: von Economo
and Koskinas [1925])

lished the first table consisting of 52 areas describing quantitative measures per
layer including the relative thickness, cell size, and cell density.
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Figure 2.8: Cécile and Oskar Vogts myeloarchitectonic parcellation of the brain surface in
lateral view. The division into more than 200 areas and subareas is based on
subtile changes in the arrangement and organisation of myelinated horizontal
and radial fibre structures in the cortex. The image depicts the primary motor-
somatosensory areas 4, 3, 1 and 2, and Broca’s region consisting of areas 44 and
45 (nomenclature and colour coding adopted from Fig. 2.6). (Image source:
von Economo and Koskinas [1925]).

Figure 2.9: Von Economos’ and Koskinas’ cytoarchitectonic parcellation of the brain sur-
face. The division into 107 areas is based on structural changes in the cellular
composition that follow structural changes in the myeloarchitecture described
by the Vogts Vogt and Vogt [1919a,b,c]. Lateral view onto the surface highlight-
ing again the above named regions (nomenclature and colour coding adopted
from Fig. 2.6). (Image source: von Economo and Koskinas [1925].)

With quantitative methods such as photometric reproductions of stained brain
tissue sections available, Hopf [1968, 1969, 1970] and Braitenberg [1962] were the
first to report quantitative myelin density profiles, i. e., traverses running from the
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Figure 2.10: Adaptation of Hopf’s individual lobe maps as presented in Hopf [1955, 1956];
Hopf and Vitzthum [1957] merged to one single surface in lateral view
(nomenclature and colour coding adopted from Fig. 2.6). The separation
agrees with structural changes in the myeloarchitecture described by the Vogts
Vogt and Vogt [1919a,b,c]. The grey level codes the myelin concentration
in each area with dark being strongly myelinated and light grey being less
myelinated. (Image published in Geyer and Turner [2013] and by courtesy of
Springer Verlag, Berlin-Heidelberg.)

inner to the outer cortical boundary along which intensity values were sampled.
Based on the findings, Hopf [1955, 1956] and Hopf and Vitzthum [1957] created
precise myeloarchitectonic mappings (see Fig. 2.10).

historic mappings The historic maps depict the similarities and differences
in cyto- and myeloarchitecture. The illustrations were taken from von Economo
and Koskinas [1925] and were complemented with visual highlights in the selected
regions of interest: M1/S1 region. For additional comparison, Broca’s area has
been highlighted as well. In the Appendix A, all maps are shown from lateral and
medial side to allow a full comparison.

The historic mappings indicate location and extent of certain areas or functional
zones as seen by the different cartographers. Although no common map existed
for the early pioneers, the similarities between the different maps are distinct. To
create the mappings, sulcal landmarks were used as guidelines. The sulcal land-
marks are depicted as black solid or dotted lines in the illustrations. Line width has
been adjusted or dots vary in size indicating major or minor sulci. The anatomical
landmarks helped the early anatomists localising the areas. These landmarks can
now be seen as a historic remainder from times in which scientists discovered the
relationship between cortical folding pattern and cortical areas. Today it is known,
that this relationship exists in location of primary areas such as the primary motor-
somatosensory region M1/S1, but it is less distinct in association areas such as
Broca’s region (see Fig. 2.5).
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The similarities between the cytoarchitectonic mappings are higher compared
to the similarities between myeloarchitectonic mappings. It is worth to note that
Brodmann well described the occurrence of the giant pyramidal cells (German:
"Betz’sche Riesenzellen"). However, he added no further distinction of it in area 4

in his map. The reason why Brodmann’s map is similar to the one of von Economo
and Koskinas [1925] is that the latter followed up on the developments in both dis-
ciplines. Von Economo and Koskinas [1925] tried to incorporate knowledge from
both fields of research: cytoarchitecture and myeloarchitecture. The main contri-
bution of von Economo and Koskinas [1925] are the tabulations on quantitative
measures such as cortical thickness as well as cell density and cell size in 52 corti-
cal and subcortical areas.

The areal extent of areas is similar across the different illustrations, albeit not the
same, between cyto- and myeloarchitectonic mappings. The reader is admonished
to visually inspect the historic maps in order to discover the singularities of each
individual map and the differences between them in Appendix A.

2.2.3 Regions of Interest within the Thesis

Within the next sections, the different aspects of cyto- and myeloarchitecture are
explained in detail. To analyse the architectures in conjuction, regions of interest
(ROIs) were defined in the left hemisphere that correspond to the primary motor-
somatosensory region.

The primary motor-somatosensory region, also called M1/S1 region, can be
found along the central sulcus which is one of the main fissures separating the
cerebrum into frontal and parietal lobes. This region contains cortical areas be-
longing to the precentral gyrus, the central sulcus, and the postcentral gyrus. In
the M1/S1 region, area 4, 3, 1 and 2 (according to the nomenclature of Brodmann
[1909]) can be found in anterior-posterior direction. Strictly speaking, area 3 is di-
vided into area 3a, contained in the fundus of the central sulcus, and 3b, contained
in the anterior wall of the postcentral gyrus [Geyer et al., 1999]. The location of
these areas with respect to sulcal and gyral landmarks is consistent across subjects.
The areal structural boundaries mainly coincide with macroscopical landmarks
such as the gyral crowns or sulcal fundi (see Fig. 2.5). All areas are located in a
relatively small region of the brain. The central sulcus can be 10–12 cm long and
reach a sulcal depth of 1–1.5 cm. Considering myeloarchitectonic parcellation ap-
proaches, Vogt [1910] suggested four main types of myeloarchitecture to separate
in human cortex. These types are constant across brains, and the areas in the se-
lected region of interest (ROI) located in M1/S1 region specifically exemplify each
of these basic types.

2.3 cortical architectures

In this section, cyto- and myeloarchitecture are explained in general. Specific fea-
tures in regions-of-interest are highlighted.

When describing the cortex the focus is on the cerebral cortex.
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2.3.1 Cortical Cytoarchitecture

In the neuroscientific field, cytoarchitecture (Greek from cyto meaning cell, also
cytoarchitectonics) is the discipline that analyses the cellular arrangement and or-
ganisation of neuronal cells in the brain, and more specifically in the cortex.

Brodmann [1909] pioneered these studies. He produced the first qualitative
layer-dependent descriptions and provided quantitative measures of cell size and
thickness of layers in different cortical areas. His mapping of structural changes
onto the brain surface is the most popular existing mapping. A decade after Brod-
mann’s publications, von Economo and Koskinas [1925] published a full set of
tables for 52 cortical and subcortical areas, taking into consideration the absolute
and relative values for different measures per layer including cortical thickness,
cell size and cell numbers. More recently, Eickhoff et al. [2005b] provided a 3-
dimensional (3D) digital probabilistic cytoarchitectural atlas related to the Brod-
mann mapping based on stained histological sections of 10 postmortem brains.
These were registered into a standard reference space. Neuroscientists commonly
regard such cytoarchitectonically-derived probabilistic Brodmann maps as useful
guides to cortical localisation.

The cytoarchitecture is an exciting and ongoing field of investigation, continu-
ously providing new insights and developments. The question arises: what does
cytoarchitecture describe in detail?

The neuronal cells in the cortical surface form six tangential layers named with
Roman numerals I to VI. Structural diversity in the cortex is visible when cell
density and cell size within the layers and relative thickness of the layers change.
From the outer surface of the cortex, i. e., the pial surface, to the boundary between
GM and WM we distinguish between [Graumann and Sasse, 2005]:

lamina i , i. e., the molecular layer (stratum moleculare) that contains only a few
nerve cells, many endformations of dendritic trees, mostly from layer III and
V and very few ascending fibres, which are incoming afferent fibres. They
originate in different cortical areas or ascend from unspecific thalamic nuclei,
i. e., a structure residing deep in the brain.

lamina ii , i. e., the external granular layer (stratum granulare externum) that is
composed of many small granular neurons. The granular appearance of the
cells give this layer its eponymous character. fibres are mainly incoming
afferent fibres originating in neighboring cortical areas or ascending from
the specific thalamic nuclei.

lamina iii , i. e., the external pyramidal layer (stratum pyramidale externum) that
mostly consists of small triangular-shaped cells, called pyramidal cells. As-
sociation fibres, i. e., cell-leaving fibres, appear in this layer for the first time.
They project and connect within the area or to neighboring cortical areas.

lamina iv , i. e., the internal granular layer (stratum granulare internum) that is
composed of many granular cells. Most afferent fibres, i. e., fibres from the
thalamic nuclei, association fibres and commissural fibres end in this layer.

lamina v , i. e., the internal pyramidal layer (stratum pyramidale internum) that
contains huge pyramidal cells and sometimes also giant pyramidal cells called
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"Betz cells". However, it is a very sparse layer leaving much space between
cells. The dendritic trees of these cells receive their impulses from fibres in
layer I and II as well as from association and commissural fibres. In this layer
most of the projection fibres originate and connect to the thalamus, the brain
stem and the spinal cord.

lamina vi , i. e., the multiform layer (stratum multiforme) that consists of small,
but sometimes densely packed cells which control outgoing fibres in this
area.

Often, a division into three sublayers can be observed in layer III into layers IIIa,
IIIb, and IIIc. Usually, the size of the cells progressively increases with cortical
depth and the cell density decreases. The same is true for layer V, except that it
is split into two layers Va and Vb. Also, layer VI sometimes gets divided into VIa
and VIb. However, in this case the cell size and the cell density decrease at the
same time.

The six layers can further be differentiated into [Graumann and Sasse, 2005]:

• two mostly receptive layers: the internal and external granular layers,

• two mostly efferent layers: the internal and external pyramidal layers, and,

• two modulating layers coordinating and controling the integration and pro-
cessing of afferent and efferent impulses: the molecular and multiform layers.

The arrangement in layers is recognizable throughout the cerebral cortex, but
reveals structural regional differences. The differences between locally neighboring
areas are sometimes much larger than those between areas far apart. If areas are
connected to each other, their architectural design is likely to be more similar, too,
than compared to areas which are not connected.

The main cytoarchitectonic features associated with structural diversity in the
cortex are cell size and cell density. The general size of the pyramidal cells can
vary between individual brains. The cell size varies most in pyramidal cell layers
III and V. The cell density varies most in granular layer IV. Combining cell size
and cell density within a layer with the layer thickness primarily determines the
characteristics of an area.

According to the thickness of individual layers and the change of cell density
in granular layers, the brain surface can be divided into different types of cortex:
homogeneous and heterogeneous cortex. In the homogeneous cortex all layers are
equivalently represented. There is no predominance of pyramidal cell layers over
granular cell layers or vice versa. This type of cortex can usually be found in as-
sociation areas. In the heterogeneous cortex, pyramidal cell layers or granular cell
layers predominate the respectively other cell layer resulting in an agranular cor-
tex or a granular cortex. In locations of agranular cortex we find many pyramidal
cells in layer III and V, combined with a relative increase in cell size, cell number
and thickness of these layers. At the same time, the granular cell layers become
thinner. Agranular cortex describes areas that process motor signals such as the pri-
mary motor area M1. In the granular cortex the granular cell layers outbalance the
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pyramidal cell layers. The latter ones become very small or seem to completely dis-
appear. Sometimes layer IV is divided into additional sublayers. Granular cortex
usually processes sensory input information such as in the primary somatosensory
areas. In these areas we can also observe a vertical arrangement of cells known as
cell columns. Incoming fibres connecting to these areas are densely packed and
push away cells which, in turn, "squeeze" into the columnar space left.

Von Economo and Koskinas [1925] have provided detailed and precise descrip-
tions for some, but not all areas in German language. There are in general more
descriptions for primary areas, i. e., for the primary motor-somatosensory region
M1/S1 than compared to association areas. Here, a shorter, but essentially focused
summary is given in English language.

If not stated otherwise, all features mentioned have been reported on a micro-
scopical level.

2.3.1.1 Cytoarchitectonic Definitions of the M1/S1 Region

Cytoarchitectonically seen, the structural changes between neighboring or oppos-
ing cortical areas are so ultimately diverse only in the location of the M1/S1 region
in the cerebral cortex. Additional cytoarchitectonic extremes related to measures
such as cortical thickness, layer thickness, cell density or cell size can only be found
here.

primary motor area : m1 The primary motor area, i. e., M1 (Brodmann
[1909]: area 4, von Economo and Koskinas [1925]: FA) covers the precentral gyrus
along the anterior and posterior wall. In this work, the location of the primary
motor cortex will be referred to as cortical area 4. It is the thickest cortical area
within the cortex and can reach up to 3.6–4.2mm [von Economo and Koskinas,
1925]. The thickness decreases, step by step, laterally. Usually gyral crowns are
significantly thicker than sulcal walls. However, area 4 is an exception. The wall is
only slightly thinner than the top of the gyral crown which is characteristic for this
area. The boundary between GM and WM is unsharp, independent on the gyral
crown or the sulcal wall. Compared to all cortical areas across the human brain,
area 4 has an average cell density. The outer cellular layers are more cell dense
than the inner layers. However, cell sizes in every layer are on average higher than
compared to other regions in the cerebral cortex. Microscopically seen, there is no
distinct lamination visible, i. e., layers merge without clearly revealing boundaries
between single layers. Additionally, area 4 is agranular, i. e., cytoarchitectonic layer
II and IV are obscured or not existing. Thus, this area appears as one thick single
layer in which the lamination pattern of six cytoarchitectonic layers is not visible.

In layer V the giant pyramidal cells can be found, called "Betz’sche Riesenzellen"
(German), which can reach a size of 60–100µm. The giant pyramidal cells are the
largest cells in the human cortex and are macroscopically visible. Taken together,
layer III and V make up 70% (2.5–2.9mm) of the total cortical thickness, of which
layer III alone covers 40–45%. Hence, three quarters of the cortical depth of area
4 consist of pyramidal cells. However, the giant pyramidal cells only cover cer-
tain locations within area 4 which leads to a division of area 4 into two parts: FA
(nomenclature borrowed from von Economo and Koskinas [1925]) which describes
locations containing normal-sized pyramidal cells and FA

�

, describing locations
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containing the giant pyramidal cells. FA laterally covers the posterior wall of the
precentral gyrus. FA

�

covers the posterior wall of the precentral gyrus and medi-
ally also the gyral crown of the precentral gyrus. In general, the distribution of
the giant pyramidal cells varies from medial to lateral direction. While there are
many and large cells in medial parts, their size and number decreases laterally.
Large cells can still be found in gyral crown and posterior wall in the location of
the motor handknob, an overhanging bulge of cortex of the gyral crown reaching
down into the central sulcus in area 4. Right behind this structure, the giant pyra-
midal cells only sparely exist or none at all. But continuing further lateral, the
giant pyramidal cells reappear but can only be found in the posterior wall and not
in the gyral crown any longer. Their size and number has decreased. The surface
area that these cells cover laterally becomes smaller such that at the most lateral
part of area 4, on top of the Sylvian fissure, no giant pyramidal cells can be found
anymore. The historic cytoarchitectural mapping of von Economo and Koskinas
[1925] reflects this behaviour (see Fig. 2.9).

primary somatosensory area : s1 Opposite of M1, the primary somatosen-
sory area, S1 (Brodmann [1909]: area 3, von Economo and Koskinas [1925]: PB

2

)
can be found. It separates from M1 by the central sulcus. In this work, the location
of primary somatosensory cortex will be referred to as cortical area 3b. This area is
purely located within the sulcal wall and its specific cell arrangement never reaches
the gyral crown of the postcentral gyrus. Area 3b has a noticeable small cortical
thickness. Sometimes it is below 2mm which is twice as thin as in the primary mo-
tor area. In fact, area 3b is among those which have the smallest cortical thickness
in the cortex. The cortex is clearly distinguishable from WM. The main character-
istic features are the small cell sizes combined with a high cell density. In general,
area 3b reveals a homogeneous type of cortex with a granular cell pattern. A few
radial cell columns are visible which are caused by incoming fibres that push away
the cells. Layer II and IV are considerably more cell dense. Layer III is composed
of very small pyramidal cells that are on average smaller than everywhere else in
the cortex. Layer V and VI are extraordinary thin which lets the outer cortical lay-
ers (I-III) appear much broader than compared to the inner cortical layers (IV-VI).
In extreme cases, PB

2

(nomenclature borrowed from von Economo and Koskinas
[1925]) reveals an even stronger granular cortex and deforms into PB

1

. In PB
1

, the
triangular shape of pyramidal cells and their abnormal small size may lead to the
conclusion that layer III may contain granular cells only. However, these cells are
still pyramidal cells. In this extreme case, layer III becomes thinner in support of
layer II and IV. These extremes may appear as lamellar islands running parallel to
the central sulcus or even cover the entire anterior postcentral wall. The extent and
the boundary between PB

2

and PB
1

is hard to determine.

somatosensory region : area 1 The crown of the postcentral gyrus con-
tains another area belonging to the somatosensory region: area 1 (Brodmann
[1909]: area 1, von Economo and Koskinas [1925]: PC). In this work, the gyral
crown of the postcentral gyrus will be referred to as cortical area 1. It parallels the
stretch of the central sulcus at the top. The area has a relatively large cortical thick-
ness given that cortical thickness is in general larger at gyral crowns. Its boundary
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to WM is unsharp. It reveals a proper granular lamination pattern with radial cell
columns which have a fan-shape appearance. Area 1 is very similar to areas in
the frontal region such as the premotor cortex (Brodmann [1909]: area 6, which
equals von Economo and Koskinas [1925]: FB) or higher association areas such as
Broca’s region (Brodmann [1909]: areas 44 and 45 which equal von Economo and
Koskinas [1925]: FCBm and FD

�

). Only the great granularity in layer IV distin-
guishes this area from the frontal regions. Apparently, area 1 contains the most
remarkable pyramidal cells posterior of the central sulcus. In superior and dorsal
parts of this area these cells are larger than compared to other locations within this
area. Layer III, specifically IIIc, reveals medium- to large-scaled pyramidal cells.
In layer V, there are still giant pyramidal cells and Betz pyramidal cells. They are
medium scaled and regularly distributed. Von Economo and Koskinas [1925] even
proposed a division of PC into PC and PC

�

. Like in style of the primary motor
area, PC would describe locations with regular cellular appearance, and, PC

�

, lo-
cations containing the giant pyramidal cells. However, the extent of PC

�

is very
arbitrary and the formation is independent of macroscopical landmarks such as gy-
ral crowns or sulcal fundi. Layer VI is very thick compared to other parietal areas.
The transition between anterior PB

2

and PC, and, PC and the posterior successive
area (area 2, PD) is obsolescent. Von Economo and Koskinas [1925] proposed the
possibility of area 1 and 2 being one and the same area.

somatosensory region : area 2 Area 2, (Brodmann [1909]: area 2, von
Economo and Koskinas [1925]: PD) of the somatosensory region is contained in
the posterior sulcal wall of the postcentral gyrus. In this work, this area will be
referred to as cortical area 2. It has a very thin cortex which can compete against
the thickness in area 3b. The boundary to WM is sharp. In general, area 2 is
cell dense with decreased cell size. The lamination is not as clearly visible as in
other locations. There is no radial arrangement of the cells. In layer IIIc there are
medium to high scaled pyramidal cells which contrast the thin cortex. Layer IV is
relatively thick. The boundary between area 1 and area 2 is very hard to identify.
Depending on the brain, area 1 sometimes reaches down into the sulcal wall of
area 2, sometimes area 2 reaches up into area 1, i. e., the crown of the postcentral
gyrus. The posterior boundary of area 2 is very hard to determine, too. This area
runs towards the postcentral sulcus.

2.3.2 Cortical Myeloarchitecture

In contrast with cytoarchitecture, myeloarchitecture has been largely neglected dur-
ing the past hundred years. This discipline examines the arrangement of tangen-
tially and radially oriented myelinated fibres in preparations stained for myelin
sheaths. Research in this field is very difficult.

myeloarchitectonics now and then Quantitative methods were not avail-
able to the pioneers in this field, Cécile and Oskar Vogt [Vogt and Vogt, 1919a,b;
Vogt, 1923]. The Vogts characterised most of their findings using highly subjective
terms as "thin to thick", "poorly to highly dense" or "less to fully present", which
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do not lend themselves to reproducible assessments. Little has been done since
then to develop more objective measures and criteria.

Adolf Hopf and Valentin Braitenberg were the first to report quantitative corti-
cal profiles associated with myelin [Hopf, 1968, 1969, 1970; Braitenberg, 1962]. A
cortical profile describes a traverse running from the inner to the outer cortical
boundary along which intensity values were sampled. Their work is based on the
photometric reproduction of sections stained for myelin. However, Braitenberg
studied the fibre density in cortical areas whereas Hopf studied the myelinisation
in the cortex which describes the development of the myelin sheath around a nerve
fibre. Fibre density and myelin are certainly interlinked. But Hopf was convinced
that the content or concentration of myelin in the cortex does not necessarily only
depend on the fibre density, but also on the fibre caliber. Only recently, Nieuwen-
huys et al. [2014] published a unique myeloarchitectonic mapping incorporating
information from the Vogt-Vogt school. The mapping is a non-digital 2D projection
onto the standard Montreal Neurological Institute (MNI) reference brain.

To date, a widely-accepted comprehensive myeloarchitectural reference atlas
does not exist, and little is known about the concordance between cortical cytoar-
chitectonic and myeloarchitectonic boundaries.

the bands of baillarger The Vogts focused on classifying patterns of fi-
bres radial to the underlying white matter, and on subtle cortical layer dependent
details, which led to a confusing proliferation of categories and subcategories. By
contrast, Hopf followed Smith [1907] in noting that different patterns of myeloar-
chitecture were well discriminated by variations in the myelination of deeper corti-
cal layers. Hopf especially focused on the so-called bands of Baillarger [Baillarger,
1840]. These bands describe two heavily myelinated transverse layers. The outer
band usually coincides with cytoarchitectonic layer IV (internal granular layer)
and the inner band with cytoarchitectonic layer V (internal pyramidal layer) [Vogt,
1910] (see Fig. 2.11A). These myelinated layers resemble a dense fibre network
within the cortex, created by axonal collaterals of the neurons. In analysing the
appearance of the bands of Baillarger, Hopf utilised the Vogts’ most practical crite-
ria: comparing local features of the Baillarger stripes of one cortical area globally
to other areas. It becomes obvious that differences between locally neighboring
areas may be much larger than those of areas far apart. Thus, myeloarchitecture
can be largely defined by the bands of Baillarger, i. e., by their depth within the
cortex, their thickness, and their intensity of myelination. In the mid-20

th century,
Hopf first used these criteria to systematically parcellate the cortical surface and
generate a myeloarchitectonic map [Hopf, 1955, 1956; Hopf and Vitzthum, 1957]
(see Fig. 2.10).

From comparative histological studies it is known that there is a very close re-
lation between the two domains [Nieuwenhuys, 2013]. However, in contrast to cy-
toarchitecture, approaches to microstructurally parcellate the cerebral cortex based
on myeloarchitecture are not well established.

myeloarchitectonic definitions Vogt [1910] categorised myeloarchitec-
tonic areas into four main types: bistriate, unistriate, unitostriate and astriate, de-
pending on whether two horizontal myelin-rich bands are visible, only one band,
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Figure 2.11: A) The two images illustrate the relationship in cortical microarchitecture be-
tween cyto- and myeloarchitecture. On the right side, we can see the two
(darker) bands of Baillarger [Baillarger, 1840], two heavily myelinated trans-
verse layers. The outer band usually coincides with cytoarchitectonic layer IV
(Lamina granularis interna) and the inner band with cytoarchitectonic layer V
(Lamina pyramidalis interna) [Vogt, 1910]. B) The illustrations depict the four
different types of myeloarchitecture remodelled from Hopf [1956] and Hopf
and Vitzthum [1957]: a) astriate, b) bistriate, c) unitostriate and d) unistriate.

or no striation at all (see Fig. 2.11B). The unistriate and unitostriate type both de-
scribe one band being visible. The unistriate type (Latin from unus meaning one)
covers only a single band while the unitostriate type (Latin from unite) describes
the fusion of multiple layers to a single visible one. The bistriate type has two visi-
ble bands. In contrast, the astriate type is so heavily myelinated that no individual
bands are discernible.

By analysing the bands of Baillarger and their position in cortical depth, their
thickness, and their intensity of myelination, Hopf found an additional local cate-
gorisation into three minor types: an inner, an outer and an equally dense myeli-
nated type, depending on whether one of the bands, inner or outer, is more highly
myelinated or whether both are equally myelinated.

In conclusion, the upper cortical layers (1–3 ) are less myelinated than the lower
cortical layers (4–6 ).

In myeloarchitectonic studies, scientists always referred to the layers using Ara-
bic numerals 1 to 6.
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2.3.2.1 Myeloarchitectonic Definitions of the M1/S1 Region

In general, all areas contained in the M1/S1 region belong to two types of myeloar-
chitecture. Area 4, in the precentral gyrus, is of astriate type while all areas in the
postcentral gyrus are of bistriate type. Here, the Baillarger stripes are very distinct.

primary motor area : m1 With respect to myeloarchitecture, the primary
motor area 4 (Vogt and Vogt [1919a,b,c]: areas 38-42) is the strongest myelinated
region within the cortex. The myelination pattern within this area can be divided
into two divisions closely following the cytoarchitectural distinction between lo-
cations containing large pyramidal cells and locations containing giant pyramidal
cells by von Economo and Koskinas [1925]. The lower cortical layers are stronger
myelinated correlating with the distribution of pyramidal cells. Due to these highly
myelinated lower layers, area 4 is of astriate type. Very rarely, the outer Baillarger
stripe is distinguishable. According to Hopf [1956] area 4 is equally dense myeli-
nated. The boundary towards WM is unsharp. The outermost layer 1 reveals some
tangential, myelinated fibres which are more characteristic in locations containing
giant pyramidal cells. In layer 4, the myelination gradually increases towards WM.
Below layer 4 the myelination becomes even stronger such that lamination in terms
of Baillarger striping is not distinguishable.

primary somatosensory area : s1 In area 3b, i. e., Vogts’ area 69, the
boundary between GM and WM is very sharp. Rarely, thick radial incoming fibres
are visible. Layer 1 and 2 are poor in fibres. In layer 3 Vogt observed medium-sized
single fibres, whereas layer 4 is composed of many thick horizontal single fibres.
Thus, the outer Baillarger stripe appears visually stronger, relatively thicker, but
not densely myelinated. Layer 5a is bright and small. In contrast, layer 5b appears
dark, densely myelinated and contains to a large portion thick single fibres. Layer
6a appears brighter. Hence, both Baillarger stripes are visible, but the inner one is
more pronounced.

Other authors find no agreement with Vogts’ published results. Actually, Smith
[1907] and Mauss [1911] results contradict those of the Vogts in particular in area
3b. Elliot Smith claimed that area 3b is of externodense type, i. e., the outer band of
Baillarger is higher myelinated. Mauss even states, that area 3b is of astriate type,
i. e., no stripe of Baillarger is visible due to a very dense myelination in the lower
cortical layers. This debate shows again that results and studies on myeloarchitec-
ture highly depend on the subjective opinion of the scientist and on the used stain-
ing technique which reveal high differences in the anatomical structural images
and bring confusion into their interpretation, too. These issues will be discussed
in further detail in Chapter 3. To the pioneers of myeloarchitectonic studies quan-
titative methods were not available in the early 20

th century. In cytoarchitectonics,
the published trends of quantitative measures such as the cell counts, the cell sizes
and the layer thickness follow the same characteristics. Thus, the results provided
by Meynert [1868], Betz [1874], Brodmann [1909] and von Economo and Koskinas
[1925] are in much better agreement with each other.

somatosensory region : area 1 Posterior of area 3b, area 1 can be found
at the gyral crown, i. e., Vogts’ area 70 [Vogt and Vogt, 1919a,b,c]. This area reveals
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an unsharp boundary between GM and WM, is of bistriate type and equidense with
large single fibres in layer 4 and 5b. Thus, both Baillarger stripes are visible and
none of them predominates the other.

somatosensory region : area 2 Area 2, i. e., area 71 in Vogt and Vogt
[1919a,b,c], is contained in the posterior sulcal wall of the postcentral gyrus. This
area is of bistriate type, too, and externodense. The outer Baillarger stripe is more
pronounced than compared to the inner one.

2.4 relationship between cyto- and myeloarchitecture

Cyto- and myeloarchitecture reflect cortical microarchitecture [Nieuwenhuys, 2013]
and, hence, there might be a relationship between these two domains.

Nowadays, cytoarchitecture is the best analysed architecture of the cortex. Infor-
mation includes quantitative measures on cell configuration and even 3-dimensional
(3D) probabilistic atlas mapping in standard MNI reference space [Eickhoff et al.,
2005b]. The discipline of myeloarchitecture has been largely neglected since the
classical works. Information is passed on in form of descriptions or hand-drawn
illustrations. Little has been done up to now to develop more objective quantita-
tive measures and criteria. Myeloarchitectonic mappings are still incomplete or
contradict each other.

As a conclusion, Campbell [1904] already suggested that cytoarchitecture and
myeloarchitecture have to be analysed in conjunction as they are both part of the
same cortical architecture. Furthermore, Brodmann considered the Vogt’s work as
a basis to further subdivide cytoarchitectural zones into smaller functional fields.
This discussion is related to the degree of spatial localisation and is not intended
to let cyto- and myeloarchitecture diverge.

Half a century later, Sanides [1962] found that:

1. "the total amount of myelin in a given area is positively correlated to the cell
body sizes in this area" and

2. "in regions where a cortical layer containing large cell bodies is situated above
a layer in which the neurons are smaller or less densely packed, a horizontal
stripe of myelinated fibres appears above a layer where horizontal fibres are
less evident".

Sanides’ second finding has been further investigated by Braitenberg who tried
to explain these phenomena with the help of horizontal myelinated fibres [Braiten-
berg, 1962, 1974]. These fibres correspond to axonal collaterals of pyramidal cells.
As observed in Golgi preparations, the majority of these axonal collaterals branch
off the descending main axon 200–300µm below the cell body. The pyramidal
cells, most conspicuous in cytoarchitectonic layers III and V of Nissl preparations,
thus produce two maxima of horizontal fibres. These maxima, shifted downwards
relative to layers III and V by 200–300µm, account for the two stripes of Baillarger
(see Fig. 2.11A). Braitenberg’s explanation was supported by several other studies
[Le Gros Clark and Sunderland, 1939; Creutzfeldt et al., 1977; Gatter et al., 1978;
Colonnier and Sas, 1978].
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Indeed, there is a structural mismatch between cyto- and myeloarchitectonic lay-
ers. The axonal collaterals of larger cells (especially pyramidal cells in cytoarchitec-
tonic layers IIIb and V) form fibre bundles in deeper myeloarchitectonic layers (see
in Fig. 2.11A, compare cytoarchitectonic layer IIIb and V to myeloarchitectonic
layer 4 and 5b). First quantitative measures on the distribution of such axonal
collaterals were provided by Paldino and Harth [1977].

Up to now, a 3D probabilistic myeloarchitectonic atlas mapping is inexistent.
However, the question targetting the correspondence between cytoarchitectonic
and myeloarchitectonic boundaries can only be answered with an atlas.

expectations regarding in-vivo analyses When investigating the intra-
cortical features in human brains, any imaging data needs to correctly reflect the
anatomical relationships. Given, that modern in-vivo imaging yields a resolution
of up to 0.5mm, the aforementioned descriptions of cells, their size and density
in specific layers translate into a more general expectation on the distribution of
myelin in the cortex.

The size of the cells can vary between individual brains. Within a single brain,
the cell size varies most in pyramidal cell layers III and V. The cell density varies
mostly in granular layer IV. The features primarily defining the characteristics of
an area are cell size, cell density and the relative thickness of the layer they can be
found in.

Primary areas are stronger myelinated. Non-primary areas containing large
pyramidal cells, like in Broca’s region, are higher myelinated, too. When the
WM/GM boundary is hard to determine in cytoarchitecture, the boundary should
be less distinct in myelin representations, too. When imaging the brain in-vivo,
these expectations should be represented.

The bands of Baillarger should be detectable in area 1 and Broca’s region as
the bands easily cover 30% of cortical thickness. In area 4, no distinct lamination
is expected, but a thick strong myelinated stripe covering the bands of Baillarger
to appear. Given that area 1 and 4 are similar in their cytoarchitectonic defini-
tion, they should reveal similarities in myelin distribution, too. Von Economo and
Koskinas [1925] proposed that area 1 and 2 could be one single area. This leads
to the expectation that area 1 and 2 may be hard to distinguish using different
imaging modality.

2.5 neurodegenerative diseases : a clinical perspective

Neurodegenerative diseases are diseases or disorders related to neurodegenera-
tion. The word "neurodegeneration" refers to "neuro" as in nerve cells and to "de-
generation" as in progressive damage. In general, neurodegeneration is involved
in several clinical conditions that lead to progressive loss of brain structure and
function. These damages affect many of our everyday life actions such as move-
ment, talking, thinking or even vital functions such as breathing or cardiac function
[MedlinePlus, 2014]. Neurodegenerative diseases have various causes [Bear et al.,
2007]. They may:

• include medical conditions such as a tumor or a stroke.
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• be related to drug consumption (alcohol, nicotine, soft and hard drugs).

• include toxins, chemicals, and viruses.

• be genetically related.

There are also diseases that have an unknown cause.
Some well known neurodegenerative disorders are:

• Alzheimer’s Disease (AD)

• Parkinson’s Disease (PD)

• Huntington’s Disease (HD)

The neurodegenerative diseases are serious and, depending on type, even be life-
threatening. They have no cure and current treatments can only help to improve
the symptoms, to relieve the pain, and to increase the mobility.

All three diseases show different clinical features. However, in all three cases
the disease starts at the cellular level [Gerlach et al., 1994; Wilms et al., 2007]. In
PD, dopamine-generating cells die in the substantia nigra, a region of the midbrain
and cause stiffness, rigidity and tremors in the major muscles of the body. In AD,
deposits of tiny protein plaques damage different parts of the brain and lead to
progressive loss of memory. HD is a progressive genetic disorder that affects major
muscles of the body leading to severe motor restriction and eventually death.

focus of research Research focuses on the similarities in neurodegeneration
that occur in all of these three diseases. Cell death and deposition of abnormal pro-
teins and plaques is a feature common to all the mentioned disorders. In general,
the disorders become apparent, when functional or behavioural symptoms and
impairments are visible, e. g., at a stage when the brain is already damaged. New
hope rises through better imaging technology. Up to now, imaging at cell level
in living brains is impossible. New imaging techniques allow to map quantitative
physiological parameters such as myelin in the brain. If myelin content changes in
certain areas of the brain, it is preceded by cellular structural changes.

These advanced imaging techniques raise hope that the clinical conditions and
their effect on the structure-function relation in the brain will be understood better
in the future. This will, in turn, help:

• to identify the onset of the diseases by looking at structural changes in the
brain using high-resolution in-vivo magnetic resonance imaging, and,

• to understand the physiological and chemical signaling changes in the brain
during the development of such diseases.

Ultimately, such a development leads to an improvement in therapy towards the
specific needs of each patient. It may further suppress and delay disabling effects
such as cognitive impairments or comprised mobility.

33



34 anatomy of the human brain and the cerebral cortex

health economy aspects The disabling effects related to the diseases such
as cognitive impairments and/or compromised behavioural activity or mobility
may continue for years or even decades when being first diagnosed. The overall
disease burden2 is therefore much greater than would be suggested by mortality
figures alone. Brain disorders emerge as leading contributors to global disease
burden. Economic costs of brain diseases are comparatively large. In Europe,
Andlin-Sobocki et al. [2005] estimated the brain disorders’ total cost to be 386e
billion per year in 2004 (this figure includes direct costs of treatment and care
plus indirect cost of lost workdays and lost productivity). This figure is twice the
estimated cost of cancer. More recently, [Gustavsson et al., 2011] estimated the total
cost in 2010 to be 798e billion (including a wider range of disorders and costs, and
new EU member countries), of which 60% was attributable to direct costs and 40%
to lost productivity.

Specifically, AD and other dementias have a disproportionate impact on coun-
tries with longer life expectancies. They represent the fourth highest source of
overall disease burden in the high-income countries, according to World Health Or-
ganisation (WHO) statistics. Worldwide, Alzheimer’s Disease International [2014]
estimated that there are 35.6 million people with AD worldwide as of 2010, and
that this number will grow to 115.4 million people by 2050. The economic cost
of AD is already enormous, and is expected to grow rapidly as more people live
to a greater age with more serious impairments. Also, Alzheimer’s Disease In-
ternational [2014] estimated that for 2010 the global cost of dementia (of which
Alzheimer’s is the major cause), including medical costs and cost of formal and
informal care, is $604 billion - about 1% of world gross domestic product. The
costs are disproportionatetly high in wealthy countries. In the US, for example,
the Alzheimer’s Association estimated that the cost of providing care for AD pa-
tients is $200 billion per year, as of 2012. If present trends continue, this cost is
projected to grow to $1.1 trillion per year by 2050 (in US $ by 2012).

2.6 summary and conclusions

In this chapter, the fundamentals of cortical architecture, namely cyto- and myeloar-
chitecture, have been described. It has been shown that they generally interlink
each other. But analysis methods, may they be of manual or computational nature,
are mostly established for cytoarchitecture only. A precise common understand-
ing of the myeloarchitectonic representation in the human cortex and quantitative
measures relating to it do not exist yet.

Brain diseases directly relate to deformations of one or even both architectures.
With new imaging methods, it is possible to detect changes at sub-millimetre level
already. This enables scientists to derive first in-vivo descriptions of the myeloar-
chitecture and allows them to study architectures in a combined setting. This will
gather a better understanding of the brain, its organisation and function in healthy
and diseased states.

2 A disease burden respects all negative effects besides suffering due to the manifestation of illness.
They include the cost of treatment and the lost productivity of patients. But they also cover costs
related to caregivers, who look after their chronically disabled family members.

34



2.6 summary and conclusions 35

This thesis aims at using intracortical myelin-based features to build new analy-
sis tools in order to support structure-function mappings and cortical parcellation
methods.

The fundamental discussions in the field of structure-function mapping, that
directly link to cyto- and myeloarchitectonics, are related to the number and extent
of cortical areas:

• Is a transition zone between two clearly separable areas an independent area
itself?

• And, if so: what do these newly defined areas represent?

Another issue addresses the correspondence between cytoarchitectonically and
myeloarchitectonically defined boundaries:

• To what extent and where do the areal boundaries of cytoarchitectonically
and myeloarchitectonically defined regions overlap?

• To what extent and where do they disagree?

The most interesting question in the neuroscience community is: "why?". This
thesis does not aim and cannot answer the "why?"-question. However, the afore-
mentioned questions have no common consistent answer yet. Without consistency
and/or agreed knowledge in the definition of myeloarchitecture, correlations be-
tween cyto- and myeloarchitecture cannot be well studied. The ongoing discus-
sions are not meant to disproof findings in one or the other discipline. New find-
ings are driven by the goal of finally understanding these structures as one cortical
unity. Data, reflecting the myelin distribution in the cortex, and proper parcella-
tion approaches that respect the cortical anatomy may be helpful as a first step
towards understanding the myeloarchitectonic patterns in the brain.
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3
B R A I N I M A G I N G T E C H N I Q U E S

There are many ways to study and look into the brain. In the past, postmortem
derived brains were cut into pieces or sections and stained to study the brain’s
anatomy and composition known as classical histology. Nowadays, the main goal
is to investigate the living brain. Noninvasive techniques like Magnetic Resonance
Imaging (MRI) allow to study the structure-function relationship in the brain as
well as diagnostic imaging and imaging over the course of an applied therapy.

Although Computed Tomography (CT) and Positron Emission Tomography (PET)
provide high resolution 3-dimensional (3D) data in a very short time at relatively
low costs, those techniques are associated with high risks for the patients as they
are exposed to the image forming radiation. The primary drawback of CT and PET
is the low contrast in soft tissue matter. When investigating the brain, soft tissue
matter such as GM and WM are the main target.

MRI techniques are able to provide good contrast when imaging brain tissue.
They are noninvasive, but more complex and expensive. Recently, MRI has caught
up in image resolution as well as comparability and reproducibility of contrast
which have been a major problem in the past. In addition, MRI helps to further
optimise structural imaging by relating imaging parameters and outputs to clas-
sical histology. These investigations answer questions regarding the feasibility of
imaging even smaller microstructures in the brain.

This chapter is dedicated to brain imaging methods, in particular to structural
Magnetic Resonance Imaging. MRI has strong underpinnings in physics which will
be described in Section 3.1. The focus is put on up-to-date quantitative imaging
methods (Section 3.2). The different contrasts used will be explained as well as
imaging artefacts and current imaging limitations. An overview of other MRI tech-
niques used in cortical area studies and their underlying physical phenomenon
will be briefly presented in Section 3.3. Classical histology is still regarded as gold
standard to identify changes in the structural configuration of areas. In this thesis,
conventional histology is used for verification purposes. Therefore, staining meth-
ods, their advantages and disadvantages will be shortly described in Section 3.4.
The chapter closes with a summary.

As this thesis focuses on fundamental research, only healthy brains have been
investigated. No contrast agents or sedation have been applied to the subjects.
The following sections will disregard these additional techniques. Waters and
Wickline [2008]; Merbach and Tóth [2001] and Mayhew [2005] provide details on
using contrast agents and sedation for MRI.

3.1 magnetic resonance imaging

This section describes the underlying physics of MRI and includes topics of sig-
nal generation and localisation as well as final image reconstruction. The section
further introduces how different contrasts are generated. Finally, relevant scan-
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Figure 3.1: A) The image depicts a proton (simplified as red sphere) spinning around its
own axis (green arrow) due to the magnetic moment. The magnetic moment
describes the alignment of the proton within an external magnetic field, here
assumed to be in z-direction. When an external magnetic field is applied, a
secondary spin, called precession, is produced (dashed circle around z-axis).
B) shows the alignment of several protons within a magnetic field: parallel
(preferred direction) or anti-parallel (negative z-direction) to the main magnetic
field. C) Protons in different states have equal but opposite magnetic moments.
They cancel each other out yielding a macroscopic magnetisation M

z

pointing
into the direction of the main magnetic field.

ning parameters defining the relationship between signal and data resolution are
discussed.

3.1.1 Physical Framework

Every substance or object is made up of atoms. Every atom is composed of elec-
trons and a nucleus which in turn is made of protons and neutrons. The orbiting
electrons cause the atoms to have a magnetic moment associated with an intrinsic
angular momentum called spin (see Fig. 3.1 A). As a result of the orbiting electrons
in atoms, the matter the atoms reside in develop a magnetic property. Protons and
neutrons pair up in the nucleus and cause the cancellation of their individual an-
gular moments. Atoms with an odd number of protons and/or neutrons have a
property call magnetic (dipole) moment. The magnetic moment describes the align-
ment of the spinning proton with an external magnetic field and can therefore be
seen as a small bar magnet. As all bar magnets, the protons have two poles, i. e., a
north and a south pole, and are therefore also called dipoles. Hydrogen-1, i. e., H1,
has no neutrons. As H1 is mainly used for human body imaging and specifically
exploited to image the brain in this thesis. The term protons and nucleus will be
used synonymously.

If an external magnetic field is applied to the substance or object with non-zero
nuclear spin, two processes happen:

• the protons align with the applied magnetic field, and

• the external magnetic field exerts a torque on the magnetic moment, causing
a precession of the protons around the main magnetic field (see Fig. 3.1 A).
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In MRI, the precessional frequency is called Larmor frequency and describes
the rate of precession of the magnetic moment of the proton around the external
magnetic field.

When placing a substance into a static magnetic field B
0

, the precessional fre-
quency of protons in the substance can be calculated from the Larmor Equation as
follows:

! = �B
0

(3.1)

where ! refers to the Larmor frequency (in MHz), � describes the gyromagnetic
ratio (in MHz/Tesla), and B denotes the strength of the main magnetic field (in
Tesla). The gyromagnetic ratio of H1 is 42.5MHz T-1 and implies a rate of 42.5
million precessions per second when a hydrogen proton is placed in a magnetic
field of strength 1T.

From the aforementioned equation, the frequency of precession is proportional
to the strength of the magnetic field. Changing the field strength will affect the
Larmor frequency at which the protons precess.

In brain imaging, human clinical MRI scanners typically use field strengths be-
tween 0.1–3T. In comparison, the strength of the earth’s magnetic field is about
50 µT , i. e., about 2000–60 000 times smaller. In research, human brain scanning is
performed at >11T, non-human brain scanning even reaches >21T [Sharma, 2009].
Imaging capacities will be further investigated in future to study the human brain
using ultra-high field structural and functional MRI [Duyn, 2012].

If a strong external magnetic field is applied, the protons align corresponding to
the field in one of two directions parallel to the direction of the field:

• protons align to the direction of B
0

, i. e., parallel to the external magnetic
field, or

• protons align to the opposite direction of B
0

, , i. e., anti-parallel to the external
magnetic field.

Two hydrogen protons in parallel and anti-parallel states have equal but oppo-
site magnetic moments and cancel each other out (see Fig. 3.1 B). The protons
preferably align parallel to the magnetic field, as they are at a lower energy level
in this position. For every 1 000 000 protons, there are about seven additionally
parallel aligned protons. This yields a macroscopic magnetisation in the direction
of the external field (see Fig. 3.1 C).

The two different alignment states correspond to an energy difference, �E. For
typical magnetic resonance applications, the energy difference �E is equivalent
to the energy of electromagnetic radiation in the radio frequency region of the
electromagnetic spectrum.

3.1.2 Relaxation and Contrasts

Placing a tissue sample in a magnetic field of 1T and exposing it to radio waves at
42.5MHz T-1, i. e., a radio frequency (RF) pulse, the protons of the tissue will get
excited from the parallel to the higher energy anti-parallel state. They can switch
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between higher and lower energy state, e. g., they are susceptible to this radia-
tion only, if their precession frequency is close to the frequency of the applied RF
pulse. This phenomenon is called resonance and gives the here discussed imaging
modality its name: magnetic resonance imaging. Strictly speaking, MRI techniques
exploit the processes following the excitation of protons. When the RF pulse is
switched off, the protons fall back to the aforementioned equilibrium state. This
process occurs spontaneously over a time period that is characteristic of individual
tissues and/or their various pathological conditions.

Those gradual flip back transitions between the energy states cause the emission
of radiation from the tissue sample and decrease in amplitude over time. Hence,
it produces what is known as a free induction decay, i. e., a decay signal of char-
acteristic time constant.

There are various time constants in MRI that can be determined and encoded
into images (discussed next sections). The emitted signals are detected through
receiving devices and can be reconstructed when the signal origin is known.

Here, the processes of signal induction in the tissue and their defining contrasts
in MRI will be discussed.

the net magnetisation The net magnetisation vector M in MRI refers to the
sum of all magnetic moments of the individual hydrogen protons in a discrete spa-
tial environment. If an external magnetic field is absent, the individual magnetic
moments are randomly oriented and their magnetisation vector is approximately
zero. If the external magnetic field B

0

is applied, the magnetic moments of the
protons align with the direction of the magnetic field. The magnetic moments of
parallel and anti-parallel protons cancel each other out (see Fig. 3.1 C).

Conventionally, the spatial z-axis is thought to be in the direction of the external
magnetic field. Hence, the net magnetisation vector can be referred to as longitudi-
nal magnetisation. As there are always a tiny number of more hydrogen protons
parallel to B

0

, a longitudinal magnetisation establishes in a substance inside the
magnet of an MRI scanner (see Fig. 3.1 C). The longitudinal magnetisation is de-
fined by M

z

, i. e., the z-component of the net magnetisation vector.

excitation of protons On a macroscopic level, applying an RF pulse with
the Larmor frequency to the protons in the substance causes two independent
processes to occur simultaneously:

reduction of M
z

: some protons resonate with the applied RF pulse and change
to the anti-parallel state. Parallel and anti-parallel protons cancel each other
out resulting in a reduction of the longitudinal magnetisation (see Fig. 3.2
A).

phase coherence : magnetic moments of individual protons align with each
other in phase which in turn creates a new component of the net magneti-
sation vector M in the X-Y plane, i. e., transverse to the main magnetic field.
This established magnetisation is called transverse magnetisation M

xy

(see
Fig. 3.3 A).

In essence: when a substance is placed into a magnetic field of sufficient strength,
a longitudinal magnetisation is established. By applying an 90° RF pulse with the
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resonant frequency, the longitudinal magnetisation is reduced and a transverse
magnetisation component is created. M

z

rotates away from the B
0

field from a
longitudinal position into the transverse. M

z

rotates a distance proportional to the
time length of the RF pulse. If a 90° pulse is applied, M

z

rotates 90° and lies in
the transverse. Using other degrees of the RF pulse are possible, but will result in
different contrasts [Bernstein et al., 2004].

In MRI, only the transverse magnetisation can be detected. The angle that M

rotates is called the flip angle (or tip angle). A small detectable magnetisation in
the z-plane will remain, if the angle is greater than or less than 90°.

For MRI image acquisition, the net magnetisation vectors are now of greatest
interest.

relaxation of protons By absorbing RF energy at the resonant frequency,
the protons are excited. When protons return to their lower energy state, they
emit energy in form of electromagnetic radiation over time. This emission phase
is called relaxation. The relaxation time denotes how fast the magnetisation vector
M recovers to its ground state within the main magnetic field B

0

when the RF pulse
is switched off. The return of excited protons from a high energy state to a lower
energy state is associated with a loss of energy to the surrounding environment
called "lattice" or neighboring protons. When the RF pulse is switched off, pro-
tons start to dephase due to external and internal magnetic field inhomogeneities.
The external magnetic field, B

0

slightly varies and causes different precession fre-
quencies. Internally, every protons is subject to the the magnetic properties of the
surrounding protons. Neighboring protons are randomly distributed and cause
different precession frequencies.

There are three forms of relaxation called T
1

relaxation, T
2

relaxation and T⇤
2

relaxation. Given the individual properties of tissues, the main goal of using MRI
is to characterize tissue types based on their relaxation times.

Here, both longitudinal and transverse magnetisation will be discussed.

longitudinal relaxation : After the application of the RF pulse, the net mag-
netisation vector M

z

is zero. Progressively, excited protons return to their
lower energy state, i. e., the parallel alignment with the main magnetic field,
(see Fig. 3.2) which yields a re-establishment of the longitudinal magnetisa-
tion M

z

.

transverse relaxation : After the application of the RF pulse, the transverse
net magnetisation vector M

xy

is at maximum and the individual magnetic
moments are in phase coherence with each other. Progressively, the excited
protons loose coherence and the transverse magnetisation decreases to zero
(see Fig. 3.3).

The T
1

relaxation time measures how fast the z-component of the magnetisation
vector M, recovers to its ground state and is therefore called longitudinal relaxation
time. The recovery of M

z

can be modelled as an independent and exponential
process.

T
1

describes the time until 63% of the original longitudinal magnetisation is
recovered and thus the average lifetime of a proton at the excited energy state. T

1

relaxation rate is defined as 1/T
1

.
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Figure 3.2: The images depict the recovery of the longitudinal magnetisation M
z

after the
RF pulse has been applied. A) The net magnetisation vector is zero. Excited
protons are on a higher energy level. Progressively (B-D), the excited protons
return to their lower energy state, i. e., the parallel alignment with main mag-
netic field, until the longitudinal magnetisation is fully recovered.































  

Figure 3.3: The images depict the decay of the transverse magnetisation M
xy

after the RF
pulse has been applied. A) The net magnetisation vector is at maximum. Ex-
cited protons are in phase coherence. Progressively (B-D), the excited protons
loose their coherence and the transverse magnetisation fully decays to zero.

In different structures, T
1

relaxation times are different. On a molecular level, all
protons in any sort of material are enclosed in an environment, the so-called lattice
or lattice structure. T

1

relaxation is also referred to as spin-lattice relaxation. In this
lattice, the protons are subject to vibration and rotation. This movement within the
lattice generates a complex magnetic field, called lattice field. Protons from higher
and lower energy states can interact with each other, causing a distribution of
energy of the higher energy state among protons. The energy absorbed from the
RF pulse is released back into the lattice field and increases the fluctuation of the
lattice, i. e., rotation and vibration of protons. High mobility means low binding
energy between respective atoms. If the mobility of the lattice field increases, the
frequency of vibration and rotation of protons increase. When the frequency of the
moving protons in the lattice reaches its Larmor frequency, it allows the protons
to switch back from high energy state to low energy state. Thus, T

1

relaxation
depends on magnetic field strength (see Eq. 3.1). With increasing field strength,
T
1

relaxation times increase, too (see Fig. 3.4 A).
The transverse relaxation time T

2

describes the decay constant for the compo-
nent M

xy

of M that is perpendicular to B
0

. The initial magnetisation in x-y-plane
at time zero, i. e., directly after the RF pulse, is at maximum and will decay to zero
exponentially.
T
2

describes the decrease of the transverse magnetisation to 37% of its original
magnitude. The T

2

relaxation rate is again given by 1/T
2

.
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Figure 3.4: A) T1 relaxation time in GM shown at 1.5T (blue) and 3T (green). T1 relaxation

times depend on the field strength used for imaging. With increasing field
strength, T1 relaxation times increase. (Image adapted by work of Chris Rorden:
http://www.mccauslandcenter.sc.edu/CRNL/teaching/mri.)

T2 relaxation is a very complex phenomenon and characteristic for certain tis-
sues. It corresponds to the progressive dephasing, i. e., the increasing decoherence
of the transverse magnetisation of the protons. The main contribution are random
fluctuations of the local magnetic field of one proton caused by the surrounding
protons. Therefore, it is often called spin-spin-relaxation time. Inhomogeneities
in the local magnetic field of a proton lead to random variations in the precession
frequency of the surrounding protons. This process leads to a progressive loss of
phase coherence, until (theoretically) phases are disordered in the x-y-plane and
i. e., Mxy is zero. T2 values are generally much less dependent on the magnetic
field strength, B0, than T1 values.

In an idealised system, all protons in a given lattice environment precess with the
same frequency when being exposed to a homogeneous magnetic field. In reality,
minor field fluctuations occur which lead to a distribution of resonance frequencies.
Over time, these differences lead to dephasing and loss of net magnetisation, i. e.,
a free induction decay. This "relaxation" impairs the majority of MRI experiments.

Dephasing due to magnetic field inhomogeneity is not an actual relaxation pro-
cess. This dephasing is not random and depends on the location of the protons
in the magnetic field. Protons that aren’t moving reveal a consistent deviation
from an ideal relaxation over time. The transverse relaxation time including the
inhomogeneity dephasing is called T∗

2 and is much smaller than T2.

signal and contrast depending parameters In the previous section, a
single signal measurement has been considered in which the net magnetisation
vector has been rotated into the transverse plane and therefore Mz is set to zero.
After a certain time, a change of magnetisation, e. g., a signal, is available to be mea-
sured. As mentioned above, various tissues have characteristic relaxation times.
Therefore, the signal depends on these relaxation times, but also on the proton
density within the tissue. The measurement of the signal is called TE, i. e., the
"time to echo", representing the time that provides the best contrast, e. g., largest
signal difference, between different tissues. If TE is chosen to be short, not much
difference between the signal amplitudes of tissues will have developed. When
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using longer TE, however, a larger difference between the signal amplitudes of
tissues will have developed. Thus, using a longer TE enhances the differences in
signal originating from differences in the T

2

relaxation of tissues. Using a longer
TE produces so-called T

2

-weighted images.
In MRI, a large number of such single signal measurements are required. Ap-

plying multiple RF pulses in a row yields a so-called pulse sequence: the net
magnetisation vector is rotated into the transverse plane, an amount of time TE is
waited for to allow M

z

to recover, followed by the next rotation into the transverse
plane for the next signal measurement. The time waited before conducting the
next repetition is called TR, i. e., the "time to repeat". Using a short TR leads to the
development of a large difference between the magnetisation of tissues. Using a
longer TR yields a reduced difference between the signal amplitudes of tissues. An
application of a shorter TR enhances the differences in signal originating from dif-
ferences in the T

1

relaxation time of tissues. Using a shorter TR generates so-called
T
1

-weighted images.
"Weighting" of the images only describe that the image taken is dominated by

one specific tissue parameter to the exclusion of all others. Nearly all images have
mixed contributions from all the different tissue parameters such as T

1

, or T
2

, or
from imaging artefacts (see Section 3.2.4).

In general, the signal and contrast of any MRI data can be defined and optimised
using appropriate parameter settings of TR and TE in a pulse sequence. To do
so, measures of signal and image quality need to be defined: The Signal-to-Noise
Ratio (SNR) defines the ratio of signal power S to the power of background noise o

as:

SNR =
S

S
o

. (3.2)

Contrast-to-Noise Ratio (CNR) determines the image quality and relates to the
general ability to separate structures rather than the pure signal intensity. CNR
is similar to SNR, but before taking the ratio, a term is subtracted off. This is
important when there are significant biases or inhomogeneities influencing the
image. CNR is defined by:

CNR =
|S

A

- S
B

|

�
o

(3.3)

where S
A

and S
B

represent the signal intensities for the signal producing struc-
tures A and B in the region of interest and �

o

is the standard deviation of the
image noise. With biases present in the image, it may have high SNR, but will have
low CNR.

In MRI, the main goal is to increase SNR and CNR simultaneously. When a higher
SNR is needed, the following parameters can be tuned:

• field strength: increasing field strength will increase the T
1

relaxation times
in all tissues. Higher field strength can also be used to increase the image
resolution.

• scan time: with longer scan times SNR increases. Increasing scan time is
commonly exploited when imaging postmortem material.
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However, when scanning living subjects, the main goal is to reduce scan time,
as longer acquisition times decrease image quality due to motion artefacts (see
Section 3.2.4).

3.1.3 Signal Localisation and Image Reconstruction

Located inside the main magnet are three so-called gradient coils which produce
the desired gradient (magnetic) fields. These fields are used to alter collectively
and sequentially the influence of the static magnetic field B

0

on the imaged object
by increasing or decreasing the field strength along the applied direction. As each
proton resonates at a different frequency depending on the magnetic field it is
subjected to, selective spatial excitation and spatial encoding is possible.

The signal generated is called gradient echos and refers to echo of the protons
by using bipolar gradient fields. The signals are sampled during this gradient echo,
i. e., the time when tissues are experiencing T

1

relaxation.
The gradient field can be applied in any direction and there is no need to repo-

sition the subject. As many gradient fields as wanted can be applied.
To relate spatial location of a proton to its emitted signal, MRI divides the sample

into a 3D grid consisting of slices, columns and rows.
First, a slice is selected by using a so-called slice select gradient. The gradient

field has a slope and modifies the magnitude of the main magnetic field along the
applied direction. The steeper the slope of the gradient field, the thinner the slices
to be acquired. The slice select gradient field will be applied during the RF pulse.

To localise a certain point within the slice two additional gradient fields are used.
These fields are called frequency and phase encoding gradient fields.

The frequency encoding gradient will be applied after the slice selection gradient
in y-direction of the x-y-plane, i. e., transverse to the longitudinal direction of the
main magnetic field. This gradient yields differences in precession frequencies
along the y-direction, and, hence, results in frequency differences of the signal.

The second gradient is the phase encoding gradient which will be applied after
the RF pulse in the x-direction of the x-y-plane. It yields differences in precession
frequencies along the x-direction. When the gradient field is switched off, protons
will slow down to their original frequency. However, due to the applied gradient
in x-direction, protons have the same frequency but are phase incoherent. The
different phases determine the location of the signal in x-direction. The directions
of the frequency and phase coding gradient can be varied. The signals are defined
as complex values by frequency and phase.

The signals are aligned in the gradient magnetic field, e. g., the B
1

field and
detected by transmit and receive coils within the MRI setup. The transmit coil
transmits the generated RF pulse, i. e., sends an electromagnetic wave, into the
object to be scanned. The receive coil picks up the signal, i. e., another emitted
electromagnetic wave, from the protons in the object. The coils are arranged in a
transmit/receive system. Sent and detected signals are referred to as transmit B+

1

and receive B-
1

fields.
A computer now reconstructs the data using a Fast Fourier Transformation that

converts the frequency and phase signals into discrete space.
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3.2 structural imaging of myeloarchitecture using mri

The main goal in MRI sequence development for the imaging of myeloarchitecture
is to find a technique that characterises intracortical properties which relate to a
biological substrate. Hence, a technique has the requirements of:

1. producing quantitative measurements of physiological parameters such as
the T

1

and T
2

relaxation times,

2. providing sufficient resolution.

Simultaneously, the total scan time should be reduced in order to decrease mo-
tion artefacts arising from motion of the subject or motion due to vital functioning
of the body such as breathing or heart beat. Finally, a high SNR is favorable, since
it allows for automatic segmentation and parcellation of the cortex.

Recent publications provide evidence that MRI techniques, both in-vivo and ex-
vivo, are indeed able to reproduce classical results from histology (see next sec-
tion). In contrast to classical postmortem analyses, in-vivo MRI techniques provide
information about the living brain, albeit not at the high resolution of histological
images, but still sufficient enough resolution to detect structural as well as func-
tional layer-dependencies in the cortex [Polimeni et al., 2010b,a; Huber et al., 2014;
Trampel et al., 2012]. The results allow new discussions on the specific roles of
input and output layers. More importantly, there are existing techniques that are
able to map myelin, which gives contrast in MRI. Although MRI is not yet able to
provide data at "cell" resolution, myelin maps can be used in future applications to
relate back to cell organisation as these are interlinked structures (see Section 2.4).

Using MRI techniques to derive maps of myeloarchitecture already allows to
study brain development and pathology across population and age.

3.2.1 State-of-the-Art Methods in Myelin Mapping

Intracortical contrast was first observed in T
2

-weighted and T
1

-weighted images. It
is argued that T

2

-weighted images, created with spin-echo sequences, gain most of
their contrast from T

1

, proton density differences, and from magnetisation transfer
effects, e. g., transfer of longitudinal magnetisation from motion-restricted protons
to protons that move with many degrees of freedom [Turner et al., 2008].

Walters et al. [2003] first presented visible layering in the human cortex in post-
mortem brain samples using T

2

-weighted images. The bands visible on the MRI
data were verified to be myelinated bands using myelin stained sections. Trampel
et al. [2011] were able to capture the stria of Gennari, i. e., a densely and distinct
myelinated band in the primary visual cortex, using T

2

-weighted in-vivo imaging.
Eickhoff et al. [2005a] presented intracortical bands visible on T

1

-weighted im-
ages using in-vivo MRI. They provided evidence that these bands correspond to
myelinated bands on histological sections. Walters et al. [2003] further related
in-vivo cortical structure on T

1

-weighted images to its function. Myeloarchitec-
tonic patterns have been shown in-vivo by Clark et al. [1992] and have been con-
firmed using postmortem analysis, e. g., ex-vivo MRI in combination with histo-
logical staining. Similar findings have been presented by Bridge and Clare [2006];
Bridge et al. [2005]; Clare and Bridge [2005]; Hinds et al. [2009]; Annese [2012].
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A

B

A

B

T1-w./T2-w.

Figure 3.5: The image depicts the left and right hemispheres in lateral view of a group av-
erage (N=440) myelin map acquired using a ratio of T

1

-weighted/T
2

-weighted
(in ms) imaging at 0.7mm resolution [Glasser and Van Essen, 2011]. Highly
myelinated regions are shown in red such as primary motor and sensory area
(A) and primary auditory area (B). Image prepared by Estrid Jakobsen using the
open source Human Connectome Workbench: http://www.humanconnectome.
org/software/connectome-workbench.html.

The most common way to produce in-vivo average myelin maps is using the
ratio of T

1

-weighted/T
2

-weighted images [Glasser and Van Essen, 2011] (see Fig.
3.5).

Iron and myelin both contribute to T⇤
2

contrast. The contrast between GM and
WM is very high in T⇤

2

images as iron and myelin often co-localise (see Fig. 3.6).
Iron is used by the oligodendrocytes which produce the myelin sheaths around
an axon. To which degree either iron or myelin contribute to the MRI contrast is a
current field of research [Cohen-Adad, 2014; Stueber et al., 2011]. Iron dominates
the contrast in GM [Deistung et al., 2013; Fukunaga et al., 2010; Stüber et al., 2014].
Images of high intracortical CNR are able to reveal bands in various regions of
the cortex that correlate with myelinated bands on histological stains [Fatterpekar
et al., 2002]. At 7T, it is possible to acquire T⇤

2

-weighted magnitude images that
are able to reveal layer-specific details in-vivo in reasonable scan times. Deistung
et al. [2013] obtained such whole-brain images within a scan time of 17min. T⇤

2

-
weighted images at 0.4mm isotropic resolution are able to capture the stria of
Gennari in the primary visual cortex [Deistung et al., 2013; Sánchez-Panchuelo
et al., 2012]. Cohen-Adad et al. [2012] showed intracortical patterns on T⇤

2

maps.
A very new research stream follows quantitative mapping of T

1

properties. Due
to their clear relation to myeloarchitecture, T

1

maps have been used in a range
of studies to visualise the myelination pattern across hemispheres [Sereno et al.,
2012; Marques and Gruetter, 2013; Tardif et al., 2013]. Myelination patterns have
been used to map primary cortical structures, e. g., in auditory and visual areas,
and have been combined with MRI data measuring the function (see Section 3.3)
[Dick et al., 2012; Sigalovsky et al., 2006]. Another study compared ex-vivo T

1

values sampled in the primary motor and primary somatosensory cortex with
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Figure 3.6: Iron and myelin co-localise. Postcentral gyrus stained for myelin (A), iron (clas-
sical Perls stain, B), iron (ferritin, C), and scanned with the MP2RAGE sequence
at 7T (D). Image by courtesy of Carsten Stüber.

histology [Geyer et al., 2011]. Primary area classification based on T
1

values is
already possible [Waehnert et al., 2013b].

In the following sections, the technological developments towards in-vivo quan-
titative mapping and their advantages and limitations will be explained and dis-
cussed.

3.2.2 From Weighted Imaging to Quantitative MRI Data

When scanning living human brains, two parameters need to be balanced:

scan time : the scan time is mainly given by the sequence and its TR. Leaving
resolution and scan-area unchanged, TR needs to be reduced in order to
reduce scan time. Reducing the scan time will reduce the amount of motion-
related artefacts.

snr : the quality of every image highly depends on the SNR. Increasing SNR will
have a direct influence on other parameters.

impacts of higher snr Recent technological innovations in the domain of
ultra-high magnetic fields at 7T lead to better image acquisitions with an increased
SNR which permits to get quantitative measurements of relaxation times. Higher
SNR can be used to acquire images with higher CNR, or to achieve image resolutions
in the sub-millimetre range revealing intracortical details. Higher SNR can also be
used to decrease scan time in order to reduce artefacts from subject motion.

using t

1

to map myelin When using a Gradient Echo (GRE) sequence in
imaging, typically the free induction decay (FID) will be examined. T ⇤

2

is the char-
acteristic decay time constant associated with the FID. The contrast and the signal
that are generated by a GRE depend on two parameters:
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Figure 3.7: Unsmoothed group average T
1

map (N = 5) at 0.4mm isotropic resolution
shown for four different cortical depths. The T

1

time generally becomes longer
towards the GM/CSF surface. Thus, the T

1

scales are chosen differently for each
layer to highlight the inter-layer differences in T

1

contrast. Image courtesy by
Tardif et al. [2013].

1. the magnitude of the longitudinal magnetisation M
z

, and

2. the flip angle.

Iron and myelin both contribute to T⇤
2

image contrast where GM and WM have
highest contrast difference. Turner et al. [2008] argued that sequences generating
T
2

-weighted images gain most of their contrast from T
1

, proton density differences,
and from magnetisation transfer effects. Stüber et al. [2014] and Turner [2013] pro-
vided evidence that in postmortem studies T

1

images gain most of their contrast
from myelin. The free water protons near myelin sheaths transfer their magneti-
sation to the myelin’s cell membranes [Turner, 2013; Koenig, 1991]. Thus, T

1

is
much shorter for water near the myelin sheaths than further away. Turner [2012]
showed that the contrast of an in-vivo T

1

mapping is similar to that of a myelin
stain. Myelin-rich regions have lower T

1

values, and are usually hyperintense on
T
1

-weighted images. Hence, GRE sequences are a promising candidate to map
myelin. In general, GRE sequences are more sensitive to field inhomogeneities, but
T
1

-weighting can be maintained by reducing the TR.
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reducing scan time by decreasing the flip angle Additionally, the
flip angle can be traded against TR (see Fig. 3.4B). When using a reduced flip
angle, some longitudinal magnetisation remains. To also account for the effects
of transverse coherence, the GRE sequence can be modified to use even lower flip
angles which shortens the TR again. These sequences are called Fast Low Flip-
Angle Shot (FLASH) sequences. After each echo, a gradient will be applied that
spoils any remaining transverse magnetisation by causing a spatially dependent
phase shift. Now, TR can be extremely reduced. This kind of sequence offers a key
benefit: extremely high T

1

contrast can be obtained by imaging with TR times as
short as 20–30ms. At the same time, reasonable signal levels are maintained.

The T
1

contrast achieved with these fast GRE techniques depends on the TR

and on the flip angle. Choosing smaller flip angles and short TR yields a proton
density map. Long TR results in T⇤

2

-weighting. Using large flip angles and short
TR produces T

1

-weighted images.
The major drawback of T

1

-weighting is the creation of images that are only qual-
itative (or "weighted"). The images are dominated by one specific tissue parameter
to the exclusion of all others, but they incorporate mixed contributions from all the
different tissue parameters. In locations of signal and contrast inhomogeneities,
the image data cannot be trusted. Hence, when computationally processing the
data these inhomogeneity artefacts may lead to tissue misclassifications.

To achieve reliable signal and contrast quality and allow for automatic segmen-
tation, quantitative mapping techniques are required. Main advantages of using
quantitative MRI data is the reduction of inter-subject and inter-scan variability
and the possibility of analysing the data automatically. In addition, comparison
with data acquired at scanners from different vendors is much easier [Weiskopf
et al., 2013]. Quantitative measures require several image acquisitions that will be
averaged retrospectively.

A so-called T
1

map is a quantitative spatial representation of the T
1

time. These
maps are to a large degree homogeneous. In-vivo T

1

images can be acquired using
fast T

1

-mapping techniques [Preibisch and Deichmann, 2009; Marques et al., 2010;
Lutti et al., 2014]. The MP2RAGE sequence designed by Marques et al. [2010] allows
to obtain a T

1

map of the whole brain at a resolution of 0.7mm isotropic at 7T
in only 11min. A single hemisphere can even be imaged at even 0.5mm isotropic
resolution in 28min [Bazin et al., 2013a]. Because of their high homogeneity and
clear relation to myeloarchitecture, T

1

maps exclusively computed from a MP2RAGE
sequence are used in this thesis.

The MP2RAGE is based on the Magnetisation-Prepared Rapid Acquisition Gradi-
ent Echo (MPRAGE) sequence, a fast GRE using a magnetisation preparation pulse.
In T

1

-weighted GRE imaging, TR and TE are very short such that tissues reveal a
poor imaging signal. More importantly, using these short TR and TE yields poor
contrast. Therefore, the magnetisation is "prepared" during a preparation step.
This preparation is usually applied as an initial 180° inversion pulse which causes
the protons to rephase. The inversion pulse is executed once. It allows the imaging
technician to center the subsequent GRE data acquisition around the inversion time
TI where the tissues of interest exhibit very little signal because its longitudinal
magnetisation M

z

is passing through zero.
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The MP2RAGE now uses two inversion pulses for two different tissues of interest.
In cortical analyses, the tissues of interest are GM and WM. Hence, two images are
acquired, each at a TI where the corresponding tissue has very little signal. By
using both images, the contrast between the tissues can be maximised as shown
by Marques et al. [2010].

Since the main data source of this thesis are images acquired by MP2RAGE se-
quences, the advantages and drawbacks of this technique are presented in more
detail in the next section.

3.2.3 The MP2RAGE Sequence

At static magnetic fields of <3T, the resulting image data is influenced by intensity
variations (bias field effects) due to the increased inhomogeneity of the transmit
and receive, e. g., B+

1

and B-
1

, fields (see next section on imaging artefacts). These
bias field effects severely affect the image quality at ultra-high fields (>7T) and
render segmentation and quantitative analysis difficult.

In order to acquire bias field-independent, or inhomogeneity-free images, trans-
mit and receive inhomogeneities have to be addressed separately as they have
different origins and implications on the signal intensity and contrast.

Receive inhomogeneities, i. e., the B-
1

field, affect the amplitude of the signal by a
multiplicative factor that is related to the coil sensitivity. Transmit inhomogeneities,
i. e., the B+

1

field, are more complicated. T
1

-weighting of a sequence is related to
the flip angle. To reduce the transmission inhomogeneity, the amplitude of the RF
pulses used in the sequence needs to be carefully adjusted such that the resulting
contrast depends less on the local flip angle accuracy [Thomas et al., 2005; Van de
Moortele et al., 2008].

In a conventional MPRAGE, the signal depends not only on T
1

contrast but also
on proton density and T⇤

2

effects. Both a lower proton density and shorter T⇤
2

reduce the T
1

contrast of the MPRAGE image. If two MPRAGE images are acquired
at two different inversion times TI but with identical sequence parameters, the two
acquired images will be affected in the same manner by effects from B-

1

, proton
density and T⇤

2

. Hence, a combination of the images by means of a ratio will be
independent of B-

1

, proton density and T⇤
2

[Van de Moortele et al., 2009].
The Magnetisation-Prepared 2 Rapid Acquisition Gadient Echo (MP2RAGE) ac-

quires two MPRAGE images at TI
1

and TI
2

. Those images are combined as follows:

MP2RAGE =
GRE

TI

1

GRE
TI

2

GRE2

TI

1

+GRE2

TI

2

(3.4)

The MP2RAGE sequence offers three main advantages:

1. the images are independent of bias field effects, and therefore almost inhomo-
geneity-free,

2. the quality of images and the resulting T
1

values are highly reproducible,

3. the data offer superior tissue contrast than compared to conventional imag-
ing.
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Figure 3.8: T1 map obtained from the MP2RAGE sequence. The data is scanned at 7T with
an isotropic resolution of 0.5mm. The strongly myelinated bands of Baillarger
(red arrow heads) appear within the cortex.

To finally compute a T1 map, optimal sequence parameters as given in Marques
et al. [2010] were taken into account as well as the inversion efficiency of the inver-
sion pulse. Bloch simulations were performed for the MP2RAGE sequence in order
to model the longitudinal relaxation. The T1 value at each voxel was then fitted to
the exponential function (see Fig. 3.4).

influences on image quality The above equation limits the possible val-
ues of the MP2RAGE into a range from −0.5 to 0.5, yielding a predefined range of
image intensities (even in regions dominated by noise). Image combinations may
lead to a reduction of SNR in the final image. However, it may not necessarily affect
the CNR of the combined image. The dependence on proton density and T∗

2, reduc-
ing the contrast in a MPRAGE, was removed from the combined MP2RAGE image
(see Appendix 1 in Marques et al. [2010] for further details).

This imaging sequence is of great use when scanning at high fields (>3T). Fur-
thermore, there is no need to perform a co-registration between the two acquired
images. Although they have significantly different contrasts, the sequence ensures
that the images are inherently co-registered as they are scanned in the same ses-
sion.

robustness and reproducibility Resulting T1 values are highly repro-
ducible both across subjects and within the same subject using different scanning
parameters. T1 values obtained with a MP2RAGE are in agreement with previous re-
ports at 3T [Lu et al., 2005; Wansapura et al., 1999; Wright et al., 2008] and studies
at 7T [Rooney et al., 2007]. Acquired images can be computed online, e. g., during
the scan session, without the need of an extra post-processing step. Hence, the
sequence is able to perform whole-brain scans in clinically acceptable times. Us-
ing slab-wise image acquisition and image registration methods may additionally
increase the resolution to 0.5mm and above (see Fig. 3.8).

52



3.2 structural imaging of myeloarchitecture using mri 53

tissue contrasts for image segmentation Arteries appear bright in
MP2RAGE contrast at 7T and consequently the T

1

maps show very low T
1

values
in these locations. Hence, arterial blood has a particular contrast in the MP2RAGE
images. This may help to further improve the outcome of segmentation and clas-
sification approaches which often struggle with distinguishing brain matter from
arteries [Fischl et al., 2004a]. By eliminating the dependencies on proton density
and T⇤

2

, MP2RAGE images furthermore provide good contrast between GM and dura
mater and specifically tissue contrast for separating between GM, WM, and CSF.
These observations, together with the enhanced representation of arteries, render
the MP2RAGE images suitable for applications requiring automated segmentation.

In addition, the inter-subject reproducibility suggests that this technique can be
very useful in longitudinal studies or group comparison studies.

3.2.4 Image Artefacts

Features in images that are not present in the structure to be scanned are called
image artefacts. They have different origins and can be classified into three groups:

• patient-related artefacts,

• signal processing-dependent artefacts, and

• hardware (machine)-related artefacts.

It is crucial to know about the potential sources and the physical basis of these
artefacts as they influence or even distort the acquired images and render data
segmentation and analysis methods difficult. Investigations and understanding of
the artefact’s origin and effects can lead to:

• further improvements in MRI to reduce or even overcome the effects using
newly designed sequences.

• the development of advanced image segmentation methods that can deal
with a certain type of artefact.

Here, the discussion is limited to artefacts occurring in structural imaging. More
precisely, this section will relate to artefacts that primarily occur using the MP2RAGE
sequence at 7T. In this thesis, slab-wise image acquisition is used to image the two
brain hemispheres separately at higher resolution in one scanning session.

Only normal healthy subjects are considered in this thesis. No pathological
scanning or application of contrast agents was performed. Artefacts, related to
these conditions, are not discussed here.

An overview of artefacts in general can be found in Somasundaram and Kalavathi
[2012] and Erasmus et al. [2004].

3.2.4.1 Patient-related Artefacts

motion The most common artefact in MRI is caused by motion. Motion can be
distinguished into two categories:
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• motion due to vital functions: heart beating and breathing are part of physio-
logical movements of our body and organs that cannot be suppressed. They
are of milliseconds to seconds duration and usually occur periodically.

• subject motion: moving an arm or rotating the head are movements of our
body that can be avoided. Usually, they occur spontaneously, i. e., non-
periodically.

Due to the significant difference between acquisition time in the frequency- and
phase-encoding directions, the phase-encoding direction is mainly affected.

Only a single echo (milliseconds) is needed for frequency-encoded sampling.
Phase-encoded sampling lasts several seconds (or even minutes). As movements
due to vital functioning takes millisecond to seconds duration, they are too slow
to have an effect on frequency-encoded sampling. However, they appear in the
phase-encoding direction. Blood vessels and pulsation in CSF cause ghost images.
Non-periodic movements cause blurring in images (see Fig. 3.11 A and B).

There are several methods available to reduce motion artefacts. Among these
are patient immobilisation, cardiac and respiratory gating, signal suppression of
the tissue causing the artefact, and swapping phase and frequency-encoding direc-
tions to move the artefact out of the field of interest. Only recently, online motion
correction systems have been incorporated [Schulz et al., 2012].

flow artefacts Flow artefacts are caused by liquid dynamic structures, i. e.,
flowing blood or CSF in the brain and the body.

Flow artefacts are altered intravascular signals. They occur due to inflow effects
causing flow-related signal loss, or due to flow-related artefacts causing ghost im-
ages or spatial misregistration.

The inflow effect is caused by fully magnetised protons in liquids flowing through
a slice. They can experience an RF pulse and already be out of the slice by the time
the signal is recorded. These protons do not contribute to the echo. Thus, they
manifest as a so-called signal void or flow-related signal loss.

Spatial misregistration describes a displacement of an intravascular signal in
the phase-encoding direction. The intensity of the artefact depends on the signal
intensity from the vessel.

In T
1

maps, vessels have very low T
1

values (see Section 3.2.3). However, vessels
may appear as ghosts in the cortex as a result of a spatial misregistration (see Fig.
3.9).

3.2.4.2 Signal Processing-dependent Artefacts

The artefacts are a result of how the signals are sampled, processed and mapped
out on the image matrix. When scanning structures, the continuous world is dis-
cretised into a space forming a 3D image grid. This grid consists of voxel, i. e.,
3-dimensional cubes representing the environment into which the scanned struc-
ture is mapped.

partial voluming effect The partial voluming (PV) effects are a problem
at any resolution in imaging. Therefore, PV effects have to be taken into account in
further data processing and image analysis steps.
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Figure 3.9: The images depict ghost images of vessels in the cortex. Vessels generally have
very low T1 values. The three images on the right highlight a zoomed-in loca-
tion visible in the coronal section (left). Although the underlying cortical struc-
ture slowly changes when progressing in posterior direction (plus two slices
each), the vessel remains at the same location (red arrows). Usually, vessels run
tangentially on the cortical surface and penetrate perpendicular into the cortical
surface. Thus, the vessel depicted in the images is a ghost as it runs tangentially
in the cortex.

In general, PV artefacts occur when the feature to be imaged has a smaller size
than the image voxel. Due to limited resolution, large intensity differences between
neighboring tissues cannot be properly reconstructed. In imaging data consisting
of small discretised voxel, each voxel contains a fraction of two materials, A and B.
The reconstructed MRI signal of the entire voxel will then represent the weighted
average of the signals originating from A and B. The PV effects are most prominent
when the two neighboring structures have very different intensities. Considering
the cerebral cortex, PV are more prominent at the outer cortical surface where CSF
and GM interface each other, and less strong at the inner cortical surface where WM
and GM interface each other.

In addition, partial voluming is particularly a problem in locations of tightly
folded sulci in which the CSF resides in a little cavity created by two gyral folds
being literally "back-to-back" to each other.

gibbs ringing Gibbs ringing, also known as truncation, ringing, or spectral
leakage artefact, appears in locations of sharp intensity edges, i. e., where two
tissues with high intensity difference interface each other [Czervionke et al., 1988].
The ringing presents itself as a series of regularly spaced lines parallel to the tissue
boundary. The effect alternates between bright and dark signal and slowly fades
with distance. The artefact occurs as a result of using Fourier transforms for image
reconstruction, i. e., transforming frequency signals into spatial image intensities.

In theory, an infinite summation of sine waves of different amplitudes, phases,
and frequencies can represent any signal. In MRI, sampling is restricted to only
a finite number of frequencies. The image must be approximated in its Fourier
representation using only relatively few harmonics. The Fourier series used is cut
short or "truncated".

Due to its nature, Gibbs ringing occurs in both the phase- and frequency-encoded
directions. Its effect can be reduced by filtering the frequency space prior to Fourier
transform or by increasing the resolution for a given field-of-view (FOV) [Block
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Figure 3.10: Two T
1

maps of different subjects (top and bottom row) showing different
imaging quality in regard to ringing artefacts. Ringing artefacts occur only in
parietal-occipital regions (top, right) and not in frontal regions (top, left). The
second T

1

map shows no ringing in frontal nor parietal regions (bottom). The
images are acquired at 7T with 0.5mm isotropic resolution.

et al., 2008]. Those techniques are effective, but come with slight loss of image
quality. However, the effects can never be entirely removed.

The hemispheric slabs acquired in this thesis have a disproportionate size as
they only contain one hemisphere. In particular, Gibbs ringing only occurs in
parietal-occipital regions between high-contrasting tissues such as GM and CSF (see
Fig. 3.10). The effects usually affect the imaging data in location of the cortical
surface up to a depth of 1.5 cm.

aliasing and wrap-around artefact Measuring a signal’s frequency us-
ing an inadequate sampling rate yields so-called aliasing effects. Sampling a signal
with an insufficient number of data points leads to an underestimation of its true
frequency. As a result, the "underestimated" signal will be identical to another sig-
nal having the true lower frequency. The "underestimated" signal is called "alias"
to a true lower frequency signal.

In MRI, aliasing is an important phenomenon and the source of the phase wrap-
around artefact [Axel and Morton, 1989]. It occurs whenever the dimensions of an
object exceed the defined FOV. The wrap-around artefact can be recognised as a
folding over of anatomic parts to the opposite side of the image usually containing
the area of interest (see Fig. 3.11 C). Although this phenomenon may occur in
the frequency-encode direction, it is generally more severe along the phase-encode
axis.
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Figure 3.11: The images depict examples of various imaging artefacts. A) and B) highlight
ghosting and blurring when the brain moves in sagittal (top) and coronal
(bottom) view. Repetitions of the skull are clearly visible. C) shows a raw
hemispheric slap of a computed T1 map. The brain hemisphere that is out
of FOV wraps into the data on the opposite site (see red line and arrows).
D) reveals B1 inhomogeneities in temporal regions (encircled red). There is
insufficient signal to outline the cortical surface. It appears as if the cortex is
missing. This region is generally more noisy compared to regions exhibiting
enough signal (encircled yellow).

When acquiring slabs of one side of the brain, the FOV only contains one hemi-
sphere. The other hemisphere may be wrapped around into the actually scanned
brain half.

3.2.4.3 Machine- and Hardware-related Artefacts

The artefacts described here are due to functional problems of the MRI machine and
hardware setup or caused by other problems influencing the scanning procedure.

B0 inhomogeneities In MRI, the B0 magnetic field is assumed to be homoge-
neous. Inhomogeneities in the B0 magnetic field cause image distortions. These
can either be intensity related, spatially related, or both.

Intensity distortions are caused by field inhomogeneities within the object to be
imaged. Here, the field is stronger or weaker at a certain location than that in the
rest of the object or tissue. Hence, T∗

2 at this location is different, and therefore the
signal will tend to be different.

Spatial distortion are caused by long-range field gradients in B0 which are con-
stant in time. Gradients cause the spins to resonate at Larmor frequencies other
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than those assigned by the sequence. In an ideal setup, protons spinning at a
certain position should experience a certain magnetic field and resonate at a char-
acteristic frequency. With an inhomogeneous gradient field, there is no linear rela-
tionship between the position and the frequency the protons spin at. The result is
a distorted image because linearity is assumed in the imaging process.

B
1

inhomogeneities B
1

artefacts are very similar to B
0

artefacts. These arte-
facts arise from a deviating gradient system and will distort the images. Usually,
the artefact occurs when the gradient coil is damaged or abnormal currents pass
through the gradient coils.

These inhomogeneities increase with increasing field strength and, thus, are an
issue at 7T and above. Using the MP2RAGE sequence extinguishes the inhomo-
geneities of the receive field, B-

1

, when computing the T
1

map. However, B+
1

inho-
mogeneities (see Fig. 3.11 D) need to be taken into account in further processing
steps.

rf inhomogeneities and rf noise An RF inhomogeneity artefact presents
itself as an undesired variation in signal intensity across an image. There are
different causes to this artefact such as:

• failure of the RF coil,

• non-uniform B
1

field,

• non-uniform sensitivity of the receive only coil, or

• presence of non-ferromagnetic material in the imaged object, e. g., metal close
to the object to be scanned.

Some RF coils, such as surface coils, naturally have variations in sensitivity and
will always display this artefact.

MRI systems are surrounded by an RF shielding that prevents external noise from
getting into the detector. However, RF pulses and precessional frequencies of MRI
instruments have the same frequency bandwidth as common sources from our
every-day life such as a TV, radio, and computers. A failure of the RF shielding can
cause an RF noise artefact. The appearance of the artefact in the final image highly
depends on the source of noise. Appropriate site planning, proper installation and
RF shielding eliminate stray RF interference.

3.3 other mri techniques used in cortical area studies

This work focuses on building a new cortical parcellation scheme. Cortical areas
can be described by physiological parameters related to the structural organisation
or underlying functional processing of the brain. MRI allows one to study these
parameters in order to detect patterns that may correlate with areas. In turn, these
parameters may be helpful in designing new parcellation schemes.

In this section, two imaging types are briefly highlighted:

• diffusion Magnetic Resonance Imaging which analyses the structural connec-
tivity in the brain, and
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• functional Magnetic Resonance Imaging (fMRI) which measures brain activity.
The fMRI techniques address brain activity when performing a task or when
the brain is at rest, i. e., so-called resting-state functional Magnetic Resonance
Imaging (rs-fMRI).

Structurally connected brain regions, i. e., regions that are anatomically attached
to each other by a fibre bundle running from region A to region B, do not have to
be functionally connected. Functionally connected brain regions, i. e., regions that
are spatio-temporally active, do not have to be structurally connected.

When examining connections and their correlations in the brain using diffusion
or functional MRI data, a seed- or ROI-based approach may be very useful (see Fig.
3.14B). In this case, the data from only a few voxel, called the seeds or ROI, are
taken into account to further compute their relationship with other voxel in the
brain. This approach provides a better focus on structural as well as functional
connectivity in brain areas of interest.

This section only gives a brief overview of the techniques mentioned above.

3.3.1 Diffusion MRI

Structural connectivity can be measured using diffusion MRI [Behrens and Johansen-
Berg, 2005]. It is a MRI technique that utilises the local microstructural charac-
teristics of water diffusion by measuring the random Brownian motion of water
molecules within the tissue. Generally, the motion of water molecules follows the
direction of least resistance. This motion exceeds its limitation when facing mem-
branous boundaries. In white matter, motion of water molecules follows the WM
fibres, i. e., the myelin sheath of axons. Boundaries or barriers can be cell mem-
branes, myelin, crossing axons or fibre bundles.

Diffusion Tensor Imaging (DTI) [Basser et al., 1994b,a] extends diffusion MRI
by additionally determining the white matter tract orientation along which wa-
ter molecules move. The final reconstructed image then describes the direction
of maximum diffusivity along the white matter fibres. DTI is describing a full
characterisation of molecular diffusion in 3-dimensional space [Le Bihan et al.,
2001; Jones and Leemans, 2011; Assaf and Pasternak, 2008]. Isotropic diffusion
describes equally free diffusion into all directions. If the diffusion is restricted by
membranous boundaries, it becomes uneven and is called anisotropic diffusion.

Anisotropy can be measured by using a ratio called fractional anisotropy, FA.
FA=0describes a perfect sphere and FA=1 represents ideal linear diffusion. Often,
the shape becomes an ellipsoid as there is a direct relationship between the number
of fibres and the degree of anisotropy. The FA ratio cannot provide information
on the direction of the fibres, e. g., does the fibre represent a region-incoming or
region-leaving fibre? However, the predominant direction of the fibre in 3D space
can be determined using tensors. It is very difficult to represent and perceive
this information on 2D grey-scaled projections (see Fig. 3.12). A colour code is
introduced following the types of fibre tracts described in Section 2.1.3. The colour
code maps the orientation of the fibre to a certain colour:

• red colours represent fibres connecting right and left hemisphere, i. e., com-
missural tracts.
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Figure 3.12: Original drawing of brain fibres presented by Gray [1918] shown in (A) and
compared to in-vivo diffusion MRI data (B). From these, fibre tracts can be
computed (C). The different colours in B and C correspond to different types
of fibres. Images were created with the freely online accessible brainnetworks
tool: http://openscience.cbs.mpg.de/brainnetworks [Heuer et al., 2014].

• green colours describe fibres running in posterior-to-anterior direction or
vice versa, i. e., association tracts.

• blue colours highlight fibres running in foot-to-head direction or vice versa,
i. e., projection tracts.

Calculating these 3D fibres from DTI data is called tractography. A 3D represen-
tation of the calculated fibres is called tractogram. The information in the data can
be mapped to a cortical surface and represented in an adjacency matrix, e. g., a
so-called connectivity matrix. This matrix describes which locations on the cortical
surface are connected. The connections can be weighted to include the strength in
connectedness.

Further details on diffusion methods can be found in Johansen-Berg and Behrens
[2009].

3.3.2 Functional MRI

To obtain functional information of brain activity fMRI techniques are used. These
methods are capable of detecting subtle changes in cerebral blood flow (CBF) in
response to a stimulus or action. The fMRI techniques rely on the change in mag-
netisation between oxygen-poor and oxygen-rich blood. Therefore, fMRI methods
are also called blood-oxygen-level dependent (BOLD) imaging methods.

The fMRI data is usually corrupted by noise. Statistical procedures are needed
to extract and emphasize the underlying signal. Pre-processing of fMRI data com-
monly includes: slice-timing correction, motion correction, spatial and temporal
filtering, and normalisation. Data processing usually involves independent com-
ponent analysis, in which the user selects the relevant components to be inves-
tigated. Alternative analysis methods include clustering algorithms and pattern
classification (see next chapter).

The resulting brain activation (see Fig. 3.13)1 can be mapped onto a surface
or to a connectivity matrix. The use of colour-coding highlights the strength of
activation across the brain (or specific region studied).

1 fMRI data corrected at a voxel-wise threshold of p < 0.001, with a minimal cluster size of 5; functional
data are then family-wise error-corrected at a threshold of p < 0.05 (FWE-corrected).
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Figure 3.13: Functional activity in primary somatosensory area, S1, during a tactile stimu-
lation task of the index finger. No movement of hand or fingers involved. fMRI
data measured at 7T (resolution: 1.5 x 1.5 x 1.5mm) and superimposed on
structural data measured at 7T (resolution: 1 x 1 x 1mm). Images by courtesy
of Esther Kühn.

3.3.2.1 The BOLD Effect

The blood flow in the brain is highly locally governed considering oxygen and
carbon dioxide usage in cortical tissue. When the brain is solving a task, specific
cortical regions increase in activity. These regions suddenly extract more oxygen
from the local capillaries which yields

• an initial drop in oxygenated haemoglobin, and,

• an increase in local carbon dioxide (CO
2

) and deoxygenated haemoglobin.

After about 2–6 s, the cerebral blood supply in this region increases. An addi-
tional portion of oxygenated haemoglobin is provided, replacing the deoxygenated
haemoglobin. BOLD fMRI makes use of this large rebound in local tissue oxygena-
tion and relies on regional differences in CBF to delineate regional activity.

Due to the fundamental difference in the paramagnetic properties of oxygenated
and deoxygenated haemoglobin, fMRI methods are able to detect this change. De-
oxygenated haemoglobin is paramagnetic. Oxygenated haemoglobin is not para-
magnetic. This has a direct influence on the T⇤

2

properties in tissue: deoxygenated
haemoglobin causes dephasing of local protons. Thus, the signal from the tissues
in the immediate vicinity is reduced. T⇤

2

-weighted sequences are able to capture
this change.

In addition to the number of limitations related to imaging sequences themselves
(see Section 3.2), there are limitations using fMRI and closely related imaging tech-
niques which measure functions in terms of CBF:

• CBF is an indirect measure of activity. It provides no direct visualisation of
activity in the cortex.

• CBF increase is a response to an increase in activity. There is a delay of 2–6 s.

• fMRI techniques can localise activity spatially within millimetre range but
temporally no better than a few seconds.
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Figure 3.14: Functional network computed from rs-fMRI data shown as 3D connectivity
graph in (A). Functional activity colour-coded by strength of activity shown
in (B). Locations indicated by red colour are synchronously active at a resting
state of the brain. Here, the focus is on area 45 (Broca’s region). The connec-
tions, i. e., lines projecting to other areas, are part of the connectivity graph.
The mapping changes when a different location is selected as area of interest
(seed-based approach). Images were created with the freely online accessible
brainnetworks tool: http://openscience.cbs.mpg.de/brainnetworks [Heuer
et al., 2014].

3.3.2.2 Data Acquisition

A typical fMRI scan may be designed in two different ways.
In a scan using block design, the subjects need to deal with repeated blocks of

activity. These blocks are either alternating between different activities or sepa-
rated by blocks of inactivity (resting phase). In an event-related scanning session
specific individual events are included. These events can be randomly distributed
during the scan phase.

Hence, the design of a functional scan always focuses on primary functioning of
the brain, i. e., tasks related to vision, senses, speech, memory or motor skills. The
activity performed or the stimulus received, evokes a cortical response in the brain.
These responses are analysed to elucidate neuroscientific questions. However, fMRI
scanning is limited by its own design: to analyse functional properties of the entire
cortex, many scan sessions are necessary.

3.3.2.3 Resting-state fMRI

A special technique of fMRI is rs-fMRI that allows to study the regional functional
interactions that occur when the brain is at rest, i. e., not performing an explicit
task (see Fig. 3.14). The measured "resting" brain activity relies, as in fMRI, on
changes in CBF, and thus, on the BOLD effect.

Using rs-fMRI methods, scientists can investigate the functional connectivity be-
tween brain areas which is independent of structural connectivity. A number of
networks were consistently found in healthy subjects, at different stages of con-
sciousness and across species. These networks represent specific patterns of syn-
chronous activity.
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3.4 identifying areas using classical histological methods

The classical method to structurally image brains is based on staining tissue sam-
ples extracted from postmortem material. Conventional staining is still respected
as ground truth or so-called "gold standard". In the thesis, material is stained to al-
low a qualitative verification with structural MRI data. In-depth details on staining
histological material can be found in Mulisch and Welsch [2010].

In this section, the general workflow of staining material is explained. But these
conventional methods have many drawbacks that are outlined at the end of this
section.

chemical fixation of tissue material To preserve brain tissue from de-
generation, tissue samples have to be chemically treated. This process is called fixa-
tion. A fixation of cell tissue maintains the structure of the cells and of sub-cellular
components. Regarding light microscopy, the most commonly used fixative is 10%
neutral buffered formalin (4% formaldehyde in phosphate buffered saline). Fix-
atives preserve tissues or cells mainly by irreversibly cross-linking amino groups
in proteins. They build up bridges made of methylene. Keeping the structural
integrity of the cells damages the biological functionality of the proteins. Histolog-
ical staining can, therefore, only analyse tissue according to structural properties.

preparation : dehydration, clearing , infiltration In order to anal-
yse sections of tissue samples, the extracted tissue blocks need to be cut into slices
of only a few micrometre thickness. As such thin slices rip apart very easily, the tis-
sue has to be adequately prepared for cutting in advance. The aim of tissue prepa-
ration is to remove water from tissue in order to replace it with a hard enough
medium that allows cutting of thin sections. Typically, 5–30µm thick sections are
used for light microscopy.

As a hard medium, paraffin wax is most frequently used, as it is immiscible
with water. Water is the main constituent of biological tissue. In the process of
dehydration, water will first be removed. During this process, samples are treated
in container baths of progressively more concentrated ethanol. The transfer from
low to high ethanol removes the water from the tissue. This process is followed
by a hydrophobic clearing agent that removes the ethanol again. During this step,
called infiltration, melted paraffin wax will be used as a replacement to stabilise
the tissue structure.

embedding of tissue After the preparation, tissues have to be externally em-
bedded. The tissue is placed into containers together with liquid embedding ma-
terial such as agar, gelatine, or wax, in which the tissue then hardens. In the case
of paraffin wax, the hardening process is achieved by cooling. Finally, the tissue
block is ready to be sectioned.

Formalin-fixed and paraffin-embedded tissues can be stored at room tempera-
ture for an indefinitely long time, which makes them an important resource for
studies in anatomy and medical studies.
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Figure 3.15: The images on the left depict two consecutive 30µm thick cytoarchitec-
tonic (top) and myeloarchitectonic sections (bottom) of the primary motor-
somatosensory region M1/S1 (2.58µm in-plane resolution). The layering of
the cortex is visible in the cell stain as well as the myelin stain. The location
between area 3a and 3b indicates a region that was not cut perpendicular to
the cortical surface. Here, features, such as layer thickness, are distorted. The
enlargements (middle) were taken from the primary motor area (location in-
dicated by the blue dots). Triangular-shaped giant pyramidal cells ("Betz’sche
Riesenzellen") are visible (red coloured *) in the cell stain. Area 4 shows an in-
creased myelination between layer III and V obscuring the bands of Baillarger
(red rectangle). The microscopy images can be compared to historic drawings
of cell and myelin stains (right) taken from Vogt [1910]. Microscopy images
are by courtesy of Dr. Stefan Geyer and Katja Reimann.

sectioning of tissue block Sectioning is the most crucial process when
analysing the underlying microstructure of a tissue block. It can only be done
in limited ways. The surface of the tissue needs to be vertically cut. Using an
incorrect angle of cutting may yield distortions of the real microstructural relations,
i. e., layers of the cortex may appear thicker than they are in the real object.

For light microscopy, a steel knife mounted on a machine called microtome is
used to cut the extremely thin tissue sections. The cut sections are put into single
molds.

staining of sections Staining allows to highlight particular characteristics
of the tissue. The staining agent used can be designed in a way that only spe-
cific features of the tissue will absorb it. Consequently, only these features are
highlighted in the final section.

Only recently, antibodies start to play a major role in staining procedures. They
allow to specifically visualise proteins, carbohydrates, and lipids. The discipline
is referred to as immunohistochemistry. The method offers new ways to identify
categories of cells using a microscope.
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visual inspection and analysis Microscopes that are equipped with high-
resolution digital cameras are used to capture histological images. This allows to
further study the features of interest. Fig. 3.15 highlights cell and myelin stained
sections of the primary motor and somatosensory region M1/S1.

drawbacks of histological methods Staining techniques only allow the
examination of (mostly) older and dead brains. The staining approach provides no
functional analysis of brain tissue. Although improvements on the actual staining
techniques are available, staining may be inconsistent due to undissolved particles
of the staining agent or impairments of the underlying tissue due to age or (often
unknown) diseases. Overall, the staining process is very sensitive: consecutively
cut sections treated with the same staining agent according to the same staining
protocol may have different outcomes due to minimal timing issues or deviations
in agent concentration. When cutting the tissue, the angle of cutting is most crucial.
If the tissue block is not cut perpendicular to the cortical surface, features of the
cortex are distorted such as layer thickness or cell size.

Histology has further limitations towards myelinated axons, which are the struc-
ture of interest in this thesis. Here, it is worth noting that the linear nature of
myelinated axons and the planar dimensionality of a myelin-stained cadaver brain
section limit the opportunity of reconstructing 3D data directly from histology. Sec-
tions are spatially distorted due to the staining process. Finding the corresponding
myelinated axons in consecutively stained sections poses an extremely difficult
task. Representing quantitative myelin concentration in the cortex is downright
impossible due to saturation effects. The method cannot determine absolute val-
ues of myelin because even a highly standardised myelin staining process is not a
quantitative method due to the saturation effect in the tissue.

3.5 summary and conclusions

Recent developments in high-field MRI lead towards better image quality regard-
ing SNR as well as CNR. MRI can reveal the underlying physical phenomena, and,
thereby, characterise the human cortex microstructurally in living human brains.
The results are in agreement with histological preparations. With increased resolu-
tion, the new MP2RAGE sequence is able to reflect myeloarchitectonic intracortical
features.

It has been shown that conventional histological methods cannot compete with
these developments. They only allow the examination of generally older brains
in two dimensions (2D). Additionally, histological staining for myelin provides no
quantitative measure due to saturation effects of the staining agent.

In contrast, using quantitative MRI methods enables scientists to study the brain
longitudinally across lifespan and to consider in-vivo examinations of healthy and
diseased brains in three dimensions (3D). Thus, MRI is becoming an invaluable tool
for studying the human brain.
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I M A G E S E G M E N TAT I O N A N D A N A LY S I S

Image segmentation and analysis play a more and more important role in todays
medical imaging. Results of the tasks are now widely used in different applications
such as the study of anatomical structures, localisation of pathology, diagnosis,
treatment planning, quantification of tissue volume or even partial volume and
imaging artefact correction.

Image segmentation remains a difficult task because the image quality, e. g.,
image resolution, artefacts, motion of subjects, imaging modality, as well as the
tremendous object shapes to be segmented vary highly, e. g., the brain and its com-
plex folded structures, the liver and its segments, the bones and their capsules, the
heart and its chambers.

Here the structure of interest is the cerebral cortex. The main computational
challenges of the thesis are:

1. to segment the entire brain such that the cortex can be extracted from the
whole-brain MRI data,

2. to reconstruct the boundary surfaces of the cortex such that they align with
topological constraints,

3. to allow an estimation of intermediate surfaces in-between the boundary sur-
faces describing the anatomical layering, and,

4. to subdivide the cortex into smaller meaningful entities corresponding to
functional cortical areas.

The process of further segmenting the cortex into smaller sub-segments is also
called cortical parcellation.

Regarding the segmentation of brain data, clustering and classification methods
are appropriate as they allow membership definitions between WM and GM, and
GM and CSF. Clustering and classification are introduced in Section 4.1. Their
advantages and disadvantages are discussed, too.

Given the assignments of voxel belonging to a certain object may yield topo-
logical inconsistencies. With additionally applying a deformable model, topology-
correct boundaries of the interfacing tissue structures of the cortex can be derived.
The two classical types, i. e., parametric and geometric deformable models, and their
individual characteristics will be presented in Section 4.2.

Using high-resolution data demands the use of efficient methods such as the ge-
ometric deformable model, specifically the level set functions. Level set functions
are an ideal candidate for constructing an anatomically-motivated layering model.
They allow accurate computation of curvature which is a necessity for the highly
curved cortex. Using such a framework allows the computation of cortical pro-
file trajectories which range from one boundary surface to the other. Along these
trajectories, precise sampling of image intensities is possible, yielding so-called
cortical profiles.
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The here highlighted methods are fundamental for the following chapters of the
thesis. Clustering and classification methods that are used in state-of-the-art corti-
cal parcellation schemes are explained in the next chapter. Geometric deformable
models are used throughout data processing in this thesis.

4.1 clustering and classification in image segmentation

Image segmentation describes the process of dividing image data into multiple
segments. These can be sets of pixel in 2D, but also voxel in 3D. The goal of every
segmentation task is to change and/or simplify the information given in the im-
age data to more meaningful and easier-to-analyse representations. Segmentation
methods are used to locate objects and boundaries, i. e., lines and curves in 2D or
surfaces in 3D. For simplicity, explanations in the thesis will refer to the 2D case,
i. e., defining regions and curves in 2D rather than volumes and surfaces in 3D.
Approaches considering application to 3D imaging data are more sophisticated,
but can be implemented just as accurately and efficiently as in 2D with higher
computational cost due to the third dimension.

Image segmentation specifically describes the process of assigning a label to
every pixel in an image such that the pixel having the same label share certain
characteristics. The result of an image segmentation is a set of segments or classes,
or set of contours extracted from the image data. Clustering and classification
techniques allow one to make such assignments.

clustering belongs to unsupervised learning techniques and, as such, they
try to find an intrinsic grouping in a set of unlabelled data. Clustering methods
can be utilised as an exploratory data analysis. The aim is to sort different objects
into groups. The intra-group variance shall be minimised while the inter-group
variance is maximised with respect to a certain criterion. Thus, clustering meth-
ods are useful to discover structures in data without providing an explanation,
interpretation or high-level a-priori information.

classification methods belong to supervised learning techniques. They are
common in statistics and machine learning, but also in image data analysis or
pattern recognition. In contrast to clustering methods, classification itself can be
seen as a form of categorisation. As such, it describes the process in which objects
are recognised, differentiated, and understood. In image analysis, most commonly
statistical classification methods are used. These methods identify to which of a
set of categories a new observation belongs. The decision is based on a training
set of data or an observation (or instance) whose category membership is known.

similarities Clustering and classification methods are able to divide the im-
age data into multiple segments. The analysis methods themselves address no
specific algorithm, but the general task to be solved. Segmentations can be of bi-
nary or multi-class type. In a binary segmentation, the object to be identified will
be separated from the background. In multi-class segmentations, multiple objects
are detected at the same time. The result can be of two types: a hard or a soft
segmentation. A hard segmentation assigns only one label to each voxel while a

68



4.1 clustering and classification in image segmentation 69

soft segmentation assigns k labels (with k representing the maximum number of
segments) to each voxel defining the membership value for each segmented class
k to this voxel.

differences When clustering data, the resulting set of segments is of interest.
Clustering relates to an exploratory investigation of the data to address the ques-
tions "if" and "how" data groups. In classification tasks, the resulting discriminative
power of a set of segments to other sets is of interest. The procedure categorises
data into groups based on a-priori information asking whether the final grouping
is meaningful and correlates with a certain assumption. The prior information is
usually derived from initial samples or specifically through training of samples. In-
deed, the differences between the methods often lead to misunderstandings when
using the same terminologies and algorithms with different intended goals.

requirements In general, clustering and classification algorithms shall satisfy
certain main requirements. They need to deal with different types of attributes or
input observations. Segmentation techniques need to have the ability to work with
higher dimensional data and to be robust towards noise and outliers. Clusters
with a complex shape need to be detected.

The algorithms may not address all requirements adequately and, most com-
monly, not at the same time. The effectiveness of the techniques highly depends
on the chosen similarity criterion or features used to separate objects. In case, a
similarity metric does not exist, it has to be defined by the user. This is a crucial
choice as an inappropriate metric may lead to incorrect results. When dealing with
high dimensional data or a large number of input items, the complexity and the
computational cost increase.

number of classes A more critical problem is to identify how many groups
or classes exist. Usually, this information is not known in advance. Unfortunately,
there is no general solution that can determine the optimal number of classes for
any given data set. A simple solution is to set the number of classes a-priori, ei-
ther manually or using (semi-)automatic methods. Another solution is to run the
algorithms multiple times each with a different number of classes to identify the
best result according to a criterion [Pena et al., 1999; Bradley et al., 1998]. Other
solutions incorporate statistics or advanced models [Eltibi and Ashour, 2011].

In this section, representative algorithms of clustering and classification tech-
niques will be briefly described and discussed.

4.1.1 Clustering Methods

When clustering data, the segmented classes are called clusters. Clustering meth-
ods can be divided into four categories:

exclusive clustering : one object belongs to one, and only one, segmented
cluster.
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overlapping clustering : uses fuzzy descriptions to cluster data. Thus, an
object may belong to two or more clusters with different degrees of member-
ship.

hierarchical clustering : is based on iteratively merging two clusters based
on a criterion.

probabilistic clustering : uses statistical techniques. It is close to statistical
learning methods or supervised learning approaches (see next section).

In the thesis, the following clustering algorithms will be briefly presented:

• K-means,

• Fuzzy C-means,

• Hierarchical agglomerative clustering,

• Model-based clustering.

Each of these algorithms represents one of the categories listed above. The ap-
proaches are most commonly used in cortical parcellation schemes (presented in
the next chapter) and represent the building block in the data processing pipeline
(see Chapter 6.2).

The general question of any clustering technique is to decide what a good clus-
tering is constituted of. The decision is based on a similarity criterion. Two objects
from one cluster have more similar characteristics than two objects from different
clusters. There are various characteristics to define the similarity. Most commonly,
distance is used.

4.1.1.1 K-Means Clustering

K-means [MacQueen, 1967] is one of the simplest unsupervised learning algo-
rithms. The method is a type of exclusive clustering in which a certain object
belongs to only one cluster. A number of clusters k has to be fixed a priori. The
grouping is based on the barycenter of each cluster. Therefore, k-means clustering
is also known as centroid-based clustering.

Given an a-priori defined set of k clusters and n objects to group into these,
k-means algorithm minimises the objective function:

S =
kX

j=1

nX

i=1

kx(j)
i

- c
j

k2. (4.1)

It is a squared error function where kx(j)
i

- c
j

k2 represents the Euclidean dis-
tance measure between a data point x

(j)
i

. The cluster center c
j

indicates the dis-
tance of data points from their respective cluster centers.

The k-means algorithm starts to group the data as follows:

1. Define k points in the data space. These points represent initial group cen-
troids (see Fig. 4.1 A).
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Figure 4.1: Data is clustered into four groups using k-means. A) shows the initial group
centroids as small rectangles. B) shows the initial grouping. C) depicts the
first recalculation of the group centers. The white rectangles are the new
centroids. D)-I) highlight the evolving clusters. Images created with free
online applet: http://home.deib.polimi.it/matteucc/Clustering/tutorial_
html/AppletKM.html.

2. Find for each unlabelled object the closest centroid.

3. Group objects belonging to the same centroid (see Fig. 4.1 B).

4. Recalculate positions of the k centroids according to the grouping in the
previous step (see Fig. 4.1 C).

5. Repeat steps 2–4until the position of the centroids no longer changes (see
Fig. 4.1 D-I).

The definition of the initial k points can be done manually or automatically. But
the algorithm highly depends on the initially selected cluster centers. If the initial
cluster centers are not well distributed over data space, the k-means algorithm may
not find the most optimal solution. Running k-means multiple times may reduce
this effect. However, there is a remaining chance that the set of samples closest to
the centroid is empty and the position of the k centroid cannot be updated (see
step 2). This needs to be taken into account in the implementation. A more critical
problem is to identify the number of potential clusters k a-priori. A simple solution
is to run k-means multiple times each with a different number of clusters. The best
result is then chosen according to a given or defined criterion.
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4.1.1.2 Fuzzy C-Means Clustering

Fuzzy C-means (FCM) clustering is similar to k-means but allows an object to be-
long to two or more clusters leading to a non-binary membership decision which
explains the term "fuzzy". This method has been developed by Dunn [1973] and
was improved by Bezdek [1981]. FCM is a frequently used technique in pattern
recognition. Given an a-priori defined set of K clusters and N items to be clus-
tered, FCM minimises the objective function:

S
m

=
NX

i=1

KX

j=1

um

ij

kx
i

- k
j

k2 for 1 6 m 6 1 (4.2)

where u
ij

is the degree of membership of x
i

in the cluster j, x
i

is the i-th of
d-dimensional measured data, k

j

is the center of the cluster, and k ⇤ k is any norm
expressing the similarity between the measured data and the center.

The fuzziness coefficient is denoted by m and must be a real number greater
than 1. It measures the tolerance of the clustering, e. g., how much the clusters
overlap with one another. The higher the value of m, the larger the overlap be-
tween clusters.

Fuzzy partitioning is carried out through an iterative optimisation of Eq. 4.2,
with the update of the membership u

ij

as follows:

u
ij

=
1

P
K

t=1

✓
kx

i

- k
j

k
kx

i

- k
t

k

◆ 2

m- 1

. (4.3)

The cluster centers k
j

are updated as follows:

k
j

=

P
N

i=1

um

ij

x
i

P
N

i=1

um

ij

(4.4)

with t determining the number of iterations used. The iteration will stop when:

max
ij

⌦
|ut+1

ij

- ut

ij

|
↵
< ". (4.5)

" is a termination criterion between 0 and 1. This procedure converges to a
local minimum or a saddle point of S

m

. Initialising the algorithm differently may
provide a different solution. But, a different initialisation may converge to the same
result but at higher costs. 20 data points can be grouped into three clusters very
quickly (see Fig. 4.2 B). Using a fuzziness coefficient of m = 2 and a termination
criterion set to max

ij

⌦
|ut+1

ij

- ut

ij

|
↵
< 0.3, the initial data (Fig. 4.2 A) is clustered

in only 8 steps. When increasing the accuracy by setting "=0.01, the clustering
takes 37 steps (Fig. 4.2 C).

4.1.1.3 Hierarchical Agglomerative Clustering

A hierarchical clustering, defined by Johnson [1967], respects the inherent connec-
tivity in the data. Therefore, hierarchical clustering is also known as connectivity-
based clustering.
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Figure 4.2: Grouping 20 data points into three clusters using the Fuzzy C-means (FCM)
algorithm. The cluster curves (blue, red and green) describe the membership
value of each data point belonging to a certain cluster. As clusters overlap
each other, data points belong to a certain degree to a single cluster. A) shows
the initial data. B) A quick FCM result after 8 steps allowing less accuracy. C)
FCM result after 37 steps. Using higher accuracy yields higher computational
costs. Images created with free online applet: http://home.deib.polimi.it/
matteucc/Clustering/tutorial_html/AppletFCM.html.

Hierarchical approaches are iterative and start with the condition of setting every
object as a cluster. After the final iteration iend, all objects belong to one cluster.
To chose the clustering wanted, the result at i < iend is chosen. Thereby, they
bring a certain order into the clustering. Clusters on higher levels are constituted
of clusters on lower levels.

Given a set of N items and a N ∗N similarity (or distance) matrix, the basic
hierarchical clustering algorithm starts to group the data as follows:

1. Assign each single item to a single cluster, such that #items = #clusters.

2. Define the similarity between two clusters as the similarity between the items
these clusters contain.

3. Find the most similar (or closest) pair of clusters.

4. Merge pair into a single cluster. The #clusters decreases by 1.

5. Compute the similarities (distances) between the new defined cluster and
each of the old clusters.

6. Repeat steps 3–5until all items are clustered into one single cluster of size N.

Finally, when the hierarchical tree is completed, the k defined clusters can be
derived by cutting the k− 1 longest link in the tree.

Three strategies are mainly used in hierarchical schemes: single linkage cluster-
ing, complete-linkage clustering and average-linkage clustering (see Fig. 4.3).

single-linkage clustering is called the minimum method (or connected-
ness method). The distance between two clusters is considered to be the shortest
distance. In case a similarity metric is used, the similarity between the two clusters
is considered to be maximum.
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Figure 4.3: Hierarchical clustering of 15 data points using the single-linkage (A), complete-
linkage (B) and average-linkage clustering (C). Images created with free online
applet: http://home.deib.polimi.it/matteucc/Clustering/tutorial_html/
AppletH.html.

complete-linkage clustering is called the maximum method (or diame-
tre method). The distance between two clusters is considered to be the maximum
distance. In case a similarity metric is used, the similarity between the two clusters
is considered to be minimum.

average-linkage clustering considers the distance between two clusters
to be the average distance.

Hierarchical clustering methods are also called agglomerative clustering because
clusters are iteratively merged together.

The main problem of these clustering methods is their irreversible nature: once
a label is assigned to an object, it will not change again. When using k-means,
labels of an object may change when iterating towards the solution.

4.1.1.4 Model-based Clustering

Clustering problems can be solved using a model-based approach. The models
used aim at representing clusters within the entire data. Model-based clustering
approaches need no observed data (training data) to identify the cluster to which
an unobserved instance belongs. These methods use an assumption about a cluster
described by a certain model that is adequately represented by the data. The
algorithm then aims at optimising the fit between data and model.

Practically, a cluster in the data can be mathematically described by a parametric
distribution. Often, Gaussian distributions are used to represent continuous data
[Shental et al., 2004]. An individual distribution used to describe a certain cluster
is referred to as a component distribution. With different clusters being present in
the data, a mixture of the models then represents the entire data.

Using so-called mixture models is meaningful when:

• the modelled distributions, i. e., the components, are appropriately distributed
(small variance around a significant peak in the distribution, no large overlap
between components),

• the data is covered well by the mixture of the models (components are able
to capture dominant patterns).
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Model-based approaches have several advantages: depending on the data, the
distribution used for clustering can be adequately chosen. Using a-priori defined
models allows to obtain a density estimation for each cluster. Hence, model-based
clustering techniques are also referred to as density-based clustering methods.

mixture of gaussian Most commonly, mixture models describe a mixture
of Gaussian distributions [McLachlan and Peel, 2004]. Clusters are modelled as
Gaussian distributions centered on their barycenter.

In the data, k components are given by R data points. The i-th component,
i = 1 6 i 6 k is called !

i

. Each component !
i

is assumed to generate data
from a Gaussian distribution with a probability P(!

i

). The Gaussian distribution
is defined by a mean vector µ

i

and its covariance matrix
P

i

. Now, each unlabelled
data point x

i

is generated as follows: using component !
i

with probability P(!
i

):

x
i

⇠ N(µ
i

,
X

i

). (4.6)

The algorithm fits the mixture models to the data for the unknown mean vectors
µ
i

. The probability of each component and data point need to be maximised by
calculating the first derivative. This is complicated and the logarithmic likelihood
estimation serves as a surrogate. Due to its monotone nature, it provides a maxi-
mum at the same location as a non-logarithmic likelihood estimation. A detailed
description on how to maximise the probability is given in Moore [2001].

Logarithmically maximising the probability, creates a circularity that can be in-
terpreted as two different problems:

1. if µ
j

is given, then the probability for each !
j

and x
i

could be computed.

2. if for each data point we knew that for each component the probability that
µ
j

belongs to component !
j

is of a certain probability, then µ
j

could be easily
computed.

To solve this circularity, an iterative expectation-maximisation (EM) approach can
be used [Moon, 1996]. The expectation-step computes the "expected" components
of all data points yielding a membership distribution. Thus, at each data point a
vector indicates the membership value to the components. The maximisation-step
computes the maximum likelihood of µ given the class membership distribution
of the data.

4.1.1.5 Summary

The above mentioned clustering methods represent the most commonly used al-
gorithms. Advanced implementations include a-priori information about the data
such as the number of clusters or combine the different advantages of the methods
to design application-driven methods.

The success of a certain clustering method highly depends on the appearance
of the clusters in the data. As centroid-based method, k-means is able to find the
barycenter of a cluster. The method can detect differently-sized clusters in a data
set. However, if the clusters in the data are only describable based on density, and
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not by shape or size, k-means fails. When clusters can be described by a specific
size or shape, model-based clustering techniques work well.

4.1.2 Classification Methods

As in clustering, classification describes no specific algorithm, but the general task
to be solved. An algorithm implementing a classification, i. e., a categorisation of
objects or observations, is called a classifier. A simple mathematical function can
be defined as classifier.

Usually, the individual observations are evaluated according to (quantifiable)
properties, called features. The vector storing the features is called feature vector.
The space associated with these vectors and used for classification is called feature
space. These features can be of different types:

• real-valued, e. g., a measurement of body temperature,

• integer-valued, e. g., the number of sunny days per year,

• ordinal, e. g., "hot", "warm" or "cold",

• categorical, e. g., "dog", "cat" or "fish" as part of animal classes.

In other cases, classifiers compare the observations to previous observations by
using a similarity metric, e. g., a distance measure.

4.1.2.1 Linear Classifiers

Linear classifiers use linear functions to assign a score to each possible category
k. Most commonly, the feature vector of the object is combined with a vector of
weights using the inner product. The object is assigned to the category with the
highest score.

The function used is known as linear predictor function and has the following
form:

score(X
i

,k) = �
k

· X
i

(4.7)

where X
i

describes the feature vector of object i. �
k

is the vector of weights
corresponding to category k, and score(X

i

,k) is the predicted score of object i in
respect to each category k.

Algorithms using this basic function are known as linear classifiers. They only
differ by their training, i. e., on how to determe the optimal weights for the data
separation.

4.1.2.2 k-Nearest Neighbor

The k-nearest neighbour (k-NN) algorithm is one of the simplest instance-based,
supervised learning techniques [Altman, 1992]. k-NN estimates its results based on
a uniform kernel that is applied only locally [Terrell and Scott, 1992]. k-NN algo-
rithms can be seen as non-parametric density-based classification approaches.

k-NN consists of two phases:
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Figure 4.4: k-NN applied to the data shown in A) with k=1 (B) and k=5 (C). Using larger
values of k reduces the noise effect on the classificaion, i. e., the classification
is less patchy. However, boundaries are less distinct. Images created with free
online applet by Mirkes [2011].

training phase The training examples are vectors in a multi-dimensional fea-
ture space. Each training example is assigned to a class label. The training phase
involves storing the feature vectors and class labels of the training samples.

classification phase In the classification phase, an unlabelled instance is
assigned to a label based on majority voting. k-NN identifies the most frequent
label among the k training samples nearest to the actual observation based on a
similarity criterion (see Fig. 4.4).

The k-NN classification algorithm categorises the data as follows:

1. Define a set of k clusters a-priori, e. g., by training.

2. Select an unlabelled instance.

3. Find the k training samples closest to the new instance.

4. Find the label most common among the training samples.

5. Assign this label to the unlabelled instance.

6. Repeat step 2–5

The k-NN algorithm is applied only locally, and as such, very sensitive to the
local structure of the data.

If the class distribution is skewed or the features scale inconsistently with their
importance, a simple "majority voting" may lead to misclassifications. This prob-
lem can be solved by incorporating distance-based weighting in the classification
phase: the classes of the k nearest neighbors of the actual instance are multiplied
by a weight that is proportional to the inverse of the distance from the actual un-
labelled observation [Coomans and Massart, 1982a]. Using these distance-based
criteria, k-NN can be modified for direct density estimation [Coomans and Massart,
1982b].

4.1.2.3 Support Vector Machines

A Support Vector Machine (SVM) is a non-probabilistic classification method. It
performs data classification based on finding a hyperplane that maximises the dis-
tance between the samples in each class [Vapnik, 1963; Vapnik and Chervonenkis,
1964]. The vectors defining the hyperplane are called support vectors. Multi-class
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separation is performed by dividing the individual multi-class problems into mul-
tiple binary classification problems.

There are two basic types: linear and non-linear SVM.

linear svm Considering a SVM for data classification into two classes, we have
a training set T containing n data points described as follows:

T =
�
(x

i

,y
i

) | x
i

2 Rd, y
i

2 {-1, 1}
 
n

i=1

. (4.8)

The data points are either 1 or -1 depending on the class they belong to and
x
i

is a d-dimensional vector. The goal is to find a hyperplane that maximise the
distance between the samples in each class. A hyperplane can be defined by:

w · x - b = 0. (4.9)

Here, · defines the dot product. The distance between the classes is determined
by the offset b of the hyperplane from the origin along the normal vector w (see

Fig. 4.5A). From Eq. 4.9, the distance is defined as
b

kwk and called margin. If the

training data are linearly separable, there are two other hyperplanes that separate
the data such that no training sample falls into the margin. These hyperplanes can
be defined by:

w · x-b > 1, (for x
i

of class one), and w · x-b 6 -1, (for x
i

of class two). (4.10)

The distance between the two hyperplanes is
2

kwk . The aim is to minimise kwk.

The optimal separating hyperplane can be defined by the following problem:
find w and b that minimise kwk such that for all data points (x

i

,y
i

):

y
i

(w · xi + b) > 1. (4.11)

The support vectors constrain the width of the margin and are the x
i

on the
boundary for which y

i

(w · xi +b) = 1. Finally, the goal is to minimise the objective
function:

min
1

2
kwk2, (4.12)

that finds w and b using quadratic programming. If the data is linearly sep-
arable, there is a global minimum value. The approach produces a hyperplane
that separates the data into two non-overlapping classes. The simplest method to
group the data into two categories is using a straight line (in 2 dimension), a flat
plane (in 3 dimensions) or an N-dimensional hyperplane.

It may occur that there is no hyperplane that separates the data under the con-
straint of not allowing samples to be within the margin. Sometimes, misclassifica-
tion occurs. A solution to these problems can be achieved by using a soft margin
constraint.
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Figure 4.5: The images depict a support vector machine for linear (A) and non-linear sep-
aration tasks (B and C). A) The hyperplane (solid line) separates the data such
that no training sample falls into the margin defined by the planes in normal
direction. (Image source: Wikipedia: http://goo.gl/dvUTxR.) B) The image
represents data that can be separated non-linearly. C) The data can be trans-
formed into a feature space where it is linearly separable using the kernel trick.
(Image source: Wikipedia: http://goo.gl/rnZ2pV.)

soft margin methods A "soft margin" approach is used when there is no
solution to an ideal hyperplane such that misclassification occurs [Cortes and Vap-
nik, 1995]. The method still maximises the distance to the nearest regularly split
samples but tries to minimise misclassifications. To do so, a slack variable ζi is in-
troduced into the constraint. It allows instances to fall of the margin, but penalises
these. In general, the approach keeps the slack variable to zero while maximising
the margin.

non-linear svm Separating data linearly is sometimes impossible for more
complex problems and a non-linear separation of data is required. Boser et al.
[1992] suggested a way to create non-linear classifiers by applying the so-called
kernel trick [Aizerman et al., 1964].

The kernel trick applies a non-linear kernel function that transforms the data
into a higher dimensional feature space where the linear separation can be per-
formed. The algorithm is similar except that the dot product is substituted by a
non-linear kernel function. Hence, the method transforms the hyperplane in a
transformed feature space.

A linear SVM equals the dot product of vectors:

y(xi, xj) = xi · xj. (4.13)

A non-linear SVM maps the vectors using a transfer function φ into a feature
space in which the kernel trick then uses the transformed vectors to separate the
data (see Fig. 4.5B):

k(xi, xj) = φ(xi) ·φ(xj). (4.14)

Kernel functions depend on the application and, hence, are customizable. Exam-
ples on design can be found in Hearst et al. [1998].
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4.1.3 Limitations of Clustering and Classification Methods

Clustering and classification approaches in the discipline of medical image process-
ing aim at grouping or classifying the image pixel to anatomical structures. How-
ever, the assignments may yield topological inconsistencies when compared to the
true anatomy. The segmentation may be divided up into several pieces rather than
being one connected compartment or it may contain holes or handles. Therefore, a
topologically correct reconstruction of the structure’s boundary is important. The
reconstruction provides a geometric representation that is in alignment with the
true geometry of the anatomy of this structure.

In this thesis, the structure of interest is the cortical surface. An accurate surface
reconstruction therefore agrees with the true definition of the cortical sheet given
its varying thickness, the different lobes, the gyral folds, and narrow sulci. Thus, a
cortical reconstruction describes the localisation and representation of one or even
more of these mentioned cortical surfaces. The task is very challenging given the
very complex nature of the brain.

4.2 image segmentation using deformable models

Medical images are often contaminated by imaging artefacts and noise which can
cause considerable difficulties when applying classical segmentation methods. The
applied techniques either fail completely or require some pre- or post-processing
to correct or remove inaccurate or invalid object boundaries in the segmentation
result. Explanations will again refer to the 2D case.

These difficulties are addressed by deformable models. Deformable models de-
scribe curves which are defined in the image domain. They move under the influ-
ence of forces.

internal forces are defined within the curve itself and are designed to keep
the model smooth during the deformation process. The internal forces de-
scribe the tension or bending behaviour of the curve.

external forces are computed from the image data directly and govern the
model movement towards an object’s boundary or other desired features
within an image. External forces are called image-based forces.

Deformable models are robust to image noise and boundary gaps by constrain-
ing the extracted boundaries to be smooth and to incorporate prior information
about the object shape. The models integrate all boundary elements into a con-
sistent and coherent mathematical description. Deformable models are defined
implicitely on the image grid. This allows the resulting boundary representation
to achieve sub-pixel accuracy, a highly desired feature for medical imaging appli-
cation.

The concept of deformable models date back to Fischler and Elschlager’s spring-
loaded templates [Fischler and Elschlager, 1973] and Widrow’s rubber mask tech-
nique [Widrow, 1973a,b]. The definition of deformable models first appeared in the
work by Terzopoulos and Fleischer [1988]. The popularity of deformable models
is constituted by the famous paper by Kass et al. [1988]: "Snakes: Active Contour
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Models" and related work by Teraopoulos [1987] and Terzopoulos et al. [1988].
Deformable models have become one of the most successful and active research
streams in image segmentation. To refer to deformable models various names are
used in literature: snakes, active contours (surfaces in 3D domain, respectively),
balloons, deformable contours (or surfaces in 3D, respectively).

There are two different classes of deformable models: parametric deformable
models [Kass et al., 1988; Miller et al., 1993; Amini et al., 1990; Cohen, 1991] and
geometric deformable models [McInerney and Terzopoulos, 1995a; Caselles et al.,
1993; Malladi et al., 1995; Caselles et al., 1997].

Level set methods are synonymously used to describe geometric deformable
models.

Within the next section, parametric and geometric deformable models will be
briefly presented. A specific focus is given to level set methods as they provide the
fundamental basis for the work conducted in the thesis.

4.2.1 Parametric Deformable Models

Parametric deformable models describe curves explicitly in a parametric form.
Thus, a direct interaction with the model in this representation is possible. Adapt-
ing the topology of the model, i. e., splitting or merging parts during the deforma-
tion is difficult when using parametric models.

There are two types of formulations for parametric deformable models:

1. an energy minimising formulation, and,

2. a dynamic force formulation.

The first formulation is advantageous as its solution satisfies a minimum prin-
ciple. The second formulation allows for more flexibility in using more general
types of external forces. The most commonly applied formulation is the energy
minimising formulation which will be explained in this section.

4.2.1.1 Definition of Parametric Deformable Models

The parametric curve is initialised within the image domain to find the object
boundary. The aim of a deformable model based on an energy minimising for-
mulation is to find a parameterised curve which minimises the weighted sum of
internal and external forces. Minimising the total energy will cause two effects. On
the one hand, the curve is hold together (elasticity forces) and kept from bending
too much (bending forces) through internal forces. On the other hand, the curve is
attracted towards the desired object boundaries.

In mathematical notation, a deformable contour is a curve X(s) = (X(s), Y(s))
with s 2 [0, 1], that moves in the spatial domain of an image and minimises the
energy function ✏ such that [Xu et al.]:

✏(X) = S(X) + P(X)! min. (4.15)

The first term S(X) denotes the internal force and defines the tension or smooth-
ness of a contour as:

S(X) =
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ds. (4.16)

81



82 image segmentation and analysis

The first-order derivative prevents stretching and allows the model to behave
like an elastic string. The second-order derivative constrains bending and imitates
the behaviour of a rigid rod. The strength of the model’s tension and rigidity can
be controlled by ↵(s) and �(s).

The second term P(X) denotes the external energy, called potential energy. It
is defined over the image domain and takes smaller values at object boundaries.
Thus, it typically possesses local minima at the image intensity edges that occur at
object boundaries. In Eq. 4.15, P(X) integrates a potential energy functional P(x,y)
along the contour X(s) such that:

P(X) =
Z
1

0

P(X(s))ds. (4.17)

Given a grey-level image I(x,y), a common potential energy function considered
to move a deformable model towards edges is defined as [Xu et al.]:

P(x,y) = -w
e

|r [G
�

(x,y) ⇤ I(x,y)]|2 (4.18)

in which w
e

is a weighting parameter, G
�

(x,y) is a two-dimensional Gaussian
function with standard deviation �, r is the gradient operator, and ⇤ the convolu-
tion operator. Increasing � broadens the attraction range of the moving deformable
model and can cause a shift in the final boundary location, leading to a less accu-
rate result.

Overall, the problem of finding a contour X(s) that minimises the energy func-
tion ✏ is known as a variational problem [Courant and Hilbert, 1953]. Kass et al.
[1988] and Cohen [1991] have shown that the curve minimising the energy function
must satisfy the Euler-Lagrange equation:
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To understand the physical behavior of deformable contours, Eq. 4.19 can be
interpreted as a force balance equation:

F
int

(X)- F
ext

(X) = 0 (4.20)

in which the internal energy is defined as:
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and the external energy is defined as:

F
ext

(X) = -rP(X). (4.22)

The internal force F
int

(X) prevents stretching and bending of the contour while
the external force F

ext

(X) pulls the contour toward the desired object boundaries.
To find a solution to the Euler-Lagrange formulation given in Eq. 4.19, the

deformable contour is made dynamic. X(s) is treated as a function of time t as
well as s yielding X(s, t). The partial derivative of X with respect to t is set equal
to the left-hand side of Eq. 4.19:

�
@X
@t

=
@

@s

✓
↵
@X
@s

◆
-

@2

@s2

✓
�
@2X
@s2

◆
-rP(X). (4.23)
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� is a coefficient introduced to make the units on the left side consistent with
the right side. When the solution X(s, t) stabilises, the left side vanishes. Then, a
solution of Eq. 4.19 is found. Making the time derivative term vanish is similar
to an application of a gradient descent algorithm that finds the local minimum of
Eq. 4.15 [Cohen et al., 1992]. In general, a solution to the minimisation problem
can be found by placing an initial contour on the image domain and allowing it to
deform according to Eq. 4.23.

4.2.1.2 External Forces

There is a huge variety of external forces. The definition of external forces depends
on the application. Their common goal is to increase the attraction range for the
deformable contour.

multiscale gaussian potential forces use the Gaussian potential force
given in 4.18 at different scales (starting from large � values down to small
values) to broaden the attraction range while maintaining the accuracy of the
model’s boundary location. It allows to attract the curve from a long range
and track it at finer scales. It overcomes the problem of setting the initiali-
sation curve close to the final solution [Kass et al., 1988; Terzopoulos et al.,
1988].

pressure forces are used together with Gaussian potential forces. The pres-
sure force can inflate or deflate the model. Thus, it is no longer required to
initialise the model near the desired object boundary. The deformable mod-
els using an external pressure force are usually called balloons [Cohen, 1991;
Ronfard, 1994; Poon and Braun, 1997]. The pressure force is defined as:

F
p

(X) = w
p

N(X) (4.24)

where N(X) is the inward unit normal vector of the model at X and w
p

is
a constant weighting parameter. Whether the model should be inflated or
deflated depends on the sign of w

p

that defines the strength of the pressure
force. Region information can be used to define the weighting parameter
together with a spatial-varying sign in order to determine if the model is
located inside or outside of the desired object. Using pressure forces in de-
formable models does not come without disadvantages: the pressure force
may cause the deformable model to cross itself and form loops [Tek and
Kimia, 1995].

distance potential forces increase the attraction range and can be used by
defining a distance map [Cohen and Cohen, 1993]. At each pixel the value
of the distance map is obtained by calculating the distance between the pixel
and the closest boundary point. Given a computed distance map d(x,y)
one possibility of defining a corresponding potential energy is presented in
Cohen and Cohen [1993]:

P
d

(x,y) = -w
d

exp
�
-d(x,y)2

�
. (4.25)

The corresponding potential force field is then defined as -rP
d

(x,y). How-
ever, difficulties remain when deforming the model into concavities of a con-
tour.
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gradient vector flow forces show an improved convergence into boundary
concavities and use a vector diffusion equation that diffuses the gradient of
an edge map in regions distant from the boundary. The force field is called
gradient vector flow (GVF) field. The amount of diffusion adapts according
to the strength of edges to avoid distorting the object boundaries. Details on
GVF field definitions can be found in Xu and Prince [1998b,a].

4.2.1.3 Limitations of Parametric Deformable Models

Parametric deformable models have been applied in a wide range of applications.
However, parametric deformable models have three main limitations:

1. When the initialisation of the model and the desired object boundary dif-
fer heavily in location, size and shape, the object may not be detected well
enough. The model must be reparameterised dynamically to accurately re-
cover the object boundary. A reparameterisation in 2D is usually straightfor-
ward. It requires only moderate computational overhead. However, a repa-
rameterisation in 3D requires sophisticated and computationally expensive
approaches.

2. Parametric deformable models have difficulties in dealing with topological
adaptations. Splitting or merging of model parts, usually a useful property
for detecting multiple objects or an object with unknown topology, cannot
always be correctly performed. Whenever a topology change occurs, a new
parameterisation must be constructed. To solve this difficulty, sophisticated
approaches are required [Ďurikovič et al., 1995; McInerney and Terzopoulos,
1995b].

3. The parametric deformable models described here are defined in continuous
space. Sometimes, it is more straightforward to develop deformable models
from a discrete point of view [Geiger et al., 1995; Lobregt and Viergever, 1995;
Nastar and Ayache, 1996].

4.2.2 Geometric Deformable Models

Geometric deformable models have been independently proposed by Caselles et al.
[1993] and Malladi et al. [1995] and provide elegant solutions for the limitations
of parametric deformable models. These models are based on the theory of curve
evolution [Kimia et al., 1995; Kimmel et al., 1995; Alvarez et al., 1993] and the level
set method [Sethian, 1999]. Detailed information on deformable models can be
found in Xu et al. [2000].

Curves (surfaces in 3D, respectively) are evolved using only geometric features,
yielding an evolution independent on the parameterisation. Using geometric de-
formable models, curves are represented implicitly as a level set of a higher-
dimensional scalar function. Hence, topological changes are handled automatically.
The evolution is coupled with imaging data to recover the object boundaries.
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4.2.2.1 Curve Evolution Theory

The aim of the curve evolution theory is to study the deformation of curves. In this
process, only geometric measures such as the unit normal direction and curvature
are taken into account as opposed to the quantities that depend on the parameters
such as the derivatives of a parameterised curve.

Let X(s, t) = [X(s, t), Y(s, t)] be a moving curve with s being any parameterisa-
tion and t defining the time. The evolution of the curve along its normal direction
can be described by the following partial differential equation:

@X
@t

= V()N. (4.26)

The inward unit normal vector is denoted as N and the curvature defined by .
V() represents the speed function that determines the speed of the curve evolu-
tion. Curves moving in some arbitrary direction can always be reparameterised to
have the same form as Eq. 4.26 [Kimia et al., 1990].

There are two types of curve deformation known in curve evolution theory:

curvature deformation is described by the following function:

@X
@t

= ↵N. (4.27)

in which ↵ denotes a constant. The equation smoothes, and eventually
shrinks the curve to a circular point [Grayson, 1989]. The effects of cur-
vature deformation are similar to the elastic internal forces of parametric
deformable models. The curvature deformation describes the deformation
along the tangent according to the local curvature.

constant deformation is given by the following equation:

@X
@t

= V
0

N. (4.28)

where the coefficient V
0

determines the speed and direction of the deforma-
tion.

The properties of the curvature deformation and the constant deformation are
complementary to each other. Curvature deformation smoothes the curves and
thereby removes singularities. The constant deformation can create singularities
from an initially smooth curve.

The general idea of the geometric deformable model is to match the speed of
the deformation through curvature and/or constant deformation with the imaging
data. The goal is that the evolution of the curve stops at the object boundaries.

An implementation of the evolution of geometric deformable models is using
the level set method.

4.2.2.2 Level Set Method

The level set method for evolving curves is describes by Sethian [1999, 1985]. The
method can handle topology changes automatically and provides the basis for a
numerical scheme used by geometric deformable models.
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In the level set framework, a curve is represented implicitly as a set of scalar
function, i. e., the level set function. This function is defined on the same domain as
the imaging data. A level set determines a set of points that have the same function
value. The level set method evolves the curve by updating the level set function at
fixed coordinates through time, rather than tracking the whole curve through time.
This approach is similar to an Eulerian formulation of motion in contrast to the
Lagrangian formulation, which is analogous to the parametric deformable model.

Suppose that a curve at time t is described by the closed-contour �(t). The level
set framework requires a level set function denoted as �(x, t), that is related to �(t)
according to:

�(t) = {x|�(x, t) = 0} . (4.29)

�(t) is called the zero-level set of �(x, t). It consists of points having 0 as function
value. The level set function is defined on a fixed Cartesian grid. This represen-
tation eliminates the need to parameterise the boundary and allows the level set
to handle complex geometries efficiently. A huge advantage of using the level set
method is that the level set function remains valid even when the embedded curve
changes its topology, develops sharp corners and cusps.

Most commonly, the level set funtion is described as a signed distance function:

signd(x, �) =

8
>><

>>:

-d(x, �), if x inside the contour,
d(x, �), if x outside the contour,
0, if x 2 � ,

(4.30)

in which d(x, �) describes the distance of position x to the curve � . �(t) can now
be manipulated through the level set function �(x, t) according to:

@�(x, t)
@t

+ v(x, t) ·r�(x, t) = 0. (4.31)

The vector v(x, t) defines the velocity of the level set moving in the outward normal
direction. These velocities are called speed functions and can be defined by addi-
tional internal and/or external forces. Research considering level set frameworks
concentrates on the application-driven design of these speed functions.

4.2.2.3 Narrow Band Approach

The level set method requires one to track all the level sets at the same time. How-
ever, it is more meaningful to just track those grid points which are located in a
so-called narrow band around the zero level set [Adalsteinsson and Sethian, 1995].
This allows an evaluation of the values of the level set function only at these grid
points and yields a decrease in the computational costs. With the narrow band
approach, these cost now only depend on the dimension of the framework in use
and the constant that corresponds to the width of the narrow band. A narrow
band method is easy to build and maintains the advantages of regular level set
frameworks: handling topological changes, corners and cusps and keeping high
accuracy along with its desirable extension to 3D.
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Figure 4.6: The images depict a level set function. A) shows a curve (red dotted line) con-
sisting of points x = (x,y) moving with velocity v(x, t) yielding a new bound-
ary (solid line). B) illustrates the zero-level set �(t) which is embedded into a
higher dimensional level set function �(x, t). �(t) moves as �(x, t) evolves in
time. C) Difficulties can arise when the geometry of the curve becomes irreg-
ular (left). The method is not capable to preserve the topology. Using level
sets (right) overcomes these problems due to their implicit definition. (Image
adapted from work presented by Yang et al. [2008])

4.2.2.4 Fast Marching Approach

The regular level set method can handle the evolution of the level set in forward
and backward direction. A fast approach can be designed if the curve only moves
in one direction. The method is called fast marching method [Sethian, 1996]. The
regular level set framework is time-dependent. However, using fast marching
methods allows one to operate on a stationary level. The curve is only allowed
to move in one direction. Thus, fast marching methods reduce the complexity of
computing a 4D function to a 3D function. When the curve moves forward and
backward, the curve is not a graph of a function, e. g., it crosses and intersects itself
during evolution.

4.2.3 Summary

Deformable models are able to handle topology and provide an implicit representa-
tion of structure in discrete space. Parametric deformable models have drawbacks
that can be overcome by geometric deformable models. Most commonly, geomet-
ric deformable models are represented in the level set framework. Depending on
the application, level set methods can be implemented in very efficient ways.

4.3 summary and conclusions

Clustering and classification techniques are often used as preprocessing step in
image segmentation and data exploration. Deformable models are used to correct
the topology of the identified segmented objects. They are useful when further
evaluations towards certain properties such as volume, thickness, or area measure-
ments are necessary. Depending on the application, the methods presented are
very powerful tools in image segmentation and analysis tasks.

In this thesis, the aim is to develop a parcellation scheme that requires the ful-
fillment of two prerequisites:

1. an accurate segmentation of the cortex from the imaging data, and,
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2. the representation of the cortical layering in surface-space.

Regarding the segmentation of brain data, FCM methods are appropriate as they
allow fuzzy membership definitions between WM and GM, and GM and CSF. Using
a deformable model such as the level set functions, topology-correct boundaries
of the interfacing tissue structures of the cortex can be derived. The level set
framework can further be used to construct a layering model that agrees with the
anatomy. Using such a framework allows the computation of cortical profile trajec-
tories ranging from one boundary surface to the other. These profiles are used to
sample image intensities which describe laminar patterns of cortical architecture.

Parcellation approaches commonly use k-means or Fuzzy C-means clustering
methods on the data. When exploring parcellations in respect to the order of
primary and secondary cortices as well as association areas, hierarchical clustering
and support vector machines are preferred. Parcellation approaches are discussed
in detail in the next chapter.
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5
S TAT E - O F - T H E - A RT I N C O RT I C A L PA R C E L L AT I O N

This chapter describes what a cortical parcellation is and what a good parcellation
is potentially able to capture. The chapter highlights the most relevant works in
this field. It will explain and discuss their advantages and disadvantages of the
methods. Concluding from these discussions, requirements for cortical parcella-
tions will be outlined and motivated. The chapter will close with a summary.

5.1 what is a cortical parcellation?

A cortical parcellation defines the separation of the cortical sheet into its functio-
anatomical areas. Popular approaches follow either macro- or microanatomical
criteria:

macroscopical approaches differentiate cortical regions based on gyral or
sulcal structures. Depending on the region to be identified, additional sub-
divisions are introduced, i. e., to delineate rostral/caudal or ventral/dorsal
parts of a gyrus/sulcus separately.

microscopical approaches use criteria on the micro-scale for cortical map-
ping. The cytoarchitecture of the cortex is based on differences in cell size,
packing density and distribution throughout the cortical layers. Similarly,
characteristics of the myeloarchitecture of the cortex, i. e., differences in fibre
density between cortical layers, are used to delineate cortical areas.

The aim of a cortical parcellation is to correctly identify cortical patterns in indi-
viduals in normal healthy or diseased states. Historic parcellations are based on
the examination of postmortem material (see Appendix A). Using MRI techniques,
the additional demand is to show these cortical patterns in living brains to enable
a correlation with brain function.

Parcellation approaches have to fulfill the following requirements:

• subdividing the cortex into structurally and functionally meaningful divi-
sions,

• robustly detecting the cortical areas across different brains, and,

• handling individual variation regarding the extent of these cortical areas.

These requirements target specific questions on the true number of meaningful
cortical areas in the brain and their variability in areal size. The results are often
transformed into a probabilistic atlas that allows the study of variability in the
brain.

In the following section, approaches for cortical parcellation will be presented
and discussed.
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Figure 5.1: The image schematically provides an overview on existing parcellation meth-
ods presented in this chapter and compares their different basis and outputs.

5.2 approaches for cortical parcellation

The goal of each method is to identify various cortical areas such that a parcel-
lation can be derived. Based on the methodology used, the approaches can be
distinguished into three categories (see Fig. 5.1):

• morphology-based methods,

• connectivity-based methods,

• architecture-based methods.

Morphology-based methods focus on macroscopical features such as the shape
of the cortical surface. The shape may be defined by landmarks or pure geometrical
measures. These measures may correlate with the extent of an area.

Connectivity- and architecture-based methods use information considered or
provided at the microscopical level. Connectivity-based methods usually exploit
the inherent structural or functional connectivity measured at micro-scale in the
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brain to parcellate the cortex. Architecture-based methods incorporate informa-
tion about the microstructural organisation of each cortical area. In this section,
each of the three categories mentioned above will be explained and discussed in
detail. Often, cortical parcellation is referred to as "cortical segmentation" which is
a synonym to (sub-)dividing the cortical surface into meaningful entities.

In general, there are three major techniques that are used to derive information
about the areas- or structures-of-interest in the cortex:

• manual labelling of areas or structures based on certain decision criteria,

• using a certain quantifiable and measurable feature to (semi-)automatically
identify areas or structures,

• use information derived from the previous techniques to build a probabilistic
atlas that is then mapped to new data for further analyses.

Although technology progressed, manual labelling of structures- or regions-of-
interest is commonly performed and valid until today. The majority of the methods
presented here use information derived from manual or computer-assisted delin-
eations or its probabilistic atlas representation. The described information were
used for verification, initialisation or as parameter within the parcellation method.

Please note: The resolution of the MRI data reported in the following publica-
tions was > 1mm in case of 3D anatomy and on the scale of 1.5–3mm for diffusion,
fMRI and rs-fMRI scanning. Although this thesis focuses on human cortical parcel-
lations, this chapter will include, describe and discuss techniques and approaches
applied to non-human primates, too.

5.2.1 Morphology-based Parcellation Methods

Morphology-based methods usually focus on identifying cortical folds, i. e., the
sulci. However, in neuroscience, cortical references or parcellations are gyrus-
based. Mostly, primary areas are located in a gyral structure. Association areas
such as Broca’s region are also contained in a gyrus.

Sulcal structures can be defined simply by using topographic properties or land-
marks, including the sulcal depth (gyral height, respectively), its curvature, or the
medial axes, i. e., the skeleton of sulci. The general goals of a morphology-based
parcellation are:

• a robust detection of folds, and,

• an adequate handling of individual variation in folding patterns.

Studying macroscopical features has lead to first descriptions of variability across
cortical areas (see Section 2.2.1). Solely using measures such as thickness or areal
extent alone provided no conclusive parcellation mapping. But the individual fold-
ing pattern in a brain is supposed to be in line with the organisation of functional
areas. Specifically, primary areas coincide with gyral definitions. To identify these
cortical areas, parcellation schemes based on the gyrification of the cortex have
been developed. From a pure geometrical point of view, cortical gyri are difficult
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to define. They are assumed to be delimited by two parallel sulci. Parcellation
algorithms dedicated to gyral shapes therefore rely on the detection of the sulci
delimiting the gyri.

probabilistic atlases In the early nineties, when MRI of brain structures
has become more popular and feasible, neuroanatomists started to manually iden-
tify and label cortical areas based on sulcal and gyral landmarks in living brains.
The main goal was to create probabilistic atlases [Ono et al., 1990; Caviness et al.,
1996; Duvernoy et al., 1991; Duvernoy, 2012]. Just recently, Destrieux et al. [2010]
presented a complete parcellation of the cortical surface. Neuroanatomists used
internationally accepted standard nomenclature to manually delineate the brain
surface on 2D anatomical MRI slices into sulcal or gyral structures. The delin-
eations were later used to build a probabilistic sulcal-gyral atlas of the human
cerebral cortex.

automated approaches using manual labelling

Wagenknecht and Winter [2008] segmented so-called volumes-of-interest bound
by tissue borders and cortical sulci to allow a quantitative assessment of structural
and functional properties in cortical brain regions. They used a semi-automatic
3D deformable model, i. e., a live-wire approach, on surface visualisations. This
method is faster than manual editing on 2D anatomical MRI slices. Cachia et al.
[2003] present an automated approach for the parcellation of the cortical surface
into labelled gyri. These gyri were defined from a pair of sulci manually selected
by the user. The parcellation is based on nested partitioning diagrams that were
computed on the cortical surface using geodesic functions.

advanced methods using cortical topographic measurements

More advanced methods incorporate measures of local (principal) curvature, sul-
cal depth, gyral height, cortical thickness, or surface area to derive a segmentation
into regions describing sulci or gyri.

Sulcal Depth and Gyral Height: Lohmann and von Cramon [2000] subdivided
the cortical folds into a number of substructures, called sulcal basins, in human
brain MRI data sets. The sulcal basins allow a complete parcellation of the cortical
surface into separate regions that are neuroanatomically meaningful. The basins
were segmented using a region growing approach. The assignment to specific sul-
cal structures is performed by using a model matching technique based on shapes.
This work has been extended to automatically extract sulcal and gyral patterns
from MRI of the human brain [Lohmann, 1998]. The algorithm yields highly con-
densed line representations which can be used to describe the variability of indi-
vidual cortical surfaces. The algorithm is applied directly to the volumetric image
data. Lohmann, G. and von Cramon, D. and Colchester, A. [2008] additionally
examined the deeper parts of the sulci as they generally show less interindividual
variability than superficial parts. The deepest parts of primary sulci embryologi-
cally develop first and change least as the cortex expands. Along the length of the
sulci the authors found one well-defined zone where depth is maximal, i. e., the
sulcal pit. They showed that these pits have a more consistent relationship to func-
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tional areas. Tosun et al. [2004] automatically obtained a sulci segmentation using
a watershed algorithm on the buried regions of the cortex presented by Rettmann
et al. [2002]. They used a measure of geodesic depth to define a suitable function
describing the height of the cortex, i. e., the depth of the sulcal structures.

Thickness, Area and Curvature: Makris et al. [2006] used cortical topographic
measurements such as thickness, surface area and curvature. These measurements
are regionally specific and were integrated into a cortical parcellation scheme that
subdivides the cortex into gyral-based units. The authors were able to show that
the results were consistent with current views of cortical development and neu-
ral system organisation of human [Makris et al., 2006] and non-human primate
brains [Makris et al., 2005]. Li et al. [2009] proposed an automatic cortical sulcal
parcellation approach based on the geometric characteristics of the cortical surface.
They applied a hidden Markov random field and the expectation-maximisation
algorithm on the maximum principal curvatures of the cortical surface to derive a
sulcal region segmentation. In a second step they used a principal direction flow
field tracking approach on the cortical surface to perform the sulcal basin segmen-
tation.

Skeletons: Shi et al. [2008] use sulcal skeletons as presented in Siddiqi et al.
[2002] to first partition the cortical surface into sulcal and gyral regions by solving a
variational problem using graph cuts. The presented method can trade off between
skeleton complexity and completeness of represented folding patterns and, thus,
derive a parcellation into sulcal/gyral regions automatically.

There are many more methods that provide parcellations based on skeleton ex-
traction, sulcal/gyral pattern extraction, or geodesic depth/height estimates [Man-
gin et al., 1995; Le Goualher et al., 1999; Vaillant and Davatzikos, 1997; Zhou et al.,
1999; Zeng et al., 1999; Riviere et al., 2002].

hybrid methods using spherical surface reparameterisations

More recently, hybrid methods became available. These methods use probabilistic
atlases to predict the locations of certain gyri or sulci patterns. Delineations of
structures derived manually or semi-automatically from brains were used to build
a complete atlas that describes the average probability of a data point to belong
to a certain region. This atlas can be simply registered to new data in order to
identify cortical areas.

Clouchoux et al. [2006, 2010] present a method to detect gyral and sulcal folding
patterns across individual brains. They use a model-driven parameterisation of the
cortical surface, providing an anatomically meaningful coordinate system. In this
coordinate system, the arrangement of the axes follows latitudes and longitudes as
on a spherical world mapping with specific meridians and parallels corresponding
to the axes. An initial set of manually outlined sulcal structures is provided by the
work of Cachia et al. [2003]. To fit the initial set and detect remaining structures
a multi-resolution snake algorithm on the cortical surface has been developed that
defines the best sulcal bottom line from a sulcal initialisation. Toro and Burnod
[2003] used a similar method that establishes a one-to-one correspondence between
a geometric model of axes and a cortical surface reconstruction. The parcellation
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scheme incorporates landmarks based on labelled gyri and uses the axes of the
model as boundary conditions to solve a set of partial differential equations over
both surfaces.

Similar methods using a spherical representation of the cortical surface and prob-
abilistic atlases to derive a sulcal-gyral parcellation were proposed by Fischl et al.
[1999b]; Dale et al. [1999]; Fischl et al. [1999a]; Van Essen and Dierker [2007]; De-
sikan et al. [2006]. Spherical representations are also used by Hinds et al. [2008]
and Fischl et al. [2004b] to predict the location of anatomical areas using intersub-
ject surface-based registration of the primary cortical folds.

5.2.1.1 Discussion on Morphology-based Approaches

Using parcellation schemes that incorporate information about landmarks or fold-
ing pattern are helpful in globally identifying cortical areas and their functionally
equivalent lobes. Features such as sulcal depth or height as well as the definition
of medial axes or their skeletons in cortical folds were proven to be successful.
However, these methods are restricted towards:

1. only identifying primary areas,

2. the topographic metrics they use, and,

3. their performance.

primary vs non-primary areas Given the anatomical perspective, mor-
phology-based approaches usually work well in primary areas, but they lack evi-
dence in higher order cortical areas due to the increased variability of folding in
such locations (see again Fig. 2.5). In addition, the architectonic boundaries also
have a very loose definition in association areas which in itself allows only limited
comparison between boundaries and folds. Hence, these parcellation schemes are
not applicable in a cortex-wide manner as they are restricted to main morphologi-
cal features.

topographic metrics of gyri and sulci Curvature metrics locally divide
a cortical fold into its gyral and sulcal component, but the architectural extent of
an area is often not limited to this subdivision. The primary motor area reaches
dorsally into the gyral crown of the precentral gyrus. Using such a local gyral-
sulcal subdivision is inapplicable for secondary cortices or association areas as the
variability of the folding pattern increases, and as such, the extent of areas, varies.
Likewise, using cortical thickness solely as a measure to identify primary areas is
inadequate as even primary areas show large differences in thickness. The primary
motor area represents the thickest area in the human cortex and the primary visual
area is the thinnest within cortex.

performance The performance of sulci-gyral approaches using manual la-
belling is questionable. The effort for training the approaches, e. g., manually
labelling structures, is very high. First, all sulci patterns have to be labelled and
then the negative, e. g., the gyral formation, is computed. Limitations considering
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manual delineations and the construction of probabilistic atlases are discussed in
Section 5.2.4.

5.2.2 Connectivity-based Parcellation Methods

Connectivity-based parcellation schemes are based on the connectivity in the brain
which is described by structure or function. When using structural data, cortical
areas with similar long-range connections encompass a region, which is segregated
from neighboring regions with different connections. The structural connectivity
pattern of a voxel in the cortex is approximated by a tractogram (see Section 3.3.1).
If the correlation value between any two of these tractograms is high, they are likely
to be connected. When using functional data, a cortical area involved in cognitive
processing encompasses a region, which is segregated from neighboring regions
by a different activation pattern. Usually, fMRI and rs-fMRI techniques correlate
activity measures across two or more areas and examine how correlations between
these areas change when participants are engaged in a cognitive process. If the
correlation between any two of these voxel is high, they are likely to be involved
in the processing of the same task.

computing a connectivity matrix The correlation between any two voxel
is assigned to an entry in a connectivity correlation matrix. Hence, connectivity-based
parcellation schemes are also referred to as correlation-based methods. The gen-
eral prerequisite of any connectivity-based parcellation technique is to compute
such a connectivity correlation matrix. Using all data points on the cortical surface,
i. e., usually 32 000, and correlate them to each other will yield a very large matrix
consisting of 32 000-by-32 000 entries. Calculating such huge matrices is time con-
suming. Generally, it is often not reasonable to incorporate all data points. The
results may prove to be inconclusive or insignificant due to the large matrix size.
Usually, dimension reduction is performed on the data to allow a focused analysis.
This is done by choosing a seed region that encompasses several cortical areas and
contains k data points. The original matrix is then reduced to in size to k-by-32 000
entries. The goal of the parcellation scheme is to subdivide the seed region into
meaningful entities that may correlate to cortical areas.

The i-th column in the matrix determines the degree of similarity between the
seed voxel i and all other seed voxel. Voxel with similar connectivity patterns show
a similar pattern of correlation within the connectivity matrix. In order to define
collections of voxel with similar connectivity, a cluster algorithm is applied to the
columns of the connectivity correlation matrix. As a consequence, this requires
that the number of clusters has to be introduced beforehand.

approaches using structural connectivity Croxson et al. [2005] per-
formed quantitative investigations on the connectivity pattern in the prefrontal
cortex of humans and macaques. They showed that non-invasive techniques, such
as diffusion MRI, are comparable to invasive techniques, such as tracer studies,
specifically when addressing association areas. Since then, the field of structural
connectivity investigations has grown. Johansen-Berg et al. [2004] used diffusion-
weighted MRI to examine the structure-function relations in the cortex of nine
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healthy human subjects. Using no prior information, they identified distinct corti-
cal regions having similar connectivity profiles and borders where the connectiv-
ity changed. Their results were in agreement with anatomical assignments and
demonstrated for the first time a strong relationship between structure and func-
tion.

Global Connectivity derived from White Matter Fibres: Anwander et al. [2007]
replicated the aforementioned technique to study the anatomical subdivision of
Broca’s area in six healthy human subjects. They identified cortical regions with
mutually distinct and internally coherent connectivity patterns. These findings in
Broca’s region were supported by Klein et al. [2007] who used diffusion MRI to
perform connectivity-based parcellation in nine human subjects. Tomassini et al.
[2007] presented a parcellation method based on tractograms derived from diffu-
sion MRI data. They separated the lateral premotor cortex in 17 healthy macaque
monkeys into structurally and functionally distinct subregions which have distinct
cytoarchitecture, function, and patterns of connectivity with both frontal and pari-
etal cortical areas. Similar results using the same or a slightly adapted version
of the approach were presented for many brain structures, including the primary
motor cortex [Guye et al., 2003], the inferior parietal cortex [Ruschel et al., 2014],
the cingulate cortex [Beckmann et al., 2009], the insula [Nanetti et al., 2009], the hu-
man thalamus [Johansen-Berg et al., 2005], and for connectivity mapping through
the corpus callosum [Park et al., 2008].

Local Connectivity based on Grey Matter Microstructure: Zhang et al. [2010]
presented a novel automatic method for cortical surface parcellation based on fibre
density information assuming that fibres connecting to the same cortical region
should be within the same functional brain network. Hence, their aggregation on
the cortex can define a functionally coherent region.

Nagy et al. [2013] use diffusion data for a first attempt to map the individual
grey matter microstructure within the entire cortex. They derived features from
diffusion data considering the local cortical normal direction as well as orientation-
ally invariant features. These features were used as fingerprints of the underlying
GM structure. The authors applied a support-vector machine classifier that was
able to successfully distinguish cortical areas.

approaches using functional connectivity Besides structural analy-
ses, one can also investigate the functional connectivity in the brain. Wig et al.
[2014] used functional resting state correlations to parcellate human cortical areas.
They showed that the resulting parcellations agree with parcellations derived from
fMRI and gyral/sulcal landmarks. Results also indicate an additional subdivision
of the retrieved functional clusters defined by fMRI, i. e., so-called sub-areas.

Cohen et al. [2008] correlated rs-fMRI with fMRI data using a hierarchical cluster-
ing of connectivity data. The regions detected using rs-fMRI proved to be appropri-
ate in size and number for the reported functional areas.

Yeo et al. [2011] studied the functional cortical networks in 1000 human subjects
derived from rs-fMRI. The study showed that the functional connectivity agrees
with motor and sensory areas as well as association areas.
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Blumensath et al. [2013] also used rs-fMRI for parcellation. Their results confirm
clusters derived from task-based fMRI. But, the connectivity-derived parcellation
borders agree less to borders derived from cortical myelination and from cytoar-
chitectonic atlases. The authors conclude that their findings reflect inherent differ-
ences in the structural and functional intracortical organisation.

combining structural and functional connectivity A review of
connectivity-based approaches can be found in Damoiseaux and Greicius [2009].
To allow more precise findings, these methods focus on smaller locations usually
encompassing individual functional lobes. Studies were conducted in the human
lateral frontal cortex [Goulas et al., 2012], the medial frontal cortex [Johansen-Berg
et al., 2004; Kim et al., 2010] as well as the striatum [Choi et al., 2012; Di Martino
et al., 2008]. Results of the parietal cortex were also compared to macaque brains
[Mars et al., 2011].

These structure-function analyses were also examined under additional research
perspectives considering different magnetic field strengths of 3T and 7T [Hale
et al., 2010] as well as using ultra high fields to gain better resolution and decrease
partial voluming artefacts [De Martino et al., 2011].

5.2.2.1 Discussion on Connectivity-based Approaches

Connectivity is described on the basis of structure or function. Diffusion MRI al-
lows one to measure brain structure in-vivo and ex-vivo. Functional activation
can be measured only in-vivo. Correlating structural and functional connectivity
is reasonable and it has been proven that they correlate to each other. However,
Blumensath et al. [2013] were able to show that functionally defined regions do
not necessarily correlate with structural boundaries defined architecturally. This
demonstrates that boundaries determined based on intracortical architecture and
boundaries of functional activation can differ. Investigations are neccessary to
study the extent and the reasons of this variability.

The discussion presented here addresses three main limitations of connectivity-
based parcellation approaches:

1. limitations of the structural and functional connectivity data,

2. limitations of using the seeded regions as initialisation,

3. limitations of the methods separating correlation matrices into clusters.

data limitations Diffusion MRI as well as fMRI and rs-fMRI have substantial
limitations. Hence, analysing structural and functional connectivity in a combined
setup has been subject to criticism. The resolution of diffusion data is usually
>1mm and >1.5–3mm for functional activation data. But the underlying measur-
able physical effects occur at the micro-scale, i. e., the diffusion of water molecules
and the BOLD effect (see Section 3.3). Interpretability of the data is therefore vul-
nerable to artefacts and has to be taken with caution. Tracts derived from diffusion
data only follow (into) the gyral crown or fundus of sulci. The computed tracks
never turn into sulcal walls. This is regarded as anatomically not reasonable, be-
cause in reality cortical fibres descend from and enter into the cortical surface in
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sulcal walls, too [Nagy et al., 2013]. From a global perspective, diffusion MRI only
maps long-range connections. Intra-area fibres, and intracortical fibres or connec-
tions between neighboring areas are only measurable to a limited extent.

In fMRI, the BOLD effect integrates into opposite regions. Although, for example,
a (somato-)sensory task is used to stimulate sensory regions, it will cause an effect
in the opposite primary motor region, too. This is due to blood vessels reach-
ing into the central sulcus supplying both regions. This stimulation effect is cur-
rently investigated using so-called negative BOLD imaging which tries to separate
between real and integrated BOLD effects [Huber et al., 2015]. Further concerns
regarding the use of fMRI address the limited scope of brain analyses possible.
When performing a task during a scan, these tasks relate to the functioning of
motor, sensory, visual, speech or memory skills. These skills can rarely be anal-
ysed together. Cortex-wide task-setups are hard to design. They require multiple
scanning which costs time (up to several hours). However, scanning of subjects is
regulated through ethical approval and thereby restricted.

Limitations particularly addressing rs-fMRI were discussed by Buckner et al. [2013]
and specifically regard the interpretation of rs-fMRI data. The problems range from
questions like "What is the resting state of the brain?" to "Is mind-wandering al-
ready a task?". These questions cannot be answered at the current stage. Hence,
the results derived from resting state analyses need to be judged with caution.
Discussions and critical comments can be found in Deco and Jirsa [2012].

initialisation Results provided by a connectivity-based parcellation method
using a seed region as input is already limited by its initialisation. The region and
its extent are predefined. Hence, a potential variability outside of this region can-
not be measured. Additionally, the number of areas to be detected in the labelled
region is also predefined. This is a critical concern. Furthermore, the seed region
has to be defined either manually or automatically. General limitations of manual
labelling shall be discussed in the last section of this chapter. This thesis aims at
designing a method that may provide automatic labels.

methods Like for any clustering method, the main difficulty is to trade off
between the model’s consistency and its advanced sophistication. Consistency
describes how well the resulting clustering characterises the structure of the data.
The model’s sophistication denotes the ability of a simple model to define relevant
features and to ignore noise. Usually, different numbers of clusters are tested.
However, since functional studies have revealed sub-areas, the question arises if
these sub-areas truly exist and relate to the underlying architecture. Sub-areas can
also be artificially introduced by overfitting the method used to separate the data
such that the sub-areas only represent an oversegmentation of the underlying data
but no true anatomical variability.

5.2.3 Architecture-based Parcellation Methods

Architecture-based approaches use intracortical features to parcellate the cortical
surface. In more general terms, metrics are used that quantify the laminar pattern
to locate areal borders. The first architecture-based parcellations used features
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extracted from so-called cortical profiles, i. e., traverses running from the inner to
the outer boundary along which the underlying data is sampled. Usually, these
features were associated with cytoarchitecture or myeloarchitecture, i. e., size or
density of cells or myelinated fibres represented in the different cortical layers. The
parcellations were derived manually from 2-dimensional sections of postmortem
tissue. An overview of these classical parcellations is given in Section 2.2.2.

parcellations based on literature reports Classical parcellations only
appeared as drawings in printed publications. A century ago, neuroanatomists
had no technology available to store their results in a digital version, not to men-
tion a standard reference space. To still make use of all reported classical findings,
Nieuwenhuys [2013] started to collect knowledge from literature in order to build
a first descriptive atlas based on literature findings [Nieuwenhuys et al., 2014].
This atlas uses information regarding myeloarchitecture and its spatial patterns. It
is a 2D projection onto a standard reference space. However, to make it accessable
as a digital 3D probabilistic atlas, further work is needed.

observer-independent methods With technological progress in automated
histological staining and microscopic imaging, parcellations based on postmortem
material were automated towards observer-independent analysis techniques. Schle-
icher et al. [1999] presented a sliding window technique that quantitatively anal-
ysed the regional and laminar organisation in cytoarchitectonically defined areas
of the human primary motor-somatosensory cortex. This approach is based on
cortical profiles depicting the grey level index, i. e., intensity, derived from the
digitised microscopic images. The authors used the first four moments on the in-
tensity profile and its gradient profile. These moments describe the shape of a set
of points along cortical depth, including among others the mean value and point
of gravity of the profile. The Mahalanobis distance was then applied to segregate
the areas. This method has been successfully replicated on histological stained
sections in the primary visual cortex [Schleicher et al., 2000]. Areas in the primary
auditory cortex were distinguished based on myeloarchitecture [Schleicher et al.,
2005]. Malikovic et al. [2007] applied the sliding window technique to correlates
representing the motion-sensitive area V5 in the visual cortex. Annese et al. [2004]
automatically distinguished cortical areas based on 2D sections stained to reveal
myelinated fibres. The cortical profiles used in this approach were classified to
belong to a certain area according to significant components that emerge from a
wavelet analysis.

manual delineations Eickhoff et al. [2005b] provided a first 3D digital prob-
abilistic atlas based on real cytoarchitecture-related data. They manually delin-
eated 10 postmortem brains on 2D sections and registered the results to anatomical
and functional MRI data. Using these cytoarchitectonic manual parcellations and
surface registration methods, Fischl et al. [2008] were able to successfully provide
probabilistic maps of cortical areas. Such maps are consistent with myeloarchitec-
ture only in primary areas.
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mapping of structure and function New MRI mapping techniques allow
one to image the brain at sub-millimetre resolution. With myelin being able to
capture inter-areal differences, new approaches evolved that outline areas by using
fMRI data. Sereno et al. [2012] used T

1

mapping to measure the local myelination
in visual areas. To detect these areas, fMRI-based retinotopy was performed in
the same subjects. The outlines of functional activity were then mapped onto
the subjects’ structural data for identification. Lutti et al. [2014] and Dick et al.
[2012] combined tonotopic and myeloarchitectonic T

1

mapping to localise primary
auditory areas in individual healthy adults.

conceptual approach Hellwig [1993] provided a concept on a cytoarchitec-
ture-driven model that estimates myelin content in different areas in the cortex

based on the cellular composition in these locations as indicated by the tabulations
of von Economo and Koskinas [1925]. Hellwig [1993] simplified the findings by
Sanides [1962] and Braitenberg [1962, 1974] (see Section 2.4) and proposed that
large neurons contribute more to intracortical myelin content than small ones, and
that this relationship can be modelled using a sigmoid function. He then projected
a structural shift of the laminar myeloarchitectonic pattern using data provided by
Paldino and Harth [1977]. To compare his area-specific models to myelin prepa-
rations, Hellwig [1993] transformed the profiles linearly into grey values. Values
located at the outer cortical surface represented 0% myelin, values at the inner
cortical surface corresponded to 100% myelin. Although Hellwig [1993] presented
a conceptual method, he was the first to report indicators of myelin concentra-
tion based on cell composition in the cortex. These qualitative myelin profiles
were comparable to myelin-stained sections and the myeloarchitecture described
by Vogt and Vogt [1919a,b].

architecture-based parcellation models A decade ago, in-vivo MRI
methods started to produce imaging data with an increased resolution at sub-
millimetre scale such that several voxel covered the whole cortical depth. This
enabled one to sample intracortical features of laminar architectonic patterns. The
main research stream focused on revealing the similarities between classical histol-
ogy and MRI data (see Section 3.2). Cortical profiles have been used to compare
these two disciplines [Glasser et al., 2014].

A first contribution of an architecture-based parcellation scheme in living human
brains using 7T MRI has been presented by the author of this thesis [Dinse et al.,
2013b]. The method is an adaptation of the approach presented by Hellwig [1993]
and includes a normalisation step towards an application to in-vivo MRI data. A
first attempt of an architecture-informed parcellation scheme in a ferret brain using
ex-vivo MRI data measured at 7T has been presented by Leprince et al. [2014].

To the knowledge of this author, other architecture-informed parcellation schemes
do not exist yet.

5.2.3.1 Discussion on Architecture-based Approaches

Most of the above-mentioned techniques deal directly with the intracortical archi-
tecture at micro-scale. These methods are closest in terms of successfully respect-
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ing architectural definition. They present no restriction towards landmarks and
are able to perform in secondary cortices as well as association areas.

But these methods are limted by:

1. the data,

2. the layering and profile construction, and,

3. the feature definition.

data limitations The parcellation methods presented were built for or based
on 2D sections of postmortem tissue. In general, staining techniques allow no pre-
cise structural assessment in 3D and provide no information about the function
(see Section 3.4). Furthermore, staining techniques are vulnerable to saturation
effects. So far, MRI methods were not able to catch up with the information pro-
vided by histological data. Only recently, MRI techniques became available that
provide a sufficient resolution in the sub-millimetre range which allows one to
sample intracortical features. Also, MRI methods start to provide contrasts that
reflect intracortical architecture (see Section 3.2.1).

cortical layering The sliding window approach presented by Schleicher
et al. [1999] incorporates features derived from cortical profiles. These profiles are
based on a layering technique which is not able to respect the shifting behaviour of
the intracortical layers in gyral crowns and sulcal fundi. Thus, features were sam-
pled in locations that may not coincide with the correct laminar position. Hence,
the profiles were distorted, also known to be curvature biased. Different layering
techniques are presented and compared to each other in the Appendix B. A novel
anatomically motivated layering will be presented in Section 6.2.2.5.

profile features To parcellate the cortex and separate areas, Schleicher et al.
[1999] and Annese et al. [2004] used features computed from the histological data
rather than using layer-specific features within the data such as cell or fibre num-
ber and density. The features selected may produce unreliable results because the
features may be similar to each other although they originate from different corti-
cal areas.

Currently, cellular structures represent the only quantifiable measure of intra-
cortical features such as size, number, type, and density of cells in given sublayers.
The most promising approach has been presented by Hellwig [1993]. Indeed, his
results are valid for qualitative comparisons. The estimated myelin profiles are
not fully in agreement with classical works by Braitenberg [1962] and Hopf [1967,
1968, 1969, 1970]. Vogt and Vogt [1919a] and von Economo and Koskinas [1925]
pointed out that there are variations in myelin in outer cortical surface as well as
towards the WM boundary surface. Dinse et al. [2013a] and Tardif et al. [2013] re-
cently showed that the myelin distribution in different cortical depths varies also
in in-vivo MRI data. Adapting Hellwig’s method towards a first in-vivo application
is the next step towards an efficient and accurate parcellation of the human cortex.
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5.2.4 Limitations of Manual and Probabilistic Atlases

Although technology progressed, manual labelling of material and data is com-
monly performed and valid until today. The majority of the methods presented
here uses manual techniques or semi-automatic approaches requiring manual in-
teraction. In general, manually labelled data is more accurate, justifying the high
effort to produce these. However, a whole-brain scan can be performed in less
than 30min. In contrast, manually labelling brains requires hours. This shows the
need for automated procedures.

Furthermore, the brain is the most complex and highly folded organ of the hu-
man body. Manually labelling anatomical brain structures based on visual critera
is a matter of convention. Delineations are subjective and even when performed
repeatedly by the same person on the same data, the result can vary.

Probabilistic atlases have been used, too. They describe how frequent certain
structures appear across brains. Using these atlases raises major concerns consid-
ering:

• the manually provided base data: Each expert has an individual scope of
knowledge and level of performance. If several experts label the same brain,
the atlases include inter-rater variability because delineations of different ex-
perts may vary in their extent.

• the automatically provided base data: When the atlas is derived by auto-
matic methods, results need to be taken with caution. Are those atlases
reliable enough, knowing that the current methods have valid limitations?

• the exclusion of variability: Probabilistic atlases are often thresholded at a
certain frequency prior to application. This is problematic as the variability
introduced by the individually different brains is neglected.

• the projection of atlas data: Probabilistic atlases are constructed from a set of
brains and applied to a set of different brains. The result of this projection can
only be interpreted as an "assumption" that reference and target structures
are similar enough. In addition, most atlases reveal a large age difference to
the data sets they get compared to.

In the neuroscience community, the atlas presented by Eickhoff et al. [2005b] is
used as common standard reference. The atlas is regarded as the best base that
new work can get compared to. However, at the same time, the 10 brains that
were used to build the atlas are insufficient to capture the anatomical variability
of a species. In the research community a debate just recently started on how to
estimate appropriate sample sizes [Charan and Biswas, 2013].

5.2.5 Motivation and Requirements for Architecture-based Parcellation Methods

The main goal of a new parcellation method is to overcome the limitations posed
by existing techniques and limitations produced by manual delineations.

An ideal approach needs to:

102



5.3 summary and conclusions 103

• incorporate architecture-relevant information: The method shall respect the
anatomical layering within the cortex, particularly the shifting behaviour
of the layers in gyral crowns and sulcal fundi within an area. Ideally, the
method would incorporate information at micro-level. This information may
be introduced through the data the method is applied to, or a-priori by other
modalities.

• respect areal extent: The borders of areas in the cerebral cortex are not bound
precisely enough to macroanatomical landmarks such as gyri and sulci. The
relationship is strong in primary areas, but more loosely defined in secondary
cortices and association areas. In these areas, gyri and sulci are extremely
variable. Thus, the parcellation method shall have no restrictions regarding
sulcal or gyral landmark-definitions and respect the high variability in non-
primary areas.

• offer cortex-wide application: The parcellation scheme shall be valid for all
areas cortex-wide and not be custom-built for specific areas.

• provide robustness: When applying the method to multiple brains, it shall
yield a similar result.

• be independent of type of input data: The method shall be independent
regarding the type of the input data. It shall be applicable to in-vivo and
ex-vivo data. In addition, the technique shall allow translation or scaling
towards information provided by further modalities such as MRI or histology
data.

• run automatically: The method shall compute and provide the parcellation
of the cortex in an observer-independent manner, not requiring further user
interaction.

By fulfilling these requirements, such a method may provide:

• an automated procedure that would be important for further investigations
of research and clinical data.

• labels describing cortical areas which could in turn be used as initilisation
for seed-based approaches. These labels would be more appropriate in re-
gard to the variability of individual brains, since they were derived from the
same brain they get applied to. Using these parcellation-derived labels may
overcome the limitations of predefining the extent of an area manually or
using projections of probabilistic atlases.

The most promising approach that may fulfill the requirements was presented
by Hellwig [1993].

5.3 summary and conclusions

A cortical parcellation aims at separating the cortical surface into distinct areas. As
such, every parcellation method addresses the same questions:
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• How many areas and sub-areas can be found in the cortex?

• What is their true areal extent on the surface?

These questions are part of ongoing research and are challenging for each method
presented above.

Existing parcellation methods are mainly limited by:

• the input data: MRI methods commonly operate at millimetre scale while his-
tological data are vulnerable to the staining procedure itself (see Section 3.4).
In addition, both methods are limited in reflecting cortical microstructure
appropriately.

• the layering model: Using inaccurate layering models yields a distorted
sampling of cortical features which are in turn used in the parcellation ap-
proaches.

In this thesis the above-mentioned limitations shall be overcome by:

• acquiring data that accurately reflects cortical myeloarchitecture,

• using a newly developed cortical layering model that respects the shifting
behaviour of layers in gyral crowns and sulcal fundi in the cortex, and,

• building an architecture-driven parcellation model that provides area-specific
signatures on the cortical surface.

In this thesis, Hellwig’s concept will be adapted to accurately model cortical
profiles representing laminar myelin density patterns in the cortex. An additional
adaptation towards in-vivo MRI data is necessary.
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6
D ATA A C Q U I S I T I O N A N D P R O C E S S I N G F O R C O RT I C A L
S U R FA C E E X T R A C T I O N

This chapter outlines the image acquisition procedure and processing of the data
in order to extract the cortical surface.

6.1 image acquisition

This chapter outlines the image acquisition of in-vivo MRI data (Section 6.1.1), post-
mortem MRI and histological data (Section 6.1.2).

All data were acquired at the Max Planck Institute for Human Cognitive and
Brain Sciences in Leipzig, Germany, and the collaborating Paul Flechsig Institute,
also located in Leipzig.

A challenge in this thesis was the relatively new mapping technique which pro-
vides quantitative data of human brains. In order to show that these data sets re-
flect cortical myeloarchitecture, in-vivo data needed to be compared to postmortem
data. Therefore, in-vivo MRI scans were obtained from several healthy subjects.
Ex-vivo MRI scanning of one postmortem tissue block has been performed. The
postmortem material used in the ex-vivo scanning underwent classical histological
staining to reveal the underlying intracortical cell structure and myelinated fibre
pathways.

In the following sections, an outline of the imaging parameters used to acquire
the different data sets is presented.

6.1.1 Structural Imaging of Living Human Brains using MRI

22 healthy human subjects (25.5 ± 3.4 years, 11 female subjects) were scanned with
the MP2RAGE sequence [Marques et al., 2010] and a TR-FOCI pulse for inversion
[Hurley et al., 2010] on a 7T whole-body MRI scanner (MAGNETOM 7T, Siemens,
Germany) using a 24 channel phased array coil (Nova Medical Inc., Wilmington,
MA, USA).

For each subject, a whole-brain quantitative in-vivo T
1

map at 0.7mm isotropic
resolution was obtained using the two GRE images D

1

and D
2

acquired at the
two different inversion times TI

1

and TI
2

. The GRE images were combined to a
T
1

-weighted image D
W

following the equations given in Section 3.2.3:

D
W

=
D

1

D
2

D2

1

+D2

2

, (6.1)

The T
1

map was then calculated by fitting the T
1

values at each voxel to an
exponential function describing the longitudinal relaxation (see Section 3.2.3).

The parameters used during scanning were: TE = 2.45ms, TR = 5 s, TI
1

=
900ms, TI

2

= 2750ms, ↵
1

= 5°, ↵
2

= 3°, GRAPPA = 2. The scan time was
11min. In the same scan session, T

1

maps at 0.5mm isotropic resolution of each
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Figure 6.1: The images present an overview of in-vivo data acquired and processed in this
work. Left: Inflated 0.5mm T1 map at 55 % cortical depth. The M1/S1 region,
known to be more highly myelinated, shows lower T1 values. Variability in
T1 values is visible across the surface but also within M1 (encircled) which is
related to the location of the motor hand knob, e. g., the highest myelinated
region in the brain. The white doublebow curve outlines the ROI shown in the
2D MRI slice of the in-vivo T1 map (upper right). Brodmann Area (BA) 4 shows
lower T1 values than BA 3b. Striation (arrows) is visible. The image below
depicts the cortical depth values calculated using a novel volume-preserving
layering approach in the applied processing pipeline [Waehnert et al., 2013c]
(see next chapter). In locations of gyral crowns (white arrowhead), the outer
surfaces are compressed while the inner surfaces are stretched out. In locations
of sulcal fundi (pink arrowhead), the behaviour of the surfaces changes to the
opposite.

hemisphere were acquired separately (same parameters, no GRAPPA, scan time =
30min each). The total scan time amounts to 75min.

Fig. 6.1A depicts in anterior-posterior orientation an inflated in-vivo quantitative
T1 map of a single subjects left hemisphere. Low T1 values (in ms, shown in blue)
are associated with higher myelination.

6.1.2 Structral Imaging of Postmortem Human Brain Material using MRI and Histology

The ex-vivo data were acquired for verification only and information and/or re-
sults provided by the data were not used or incorporated in any way in the data
processing pipeline.

An ex-vivo brain sample of the left primary motor and somatosensory region, i.e.
M1/S1 region, was analysed. Fig. 6.2 shows the brain sample used. The red curve
outlines the region of interest. A formalin-fixed block of human postmortem brain
(age: 92 years, postmortem time: 22h) containing the pre- and post-central gyri
was obtained from an autopsy with informed consent from the patient’s relatives.
No neurological or psychiatric pathologies were recorded for this brain.
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Figure 6.2: The pictures show the postmortem brain sample used (left) to derive ex-vivo
data. The red doublebow curve covers the ROI which are depicted in a 2D MRI
slice of the ex-vivo T1 map (middle). Brodmann Area (BA) 4 shows again lower
T1 values than BA 3b. Striation is visible in BA 1 and 2 (arrow). The picture to
the right illustrates the cortical depth values calculated during processing the
data. The behaviour of the computed intracortical layers is similar as in Fig. 6.1
but much more visible due to the higher resolution of the ex-vivo MRI.

The block was scanned in Fomblin (Solvay Solexis, Bollate, Italy) with a home-
built dual-loop circularly polarised radio frequency (RF) coil. The MP2RAGE se-
quence was used to obtain a quantitative T1 map of the M1/S1 region with an
isotropic resolution of 0.25mm. The scan parameters were: TE = 2.94ms, TR =
3 s, TI1 = 325ms, TI2 = 900ms, α1 = 8°, α2 = 8°, 66 averages. In postmortem
scanning, longer scan times can be used as the objects scanned do not experience
motion. Longer scan times achieve better signal. The acquired data blocks are
retrospectively averaged. The actual scan time amounts to 11h 43min. Fig. 6.2
depicts the quantitative T1 map obtained from the tissue block.

The same brain sample, containing Brodmann areas 4, 3, 1, and 2, was used for
histological analysis. The block was cut with a freezing microtome (SM 2000R,
LEICA Biosystems, Wetzlar, Germany). Consecutive sections were stained for
myelin and cells and examined under an Axio Imager M1 light microscope (Zeiss,
Jena, Germany) with a 5x objective at 2.58µm in-plane resolution. In this work,
only the myelin stains were considered (see Fig. 6.3). The cell stains were used
for a general comparison of the underlying tissue structure. The sections (thick-
ness: 30µm) were immunostained for myelin sheaths (rabbit monoclonal antibody
against myelin oligodendrocyte glycoprotein (MOG) diluted to 1:2000, avidin-biotin-
peroxidase complex (ABC) method, chromogen: 3.3’-diaminobenzidine (DAB) tetrahy-
drochloride and ammonium nickel(II) sulfate). The floating sections were pre-
treated in sodium borohydride (NaBH4) for 30min at room temperature in order
to enhance the antigen accessibility [Jäger et al., 2013].

Every other section of the same block was immunostained for cell bodies (mouse
monoclonal antibody against neuronal marker protein HuC/HuD diluted to 1:400,
ABC method, chromogen: DAB tetrahydrochloride and ammonium nickel(II) sul-
fate). The floating sections were pre-treated in Tris buffer (pH 8.0) for 20min at 90°
Celsius.
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Figure 6.3: The images illustrate the myelin stain and enlargements of it in locations of the
green lines. The yellow line follows the WM boundary. Red boxes depict the
Baillarger banding. As direct comparison, Hopf’s illustrations were included
as depicted in Fig. 2.11 [Hopf, 1967].

6.2 processing of in-vivo and ex-vivo data

The segmentation and representation of the human cortical surface plays an im-
portant role in neuroscience. Specifically, accurate reconstructions of the cerebral
cortex from MRI data enable scientists to study and analyse cortical features of an
individual subject. These features may be morphometric measurements such as
grey matter volume, cortical surface area, or sulcal depth. The measures also allow
careful observation of the cortical characteristics in individuals and groups of both
normal development and pathological disease. For comparisons across different
brains or species a correspondence, i. e., a so-called normalisation or registration,
between the cortical reconstructions is essential. A registration of cortical surfaces
is nowadays used in digital atlas labelling, and population-based probabilistic atlas
building. Both cortical reconstruction and registration are important for structure
and function mapping.

cortical surface definitions Geometrically, the human cerebral cortex is
a thin, complex folded sheet of 2–5mm. As described in Section 2.1, it is bounded
by WM on the inside, and CSF, vasculature and dura mater on the outside. Here,
it is useful to define the cortical surfaces. The surface interfacing WM and GM will
be called WM/GM boundary surface, or short, inner cortical surface. The surface
interfacing GM and CSF will be called GM/CSF boundary surface, or short, outer
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cortical surface. A surface running in-between these two boundary surfaces is
called central or mid cortical surface. Here, usually the relative cortical depth the
surface is located in will be defined. A cortical profile is represented by a traverse
running from one boundary surface to the other while sampling the image values.

A cortical reconstruction describes the localisation and representation of one or
even more of these mentioned cortical surfaces. Classical segmentation approaches
classify the image pixel to belong to (in this case) GM or not. However, an accu-
rate reconstruction of a cortical surface provides a geometric representation of the
cerebral cortex. This representation is in alignment with the true geometry of the
brain. Hence, it agrees with the different lobes, the gyral folds, and narrow sulci.

influencing factors Creating a surface reconstruction can be difficult due
to artefacts or influencing factors arising from the MRI imaging or the data process-
ing.

Non-uniform radiofrequency coil sensitivity patterns cause MRI intensity inho-
mogeneities that result in inaccurate thickness patterns or missing components
of the cortex. These issues must carefully be taken into account. Partial volume
effects are most common, but also most problematic, specifically in very "tight"
sulcal structures in which two neighboring folded GM banks are basically located
"back-to-back" to each other, leaving little CSF in-between. Image noise may lead
to segmentation artefacts due to misclassification of GM. This leads to missing or
additional incorrect components which yields a representation of the cortex that is
erroneous from an anatomical viewpoint.

Poorly reconstructed cortical surfaces do not allow a full assessment of statistical
measures such as cortical thickness, surface area or curvature. In addition, mea-
sures along a cortical profile, i. e., a traverse running from one boundary surface
to the other and sampling image values, may be corrupted. Undersampling the
cortex based on missing components or oversampling it due to false additionally
added pieces, yields an incorrect assignment of information to a cortical profile.

additional information Most of the methods are related to the level set
framework which allows a numerical analysis of surfaces and/or shapes on a fixed
Cartesian grid with no need to parameterise the object(s). Detailed descriptions
and discussion on parametric and geometric deformable models is given in Section
4.2.2.

This section will shortly introduce the necessary steps of the used cortical surface
extraction pipeline. Given the data aquired, the focus will be on in-vivo data
processing (Section 6.2.2 including the estimation of intracortical surface using
the new layering method developed by Waehnert et al. [2013c]. The section will
continue describing the processing steps for ex-vivo data analysis. Finally, the
software used for analysis and method implementation will be outlined.

6.2.1 General Remarks

Improvements in the spatial resolution of structural MRI are beginning to enable
the analysis of intracortical structures such as the heavily myelinated layers in 3D,
a prerequisite for in-vivo parcellation of individual human brains.
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To extract information from the data requires a few processing steps. The fol-
lowing steps are included in the processing pipeline applied in this thesis:

1. Fusion of the structural whole-brain and hemispheric slab images into a com-
mon reference space.

2. Preprocessing including skull stripping of the brain and estimation of the
partial volume effects as well as local estimation of surrounding structures
such as vessels or dura mater.

3. Segmentation of the brain, specifically the cerebral cortex.

4. Cortical surface reconstruction of the outer and inner cortical surfaces.

However, a cortical parcellation can only be performed precisely if the intracor-
tical profiles used in the analysis are anatomically meaningful. Profiles are often
constructed as traverses that are perpendicular to computed surfaces. In this case
they are fully determined by these surfaces. In this thesis, cortical profiles are the
building block of the developed methods. In order to build correct profiles and
generate meaningful results from these, two additional prerequisites are necessary:

1. Development of a new layering model that computes layer-wise surfaces be-
tween the outer and inner cortical surfaces to represent the actual cortical
layers.

2. Construction of 3-dimensional cortical profiles, i. e., traverses running per-
pendicular from one boundary surface to the other sampling image intensi-
ties along the cortical depth.

Therefore, the author of the thesis has contributed to:

• the fusion of the MRI data, principally explored the inversion times used in
the MP2RAGE at ultra-high field to maximise the contrast between WM and
GM on the one hand and GM and CSF on the other,

• the refinement of the cortical surface reconstruction, specifically to reduce
misclassifications of blood vessels and dura mater as GM, and,

• the novel layering approach, in particular tested and validated the layering
on quantitative high-resolution in-vivo and ex-vivo T

1

maps.

The approaches applied in the processing pipeline have been outlined in several
publications which the author of the thesis is co-authoring. Therefore, the next
sections are based on or have partially been appeared in the following publications
(chronological order):

Pierre-Louis Bazin, Marcel Weiss, Juliane Dinse, Andreas Schäfer, Robert
Trampel, Robert Turner. A computational framework for ultra-high resolution
cortical segmentation at 7 Tesla. In NeuroImage, 93, pages 201-209, 2013.

Miriam Waehnert, Juliane Dinse, Marcel Weiss, Markus Streicher, Phillip
Waehnert, Stefan Geyer, Robert Turner, and Pierre-Louis Bazin. Anatomically
motivated modelling of cortical laminae. In NeuroImage, 93, pages 210–220, 2013.
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Data Aquisition & Fusion

Preprocessing

Brain Segmentation

Cortical Surface Reconstruction

Layering & Profile Sampling

Model-based Cortical Parcellation

Optimization

Figure 6.4: The diagram illustrates the general processing pipeline including the prepro-
cessing and segmentation steps. The model-based cortical parcellation ap-
proach is the focus of the thesis. The author has contributed to the modules
marked yellow.

Miriam Waehnert, Juliane Dinse, Andreas Schäfer, Stefan Geyer, Pierre-Louis
Bazin, Robert Turner, and Christine Tardif. A subject-specific 3D intracortical
framework for in-vivo myeloarchitectonic analysis using high resolution quantitative
MRI. In NeuroImage, 2014 (submitted).

6.2.2 Processing of In-Vivo Brain Data

Processing the raw MRI data up towards cortical profiles encompasses several steps.
These are outlined here.

6.2.2.1 Generating a Whole-brain T1 Map at 0.5mm Resolution

The three T1 maps obtained after scanning were linearly co-registered into the stan-
dard anatomical MNI1 reference space using FMRIB’s2 Linear Image Registration
Tool (FLIRT) [Jenkinson and Smith, 2001]. The 0.7mm isotropic resolution whole-
brain T1 map was registered to the 0.4mm isotropic resolution MNI brain template.

1 Montreal Neurological Institute
2 FMRIB is the Oxford Centre for Functional Magnetic Resonance Imaging of the Brain.
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Afterwards, the hemispheric slabs at 0.5mm isotropic resolution were registered
to the whole-brain image already being in MNI space. Using this slab-wise scan-
ning approach allows one to obtain maps that reveal fine details of cortical and
sub-cortical anatomy [Bazin et al., 2013a].

Although upsampling the data significantly increases the overall computational
costs, it may achieve more accurate results in the surface reconstruction (see Sec-
tion 6.2.2.4).

In order to preserve cortical geometry, a rigid registration was used that included
six degrees of freedom optimised using a cost function of normalised mutual in-
formation.

6.2.2.2 Preprocessing

The estimation of interfacing structures serves as a prerequisite for the following
brain segmentation (see Section 6.2.2.3) and cortical surface reconstruction (see
Section 6.2.2.4).

To correctly initialise the brain segmentation, structures surrounding the brain,
such as the skull, had to be removed. This step is known as brain extraction, i. e.,
skull stripping. Some filtering had to be performed to remove inhomogeneities
or excessive noise originating from the image acquisition such as PV effects. In
addition, the location of interfacing structures, such as vessels and dura mater,
were estimated.

The information resulting from the skull stripping and the PV estimation were
then used to estimate the location of the dura mater. In addition, arteries and veins
were enhanced with a vesselness operator.

skull stripping Brain extraction, or skull stripping, requires to mask out
parts of the head that do not belong to the brain. It is a crucial task as any in-
formation accidentally removed cannot be recovered.

Rather than identifying the brain at a very accurate level, the intra-cranial region
was targeted including the brain, blood vessels and dura mater. This region can
approximately be outlined using D

2

, i. e., the GRE image acquired at the second
inversion time (see 3.2.3).

D
2

was thresholded at the level of background noise by fitting an exponential
distribution to the background of the image and an uniform distribution to the
foreground of the image, i. e., the visible scanned head. The largest component
represents the region of the brain. Inside the brain, a seed region was placed at a
scale coarser by a factor of 24. The seed region was allowed to grow at finer scales.
However, the boundary constraint applied to the brain region allowed the seed
region to not grow further than two voxel away from the boundary at the previous
scale. The resulting mask was smoothed using a level set method that balances
curvature smoothing and the distance to the original boundary (see Fig. 6.5A).

In general, the mask includes the entire brain. In some parts of the imaging
data acquired the cerebellum and lower temporal lobe were missing. In this case,
the B

1

+ field inhomogeneities generated signal drops during image acquisition.
If the sequence and reconstruction method used cannot compensate the inhomo-
geneities, the imaging data appears very noisy in these locations (see Fig. 3.11D).
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This yields an incorrect brain mask as the thresholding will inevitably remove
"noisy" background.

partial volume estimation Partial voluming is a problem at any resolu-
tion in imaging (see Section 3.2.4.2). The PV effects are most prominent when the
two neighboring structures have very different intensities. Considering the cere-
bral cortex, PV effects are more prominent at the outer cortical surface where CSF
and GM interface each other, and less strong at the inner cortical surface where WM
and GM interface each other. Most types of partial voluming can be addressed by
using probabilistic or fuzzy membership models.

Partial voluming is particularly a problem in location of tightly folded sulci in
which the CSF resides in a little cavity created by two gyral folds being literally
"back-to-back" to each other. But partial voluming effects also occur in WM. Here,
the sulcal walls of one fold create a narrowness that acts like a "bottleneck" into the
gyral crown. PV probabilities were computed in regard to both interfacing tissue
structure: WM and CSF (see Fig. 6.5B for CSF probabilities).

Here, a filter was created that mimics this case: at a given voxel, the average
intensity of a T

1

map in a 3x3x3 neighborhood in a given plane and its two imme-
diate neighboring planes was computed. Second, the difference was taken between
these averages. The filter was orientation-dependent. Hence, the computation was
repeated for all discrete directions in the voxel’s neighborhood. The filter was re-
lated to the second derivative. Thus, the final filter selects the discrete orientation
with the highest response in absolute values. This has proven to be more robust to
noise and less sensitive to local curvature bending [Bazin et al., 2013b].

dura estimation and vesselness filtering Due to the increased reso-
lution and SNR at higher magnetic field strength, here 7T, structures such as the
dura mater or vessels come to the fore. It is a challenge to estimate these structures
as they appear in the imaging data very close to the brain both spatially and in
terms of MR intensities. It is difficult to differentiate the dura mater from the cor-
tical grey matter based on MRI intensity alone. Often, there is only little CSF space
between grey matter and dura mater.

Therefore, the dura mater had to be specifically addressed in image segmenta-
tion approaches when working with 7T data at high resolution. The location of the
dura was estimated by using the above-mentioned partial voluming filter with a
probabilistic prior that decreases linearly with the distance towards the boundary
of the brain mask. This helps to mask structures beyond the dura that were also
included in the brain mask (see Fig. 6.5C).

In ultra-high resolution MRI data blood vessels were visible that have a diametre
of 0.5mm. Here, a filter was applied that detects tubular 3D objects [Frangi et al.,
1998] yielding a probability image including values in the range [0, 1] (see Fig.
6.5D).

6.2.2.3 Brain Segmentation

The brain segmentation method was defined as a hierarchical probability model
following a Bayesian approach. The model can be broken down into conditionally
independent and successive components whose parameter or group of parameters
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Figure 6.5: The images present the intermediate results from the preprocessing step: the
brain mask (A) and probabilities of PV (B), dura mater (C), and vessels (D).

can be estimated independently with efficient and robust algorithms. Given the
ultra-high resolution MR data, it is more appropriate to avoid iterative and com-
putationally intensive schemes that alternate between the estimation of coupled
parameters as in Expectation-Maximisation approaches.

The segmentation problem is defined as:
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(6.2)

S describes the sought final segmentation of the brain. M, A, and I are estimated
parameters. M specifies the membership of each voxel to given structures. A

desribes the adapted shape atlas prior while I defines the intensity atlas prior. D

is the image data, and A
0

and I
0

are the raw shape and intensity prior.
In general, the parameters mentioned here, follow a hierarchical dependency. In

order to estimate the intensity prior I, a simple histogram segmentation of the data
D was performed based on the raw priors I

0

. Given the estimated intensity priors
I, the raw shape priors A

0

were registered to the data and the shape atlas A was
computed. Given the atlas and intensity priors A and I, the membership values
can be computed on which the sought segmentation is built.

brain atlases The brain region extracted in Section 6.2.2.2 can be defined
with statistical atlases of human anatomy. These atlases describe expected shape
and appearance of different structures. The brain segmentation step makes use
of a composite atlas built from the IBSR3 v.2 data set [Worth et al., 1996] and the
newer Brainweb atlas [Aubert-Broche et al., 2006].

The IBSR atlas provides manual segmentations of many brain regions of 20

healthy humans. However, the atlas considers no external structures nor sulcal
CSF. The Brainweb atlas models the whole head of 20 phantom brains and pro-
vides tissue separation. The final composite atlas used here, thus, includes 30

distinct regions encompassing large structures such as cerebral GM and WM but
also smaller structures such as dura mater or arteries.

All structures in the atlas were represented at 2mm resolution which provides a
good compromise between complexity of the shapes and the size of the atlas data.

The boundary of single-subject atlas labels were spatially smoothed over 10mm,
and then averaged yielding a more general atlas [Bazin and Pham, 2008].

The appearance of the structures was modelled as a Gaussian distribution with
mean and variance parameters. The parameters of the distribution were learned

3 Internet Brain Segmentation Repository
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from sampling the manual segmentations and adjusted empirically. It is worth to
note that the T

1

values given in the quantitative T
1

maps agree with brain sample
measurements [Rooney et al., 2007].

The composite atlas also includes a topology template that defines the expected
topology and connectivity characteristics of the atlas [Bazin et al., 2007]. The cho-
sen scale of 2mm resolution allows to model the topological constraints between
the different structures in the brain without further approximating the anatomy.

intensity normalisation The intensity normalisation step provides an es-
timate of intensities I in order to maximise p(I | D,A

0

, I
0

) (see Eq. 6.2) and, at the
same time, to correct for possible distortions of the imaging intensities. The data
was resampled into atlas space (2mm resolution) and a histogram-based segmen-
tation into WM, GM, and CSF was performed on the weighted imaging data D

w

.
The segmentation method used here was a standard Fuzzy C-Means algorithm
initialised with the mean intensity priors I

0

from strcutures of the corresponding
tissue type in the atlas.

spatial normalisation The spatial normalisation aims at maximising p(A |

I,D,A
0

, I
0

) (see Eq. 6.2). Using the WM segmentation provided in the previous step
and the brain mask, derived through skull stripping (see Section 6.2.2.2), the atlas
was co-registered into the subject space. The image and the atlas were transformed
into label images representing these two structures only. The simplified images
were then registered together in two steps, first rigidly then non-linearly, using the
Demons algorithm [Vercauteren et al., 2009].

membership computation The posterior probability p(M | A, I,D,A
0

, I
0

)
(see Eq. 6.2) for the membership functions M, can only be computed when both
shape and intensity atlas have been normalised to the subject. The membership
functions describe the likelihood of a voxel to belong to a certain structure k based
on the shape and intensity priors of structure k in the given atlas. The membership
values were normalised into the range of [0, 1].

First, the Cauchy distribution was used to model the intensity values as follows:

m
k

=
1

1+ d2

k

, d2

k

=
kx- µ

k

k2

�2

k

, (6.3)

where µ
k

and �
k

represent the location and scale parameters of the Cauchy
distribution, and x describes the image intensity. The Cauchy distribution has
several advantages. Considering this thesis, two interesting properties stand out:

• the noise distribution of MP2RAGE data is more closely related to the Cauchy
distribution than to Gaussian distributions [Bazin et al., 2013b].

• the Cauchy distribution is robust to outliers.

Second, the information from the T
1

-weighted image D
W

, the T
1

map D
T

, par-
tial volume probability maps p

pv/d

and the statistical atlases A and I were inte-
grated to a membership value. The contrast images were combined first as:

m
I,k = min(m

W,k ,m
T ,k), with m

W,k =
1

1+ d2

W,k

, m
T ,k =

1

1+ d2

T ,k

. (6.4)
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The values of µ
k

and �
k

in d
W,k and d

T ,k are given by the intensity prior in I.
As mentioned in the previous section, partial volume effects can distort image

intensities. Thus, intensities cannot be trusted in regions with higher probability of
partial voluming effects, i. e., GM voxel close to CSF. Therefore, the partial volume
probability maps p

pv

were integrated in a different way:

m⇤
I,k

=

�
p

pv

+ (1- p
pv

)m
I,k for k = CSF, dura mater,

(1- p
pv

)m
I,k for k = GM

(6.5)

Finally, the membership values m
A,k derived from the shape atlas were com-

bined with the intensity memberships. Now, a Cauchy membership value with

normalised distance d2 =
1

2
(d2

A,k
+ d2

I,k
) can be obtained as:

m
I,A,k = 2

m
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⇤
I,k

m
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I,k

. (6.6)

constrained multi-object level set segmentation The previous esti-
mates of the brain structures are reasonably accurate. However, the structures have
still an arbitrary topology and appear noisy. The final brain segmentation was
carried out using a Multi-Compartment Geometric Deformable Model (MGDM) in
order to transform the prior estimates (in discrete voxel space) to smooth, topology-
constrained shapes (in continuum) representing the structure’s true geometry. The
MGDM used here describes the extension of the topology-preserving level set frame-
work by Han et al. [2003] to multiple objects. The advantage of using the MGDM
framework is to maintain multi-object topology while performing classical level
set evolution (see Section 4.2.2) for each structure [Bogovic et al., 2013; Fan et al.,
2008] and automatically preventing overlaps or vaccums between objects.

A challenge for any multi-object deformable model that maintains topological
constraints is the propagation of forces through multiple boundaries, when multi-
ple structures need to be moved to achieve the desired solution. This problem was
solved with an estimation scheme for the level set '

k

of structure k as follows:
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where c denotes the index of the structure k with "closest" membership, i. e., de-
fined as highest membership value modulated by its outer distance to the bound-
ary as:

c = arg max
j

✓
m

I,A,j

1+ max('
j

, 0)2/s2
'

◆
. (6.8)


k

describes the classical curvature regularisation term. ↵
k

represents a weight-
ing coefficient modulating the amount of smoothness of the different structures
and is set differently for each structure k. Some brain structures are regularly
shaped, i. e., the ventricles, other structures have a very complex structure, i. e.,
cerebral cortex and blood vessels.

The evolution of the level set method was performed in a multi-scale fashion in
order to ensure smoothness and fast convergence. The scales used started in atlas
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Figure 6.6: The images showcase the posterior probability estimates of CSF (A), GM (B) and
WM (C) and the first segmentation of GM and WM obtained using the MGDM
brain segmentation method (D). The segmentation result reveals remaining
topological misclassifications and an inaccurate segmentation of cortical sulcal
and gyral structures.

space and increased in steps by a factor of
p
34 up to the processing resolution

in data space (here: 0.4mm isotropic resolution referring to the registered MNI
template space). To match the scale changes in the curvature, ↵

k

is multiplied
with the scaling factor.

The result of the MGDM brain segmentation is a level set interface for each struc-
ture k as well as posterior probability estimates defined as follows:

p
k

= m
I,A,k

✓
1

1+ max('
k

, 0)2/s2

◆
(6.9)

where s operates as scale parameter. The corresponding results are shown in
Fig. 6.6.

6.2.2.4 Cortical Surface Reconstruction

The MGDM computation yields a topologically correct estimation of the different
structural interfaces. However, due to noise and the "abrupt" changes that were
made to correct topology, the surfaces are usually a bit rougher than desired. To
finally refine the segmentations, two additional steps were applied:

1. an Anatomically Consistent GM Enhancement (ACE) (as described by Han
et al. [2004]) in order to handle the partial voluming effects, specifically in
sulcal banks of tightly folded gyri, and,

4 A scaling factor of
p
3 and larger preserves topology of the segmented image [Bazin et al., 2007].
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2. a final optimisation to further reduce misclassifications of GM voxel actually
belonging to WM, CSF, vasculature or even dura mater.

anatomically consistent gm enhancement Partial volume averaging
at voxel of cortical GM, particularly in the sulcal regions where the gyral folds are
virtually "back-to-back", results in wildly inaccurate estimates of both the outer
cortical surface and intracortical surfaces.

Anatomically consistent Grey Matter Enhancement (ACE) presented by Han et al.
[2004] aims to provide a GM representation that indicates sulcal structures where
they might not otherwise exist due to the partial volume effect. ACE modifies
the initial GM segmentation derived from the MGDM segmentation to create a thin,
digital separation between opposing gyral folds.

The idea is to automatically locate the outer cortical boundary surface within a
sulcal structure and to reduce the GM membership values towards CSF. Using the
conventional Euclidean distance to separate gyral banks makes a groove into the
GM, regardless of the presence of actual CSF. An improved version incorporates
the presence of CSF in the definition of distance used to compute the outer cortical
surface by using a weighted distance measure.

optimisation The surfaces were corrected regarding topology but, at the same
time, show local residual effects, i. e., oversegmented GM voxel, due to misclassi-
fication of different structure types. Incorrectly labeled GM voxel actually belong
to:

1. WM. Here, the inner cortical surface got stuck in a gyral crown because
the sulcal walls of one fold create a narrowness. The MGDM is not able to
penetrate upwards into the gyral crown through this "bottleneck".

2. vessels. Here, the contrast between vessel and cortical GM was not sufficient
enough to clearly separate blood vessels from GM tissue.

3. dura mater. Here, the brain tissue and the dura mater were very close to
each other leaving no space in-between for CSF. When applying the tissue
classification, the GM segmentation leaks into locations of dura mater.

To improve the cortical surface reconstruction, the posterior probability esti-
mates of different structures computed with the MGDM were altered. Within the
preprocessing step probabilities regarding partial voluming effects, dura mater and
blood vessels were computed (see Section 6.2.2.2). The probability images contain
values defined in the range of [0, 1].

To correct WM misclassifications, the posterior probability estimates of WM p
WM

computed with the MGDM will be increased towards the inner cortical surface as
follows:

p
WM

 arg max{p
WM

,p
pv,WM

}. (6.10)

If the partial voluming probability p
pv,WM

towards the inner cortical surface
(computed in the preprocessing step) is larger than the intrinsic posterior prob-
ability p

WM

of WM only, the posterior probability p
WM

will take the larger value of
p

pv,WM

. The posterior probabilities, thus, specifically increase in gyral crowns.
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Figure 6.7: The images showcase the corrected probability estimates of CSF (A), GM (B) and
WM (C) and the topology-corrected segmentation of GM and WM obtained using
ACE and an additional optimisation step (D). Clearly visible are the increased
probabilities as well as the accurate segmentation of cortical sulcal and gyral
structures (blue arrowheads).

Correcting the CSF misclassifications caused by dura mater and blood vessels is
more complicated. First, the probabilities of dura mater and vessels computed in
the preprocessing were enhanced using a sigmoidal function centered at 1/3 with
a slope of 1/10. Parameters of the function were empirically defined. Secondly,
the probabilities were fused to form one probability image p

d,v representing both
dura and vessels such that:

p
d,v  arg max{p

dura

,p
vessel

}. (6.11)

Finally, to correct CSF misclassifications, the posterior probability estimates of
CSF p

CSF

computed with the MGDM will be increased towards the outer cortical
surface as follows:

p
CSF

 arg max{p
CSF

,p
d,v}. (6.12)

If the probability of dura and vessels p
d,v towards the outer cortical surface (com-

puted above) is larger than the posterior probability p
CSF

, the posterior probability
will take the larger value. The posterior probabilities specifically increase in loca-
tions of blood vessels and dura mater.

single object reconstruction Using ACE and the tuned posterior prob-
abilities of interfacing tissues, the inner and the outer cortical surfaces will be
recomputed based on a single object geometric deformable model. Hence, this
step generates a full WM and GM segmentation in voxel space (see Fig. 6.7).
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122 data acquisition and processing for cortical surface extraction

6.2.2.5 Cortical Layering and Cortical Profile Sampling

An important prerequisite of the thesis is the development of a novel layering
approach aiming at generating a well-adapted coordinate system of the cerebral
cortex. The system allows one to sample image intensities corresponding to the
actual anatomical layering described by Bok [1929] (see Section 2.2.1). The explana-
tions given in this thesis follow the descriptions of the corresponding publication
by Waehnert et al. [2013c].

The method described in this section evolves a geometric deformable model to
define a series of N =20 surfaces of constant volume, based on a local model which
integrates the influence of curvature from both inner and outer cortical boundary
surfaces. The surfaces were then interpolated to give a continuous layering of
depth values. From the well-adapted coordinate system isocontours, i. e., contours
following the same cortical depth, can be chosen to fit myelinated bands locally.
These isocontours are referred to as computed surfaces. However, the layering
model does not intend to recompute the anatomical layers. The main purpose of
the coordinate system is to provide profiles that are anatomically meaningful to
study MR intensity patterns within cortical areas and their variation across area
boundaries.

The input data for any cortical layering method is a segmentation of the inner
and outer cortical surfaces as provided by the previous cortical surface reconstruc-
tion.

At first, the level set functions of the two boundary surfaces were computed as
described above. Using the narrow band level set method (see Section 4.2.2.3), the
surface ' can be evolved to a target level set surface '

d

at a certain cortical depth:

@'

@t
+ ('-'

d

) · |r'| = ✏|r'|. (6.13)

' can either be the level set of the inner cortical surface that is evolved outwards
towards the level set of the outer surface or ' can be the level set of the outer
surface to construct an inward layering. The regularisation term ✏|r'| keeps
the evolved level sets of the surfaces smooth and avoids shocks. The computed
surfaces are close to each other. Hence, the computations are fast and memory
efficient even at high resolution. Implementation details follow the classical narrow
band algorithm with first order differences [Sethian, 1999].

The target level set '
d

describes a parameterised weighted average of the level
sets of the inner and outer cortical surfaces '

in

and '
out

. The choice of the
parameter ⇢ allows the target to be at any distance between the two surfaces.

'
d

= (1- ⇢) ·'
in

- ⇢ ·'
out

, ⇢ 2 [0, 1]. (6.14)

Varying ⇢ and hence '
d

, a set of level set surfaces {'
d

}
d=1,...,N can be con-

structed, modelling the cortex. A computed surface represents the volume between
two neighboring surfaces.

Orthogonal profile curves can be easily generated based on the level set repre-
sentation. From any starting location x, the projection onto the closest surface '

d

can be obtained as:

x
d

= x-'
d

(x)
r'

d

(x)

|r'
d

(x)|
(6.15)
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and x
d

can then be projected onto the next closest surface, until a curved 3D pro-
file is created that intersects all the computed intracortical surfaces. The classical
approach for constructing profiles is to follow the gradient of the layering function.

cortical layers based on the equivolume model The geometry of the
intracortical laminae (constructed as described above) depends on the choice of ⇢
in equation 6.14. If ⇢ is chosen to be constant, the resulting surface keeps a constant
distance fraction from the segmented boundaries. This is called the equidistant
model. In Section 2.2 it has been shown that the actual cortical layers do not main-
tain a constant distance from the inner and outer surfaces. Hence, the equidistant
model is not appropriate. Another solution to sampling the cortical surface uses
the Laplace equation. A full comparison of the here mentioned layering models
including the newly developed equivolume model is provided in the Appendix B.

In order to build a layering model that parallels the cortical layers observed in
cyto- and myeloarchitecture [Bok, 1929], an equivolume model should construct
laminae that fulfill the following requirements:

1. they are thick at high curvatures and thin at low curvatures, for both cases
of firstly being within one and the same layer and secondly traversing from
one boundary surface to the other along a profile.

2. they keep the volume fraction in cortical segments constant.

To achieve these goals, cortical segments that approximate the local shape of the
cortex have to be constructed. A segment has the form of a truncated cone with
bent walls. Its flat bottom is located at the inner surface and the flat top at the
outer surface.

To construct the cortical segments, cortical surfaces are computed first with the
equidistant model. Cortical profiles are build perpendicularly to these, starting at
one cortical boundary surface and ending at the other one. Each profile approxi-
mates the center line in a cortical segment (cf. to Fig. 6.8), which will be called the
column. Now, the equivolume model transforms a desired volume fraction ↵ of
the segment volume into a distance fraction ⇢ of the column length.

The surfaces of each segment at the inner and outer cortical boundaries are the
areas A

in

and A
out

that are large at small curvatures and small at high curvatures
so that goal 1. can be fulfilled.

A
in

=
1

1+ sgn(k
in,1 - k

out,1) · 1

2

· d · k
in,1

· 1

1+ sgn(k
in,2 - k

out,2) · 1

2

· d · k
in,2

(6.16)

A
out

=
1

1+ sgn(k
out,1 - k

in,1) · 1

2

· d · k
out,1

· 1

1+ sgn(k
out,2 - k

in,2) · 1

2

· d · k
out,2

(6.17)

These areas are the products of side lengths. Each length is related to the lo-
cal primary or secondary curvature k

1

and k
2

. Moreover, whether the length is
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Figure 6.8: Schematic section through the cortex with the inner surface in blue and the pial
surface in red. Cortical segments at the gyral crown, the sulcal wall and the
fundus of the sulcus, with the centerline/column in black. A

in

and A
out

are
the top and bottom surfaces of the segments and have different relative sizes
related to the local curvatures k

in

and k
out

of the boundary surfaces. The
intracortical surface (green) is constructed with ↵ = 1

2

, dividing the segments
into laminar segments with equal volumes. The position of this intracortical
surface on the columns ⇢ varies with curvature.

smaller, larger or equal to 1 depends on the relation between the curvatures of the
inner and outer boundary surfaces as follows:

sgn(k
in,m - k

out,m) =

8
>><

>>:

+1, if k
in,m > k

out,m

0, if k
in,m = k

out,m

-1, if k
in,m < k

out,m

(6.18)

where k
in

are the curvatures at the inner surface and k
out

the curvatures at the
outer surface. The subscript 1 marks primary curvatures, the subscript 2 marks
secondary ones (cf. Section 6.2.2.5). d is the cortical thickness measured along the
column of the segment and sgn is the sign function. Depending on which of the
curvatures is larger, k

in

or k
out

, the area A
in

is either larger or smaller than A
out

.
The volume of a segment in a layer next to one of the boundaries is determined by
A

in

or A
out

and the thickness of the layer (cf. Eq. 6.21). This volume should be
constant, so that the relationship described between areas and curvatures results
in the relationship between layer thicknesses and curvatures described in goal 1.

The shape of the segment is determined by assuming that the area grows linearly
with the height of the segment column with h = 0 being at the inner cortical surface
and h = d at the outer cortical surface:

A(h) = A
in

+ (A
out

-A
in

) · h
d

. (6.19)
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Figure 6.9: The images demonstrate the inner (blue) and outer (red) reconstructed surfaces
(left) as well as cortical depth values computed using the new equivolume lay-
ering method (right). Reconstructed surfaces are accurate and computed intra-
cortical layers follow the shifting behaviour in gyral crowns and sulcal fundi of
anatomical layers.

Eq. 6.19 describes an approximation of the actual cortical shape. The current
equivolume model balances robustness, accuracy and precision. As an advantage,
it also yields in a closed-form solution (Eq. 6.22).

The total volume of a cortical segment can be calculated by integrating the area
from the bottom face (h = 0) to the top face (h = d) of the segment:

V =

d∫

0

A(h)dh = Ain · d+
Aout −Ain

2
· d. (6.20)

An intracortical surface next to the inner cortical surface with fraction α of the total
volume of the segment V is obtained by integrating the area from the bottom to a
certain distance ρ · d on the column of the segment:

α · V =

ρ·d∫

0

A(h)dh = Ain · d · ρ+ Aout −Ain

2
· d · ρ2, α, ρ ∈ [0, 1]. (6.21)

Solving Eq. 6.21 for ρ by inserting V from Eq. 6.20 gives:

ρ =
1

Aout −Ain
· (−Ain +

√
αA2

out + (1−α)A2
in). (6.22)

To construct a surface having a constant volume αV , ρ is determined for every
segment column and thus varies with curvature and location:

ρ = ρ(kin, kout) = ρ(x,y, z). (6.23)

Then the complete level set of one of the cortical surfaces is evolved to the target
level set ϕd with the respective ρ using Eq. 6.13 and Eq. 6.14. This operation is re-
peated for N to be constructed intracortical surfaces with increasing or decreasing
volume αV in order to obtain the final layering (see Fig. 6.9).
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curvature estimation A prerequisite of the equivolume model is to com-
pute the curvatures k

in

and k
out

at the inner and outer cortical boundary sur-
faces. Curvature estimates are typically based on second order derivatives, which
are very noise-sensitive. In order to provide adequate regularisation, the curva-
tures are estimated by fitting a centred paraboloid to the level set surface. The
paraboloid at a point X is given by the following quadric equation with known
parameters Q and L: XTQX+ LTX = 0. The point of interest X

0

is in the center
of the curvature sampling neighborhood X

n

, X
n

ranging between a minimum and
a given maximum distance to X

0

in the three dimensions. The distance between
the quadric at the voxel in the neighborhood X

n

and the quadric at the point of
interest X

0

is (X
n

-X
0

)TQ(X
n

-X
0

)+LT (X
n

-X
0

). The distance between the level
set surface at X

n

and the level set surface at X
0

is '(X
n

)-'(X
0

). Therefore, the
coefficients Q̂ and L̂ have to be found that minimise the difference between the
quadric distance and the level set distance at X

0

:

Q̂, L̂ = argmin
X

n

w(X
n

)
⇥
(X

n

-X
0

)TQ(X
n

-X
0

) + LT (X
n

-X
0

)- ('(X
n

)-'(X
0

))
⇤
2

(6.24)

with a weighting factor w(X
n

) = exp(- ('(X
n

)-'(X
0

))2

2�

2

) to lower the influence
of values in the sampling neighborhood further away from X

0

. The coefficients Q̂

and L̂ can be estimated linearly by solving a system with nine unknowns. From
the geometry of paraboloids, the primary and secondary curvatures k

1

and k
2

of
the paraboloid approximation to the level set surface at X

0

can be obtained as the
eigenvalues of Q in the orthogonal direction to L.

6.2.3 Processing of Ex-Vivo Brain Data

The processing of the postmortem material is in two ways very different from the
in-vivo data processing:

1. the postmortem material was cleaned and prepared before MRI scanning and
histological treatment.

2. the segmentation into WM and GM compartments was performed manually
both on MRI images as well as microscopic images derived from histological
sections.

6.2.3.1 Preparation of Brain Material

The brain tissue is scanned ex-vivo and, therefore, cleaned before scanning. All
parts that could distort image acquisition or influence histology were removed. A
laboratory assistant manually pealed off the dura from the outer cortical surface
and removed all vessels, too.

During scanning, the tissue block was surrounded by Fomblin with the advan-
tage of keeping the tissue block moistured, in position and giving contrast only to
the tissue. During histology, the tissue block is cut into sections consisting of WM
and GM only.
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6.2.3.2 Cortical Surface Reconstruction, Layering and Profile Sampling using Ex-vivo
MRI Data

Estimation of the WM/GM and GM/CSF surfaces in the ex-vivo MRI data was based
on a manual segmentation into WM and GM compartments. To estimate intermedi-
ate surfaces, the above-mentioned volume-preserving approach (see section 6.2.2.5)
was applied to resemble observable myeloarchitectonic cortical layers. The right
picture in Fig. 6.2 illustrates again the shifting behaviour of the surfaces in gyral
crowns (white arrowheads) and sulcal fundi (pink arrowheads). 3D traverses were
constructed and along these the postmortem MR image T

1

values were sampled to
generate myelin-related profiles. For consistency, the postmortem-derived profiles
are referred to as ex-vivo profiles.

6.2.3.3 Cortical Surface Reconstruction, Layering and Profile Sampling using Histology
Data

Consecutive sections alternate between cell and myelin stain. A complete 3D re-
construction of myelinated fibres in the cortex was therefore impossible. However,
given 3D data, the volume-preserving method implicitly provides a cortical depth
estimate. Therefore, one histological section was stacked six times to recover a
180µm thick 3D data block. The section used is shown in Fig. 6.3, lower left. The
yellow line indicates the WM boundary. The zoomed-in pictures were taken from
locations highlighted in green on the original stained section. Striation is visible
in the zoomed-in pictures (red dashed rectangles). As comparison, Vogt [1910]
originally drawn illustrations remodelled by Hopf [1967] have been included. The
stacked data were manually segmented into WM and GM compartments and the
volume-preserving approach was applied to estimate the intracortical surfaces.
Due to the 2D nature of the histological sections and the implicitly given cortical
depths estimates, the intensity values were averaged at different cortical depths to
provide a myelin profile. For consistency, such histologically-derived profiles are
referred to as histology profiles.

6.2.4 Software

All of the image processing tools used in this thesis to process in-vivo as well
as ex-vivo data are included in the CBS Tools, a plug-in for the MIPAV software
package [McAuliffe et al., 2001] and the JIST pipeline environment [Bazin et al.,
2013b; Lucas et al., 2010]. The CBS Tools are freely available for download from
the Max Planck Institute for Human Cognitive and Brain Sciences website 5 and
from NITRC 6.

The computer used to carry out the image processing has a CPU with 32 kernels
of AMD opteron 62/74 and RAM of 128 Giga Byte.

5 http://www.cbs.mpg.de/institute/software/cbs-hrt/index.html
6 http://www.nitrc.org/projects/cbs-tools/
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128 data acquisition and processing for cortical surface extraction

6.3 summary and conclusions

The newly acquired high-resolution data requests for customised processing. The
presented pipeline is able to handle the new data and implements state-of-the-art
methods. In addition, processing data in volume space using deformable models
allows for more accurate reconstructions of the cortical surface.
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7
A C Y T O A R C H I T E C T U R E - B A S E D M Y E L I N M O D E L F O R
C O RT I C A L PA R C E L L AT I O N

At the core of the presented modelling approach are cortical profiles, which carry a
rich information content [Bridge et al., 2005; Dinse et al., 2013a; Walters et al., 2007].
With the ultra-high in-vivo resolution used to acquire 7T data, finer details of
myelination are revealed. With the advanced data processing methods presented
in the previous chapter, the cortical sheet can be computationally divided into
multiple surfaces. Perpendicularly to these surfaces traverses can be constructed
that run from one cortical boundary surface to the other. Along these traverses,
T
1

values of a given ultra-high resolution MR T
1

map can be sampled at different
depths of the cortical sheets to derive myelin-related profiles, here called in-vivo
profiles.

In order to estimate laminar myelin density patterns as observed in quantitative
T
1

maps, a model of cortical myeloarchitecture was built from known cytoarchi-
tecture in a two-step approach. In the first step, Hellwig [1993]’s method was
implemented and adapted. Quantitative properties of cytoarchitecture relevant in
each cortical area found by von Economo and Koskinas [1925] were transformed
into patterns representing myelin density. In a second step, the profiles were nor-
malised into MRI space (T

1

values given in milliseconds) respecting the currently
used MRI resolution and MRI limitations such as partial voluming. Fig. 7.1 depicts
the conceptual design of the presented approach including intermediate results.
Finally, a probabilistic function based on a Gaussian metric was built that mea-
sures the similarity between area-specific models and in-vivo profiles obtained
with ultra-high resolution brain MRI.

The modelling approach presented in this chapter has been described in:

Juliane Dinse, Miriam Waehnert, Christine Tardif, Andreas Schäfer, Stefan
Geyer, Robert Turner, and Pierre-Louis Bazin. A histology-based model of quan-
titative T1 contrast for in-vivo cortical parcellation of high-resolution 7 Tesla brain
MR images. In Medical Image Computing and Computer Assisted Intervention
(MICCAI), Part II, pages 51–58, Japan, 2013.

Juliane Dinse, Nina Härtwich, Miriam Waehnert, Christine Tardif, Andreas
Schäfer, Stefan Geyer, Bernhard Preim, Robert Turner, and Pierre-Louis Bazin.
A Cytoarchitecture-driven Myelin Model reveals Area-specific Signatures in Pri-
mary and Secondary Areas in Human Cortex using Ultra-High Resolution In-vivo
Brain MRI. In NeuroImage, 114, pages 71–87, 2015.

The method presented here deviates from the approach mentioned above regard-
ing:

• the quality of the boundary surfaces,

• the normalisation step towards MRI data, and
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130 a cytoarchitecture-based myelin model for cortical parcellation

• the larger number of subjects, namely 19, used in the thesis.

The modifications address previous limitations of the implemented approach.

7.1 generating cortical area-specific profiles

Hellwig’s approach is based on two main assumptions:

1. Large neurons contribute more to intracortical myelin content than small
ones.

2. The average distribution of horizontal axon collaterals of neurons can be
quantified according to data provided by Paldino and Harth [1977].

We followed Hellwig’s approach by first obtaining the relative thickness, mean
neuronal cell density c

density

, and mean cell size c
size

for each cortical layer
from the tabulations of von Economo and Koskinas [1925]. The measures were
given for locations in sulcal walls and gyral crowns. In case a Brodmann area was
mainly located in a sulcal wall, we used the measures given for this location and,
conversely, the measures for a gyral crown for areas mainly located on the crest
of the gyrus. In von Economo and Koskinas [1925], the neuronal cell size c

size

is
defined as the ratio of cell

height

/cell
width

of the cell body, which includes the
nucleus. Note that the Nissl stain used by von Economo and Koskinas [1925] labels
only cell bodies, not neurites. According to Hellwig [1993], myeloarchitecture
can be estimated from cytoarchitecture by assuming that the quantity of myelin
depends on the cell size, following a sigmoidal function s which describes the
contribution of cells to the layer-specific myelin concentration. We modelled this
relation as:

s(c
size

) =
1

1+ exp(-r(c
size

- l))
(7.1)

in which l describes the location of maximum cellular contribution and r the
rate of change (Fig. 7.1b).

An estimate of the initial cell content (Fig. 7.1c) for each layer c
layer

was ob-
tained as:

c
layer

= c
size

c
density

s(c
size

). (7.2)

The laminar pattern of myelinated fibres in the cortex is considered to originate
mainly from axonal collaterals of neuronal cells. To include laminar projections in
the area-specific profile shapes and to transform the profile from cytoarchitectonic
properties into information representing the myelin content, the initial cell content
of c

layer

was convolved with a function a describing the number of axonal col-
laterals distributed around a cell body remodelled from Paldino and Harth [1977]
(see Fig. 7.1d):

m
BA

(x) = (c
layer

⇤ a)(x)dx. (7.3)

The convolution is defined in the range of relative cortical depth d 2 [0, 1]. The
profiles m

BA

give a qualitative indicator of myelin concentration in the cortex (Fig.
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Figure 7.1: Schematic overview of the parcellation approach. The top row revisits the work
of Hellwig [1993]. Quantitative measures of cellular configuration were used
to estimate an initial cell content which is convolved with a model of the distri-
bution of axonal collaterals. The second row transforms the modelled myelin-
related profiles into modelled MR profiles of the T1 intracortical contrast ob-
servable in brain MRI. In addition (bottom row), the modelled (Fig. 7.1g) and
modelled MR profiles (Fig. 7.1k) for each ROI are shown.

7.1e) and are comparable to myelin-stained sections and the myeloarchitecture
described by Vogt and Vogt [1919a,b].

At this stage, values located at the outer cortical surface represent 0% myelin,
values at the WM interface corresponded to 100% myelin. This is not in agreement
with classical works by Braitenberg [1962] and Hopf [1967, 1968, 1969, 1970]. Vogt
and Vogt [1919a] and also von Economo and Koskinas [1925] pointed out that there
are variations in myelin in the outer cortical surface as well as towards the WM
boundary surface. Dinse et al. [2013a] and Tardif et al. [2013] recently showed that
the myelin distribution in different cortical depths varies between different cortical
areas when using in-vivo high-resolution quantitative T1 maps. When applying
the model to in-vivo MRI data, the variability at the interfacing tissue boundaries
has to be taken into account.
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132 a cytoarchitecture-based myelin model for cortical parcellation

7.2 normalising area-specific profiles into the mr imaging space

Geyer et al. [2011] demonstrated that quantitative T
1

maps obtained with 7T MRI
reveal local cortical differences reflecting the boundaries of cortical areas. Glasser
and Van Essen [2011] showed that similar features could even be observed at 3T,
albeit at a coarser spatial resolution, using another method to reveal myelin con-
trast. Similar results have also been shown in non-human primates [Bock et al.,
2009]. When considering MRI data, partial voluming needs to be addressed be-
cause it poses a problem in MRI at any resolution, but becomes particularly severe
in tightly folded cortical sulci. The areas in focus are located in and around the
central sulcus. The processing pipeline, described in the previous chapter, han-
dled most types of partial voluming robustly. But in locations where neighboring
cortical folds were almost in contact, CSF image intensities have a high spatial de-
pendence and differ quite strongly compared to other locations.

To allow for an application to quantitative MRI data, the area-specific models had
to undergo two transformation steps.

Step 1: In step one we normalised the area-specific profiles into the MR intensity
range of a quantitative T

1

map (values in milliseconds). This transformation step
facilitates one to apply the model to individual subjects as well as to group data.
This first transformation step has to respect further variability, i. e., partial volume
effects in the cortex, originating from the rather coarse resolution of in-vivo MRI.
The resulting profile is in MR intensity range, but still at the resolution of cell size
(0.001mm=1µm) given in the tabulations by von Economo and Koskinas [1925].

The MR intensity range of the cortex is defined by the mean T
1

value and stan-
dard deviation of the boundary surfaces. We calculated these parameters directly
from the WM/GM and the GM/CSF boundary surfaces, individually for each subject.
However, the intensity range of T

1

values in individual areas varies and is, thus,
defined as I

BA

= [Iwm

BA

, Icsf
BA

] for each individual Brodmann area. The area-specific
range was calculated by using the cortex’ mean T

1

value µ and the cortex’ T
1

stan-
dard deviation � computed at the WM/GM boundary and the GM/CSF boundary
(Fig. 7.1f) as follows:

Iwm

BA

= ê
wm,BA

µ
wm

and Icsf
BA

= ê
csf,BA

µ
csf

. (7.4)

ê
wm

and ê
csf

represent the estimators of the determined area-specific variation
at the two boundaries. ê was estimated from prior investigations on lower reso-
lution T

1

maps (0.7mm isotropic) [Dinse et al., 2013a] in which the behaviour of
the profiles in terms of mean and standard deviation has already been observed.
Subjects analysed in [Dinse et al., 2013a] do not overlap with the subject cohort
used in this thesis. According to Waehnert et al. [2013a], the standard deviation
decreases in higher resolution quantitative T

1

maps measured using MRI. There-
fore, the estimates were adapted to follow this behaviour. Table 7.1 outlines the
estimates.

The area-specific estimates ê
wm

and ê
csf

in Eq. 7.4 handle the myelin-related
variability in individual areas as well as the partial volume effects. Partial volume
effects become more severe when adjacent tissues such as GM and CSF differ greatly
in T

1

value. Profiles of the cortex have a greater variance at the GM/CSF boundary

132



7.2 normalising area-specific profiles into the mr imaging space 133

estimates ê
BA4

ê
BA3b

ê
BA1

ê
BA2

�
modMR

BA4

�
modMR

BA3b

�
modMR

BA1

�
modMR

BA2

WM 0.96 0.99 0.95 0.98 60 60 60 60

CSF 0.90 0.96 0.89 0.92 205 245 210 190

Table 7.1: Estimates ê, used in the normalisation step (Eq. 7.4), and estimated T
1

standard
deviations �

modMR , used in the profile similarity computation (Eq. 7.11), are
shown.

than at the WM/GM boundary because the two interfacing tissues GM and CSF differ
greatly in T

1

value. Thus, the estimates ê
csf

at the GM/CSF interface have a larger
spread compared to the estimates ê

wm

at the WM/GM interface.
Finally, the profiles in m

BA

(Eq. 7.3) were normalised into the T
1

MR intensity
range of grey matter:

Tmod

1

BA

(x) = Iwm

BA

+
(Icsf

BA

- Iwm

BA

)(m
BA

(x)-min(m
BA

(d))

max(m
BA

(d))-min(m
BA

(d))
(7.5)

in which min() and max() define the minimum and maximum of m
BA

along
relative cortical depth d 2 [0, 1] (Fig. 7.1g). At this point, the modelled T

1

profiles
are continuous, but resemble the cell size resolution (0.001mm) used in the atlas
of von Economo and Koskinas [1925]. For consistency, we refer to the modelled
profiles Tmod

1

BA

in MR intensity range as modelled profiles.

Step 2: In the second step we transformed the modelled profiles into the cur-
rently used MR resolution. We build a filter function that can be understood as a
translator between the model and different scales of MR resolution.

To match the limited MRI resolution, the profiles in Tmod

1

BA

(Eq. 7.5) were con-
volved with a windowed cardinal sine function that represents the MRI signal
point-spread function (Fig. 7.1h). To take into account partial volume effects, the
modelled profiles Tmod

1

BA

were extended into white and grey matter. T
1

values rep-
resenting WM and CSF in MRI data similar to Rooney et al. [2007] were assigned to
the profile’s end points corresponding to WM and CSF. The values are highlighted
in Table 7.2. The filter function intends to represent the current in-vivo MRI res-
olution. To account for the limiting effects of the MR resolution, we considered
the relative overlap (in percent) between filter function and cortical thickness t

BA

(in absolute value) in each Brodmann area (BA). We defined the width of the filter
function as:

width =
resMRin-vivo

t
BA

t
m

. (7.6)

resMRin-vivo is the MR resolution of the in-vivo brain data (0.5mm isotropic),
and t

m

is the maximum cortical thickness (in percent). We adapted the width of

PV estimates WM
BA4

WM
BA3b

WM
BA1

WM
BA2

CSF
BA4

CSF
BA3b

CSF
BA1

CSF
BA2

T
1

values (s) 1.25 1.25 1.55 1.25 3.0 3.3 3.3 3.3

Table 7.2: T
1

values attached as WM and CSF to the modelled profile. These estimates
function as PV estimates.
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134 a cytoarchitecture-based myelin model for cortical parcellation

the filter function for each area-specific model as the cortical thickness varies in
different Brodmann areas. Mean values of absolute cortical thickness t

BA

in the
different areas were computed from the individual subject’s brain data. A width
factor ↵ was numerically determined to hold the following relation:

sinc(x) = sinc(↵ width) = 0.5 (7.7)

where ↵ defines the Full-Width-Half-Maximum (FWHM = 0.5) according to the
cortical thickness in individual Brodmann areas. In the filter function, we used
the absolute value of a truncated cardinal sine function centred in the sampling
window. The final filter function for resolution adaptation had the following form:

filter(x) = |sinc(↵(x- (t
m

/2))|H(x). (7.8)

H(x) describes a Hamming window that was used to decrease the Gibbs phe-
nomenon. We defined H(x) as:

H(x) = (0.54- 0.46(cos((2⇡x)/t
m

)). (7.9)

Finally, the modelled profiles Tmod

1

BA

were convolved with this filter function:

TmodMR

1

BA

(x) = (Tmod

1

BA

⇤ filter)(x)dx (7.10)

The convolution is defined in the range of relative cortical depth d 2 [0, 1].
TmodMR

1

BA

is now a defined function of myelin-related T
1

values represented in
MRI space and MRI resolution and has been modelled from known cytoarchitecture
in individual Brodmann areas (BA) (see Fig. 7.1k). For consistency throughout the
thesis, we refer to the MR-resolved profiles as modelled MR profiles.

7.3 measuring the similarity between area-specific models and

in-vivo data

To facilitate comparisons between the area-specific models and empirical data, we
defined a metric that estimates the similarity P(Tin-vivo

1

2 BA) of an in-vivo pro-
file Tin-vivo

1

to belong to a certain Brodmann area (BA). For this purpose, the
expected variance �modMR

BA

of the modelled MR profiles in their corresponding
location was estimated empirically from Dinse et al. [2013a]. �modMR

BA

determines
the range of uncertainty (in milliseconds) by linearly interpolating empirical esti-
mates of deviations in individual areas (see Table 7.1). Under the assumption that
T
1

values, independently of their cortical depth, are normally distributed, we de-
fined the probabilistic similarity P(Tin-vivo

1

2 BA) as a weighted Gaussian process
with a prefactor � = 1/2 as:

P(Tin-vivo

1

2 BA) ⇡ exp

 

-�

Z
1

0

�
Tin-vivo

1

(x)- TmodMR

1

BA

(x)
�
2

�modMR

BA

(x)2
dx

!

(7.11)

Here, P compares how similar a single in-vivo profile Tin-vivo

1

of the cortex is to
the modelled MR profile TmodMR

1

BA

in individual subjects. Similarity values range
between 0 and 1, indicating low and high similarity.
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7.4 model validation in motor and somatosensory region

In order to validate this modelling approach using MRI, ROIs in the left hemisphere
were defined that correspond to primary and secondary areas of the motor and
somatosensory region known as M1/S1 region. They specifically comprise Brod-
mann area (BA) 4, located in the posterior wall of the pre-central gyrus, Brodmann
area 3b, located in the anterior wall of the post-central gyrus, Brodmann area 1,
covering the gyral crown of the post-central gyrus, and Brodmann area 2, located
in the posterior wall of the post-central gyrus. The location of these areas with
respect to sulcal and gyral landmarks is consistent across subjects. All areas are
located in a relatively small region of the brain, which allows a joint in-vivo and
post-mortem study with ultra-high resolution 7T MR brain imaging. The areas are
anatomically contiguous or close neighbors, and they all have strong myelination
levels. As a group, they stand out from neighboring areas of the frontal and pari-
etal lobe. However, the microstructural differences between these areas are subtle,
thus accurately separating them is challenging for observer-independent parcella-
tion schemes. It has been shown by Geyer et al. [1999] that there are changes in
cytoarchitecture within Brodmann area 3, thus forming areas 3a in the sulcal fun-
dus and 3b in the anterior wall of the post-central gyrus. Strictly speaking, BA 3a
and 3b are not areas defined by Korbinian Brodmann, but were later introduced
by Vogt and Vogt. We will continue using this nomenclature as the tabulations of
von Economo and Koskinas [1925] and also the descriptions of Vogt and Vogt refer
back to it.

Although the Vogts’ division based on myeloarchitectonics is very complex, Vogt
[1910] suggested four main types of myeloarchitecture in the human cortex which
are very constant across brains. The chosen ROIs specifically exemplify each of
these basic types. Brodmann area 3a, located at the fundus of the central sulcus
between areas 4 and 3b, was not included in this analysis. Its myeloarchitecture
has not been intensively studied and is thus not assignable to one of the four main
types.

For all data sets acquired, ROIs were manually labelled in the left hemisphere
within the abovementioned Brodmann areas. The labelling process was guided by
accepted macro-anatomical landmarks [Grefkes et al., 2001; Geyer et al., 1999]. All
labels in in-vivo, ex-vivo, and histology data were used to derive mean profiles
in each ROI and in each data modality. The mean profiles were compared to the
area-specific models. Additionally, the manual labels on the 0.5mm isotropic T

1

maps were used to validate the area-specific models on in-vivo data.
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8
E X P E R I M E N T S A N D R E S U LT S

This chapter describes all experiments performed and its corresponding results.
The chapter will also include a discussion on the results and the limitations of the
presented modelling approach.

8.1 research questions and experiments

The validation addresses the following major research questions:

q1 : How well do individual empirical profiles derived from in-vivo data, i. e., in-
vivo profiles, fit the respective modelled MR profiles (Eq. 7.10)?

q2 : Can the area-specific models identify myeloarchitectonic signatures in differ-
ent functional cortical areas in living subjects?

q3 : How well do the area-specific modelled profiles (Eq. 7.5) fit traditionally de-
rived profiles, i. e., ex-vivo MRI and histology profiles?

q4 : How helpful are measures such as the mean value and the shape of an in-
dividual in-vivo profile separately for the identification of specific human
cortical areas?

q5 : Which resolution is required to distinguish between cortical areas accurately
and confidently using intracortical features measured with quantitative ultra-
high resolution brain MRI?

q6 : What influence have PV effects on the data, and consequently, on the area-
specific models? More precisely, how do T

1

values change under the influ-
ence of PV and how far do the effects penetrate into the cortex?

q7 : Why do signatures of both primary motor and sensory areas split into clus-
ters?

The research questions listed above were answered using the here outlined
corresponding experiments. In-vivo group analysis includes 19 of the 22 origi-
nally scanned subjects. One subject has been removed from the study due to a
strong anatomical variation in the M1/S1 region known as a divided central sul-
cus [Schweizer et al., 2014]. Two other subjects have been removed due to unusual
high motion artefacts yielding segmentation errors.

In Experiment 1, we compared the area-specific models quantitatively to in-vivo
data. ROIs in the left hemispheric 0.5mm T

1

map were defined and manually la-
belled. The samples covered between 1 and 2.5 cm2 of the surface area in each
ROI. Similarities P (Eq. 7.11) were analysed by calculating a distribution of the sim-
ilarity values in each ROI subject-wise. Similarity values P are expected to be high
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(approaching 1) in plausible locations, i. e., where in-vivo profiles belong to a cer-
tain Brodmann area. However, in other regions the similarities are expected to be
lower (approaching 0). Thus, the distribution of similarities P in a given ROI may
vary with the model used. To provide comparable measures, we approximated the
given distribution with a probability density function of a beta distribution with
shape parameters ↵ and �. Subject-wise, mode and standard deviation were esti-
mated in each ROI. The mode defines the value at which the approximated beta
distribution takes its maximum value, i. e., the value that is most likely to be repre-
sented by the similarities in each ROI. Computing the mode of a beta distribution
requires that the parameters ↵ and � are greater 11. If the approximation yielded
values of ↵ and � < 1, the distribution of similarity values was skewed too much to
either 0 or 1 such that the calculated beta distribution became asymptotic. In these
extreme cases, the mode of the distribution (respectively the standard deviation)
cannot be computed and we therefore assigned 0 to the mode and standard devia-
tion. This validation was performed on a single-subject as well as a group-average
basis.

Experiment 2 addresses the question of how well the models perform in one
and the same ROI. We therefore computed for each location in the human cortex
the similarity values across the area-specific models and marked the area-specific
model with the highest value at that location.

Please note, in Q3-Q5 the surfaces and profiles used to compute the area-specific
models and similarity maps deviate from the above described approach in respect
to:

• the cortical boundary surfaces used which only include the anatomically con-
sistent grey matter enhancement but no surface optimisation as described in
Section 6.2.2.4.

• the T
1

intensity range computed in Eq. 7.4 which is adapted such that it
includes the standard deviation of the cortex at the inner and outer cortical
surfaces.

• the filter overlap computed in Eq. 7.6 which uses cortical thickness values as
described in the tabulations by von Economo and Koskinas [1925].

In Experiment 3, we qualitatively compared ex-vivo and histology profiles to
modelled and in-vivo profiles in order to analyse the relationship and likely simi-
lar trends in profile shapes. All profiles were transformed into a normalised space
with arbitrary units to match the different contrasts and resolutions of the differ-
ent data origins. The objective of this validation is to study the apparent laminar
myelination change in each Brodmann area, given the different scales of resolution.

Experiment 4 deals with a more general question considering the information
content of in-vivo cortical profiles. To show to what extent both a profile’s mean
and its shape matter, we performed additional here-called mean- and shape-experi-
ments using these two measures separately in Eq. 7.11. In the mean-experiment,
the mean T

1

value of the modelled MR profile was compared to the mean T
1

value
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of an individual in-vivo profile. The mean T
1

value itself was simply computed
as the average across the profile’s cortical depth. In the shape-experiment, the
mean distance between the profiles were calculated through cortical depth. To al-
low comparisons of shape only, we aligned the modelled MR profile in advance by
shifting it to the mean T

1

value of the empirical profile.

The analysis of Experiment 5 was performed among the different area-specific
modelled profiles (Eq. 7.5). The profiles were transformed into different scales of
resolution using the filter function in Eq. 7.8. In order to change the resolution
at each scale, resMR, i. e., the parameter defining the resolution, was changed
in 50µm steps starting at a resolution of 1µm and then increasing up to 1mm.
Waehnert et al. [2013a] used profiles originating from T

1

maps of different reso-
lution. They found that the standard deviation decreases at higher resolution. In
the thesis, the standard deviation was simulated to be smaller at a higher resolu-
tion and to be slightly larger at a lower resolution. A theoretical similarity P

t

was
calculated between the different resampled area-specific models at each scale of
resolution. For application to in-vivo data, the modelled MR profiles were down-
sampled. The modelled profiles were used at their original cell size resolution to
reduce sampling artefacts when observing changes in profile shape.

Experiment 6 demonstrates the influence of PV effects on the data in the entire
cortex. As mentioned in Section 3.2.4.2, PV effects are most prominent between
neighboring structures having very different T

1

values. Due to the larger T
1

differ-
ence, PV effects at the outer cortical surface, where CSF and GM interface each other,
are stronger than at the inner cortical surface, where WM and GM interface each
other. Therefore, the outer distance measures, i. e., the distance of the outer cortical
surface in outward-pointing normal vector direction, is studied in relation to the
T
1

values along a cortical profile. This enables one to quantify:

• the change in T
1

values depending on the "narrowness" of sulcal structures
where gyral folds are close to contact, such as in the central sulcus, and,

• the cortical depth to which the effects penetrate into the cortex.

Experiment 7 has an explorative nature. Medial and lateral parts of both pri-
mary motor and sensory areas show locations of reduced myelin on the T

1

maps.
These specific locations may form a structural border, i. e., septum, between dif-
ferent functional representations in human primary motor cortex and primary so-
matosensory cortex. These functional representations may relate to body move-
ment control and touch localisation that rely on the brain’s ability to distinctly
represent single body parts. Rodents and monkeys are equipped with so-called
septa to aid this process.

There is a current lack of knowledge about these border definitions in human
brain. So far, it is believed that the human sensorimotor cortex is not equipped
with septa, or similar structural borders. The T

1

maps used in the thesis provide
evidence to the contrary. Therefore, the identified locations may offer a human
homologue to septa as identified in the animal brain.
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To investigate the "gaps", the human in-vivo layer-dependent myelin mapping
(as presented throughout this thesis) was combined with BOLD functional imaging
to investigate if locations of reduced myelin separate hand and face representations
in human primary somatosensory cortex and primary motor cortex. Six subjects
were re-invited for a functional brain scan. The data were registered to the anatom-
ical 0.5mm T

1

maps. The cortical surfaces were compared to observe correlations
between structural and functional changes in the two different areas.

8.2 results

8.2.1 T
1

Maps and Cortical In-vivo Profiles

Glasser and Van Essen [2011] have already presented lower resolution (1mm) av-
erage myelin maps. Bridge and Clare [2006] and Walters et al. [2003, 2007] earlier
showed microstructural detail in individual cortical profiles. As the spatial res-
olution of the T

1

maps improves, finer details of myeloarchitecture are revealed.
Cortical profiles derived from 0.5mm T

1

maps clearly carry more information than
the mean of a profile alone.

T
1

maps The T
1

maps used in this study are able to capture finer details of
myeloarchitecture than average myelin maps presented by Glasser and Van Es-
sen [2011]. The T

1

maps used provide contrast differences between primary/sec-
ondary areas (lower T

1

values) and other less heavily myelinated areas (higher
T
1

values). Frontal and parietal regions clearly differ in contrast. The difference
in myelination between the motor region M1 and the somatosensory region S1 is
visible in Fig. 6.1A and in the mean experiment shown in Fig. 8.5 (second col-
umn). With the isotropic ultra-high resolution of 0.5mm, the in-vivo data reveal
medio-lateral structural variabilities in the primary motor and somatosensory re-
gion M1/S1. Within M1, a location with even darker T

1

values (encircled in white
in Fig. 6.1A) can be detected that corresponds to the motor hand knob known to be
the most strongly myelinated part of the primary motor region. These observations
agree with historic maps representing cytoarchitectural distributions [Brodmann,
1909; von Economo and Koskinas, 1925] as well as myeloarchitecture [Vogt and
Vogt, 1919a,b; Hopf, 1955, 1956; Hopf and Vitzthum, 1957; Smith, 1907].

T
1

profiles The (T
1

) values of profiles in Brodmann area 4 are very low (in-
dicating higher myelination) for each individual imaging modality (see Fig. 8.4).
Area 4 has myelinated tangential fibres in upper cortical layers [Vogt and Vogt,
1919a,b]. These additionally cause a higher degree of myelination in the upper
cortical layers of area 4 than in the corresponding layers of area 3b. The described
myelination translates into expectations for the T

1

profile values. Low T
1

values
(in ms) are found in deeper cortical layers of both area 4 and 3b as shown in the
in-vivo average profiles of area 4 and 3b, presented in Fig. 8.1 (first column). The
T
1

values for upper cortical layers of areas 4 and 3b, however, differ. The cortical
profiles derived from our T

1

maps clearly display this difference. The T
1

values
in the upper layers of area 4 are much lower than the corresponding T

1

values in
area 3b.
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Now, a comparison between cortical MRI profiles and classical histology profiles,
as presented by Hopf [1967] or Braitenberg [1962], may lead to confusion. In MRI,
the GM/CSF boundary is highly partial-volumed, i.e. the T

1

values in the cortex
are distorted by much higher T

1

values found in CSF, which may give rise to the
impression that the myelin concentration changes more strongly in upper cortical
layers. Rather than expecting an almost stagnating profile shape towards the pial
surface, in-vivo and ex-vivo MR profiles show a high increase of T

1

values.

8.2.2 Comparing Models to In-vivo Brain Data (Exp. 1,2)

The in-vivo comparison has been validated from different perspectives which are
presented in this section. Fig. 8.1 illustrates the results corresponding to Experi-
ment 1 from a single subject.

modelled profiles The strongly alternating profile shape of the modelled
profiles (Fig. 8.1, left column, magenta, dashed) represents the underlying lami-
nar myeloarchitectonic patterns at cell size resolution. Higher myelination is as-
sociated with lower T

1

values. The transparent bands of the in-vivo profiles and
modelled MR profiles represent the standard deviation. The dips visible in the pro-
files correspond to higher myelinated intracortical structures. The area-specific MR
models (shown in red) correspond well to in-vivo profiles. When the resolution is
decreased, the area-specific modelled MR profiles reveal less of their characteris-
tic structure as compared with the modelled profiles. Given a certain resolution,
both the in-vivo and modelled MR profiles are different across the areas. The
loss of structural features in the area-specific models with decreasing resolution is
depicted in Fig. 8.4B.

similarities on cortical surface In the second column of Fig. 8.1, the
similarities P are mapped onto the cortical surface for each model. The similarity
values range between 0.5–1 and indicate high similarity by red to pinkish colours
or low similarity by bluish to grey colours. In general, the area-specific MR models
show higher similarities in primary cortical areas, but not in areas located at the
frontal lobe. Some areas are highlighted in the parietal lobe and the occipital pole.
These structures are more strongly myelinated than the prefrontal brain, but not
as strongly myelinated as primary areas, which confirms previous research [Vogt
and Vogt, 1919a,b; Hopf, 1955, 1956; Hopf and Vitzthum, 1957].

similarities in rois The right column in Fig. 8.1 shows zoomed-in results,
focusing on the defined ROIs, of the same subject. The model of Brodmann area
4 shows clear results. Higher similarities (shown in red to pink) are consistently
distributed in location BA 4, whereas the similarities get smaller and the distribu-
tion pattern more patchy in other areas. The results are similar for the model of
Brodmann area 3b. Neighboring locations such as area 4 and 1 show lower sim-
ilarity values. The model of Brodmann area 1 shows lower similarity values in
location of area 3b and area 2. The model of Brodmann area 1 has high similarity
values in location of area 4. The model of Brodmann area 2 does not stand out
well. The discrimination between the four areas may be rather poor. In conclusion,
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the similarities are generally higher in plausible locations (model and area match)
BA
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Figure 8.1: The image depicts the application of the presented model to a single sub-
ject. The left column shows area-specific modelled profiles (magenta, dashed)
against mean in-vivo profiles (blue, solid) and modelled MR profiles (red, solid)
in one individual subject. Lower T

1

values represent higher myelin concentra-
tion. The transparent bands represent the modelled and measured standard
deviations. The area-specific MR models correspond well with the mean in-
vivo profiles. (Figure caption continues on the next page.)
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Figure 8.1: The second column shows maps of a single subject’s similarity values, com-
puted from Eq. 7.11 and sampled along the central cortical surface, to give a
general impression of their distribution. The right column shows enlargements
of the considered ROIs. The zoomed-in pictures show higher intra-ROI similari-
ties when there is a match between a model and the respective Brodmann area.
When the model and the location of an area do not correspond, the results
show smaller similarities and/or inconsistent patterns.

Single Subject Group Average
BAs 4 3b 1 2 4 3b 1 2

Pr
ofi

le
s

4

0.8431 0.0 0.8 0.5556 0.871 0.0 0.9412 0.0
(0.1529) (0.0) (0.201) (0.253) (0.1807) (0.0) (0.211) (0.0)

3b
0.4 0.818 0.0 0.795 0.357 0.833 0.45 0.794

(0.235) (0.183) (0.0) (0.175) (0.237) (0.216) (0.233) (0.184)

M
od

el
le

d

1

0.80 0.0 0.833 0.889 0.805 0.0 0.92 0.0
(0.166) (0.0) (0.216) (0.246) (0.171) (0.0) (0.188) (0.0)

2

0.5 0.718 0.0 0.796 0.5 0.643 0.684 0.781

(0.238) (0.193) (0.0) (0.161) (0.244) (0.166) (0.222) (0.174)

Table 8.1: A summary of the quantitative comparisons between area-specific MR models
and in-vivo profiles. The mode and standard deviations (given in brackets) were
computed from the estimated beta distribution of the underlying similarity val-
ues in each ROI as depicted in Fig. 8.2. The diagonal boxes (blue) describe a given
model at its corresponding location. Anatomically neighboring areas are high-
lighted in yellow. Given a certain model, it performs best in its corresponding
location and outperforms directly neighboring areas.

while they are smaller in directly neighboring areas. The individual models reveal
smaller similarities and/or inconsistent patterns (small different clusters) when
the location of the Brodmann area and the area-specific model do not match.

quantitative comparison Quantitative comparisons between area-specific
MR models and in-vivo profiles are summarised in Table 8.1. Given a certain
model, it mostly performs best in its corresponding location (diagonal, coloured
blue) and outperforms directly neighboring areas (coloured yellow). This is true
for individual subjects as well as the group data. When the distribution of simi-
larity values was skewed to 0 or 1, or similarity values were distributed across the
entire range forming no precise peak, the approximated beta distribution becomes
asymptotic. The mode and standard deviation cannot be estimated and were set
to 0. The distribution of the area-specific similarities (blue) and the estimated beta
distributions (red) are additionally shown in the Fig. 8.2. Graphs are illustrated
for the group-average and for the single subject shown in Fig. 8.1. These graphs
additionally provide information on how the underlying similarity values were
distributed when the estimation of the mode and standard deviation from the beta
distribution did not work. In the group results, the model of Brodmann area 4 in lo-
cation of area 3b and 2 show values distributed across the entire range. Brodmann
area 2 is an exception because it is not well separable across the group (N = 19).
In the single subject results, the model of Brodmann area 3b shows a negatively
skewed distribution in location of area 1.
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causes of failure In Brodmann area 2 the underlying data is highly variable,
which arises from imaging artefacts as well as small segmentation errors.

Figure 8.2: The images show the distributions of similarity values derived from the data
(blue) and the approximated probability density function of a beta distribution
(red) in each ROI for the given models. The beta distribution is used to compute
the mode and standard deviation in each ROI on a group-average (N=19, top
row) and subject-wise (bottom).
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Gibb’s ringing: The T
1

maps show small effects of Gibb’s ringing (which is re-
spected in our modelling approach, too, see Fig. 7.1h) that appear in the back of
the brain and encompass the post-central gyrus but barely reach more into ante-
rior regions, i.e. the central sulcus (see Fig. 3.10). The ringing artefacts do thus
not affect area 3b very much and area 4 is even less affected. The effects usually
intrude the imaging data in location of the cortical surface up to a depth of 1.5 cm.
Therefore, all remaining areas of interest in the post-central gyrus, i.e. areas 1 and
2, show these small effects. Its influence on the final modelling result is different
for the two areas, because the influence depends on the orientation and position
of the area as well as its cortical thickness. The effects of ringing artefacts appear
parallel in the cortex of area 1 and orthogonally in the cortex of area 2. Given the
different cortical thicknesses of these locations with area 1 being thick at the gyral
crown and area 2 being relatively thin in the sulcal wall, this ringing significantly
affects the cortical segmentation result, and leads to larger inaccuracies when cal-
culating the cortical profiles. In area 1, segmentation errors occur rarely, and their
effects average out when the cortical profiles are calculated. In area 2, however, the
segmentation of the boundary surfaces is affected by the artefact, which in turn im-
pairs the quality of the cortical profiles. Comparing these corrupted profiles with
an area-specific MR model leads to low similarity values, although intracortical
contrast remains visible in this area.

Blood vessels: With the new resolution, blood vessels with a diametre of 0.5mm
can be captured. Thus, their influence appears even stronger compared to stan-
dardly used MRI data. Segmentation errors due to blood vessels occur in various
regions of the cortex. Here, the effects of segmentation errors due to blood vessels
are most prominent in area 2, where the anterior parietal (or post-central sulcal)
artery extends medially into the post-central sulcus. Branches of the paracentral
artery reach laterally into the central sulcus region. These extensions usually fol-
low the gyral crowns and their branches reach into the sulcal basins. Vessels on
the crown have a diametre larger than the imaging resolution and are well dis-
criminated with the segmentation methods used. However, their branches have a
diametre close to or even smaller than the imaging resolution and are sometimes
misclassified as belonging to grey matter. All these effects influence the perfor-
mance of the model of Brodmann area 2. In the future, better methods have to
be developed to capture the vessels’ characteristics and to reduce segmentation
errors.

area-specific signatures From the aforementioned analysis, the question
arises if the individual models are able to capture area-specific signatures. In
Fig. 8.3 we mapped at each location the model with the highest similarity value
given the values presented in Fig. 8.1. Patterns of the models overlap with the
corresponding locations of these areas. In location of Brodmann area 4, the model
of area 1 is slightly present. In location of area 1, the model of Brodmann area 4

dominates more. These two areas are very similar and hard to distinguish. When
data quality was insufficient, the similarity values of the model of Brodmann area 2

were smaller than similarity values from other models. Thus, there was no obvious
cluster representing the location of Brodmann area 2.
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Figure 8.3: Surface and zoom-in on ROIs: At each location, the area-specific model with the
highest similarity value is marked. Models reveal area-specific signatures.

8.2.3 Comparing Models To Postmortem Brain Data (Exp. 3)

Fig. 8.4, first row, shows a comparison between group-average in-vivo profiles
(dark blue), ex-vivo profiles (light blue), histology profiles (green), and a group-
average of the area-specific models (red). The comparison is shown for each ROI.
Lower values are again associated with higher myelin concentration. Profiles with
similar resolution should have similar profile shapes. Indeed, the modelled (red)
and histology profiles (green) are qualitatively similar. They show the same trends
at the same locations although the intensity of change is not the same. The ex-
vivo profiles (light blue) preserve some shape characteristics, but striking features
visible in the modelled and histology profiles are weakly noticeable here due to
limiting resolution effects. The in-vivo profiles show less characteristic structure,
but follow the general trend of the other profiles.

8.2.4 Profile Attributes: Mean and Shape (Exp. 4)

In Experiment 4, we investigated the information contributed separately by the
mean and the shape of an individual in-vivo profile. In Fig. 8.5, first row, we
schematically depict the different measures considered (from left to right): our
presented approach, the mean-experiment and the shape-experiment. For compar-
ison, the first column depicts the results of our approach on a cortical surface (as
shown in Fig. 8.1).

the uniqueness of area 4 In a normal adult human brain, area 4 is the
most highly myelinated cortical area. Profiles found in this location have very low
T
1

values, leading to very low mean values and large differences in profile shape
when compared to profiles derived from other regions in the cortex. Using Eq. 7.11

with only the mean T
1

value of a profile results in high similarities in locations
of area 4 and low similarities in other locations. Therefore, the three surfaces
corresponding to the model of area 4 in Fig. 8.5 reveal fewer differences when
comparing the effects between our approach, the mean- and the shape-experiment.
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In each case, the areas are best discriminated when using our approach which
not solely depends on mean T

1

value but incorporates shape differences, too.

Figure 8.4: The image presents comparisons between area-specific models and in-vivo and
postmortem data. The first row shows comparisons between modelled (red),
group-average in-vivo (blue), ex-vivo (light blue), and histology (green) profiles.
The myelination pattern agrees between the area-specific model and histology.
The differences in myelination are located at similar relative cortical depths for
different imaging techniques in each Brodmann area. In general, the myelina-
tion trend is also preserved in ex-vivo and in-vivo profiles. (Figure caption
continues on the next page.)
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Figure 8.4: Middle and bottom row show simulated experimental data. Each modelled
profile (middle row) was transformed into different scales of resolution starting
at 0.5µm (red) and increasing in 50µm steps up to 1mm (blue). As resolution
is coarsened, salient features disappear very quickly. Even at lower resolutions,
profiles at the same scale are still very different across Brodmann areas. The
bottom row shows the theoretical similarity Pt of how similar the area-specific
models are at different resolutions.

mean of a profile The mean-experiment presented in Fig. 8.5 for Brodmann
areas 3b and 1 show that using the mean T1 value of a profile alone is insufficient to

Figure 8.5: The images depict results from additional experiments comparing the use of
the mean and the shape (first column), the mean (second column), and the
shape (third column) of cortical profiles separately. (Figure caption continues
on the next page.)
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Figure 8.5: In general, the experiment using only the mean yields an almost binary result
in which frontal, parietal, and temporal regions are equally similar to each
other. Using the shape alone provides even less distinction in the ROIs in focus.
Differences are encircled. The performance is best when using the mean and
shape in a combined setup as presented in this work. It leads to high simi-
larities when location and model match and low similarities in the case of a
mismatch.

reveal area-specific signatures. Locations across the cortex are categorised as either
very similar or very different, with no intermediate variation. Frontal, temporal,
and parietal parts appear to be equally similar when applying the models of area
3b and area 1. A similar pattern can be observed for the shape-experiment when
using the models of Brodmann area 3b and 1. Here, the selected regions of interest
are poorly distinguished.

In many locations across the cortex, cortical profiles exhibit lower T
1

values in
upper cortical layers and, at the same time, higher T

1

values (less myelin) in lower
cortical layers. Therefore, if we compare the mean T

1

value of these profiles, there
is no noticeable difference. Hence, mean values of profiles from different locations
in the cortex appear similar when using the mean T

1

value alone, although their
underlying real microstructure may be different.

mean distance between profile shapes The shape-experiment presented
in Fig. 8.5 shows that using the mean distance between profile shapes is insuffi-
cient, too. The shapes may differ due to higher or lower T

1

values in upper or
lower cortical layers. The total shape difference through cortical depth may be
the same in different locations across the cortex, and, thus, the similarities differ
not much. Here, the same conclusion as in the mean-experiment can be drawn:
profiles from different locations in the cortex appear similar when using the shape
only, although the underlying microstructure may be different.

The effects are less convincing when the model of Brodmann area 2 is applied.
Possible reasons for the failure of the model of Brodmann area 2 were discussed
previously in Section 8.2.2.

8.2.5 Resolution Experiment (Exp. 5)

Area-specific models at different scales of resolution are shown in Fig. 8.4, sec-
ond row. The pictures illustrate the effect of decreasing resolution on profile shape
characteristics. Strong shape features, such as turning points along the profile, van-
ish quickly with decreasing resolution. At 0.4–0.5mm resolution, striking features
become weaker. However, at a given resolution the profile shapes in each area
are noticeably different, an observation which has already been pointed out when
comparing in-vivo and modelled MR profiles in Fig. 8.1. Thus, the following ques-
tion arises: Which resolution is needed to distinguish between profiles originating
from different cortical areas?

theoretical discrimination of areas The bottom row of Fig. 8.4 depicts
the similarity P

t

for directly neighboring areas 4 vs. 3b, 3b vs. 1, and 1 vs. 2 (all
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marked with an ⇤) as well as not directly neighboring areas 4 vs. 1, 2 vs. 3b, and
4 vs. 2. The similarity is computed on the basis of the modelled profiles. Thus,
the similarity values can only be interpretated in a theoretical manner. The values
are illustrated according to decreasing resolution. The challenging task for this
approach is to distinguish between neighboring areas. The similarity plots show
that Brodmann areas 4 and 3b can be well discriminated even at lower resolution.
It is easier to distinguish Brodmann area 3b from 1 than Brodmann area 1 from 2.
Brodmann areas 1 and 2 are similar at higher resolution, too. In the case of non-
neighboring areas, Brodmann areas 2 and 3b are the most similar, directly followed
by Brodmann areas 4 and 1. Brodmann areas 4 and 2 are the most dissimilar areas.
In general, the slope of the similarity curve is high, given high resolution (except
Brodmann areas 4 vs. 3b and 4 vs. 2), and starts to become smaller after 0.8mm.
At our working resolution of 0.5mm, neighboring Brodmann areas 4 and 3b are
well discernible. However, Brodmann area 2 cannot be reliably separated from
other areas. Brodmann areas 4 and 1 are hard to distinguish. The outcome of the
theoretical experiment here confirms results in Fig. 8.1 and 8.3, and Table 8.1.

8.2.6 Myeloarchitecture and Area-specific Results

There is a close relation between the cyto- and myeloarchitecture. The four myeloar-
chitectonic types present in the cortex are depicted in Fig. 2.11B (reproduced from
Hopf [1968, 1969]). Here, we relate the results from the experiments to descriptions
of myeloarchitecture.

the primary motor cortex m1 (ba 4) is reported to be of astriate type
[Hopf, 1967]. The (T

1

) values of profiles in Brodmann area 4 are very low (indi-
cating higher myelination) for each individual imaging modality (Fig. 8.4A). The
minima in the area-specific modelled profile (red) have the same strength. The
difference in amplitude between minima and maxima is small. Histological data
confirms this difference in myelination (see Fig. 8.4A). Due to small artefacts oc-
curring close to the pre- and post-central gyral crowns in the ex-vivo MR data, the
T
1

values in area 4 are increased in the ex-vivo profile, i.e. the difference is less
apparent.

the primary somatosensory cortex s1 (ba 3b) is described to be of
bistriate type, which is supported by the profile shape of the area-specific model
of Brodmann area 3b (Fig. 8.4A). The outer band seems to be stronger myelinated.
The area-specific model of Brodmann area 3b shows a deeper turning point (higher
myelination) in layer IV in which the outer band of Baillarger is located. The same
trend is visible in the histology profile of this area.

brodmann area 1 is located at the crown of the post-central gyrus and con-
sidered to be of unitostriate type (inner and outer band of Baillarger fuse together).
Area 1 has equally dense myelinated layers. In Fig. 8.4A, all profiles of Brodmann
area 1 appear on average less myelinated (higher T

1

values) in lower cortical lay-
ers IV-VI compared to the graphs of Brodmann area 4 and 3b. The minima in
the area-specific model of Brodmann area 1 have the same depth in terms of T

1
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values. The difference in amplitude between minima and maxima is small. The
histology profile almost stagnates in the deeper cortical layers with almost no dif-
ference between the two bands of Baillarger being visible. Thus, Hopf’s definition
of Brodmann area 1 being of unitostriate type with equally dense myelinated layers
is replicated here.

brodmann area 2 is located in the posterior wall of the post-central gyrus
and, according to Hopf [1968, 1969], of unistriate type with an outer band of
Baillarger being more pronounced. The area-specific model (Fig. 8.4A) clearly
indicates higher myelination in the location of the outer band. The difference com-
pared to the inner band is large. In the histology profile as well as in the ex-vivo
profile there is a clear minimum in location of the two Baillarger bands. However,
the separation into two bands is only visible in the histology profile. The data fit
Hopf’s definition of a unistriate type with a pronounced outer band.

8.2.7 Results on Partial Volume Analysis (Exp. 6)

The results in Fig. 8.6 show the spatial dependency between narrowness of struc-
tures and quantitative T

1

values. The narrowness is computed by taking the nor-
mal vector on the outer cortical surface and measuring the distance into the out-
ward direction, until a target is hit. In theory, the distance can reach infinite val-
ues. For validation purposes, the distance was thresholded to 8mm. In particular,
this distance measure allows to compute the distance in sulcal valleys (positions
marked with 1, 2 and 3 in the schematic drawing in Fig. 8.6). The picture in the
bottom of Fig. 8.6, each line represents T

1

values sampled on a surface in a cer-
tain cortical depth. The T

1

values of each line are then mapped according to their
distance on the x-axis. The 21 intracortical surfaces calculated in this thesis are
distributed in steps of 5% of relative cortical depth.

An interpretation of the results and effects described here and their underlying
causes is restrictedly possible at this stage as the true distribution of myelin in the
cortex as measured using MRI is still under investigation.

The effects visible in Fig. 8.6 address different configurations that are schemat-
ically depicted above. The inflated surfaces show the mapped distance values
computed using the normal vector. In general, there is a clear separation between
gyral and sulcal structures visible on the surfaces.

gyral structures Greenish regions visible on the surfaces define gyral crowns
on the medial side (marked as 4 in the schematic drawing). Blue to grey colours
indicate gyral crowns mostly on the lateral side of the cortex (marked as 5 in the
schematic drawing). These structures are defined by distance values >3.2mm.

sulcal structures Pink to red coloured regions on the inflated surfaces
(marked as 1 and 2 in the schematic drawing) represent opposite gyral folds in
sulcal structures which are close to contact. Yellowish regions (marked as 3 in
the schematic drawing) describe deep sulcal structures which have CSF in-between.
These structures are defined by distances of less than 3mm.
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Figure 8.6: The images depict the dependency between distance of cortical structure and
T1 values. Narrow sulcal structures, where gyral folds are close to contact,
show a rapid increase in T1 values in relation to an increase in distance.

dependence of t1 values in gyral structures The analysis shows that
there is a spatial dependence of T1 values in section 4 and 5 defining gyral crowns
on the medial (4) and lateral side (5). At the medial wall, gyral crowns of the
two different hemispheres are opposite each other. The distance of opposing gyral
crowns (marked 4) is larger than compared to distances in sulcal structures. Due
to less CSF as well as other structures being present between the hemishperes, such
as the dura mater, the T1 values exhibit only a slight slope. Gyral crowns on
the lateral side are exposed to CSF much stronger in frontal regions yielding an
additional increase in T1 values. Although it seems that the distance is maximum
(position marked as 5), the gyral folds in the parietal regions are in contact to dura
mater which has lower T1 values. This lessens the effect of increasing T1 values.

dependence of t1 values in sulcal structures Sulcal structures mostly
have a distance lower than <3.2mm. The graphed curves in sulcal structures show
a very different pattern than compared to gyral structures. There is also a rapid
spatial dependency visible in sulcal structures as described in gyral crowns. Up
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to a distance of 1.2mm the T
1

values in each of the upper cortical layers increase.
Then, they decrease again. This behaviour may be caused by definitions in the
segmentation pipeline as well as the imaging resolution used. The MRI data has
been registered to 0.4mm isotropic MNI space prior to segmentation. In the pre-
processing step, the PV filter was applied that uses a kernel size of 3x3x3 voxel.
The resulting posterior probabilities describing potential PV effects in a voxel are
more accurate in locations where the distance between folds covers the size of the
partial volume filter kernel: 3x0.4 = 1.2. This distance correlates with the peak
of the top curve in the graph. The curve denotes the outer cortical surface. In
locations where the distance between folds is smaller than 1.2mm, the PV filter
does not support the segmentation very well. The boundary surface separating
GM and CSF is "pulled" further towards CSF. Thus, it samples actual CSF values
yielding increased T

1

values. With distances between folds larger than 1.2mm, the
PV estimates are able to guide the segmentation such that it accurately outlines the
boundary between GM and CSF.

The drop of T
1

values visible at a distance of 0.5mm may indicate artefacts
related to the original imaging resolution of 0.5mm isotropic.

significance testing To evaluate the significance of the increased T
1

values,
a z-test has been performed. The mean and standard deviation of each of the
lines (representing each of the 21 intracortical layers) was calculated. The null
hypothesis tests whether the T

1

value associated with a specific layer and a certain
distance comes from a normal distribution defined by the calculated mean and
standard deviation in this layer. The dots on the graphed curves in Fig. 8.6 depict
layer-specific values at which the null hypothesis has been rejected. These points
are significantly increased and may relate to the above-described segmentation
artefacts. Significant points penetrate into the cortex up to 50%, influencing all T

1

values up to this depth. The highlighted dots form a triangular shape in upper
cortical layers. It shows that with an increase in distance up to 1.2mm the effect
becomes less strong and thus, penetrates less into the cortex. In addition, the
triangle’s upper right point matches again with the previously described necessary
voxel distance of 3x0.4 = 1.2.

8.2.8 Segmented Patterns in Human Primary Motor and Sensory Cortex (Exp. 7)

The observed decrease in myelin in T
1

maps coincides with the outline of receptive
field representations of hand and face. The results indicate a structural gap being
present between functional receptive fields. This is an unexpected finding. Such
gaps were assumed to not exist in humans. As a consequence, this structural vari-
ability could not adequately been modelled in the architecture-based parcellation
approach yielding a "clustered" appearance of similarities.

Further validation and analysis has been carried out to identify the underlying
properties of the structural variability. The work is currently under review. Under-
standing the key features of the gap will aid to model the cortical architecture in
future applications.
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8.3 discussion and current limitations of the method

8.3.1 Aspects on the Area-specific Modelling

In general, Hellwigs’s (1993) model depends on many assumptions and parame-
ters which he derived from the work by Sanides [1962] and Braitenberg [1962].

architectural measures Possible sources of uncertainty within the mod-
elling itself may be different cell densities or cell sizes in cortical areas, given that
the numbers can only be derived from postmortem material. The modelling is
based on the assumption that larger cells contribute more to the myelin concentra-
tion, as their myelinated axonal collaterals carry more myelin. This relationship
is modelled using a sigmoidal function. Newer cytoarchitectural data are needed
describing average measures on cell size, cell number, myelination and layer thick-
ness, but specifically providing variances for each of the measures.

cortical t

1

values The T
1

maps used in this study are comparatively new.
In order to explore the modelling approach in a focused way, we kept several pa-
rameters constant across subjects, such as values of T

1

for WM and CSF. These were
supported by previous literature. With more T

1

maps acquired and analysed, it
will be possible to replace tissue values taken from Rooney et al. [2007] with reli-
able values derived from these new T

1

maps. In the thesis, it has been shown that
the T

1

values at the CSF boundary vary depending on their location in the folded
cortex and the tightness of structures. Tardif et al. [2013] additionally showed that
the myelin concentration varies in the outer and inner cortical surfaces from area
to area. This is due to incoming radial fibres at the inner surface and tangential
fibres in the outer surface of the cortex. However, a static estimate used to model
the T

1

intensity range as described in this thesis is therefore not sufficient enough
to capture anatomical variability.

8.3.2 Limitations in Validation

The validation has several critical limitations that are discussed here.

manual labelling in regions-of-interest The observation of segmented
myelin patterns on cortical surfaces sampling structural T

1

values may effect the
outcome of the validation. The area-specific models may only fit the underlying
in-vivo MRI data in locations of small structural variability. The similarity values
in such highly variable locations are decreased. Hence, the average similarity com-
puted from labels given in a ROI may be decreased, too.

similarity metrics In this thesis, we further tested the Pearson correlation
in order to generate the previously shown area-specific signatures. The Pearson
correlation is defined as:

p
X ,Y =

cov(X , Y )
�
X

�
Y

, (8.1)
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where cov(X , Y ) represents the covariance and � the standard deviation of the
two features X and Y being tested. The metric calculates the linear correlation
between the two features. In the thesis, X and Y describe cortical profiles. When
using the Pearson correlation, the crucial parameter is the covariance. It only
measures the deviation from the mean of a cortical profile. However, the mean of
cortical profiles itself plays a major role. In its outcome, the Pearson correlation is
comparable with the shape-experiment performed in Exp. 4 (see Section 8.2.4).

fitting of beta distribution to underlying similarities To provide
comparable measures on the discrimination performance of the approach, a beta
distribution has been fitted to the underlying similarity values in each ROI. The
underlying similarity values in the ROIs follow no Gaussian distribution. Hence,
computing the mean and standard deviation yields inaccurate results. In addition,
the standard deviation would be very large which is not reasonable given that the
range of similarity values is between 0 and 1.

Calculating the mode as average similarity is meaningful as it addresses the
problem of finding the peak visible in the distributions. However, using Full Width
at Half Maximum (FWHM) as standard deviation measure provides no accurate
results. The estimated deviation at "half width" usually covers the entire range of
similarities. It does not provide reasonable measures and cannot capture the lobe
around the peak of the distribution.

Therefore, fitting a beta distribution to the data brings the best out of both op-
tions: the mode and the distribution around this mode are estimated. However,
fitting the beta distribution to the data is only possible to a limited extent: if the
data is too much skewed to either 0 or 1, the beta distribution becomes asymptotic.

8.3.3 Limitations in MRI Acquisition and Data Segmentation

The data used allows an application in limited ways.

acquisition and segmentation In the group data some subjects lack over-
all consistency in data quality. Small motion artefacts and image artefacts may
strongly affect the results. Head motion typically has a global effect, decreasing
the similarity values for each model. In contrast, image artefacts may have local
effects and lead to better performance of a given area-specific model in other loca-
tions, e.g. the model of Brodmann area 4 may perform better in the location of area
1 (and vice versa) and the discrimination between area 1 and 2 may be impaired.

data resolution Another limitation of the approach is the current in-vivo
image spatial resolution, which is constrained by the scan duration. Below a cor-
tical thickness of 1.5mm, the profiles generated from the empirical in-vivo data
carry a smaller amount of information compared with the modelled MR profiles.
In locations of small segmentation errors (oversegmentation) the empirical pro-
files may still carry enough information which is skewed into the profile’s cortical
depth. Important myelin-related intracortical features of the empirical profile are
thus not well aligned with the features in the corresponding model affecting single
subject as well as the group average results. Brodmann area 2 is the most incon-
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sistent structure of the ROIs. Anatomical differences occurring in the individual
brains may play a certain role, too. In some subjects the dura mater is almost in
contact with the brain matter, other subjects have CSF between brain matter and
dura mater. In these locations, the T

1

values at the CSF boundary surface have a
high spatial dependence leading to strong partial voluming effects (see Experiment
6). These dependencies highly influence the results.

performance In general, the practical performance of the presented model is
in agreement with the theoretically computed performance given in Fig. 8.4C. It
appears that a resolution as high as 0.3mm will be required to reliably distinguish
the cortical areas solely based on intracortical features. At 0.3mm the similarity
values between neighboring (4 vs 3b, 3b vs 1) and non-neighboring areas (4 vs 1, 4

vs 2) are mostly below 0.5, thus, areas can more likely be distinguished. The the-
oretical performance calculations show that the bands of Baillarger, their location
in cortical depth, and their degree of myelination are important. In addition, the
experiments shown in Fig. 8.5 indicate that mean and shape in a combined setup
perform best compared to mean or shape alone.

Average cortical myelin maps effectively depict primary areas even at lower res-
olution. But T

1

maps at 0.5mm isotropic resolution and their derived profiles’
mean and shape information bring further discriminative power when distinguish-
ing between cortical areas. Spatial or geometrical priors, such as curvature, may be
necessary in order to precisely distinguish between Brodmann areas 1 and 2 and
between Brodmann areas 2 and 3b.

8.3.4 Comparing In-vivo and Ex-vivo MRI Measurements

There are main differences between investigations based on in-vivo measurements
and postmortem brain samples:

resolution plays a major role. The difference in resolution between the imag-
ing modalities used here is quite large and ranges from 0.5mm isotropic
resolution in in-vivo MRI measurements and 0.25mm isotropic resolution in
ex-vivo MRI measurements to 0.002 58mm = 2.58µm in-plane resolution in
our histological experiment. Thus, differences in sampled image values may
arise from different partial volume effects.

fixation of the ex-vivo sample may have an effect on the size of the cortical
layers due to a small shrinking of the tissue during the fixation process
[Mouritzen, 1978].

transverse relaxation time is decreased after the fixation of a tissue sam-
ple. Thus, the dynamic range in the data is different. Mean T

1

values of
GM derived from in-vivo MR data span a dynamic range of approximately
1500ms. In MR data of a formalin-fixed brain sample, the mean T

1

values of
GM span a range of approximately 350ms.

age difference between the in-vivo and ex-vivo measurements is very large. A
T
1

map derived from older postmortem brains may reveal slightly higher T
1

values. The change of the laminar myelin pattern across cortical depth may
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loose some significance in location of the bands of Baillarger [Lintl and Braak,
1983].

Overall, age has a tremendous effect on brain structure and function. With
increasing age, cells die and myelinated fibres change, and this process may be
accelerated in disease states [Peters, 2002]. Cortical myelination is well known to
continue into the third decade of life but gradually reduces with advancing age
[Lintl and Braak, 1983]. Age may correlate with regionally specific decreases in
myelin content, changes in iron [Hallgren and Sourander, 1958] and water content
and ultimately with brain atrophy [Callaghan et al., 2014]. Further investigations
are necessary to determine and define changes depending on age, gender, brain
development, or disease.

8.3.5 Limitations in Histology

One should keep in mind that comparing profiles from different imaging modali-
ties is difficult since each individual modality has its own limitations. Here, it is
worth noting that the linear nature of myelinated axons and the planar dimension-
ality of myelin-stained cadaver brain sections pose a difficult problem. Calculating
3D quantitative profiles representing myelin concentration directly from histology
is insuperable. The method cannot determine absolute values of myelin because
even a highly standardised myelin staining process is not a quantitative method.
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S U M M A RY A N D C O N C L U S I O N S

This thesis presents a cytoarchitectonically-driven model that is able to provide
laminar area-specific estimates of myelin visible in quantitative T

1

maps measured
using MRI. So far, computational parcellation methods based on myeloarchitecture
do not exist yet. The key contribution of this work is the adaptation of Hellwigs’s
(1993) conceptual approach to a practical application to MRI data. As this work
presented here is the first known in-vivo application of Hellwigs’s (1993) method,
the model can only be seen as a starting point for further investigations of cortical
myelin distribution.

The model was validated by quantitatively analysing it on in-vivo data and
comparing it to classically-derived information from postmortem material. The
signature patterns visible on in-vivo surfaces appear to be area-specific. In addi-
tion, experiments were carried out to investigate the general discriminative power
between the models itself. The results showed that sophisticated methods are nec-
essary to precisely distinguish primary and secondary areas. Attributes, such as
mean and shape, describing cortical profiles were also compared. Last but not
least, partial voluming effects have been investigated by comparing the imaging
intensities at the CSF boundary surface to the tightness of sulcal structures.

This model is only applicable when certain prerequisites are fulfilled. These
relate to:

• the MRI data used which should reflect intracortical microstructure, and,

• the cortical layering technique used which should respect the shifting be-
haviour of real anatomical layers in the cortex.

In the thesis, new MRI mapping techniques were applied to obtain quantitative
maps of myelin. Furthermore, a novel equivolume layering model that follows the
architecture in the cortex was designed and implemented.

9.1 summary on achievements

In Section 5.2.5, requirements for an ideal parcellation approach were formulated.
Here, the outlined attributes will be compared to the achievements of the myelin-
based parcellation model presented in this thesis:

• incorporate architecture-relevant information: The cytoarchitecture-driven
myelin model respects the real cortical layering within the cortex because a
new layering model has been designed. The parcellation method incorpo-
rates information at micro-level taken from the tabulations provided by von
Economo and Koskinas [1925] and also models the misalignment between
cytoarchitectonic and myeloarchitectonic layers.
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• respect areal extent: The presented approach is not restricted by any sort
of macroanatomical landmark. Hence, it respects the high degree of folding
variability in non-primary areas.

• offer cortex-wide application: The parcellation scheme can be extended to
areas cortex-wide without the need of area-specific custom-built designs.

• provide robustness: The method guarantees to be robust in the applied set-
ting described in the thesis.

• be independent of type of input data: The parcellation scheme is developed
as a two-step approach. As such, it is completely independent of the type of
input data. It may be applied to in-vivo as well as ex-vivo data. Furthermore,
the presented method can translate model-specific information into other
data spaces in terms of redefining the intensity scale and the resolution. The
normalisation function used can be replaced by any other function. This
allows a translation and scaling towards other image modalities provided
by MRI as well as histology data.

• run automatically: The method runs automatically without user-interaction.

In summary, this work shows that architecture-based parcellation schemes may
be able to outperform existing parcellation techniques. The presented parcellation
method allows to study myelin distribution in the cortex. By doing so, it may
further help to understand the brain, and the relationship between number of
areas and their extent.

9.2 future work

Based on the previous section, future work tasks are outlined here.
The next steps for such a parcellation scheme may include:

• an extension to other cortical areas, such as Broca’s region.

• using the provided areal labels to further study areal extent or using them as
initialisation for other parcellation approaches.

• reversing the approach in order to estimate cytoarchitecture.

• an application to clinical data.

extension to other areas The method can be extended to generate profiles
of laminar myelin density patterns for other cortical areas. It is of most interest
to evaluate the performance in locations like Broca’s region which is responsible
for speach processing. It contains area 44 and 45. These areas are different in
their cyto- and myeloarchitectonic patterns, but are highly variable in their folding
pattern (see Fig. 2.5).
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utilising the labels The area-specific signatures presented in Fig. 8.3 can
be used as labels describing cortical areas. They can be used as initilisation for seed-
based approaches. The labels are more appropriate in regard to the variability of
individual brains. In other words: they were derived from the same brain they get
applied to. Using these parcellation-derived labels may overcome the limitations
of manually predefining the extent of an area or using projections of probabilistic
atlases. It is of uttermost interest in the fMRI community to have such labels to
study structural and functional connectivity in the brain.

estimating cytoarchitecture In turn, the approach could be easily re-
versed to estimate laminar quantities describing cytoarchitecture. This is specif-
ically useful when studying sub-areas of larger cortical areas or when trying to
detect new unknown areas with a deviating definite structure-function relation.

application to clinical data In future, the approach could be used in
studying diseased states of the brain in follow-up exams. By scanning the same
brain at different time points and using the first scan as reference, the intracortical
differences relating to the disease could be detected in a more focused way. An
ultimate goal would be to quantify these changes in order to support diagnostics
and therapy.

9.3 remaining challenges

The remaining challenges include four subjects that address:

• other tissue properties in the real brain that may drive and influence the MRI
contrasts.

• further aspects to improve the parcellation model,

• the data processing to allow for an accurate and efficient segmentation.

• the imaging to optimise data quality.

tissue properties In terms of T
1

values, there is an increasing interest in the
neuroscience community to what extent other factors, such as iron or susceptibility,
may influence the contrast of the T

1

maps. The work of Stüber et al. [2014] suggests
that, within the cortex, the value of T

1

is dominated by myelin content. Further
investigations are also necessary to determine and define myelin changes depend-
ing on age, gender, brain development, or disease. Incorporating new findings
may improve the performance of the presented approach. Increasing the sample
size and the age range of the study will help to adjust the modelling, in particular
considering that changes in cell and myelin morphology occur throughout human
life span [Henderson et al., 1980; Terry et al., 1987].

modelling aspects The architecture-based parcellation model can be im-
proved in the two different steps individually.

First step: In the first step, the models were built from cytoarchitectonic de-
scriptions. Newer cytoarchitectural data are needed describing average measures
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on cell size, cell number, myelination and layer thickness, but specifically provid-
ing variances for each of the measures. Using architecture variances may help to
model the inner-areal structural variability and enhance the general performance
of the model

Second step: In the second step, the models were transformed into the MRI space
by adapting the T

1

intensity scale and the resolution. The results presented in the
thesis show that there are differences in myelin concentration in different cortical
depths between different areas. This variability has been taken into account but
needs to be further investigated in-vivo. However, a relationship between T

1

val-
ues at the outer cortical surface and the tightness of structures has been presented
in the thesis. Furthermore, significant inner-areal structural variability coinciding
with receptive fields may exist in the primary motor and somatosensory region.
So far, there is a lack of knowledge about these structural entities in the human
brain. Using static estimates in the approach may therefore be inappropriate. Fu-
ture architecture-based parcellation schemes would benefit from a more sophisti-
cated modelling of CSF variability defined at the outer cortical surface that respects
the individual anatomical conditions. Advanced methods also require adequate
models of structural variability. This additional information may be derived from
functional MRI. Spatial or geometrical priors, such as curvature, may be necessary
in order to precisely distinguish between Brodmann areas 1 and 2 and between
Brodmann areas 2 and 3b.

Advanced cortical registration techniques may help to increase the robustness
and reproducibility of the results [Tardif et al., 2013; Robinson et al., 2013]. In par-
ticular, registered group-average T

1

maps may help in estimating a proper range
of T

1

values in given ROIs. But more data sets are necessary to reliably extract and
analyse the information. In addition, the approach presented could be usefully
combined with other data such as probabilistic maps or gyral maps, and even
task-based fMRI data to further understand the relationship between structure and
function in the human brain.

data segmentation The data processing pipeline presented in the thesis pro-
vides the base for applying the cytoarchitecture-driven myelin model. When pro-
cessing ultra-high resolution MRI data, artefacts and misclassifications of tissue
cannot be avoided. Future work will include more data to better characterise
and control image artefacts during the segmentation, and thus increase the per-
formance of the approach.

imaging the brain Head motion is one of the biggest problems when per-
forming MRI scanning at ultra-high resolution. The scan time is usually long and
up to 70min. Therefore, head motion introduces noise and produces blurry im-
ages. This problem can be overcome with adequate methods for removing motion
artefacts, such as prospective motion correction [Schulz et al., 2012]. The true
challenge is the data quality: optimising data is defined by increasing the SNR or
increasing the resolution. New sequences need to be designed that are able to
further increase SNR and resolution and investigate other tissue properties.
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9.4 conclusions

The approach presented offers a fresh perspective for imaging and modelling the
relationship between myelo- and cytoarchitecture, in the context of the increasing
interest in advanced methods for cortical parcellation.

The cytoarchitecture-driven myelin model presents a promising starting point to
further investigate cortical architectural studies. It provides results of high interest
to other fields in the neuroscience community.

This work specifically shows that architecture-based parcellation schemes out-
perform existing techniques. But on the other hand, the resolution of the imaging
data is still a limiting factor. Parcellating the cortical surface has a history of more
than 250 years. Finding a proper method may be as challenging as pushing the
resolution in MRI.
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A
H I S T O R I C M A P P I N G S O F C Y T O - A N D
M Y E L O A R C H I T E C T U R E

In this Appendix, the historic mappings mentioned in Section 2.2.2 are presented
in medial and lateral view. They depict the similarities and differences in cyto- and
myeloarchitecture. The illustrations were taken from von Economo and Koskinas
[1925] and were complemented with visual highlights in the selected regions of
interest: M1/S1 region and Broca’s area.

Brief descriptions of (individual areal) cytoarchitectonic and myeloarchitectonic
features are provided in Section 2.3.1 and Section 2.3.2. Detailed descriptions (in
German however) can be found in von Economo and Koskinas [1925].

First, all the three cytoarchitectonic mappings by Brodmann [1909], von Economo
and Koskinas [1925] and Smith [1907] are shown followed by the myeloarchitec-
tonic maps of Vogt and Vogt [1919a,b,c] and Hopf [1955, 1956]; Hopf and Vitzthum
[1957].
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Figure A.1: Brodmann’s cytoarchitectonic parcellation of the brain surface into 52 areas.
Lateral view (top) and medial side view (bottom) onto the surface highlight-
ing the primary motor-somatosensory areas 4, 3, 1 and 2, and Broca’s region
consisting of areas 44 and 45. Image source: von Economo and Koskinas
[1925].
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Figure A.2: Grafton Elliot Smith myeloarchitectonic parcellation of the cortical surface into
50 areas. Lateral view (top) and medial side view (bottom) onto the surface
highlighting the primary motor-somatosensory areas 4, 3, 1 and 2, and Broca’s
region consisting of areas 44 and 45 (nomenclature and colour coding adopted
from Fig. A.1). Image source: von Economo and Koskinas [1925].
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Figure A.3: Von Economos’ and Koskinas’ cytoarchitectonic parcellation consisting of 107

areas. Lateral view (top) and medial side view (bottom) onto the surface high-
lighting the primary motor-somatosensory areas 4, 3, 1 and 2, and Broca’s
region consisting of areas 44 and 45 (nomenclature and colour coding adopted
from Fig. A.1). Image source: von Economo and Koskinas [1925].
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Figure A.4: Cécile and Oskar Vogts myeloarchitectonic parcellation of the brain sur-
face into 200 areas in lateral view. The image depicts the primary motor-
somatosensory areas 4, 3, 1 and 2, and Broca’s region consisting of areas 44 and
45 (nomenclature and colour coding adopted from Fig. A.1). Image source:von
Economo and Koskinas [1925].
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Figure A.5: Cécile and Oskar Vogts myeloarchitectonic parcellation of the brain surface
in medial side view. The image highlights the primary motor-somatosensory
areas 4, 3, 1 and 2 (nomenclature and colour coding adopted from Fig. A.1).
Image source: von Economo and Koskinas [1925].
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71, 72
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Figure A.6: Adaptation of Hopf’s individual lobe maps as presented in Hopf [1955, 1956];
Hopf and Vitzthum [1957] merged to one single surface in lateral view (nomen-
clature and colour coding adopted from Fig. A.1). The separation agrees with
structural changes in the myeloarchitecture described by the Vogts Vogt and
Vogt [1919a,b,c]. The grey level codes the myelin concentration in each area
with dark being strongly myelinated and light grey being less myelinated. (Im-
age published in Geyer and Turner [2013] and by courtesy of Springer Verlag,
Berlin-Heidelberg.)
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B
C O RT I C A L L AY E R I N G M O D E L S

Within the thesis a novel equivolume layering model was designed, implemented
and validated. The model is based on the work by Bok [1929] and aims to generate
a well-adapted coordinate system of the cortex.

In order to analyse layer architecture or function, it is desirable to define a con-
formal coordinate system. In this coordinate system, cortical depth values within
a given cortical area remain constant, independent of cortical curvature. From
surfaces spanning the coordinate system, cortical profiles can be constructed that
traverse the cortex. Anatomically consistent profiles allow correct assessment of
cortical thickness and enable accurate observer-independent mapping of structural
brain areas.

The chapter briefly explains other existing layering approaches and includes
a description of the validation experiments and their results. The content has
previously been published in Waehnert et al. [2013c].

b.1 layering models

In previous studies, two different layering methods were mainly used: Laplace
and equidistant models. In this section, the two models are briefly described.
The main purpose of the well-adapted coordinate system is to provide profiles
that are anatomically meaningful to study MR intensity patterns within cortical
areas and their variation across area boundaries. Cortical profiles can be gener-
ated with computational techniques either by surface-based or voxel-based meth-
ods. Surface-based methods reconstruct cortical surfaces in order to generate the
profiles, whereas voxel-based methods can generate the profiles directly from the
segmentation.

b.1.1 Laplace Models

The Laplace method solves the Laplace equation between the inner and the outer
cortical surfaces, setting each of these as an equipotential. Cortical profiles may
then be constructed along the gradient of this layering [Jones et al., 2000]. Com-
pared with straight profiles corresponding to nearest distance (from a point on
one boundary surface to the closest on the opposite boundary surface) or orthog-
onal projection methods, Laplace profiles have been claimed to provide more ac-
curate and stable cortical thickness estimates [Haidar and Soul, 2006]. Employing
Laplace profiles to sample intensity values in the cortex is advantegous because
they provide a one-to-one correspondence between the cortical boundary surfaces.
In addition, they terminate perpendicularly at each boundary surface and do not
intersect each other.
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b.1.1.1 Voxel-based Laplace Models

Cortical thickness measurements based on Laplace profiles using the voxel-based
approach have been made by: Yezzi and Prince [2003]; Hutton et al. [2008]; Geuze
et al. [2008]; Nagy et al. [2011]; Strenziok et al. [2011]; van Swam et al. [2012].
This voxel-based approach is computationally more efficient than surface-based
methods, sidestepping the need to reconstruct cortical boundary surfaces, and is
especially important for large data sets of population studies. The main drawback
of this is the lack of accuracy, which has been partly addressed by Acosta et al.
[2009] and Querbes et al. [2009] by incorporating partial volume information.

Voxel-based Laplace profiles have been worked with extensively for cortical par-
cellation on two-dimensional histological sections. Schleicher et al. [2005] used
Laplace profiles on cytoarchitectonic stained sections, quantifying the differences
between mean profiles of a sliding window to provide observer-independent de-
tection of areal borders. This approach has been employed to study striate and
extrastriate areas [de Sousa et al., 2010], but also to analyse neurotransmitter re-
ceptor distribution patterns [Eickhoff et al., 2007]. Annese et al. [2004] applied
Laplace profiles for myeloarchitectonic parcellation.

b.1.1.2 Surface-based Laplace Models

Surface-based methods employ the solution to the Laplace equation to generate
one-to-one correspondences between the cortical boundary surfaces [Im et al.,
2006] and even measure cortical thickness along the length of the links created
by the Laplace profiles [Foster and Zatorre, 2010]. The Laplace equation has also
been used to model cortical layers for high-resolution fMRI [Zimmermann et al.,
2011].

b.1.1.3 Laplace Models: Advantages and Disadvantages

Laplace profiles have good mathematical properties, for instance they do not cross
and are always perpendicular to the equipotentials they derive from. Because of
this last property, the trajectory of the Laplacian profiles depends directly on the
morphometry of the Laplacian equipotentials. The anatomy of the cortex also ap-
pears to have such a relationship: the cell columns running perpendicular to the
cortical layers. Hence it is important to know whether observable cortical layers
actually conform to the Laplace equation, or if a less mathematically constrained
model is more appropriate to describe cortical anatomy. Schleicher et al. [2005] ob-
served that some Laplace profiles follow cortical blood vessels on two-dimensional
sections stained for cytoarchitectonics, and assumed that such profiles thus lie par-
allel to the cortical columns. Annese et al. [2004] asserted that the Laplace equipo-
tentials lie parallel to myeloarchitectonic layers on their two-dimensional stained
sections.

de Vos et al. [2004] studied the relationship between local curvature and areal
boundaries in parcellations of two-dimensional sections stained for cytoarchitec-
tonics. The areal boundaries were deduced from samplings along Laplace profiles.

They noted that the folding of the cortex can introduce artificial boundaries in
observer-independent mapping. The challenge in these studies on two-dimensional
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stained sections is that the cutting angle of the section must be normal to the corti-
cal boundaries to provide an interpretable relationship between two-dimensional
sections and the actual three-dimensional structure. It is clear that to address the
cortical layering question thoroughly, it is vital to have access to a three dimen-
sional image of the cortex, together with a spatial resolution sufficient to capture
intracortical microstructure.

b.1.2 Equidistant Models

The computed intracortical surfaces describe a parameterised weighted average of
the inner and outer cortical surfaces. The geometry of the surfaces depends on the
choice of the parameter ⇢ which allows the final intracortical surface to be at any
distance between the two boundary surfaces. If ⇢ is chosen to be constant, the re-
sulting surface keeps a constant distance fraction from the segmented boundaries.
Here, this is called the equidistant layering model. The intracortical surfaces are
computed in the level set framework as described in Section 6.2.2.5 (see Equation
6.14).

The equidistant model has been used before by Trampel et al. [2012] for lamina-
specific fMRI. Khan et al. [2011] also used weighted averages of the inner and pial
surface level set functions to construct equidistant intracortical level set surfaces
and from these constructed Euclidean depth profiles. Moreover, previously there
have been other studies that use different implementations of equidistant laminae
or that sample profiles at equally spaced Euclidean cortical depths [Olman et al.,
2012; Polimeni et al., 2010b; Sereno et al., 2012]. However, Fig. 2.4 shows that the
actual cortical layers do not maintain a constant distance from the inner and pial
surfaces. Hence, the equidistant model is not appropriate.

b.1.3 Equivolume Models

The equivolume model is a novel approach for designing meaningful cortical pro-
files. It is explained in Section 6.2.2.5 and implemented according to the given
descriptions.

b.2 validation of the layering models

The validation was carried out on high-resolution in-vivo and ex-vivo MRI data. It
includes quantitative and qualitative comparisons between the models in different
cortical areas to show that the proposed equivolume layering model provides a
significant improvement both in precision and accuracy.

Intracortical layers extracted from the models are referred to in this study as
computed laminae or laminae.

b.2.1 Validation in Primary Visual and Somatosensory Regions

The cortical areas were chosen such that they contain myelinated intracortical
bands [Fatterpekar et al., 2002]. The bands of Baillarger are known to parallel the
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cytoarchitectonic layers IV and V. In particular, the stria of Gennari, i. e., located in
the calcarine sulcus in the primary visual area (Brodmann area 17), follows layer
IVb [Vogt and Vogt, 1919a; Brodmann, 1909]. Therefore, comparing the location
of the bands with computed surfaces indicates how well the established coordi-
nate system describes the myelo- and cytoarchitectonics of the examined cortical
area. Here, the models computed using the Laplace equation, the equidistant and
the equivolume method are compared. Quantitative validation of the equivolume
model consists of using manual delineations of the stria of Gennari as detected
with in- and ex-vivo MRI data. The equivolume model is further validated qual-
itatively comparing the layers with the bands of Baillarger in an ex-vivo sample
containing the postcentral gyrus.

b.2.2 MR Data Acquisition and Preprocessing

Scanning was performed using a 7T whole-body MR system (Siemens, Germany)
at the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Ger-
many.

b.2.2.1 Postmortem Scanning

A formalin-fixed block of human postmortem brain containing the occipital pole
was obtained from an autopsy with informed consent from the patient’s relatives
(postmortem time: 28h). Another formalin-fixed block containing the pre- and
post-central gyri was obtained with informed consent from the donor from the
Netherlands Brain Bank Amsterdam (postmortem time: 8h). No neurological
pathologies were recorded for any of the brains.

The blocks were scanned using a specially-designed dual loop circularly po-
larised radio frequency coil. A gradient echo FLASH sequence was used to ob-
tain a T⇤

2

weighted image of the occipital pole (150µm cubic resolution, TE= 9ms,
TR=50ms). Fig. B.1A shows the calcarine sulcus and the heavily myelinated stria of
Gennari that characterise Brodmann area 17, also known as the primary visual area
V1. Another gradient echo FLASH sequence was used to obtain a T⇤

2

weighted im-
age of the pre- and postcentral gyri (70µm cubic resolution, TE= 25ms, TR=60ms).
Fig. B.1B shows the central sulcus with the precentral gyrus on the left, in its pos-
terior wall containing Brodmann area 4 also known as primary motor cortex M1.
On the right-hand side of the central sulcus is the post-central gyrus that contains
Brodmann area 3b in its anterior wall also known as primary somatosensory cortex
S1.

b.2.2.2 Scanning of In-vivo Subject

To acquire in-vivo images, a 24 channel phased array coil (Nova Medical Inc., USA)
was used. The study was carried out with ethical approval from the local university
and informed consent was obtained. Maps of the longitudinal relaxation time T

1

were obtained from one healthy subject using the MP2RAGE sequence [Marques
et al., 2010; Hurley et al., 2010] (700µm cubic resolution, TR = 5000ms, TI

1

=
900ms, ↵

1

= 5°, TI
2

= 2750ms, ↵
2

=3°). The gradient echo FLASH sequence was
used to obtain a T⇤

2

weighted image (Fig. B.5A, (400µm cubic resolution, TE =
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Figure B.1: T∗
2 weighted image of postmortem samples: (A) Occipital pole sample with the

calcarine fissure (CF) and the stria of Gennari (SoG), 150µm cubic resolution;
(B) pre- and post-central gyri sample with the precentral gyrus (pre), i. e., area
4, on the left showing two bands of Baillarger (BoB) and the post-central gyrus
(post), i. e., area 3b, on the right containing one band. The image data were
downsampled to 140µm cubic resolution.

17.7ms, TR = 35ms, flip angle = 11°) of the same subject. The data was checked to
have no serious motion artifacts. Both ex- and in-vivo data were also checked for
ringing artifacts.

b.2.2.3 Preprocessing of the Data

Image preprocessing was done using MIPAV (NIH, Bethesda, USA) and the in
house developed plug-ins described in Chapter 6. For segmentation of the post-
mortem images into grey and white matter (GM, WM), an automatic algorithm,
Fantasm [Pham and Prince, 1999], was used to get a first crude estimation. Care-
ful subsequent manual intervention was required to obtain a refined segmenta-
tion. From the segmented images, the inner GM/WM cortical surface and the outer
GM/background surface were determined.

For the in-vivo data, the T1 map was normalised into the Montreal’s Neurolog-
ical Institute (MNI) brain space and resampled to a cubic resolution of 400µm.
The normalisation consisted of a rigid registration and normalised mutual infor-
mation as a cost function. Afterwards, the normalised image was segmented fully
automatically and inner and the pial surfaces were reconstructed as described in
Chapter 6. The T∗

2 weighted image was then registered onto the segmentation of
the T1 map. This registration was landmark based and rigid to preserve the corti-
cal geometry. Note that there are small distortions between the T1 map and the T∗

2

weighted image due to the different band widths during scanning.

b.3 results

b.3.1 Postmortem Samples

First, the layers in the primary visual cortex at the calcarine sulcus region (Fig. B.1A)
was evaluated. A lamina estimated with the Laplace model is thinner at the highly
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Figure B.2: Layering computed with the Laplace equation (A), the equidistant (B) and
the equivolume model (C) on the postmortem occipital pole data shown in
Fig. B.1A. Laminar thicknesses in the equivolume model change contrary to
the thicknesses in the Laplace model with respect to curvature.

curved regions than at locations with low curvature (Fig. B.2A). Moreover, com-
paring the laminae that stratify the cortex from the inner to the pial surface, one
notices that the laminae at the boundary surface with the higher curvature are
thinner than the laminae at the boundary surface with lower curvature. The lam-
inae from the equidistant model have equal thicknesses everywhere (Fig. B.2B),
independent of curvature. The laminae in the equivolume model are thick when
they are closer to the surface with greater curvature (Fig. B.2C) and thinner when
they are closer to the little curved boundary surface. A lamina computed with the
equivolume model, having a specific thickness at the flat part of the cortex, is thin-
ner at locations of low curvature and thicker at locations of high curvature. Hence,
the laminae thicknesses of the equivolume layers behave contrary with respect to
curvature than the Laplace laminae thicknesses.

b.3.1.1 Quantitative Comparison in Primary Visual Cortex using Ex-vivo MRI data

To evaluate the three different models quantitatively, the respective laminar struc-
ture was investigated at the location of the stria of Gennari in the primary visual
cortex. Brodmann [1909] described the stria of Gennari as located in cytoarchi-
tectonic layer IVb. Von Economo and Koskinas [1925] measured the position of
cytoarchitectonic layer IVb at different locations. In the sulcal wall it is between
0.47 and 0.61 relative Euclidean cortical depth. Our cortical depth values increase
from the inner to the outer cortical boundary (the opposite of von Economo’s con-
vention). Therefore, we can model von Economo’s values with a boxcar function
that has a value of one between 0.39 and 0.53 and zero at other cortical depths.
The cortex at the sulcal wall is flat, and hence the cortical depth values are undis-
torted. We can compare our cortical depth values even in highly curved cortex
regions to von Economo’s values, since the well-adapted coordinate system from
the equivolume model compensates for curvature. To account for partial volume
effects and the resolution of our data (150µm), we convolved the boxcar function
with a Gaussian that has a standard deviation of half the resolution with which
the MR image was acquired. The convolved von Economo data is depicted in
Fig. B.3C, D and E as an ochre curve. Its area was normalised to the area of the
histogram of the equivolume model (Fig. B.3E). Mean and standard deviation are
µEG1 = 0.46± 0.06.
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Figure B.3: Quantitative analysis of the Laplace method, the equidistant and the equivol-
ume model on postmortem occipital pole data: (A) mask of the stria of Gennari
on highly curved regions; (B) laminae with values µ

pm

= 0.48± 0.09 of equiv-
olume layering (Fig. B.2C); (C), (D), (E) blue bar plots: histograms of cortical
depth values (Fig. B.2) at the stria of Gennari mask with respective means and
standard deviations; ochre lines: convolution of von Economo’s data with a
Gaussian accounting for partial volume effects and a normalisation to the area
of the histogram of E; (E) mean and standard deviation of the unimodal his-
togram: µ

pm

= 0.48± 0.09.

To study the behavior of the different layering models quantitatively, the follow-
ing technique was used. The stria was labelled in highly curved regions of the
cortex, i.e. on the gyral crowns and in the fundi of the sulci (Fig. B.3A). This binary
image is a mask of the stria of Gennari, with 1 at labelled stria locations and 0

everywhere else. This stria mask was multiplied voxel-wise with the layers of the
model to be evaluated. The resulting image consists of the cortical depth values at
the labelled stria and 0 everywhere else. A histogram of this resulting image is the
last step of the analysis.

The layering of an ideal model would contain a thin laminae that follows the
stria of Gennari everywhere. The histogram of the stria mask multiplied with the
ideal layering would be a single narrow peak.

However, Fig. B.3C shows a bimodal histogram of the Laplace layering at la-
belled stria locations. The right mode represents the cortical depth values at the
gyral crowns and the mode on the left-hand side are the values at the fundi of the
sulci. This means, that there is no laminae that follows the stria all along the cortex.
The same result was obtained in Waehnert et al. [2012] from a qualitative analysis
of the same data. The bimodality of the histogram now is a quantitative description
of the Laplace equation not being able to characterise the topology of the actual cor-
tical layers. One implication of the striking mismatch between computed Laplace
laminae and the anatomical layers is that cortical thickness measured along the
Laplace profiles cannot be accurate, since these profiles do not parallel the corti-
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Figure B.4: Qualitative analysis of the Laplace method (A), the equidistant (B) and the
equivolume model (C) on postmortem pre- and post-central gyri data: Each
laminae was selected to follow the band of Baillarger in the gyral crown on
the right-hand side (post-central gyrus). Green arrowheads mark locations
where the laminae follows the myelinated band. Yellow arrows indicate that
the chosen laminae fails to follow the band. The laminae was masked out
towards the edge of the sample where it is influenced by boundary effects.

cal columns. Moreover, cortical parcellation performed using Laplace profiles may
well dislocate boundaries between cortical areas.

Fig. B.3D shows that the histogram of the layering computed with the equidis-
tant model at marked stria locations is also bimodal. Again, the cortical depth
values at the gyral crowns make up one mode and the values at the fundi of the
sulci give the other mode. But the two modes in the equidistant model are closer
than in the Laplace model. Hence, the equidistant layering is closer to modelling
the stria of Gennari than the Laplace one.

Fig. B.3E shows a different behavior of the histogram obtained with the equivol-
ume model: this histogram is unimodal. This means that the equivolume layering
does contain a single laminae that follows the stria of Gennari everywhere that is
observable within the cortex, no matter how much it is curved. The mean and
standard deviation of this histogram is µpm = 0.48± 0.09. Since it is unimodal it
can be compared with the Gaussian distribution described by µEG1 = 0.46± 0.06
(ochre curve in Fig. B.3 C, D, E). Vice versa, the location of the laminae of the values
µpm is depicted in Fig. B.3B on the image, qualitatively showing that the laminae
does follow the stria of Gennari everywhere that is observable within the cortex.

b.3.1.2 Qualitative Comparison in Primary Motor Cortex using Ex-vivo MRI data

Comparing the three models qualitatively was performed on the sample contain-
ing the pre- and post central gyri. The original very high resolution of 70µm
turned out to be computationally too expensive, so we subsampled the image to
140µm (Fig. B.1B). Laminae that follow the bands of Baillarger in the crown of the
post-central gyrus were chosen from the layering (right-hand side of Fig. B.4).

Fig. B.4A shows the Laplace laminae. It follows the band everywhere in the post-
central gyrus and it follows the outer band in the flat part of the precentral gyrus.
However, the laminae deviates from the band in the highly curved region of the
precentral gyrus (extreme left of Fig. B.4A) and in the fundus of the central sulcus.
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The laminae, chosen from the equidistant layering to follow the band of Bail-
larger in the crown of the post-central gyrus, also fits the upper band everywhere
in the precentral gyrus (Fig. B.4B). Apparently, the distance between the band in
the post-central gyrus and the pial surface is the same as the distance between the
outer band and the pial surface in the precentral gyrus. In the sulcal walls the
laminae follows the bands better than the Laplace laminae. In the sulcal fundus,
the equidistant laminae is nearer to the band than the Laplace laminae. However,
the thickness of the cortical layers changes with cortical curvature in order to keep
the segment volume constant. Thus, the layers near the pial surface are thicker in
the fundus than in the crowns. This results in the band in the fundus being deeper
than the equidistant laminae.

The equivolume laminae selected to follow the band of Baillarger in the crown
of the post-central gyrus, follows the slight curves of the band in the anterior wall
of the post-central gyrus noticeably better than the equidistant laminae (Fig. B.4C).
It also tracks the upper band in the precentral gyrus. Most importantly, the equiv-
olume layering model compensates for the curvature in the sulcal fundus so that
the laminae selected to follow the band in the crown, is also able to follow the
band in the fundus.

b.3.2 In-vivo Data

Using the equidistant and the equivolume model, 20 intracortical laminae were
computed. The laminae were interpolated to give continuous values stratifying
the cortex. Fig. B.5B shows the equivolume layering on the T⇤

2

weighted image.
Specially-developed software calculated the layering with the Laplace model in
three dimensions [Waehnert et al., 2012], which already provides continuous corti-
cal depth values.

Evaluation of the three different models was performed by comparing the re-
spective layering with the location of the stria of Gennari in the primary visual
cortex on the registered T⇤

2

weighted images. Like in the experiment with the post-
mortem sample containing the calcarine sulcus (section B.3.1), a mask labelling the
stria was created (inset of Fig. B.5A). The stria was labelled only in regions where
it was clearly visible. Moreover, care was taken to label only regions where the
cortical segmentation of the T1 map appeared accurate on the T⇤

2

weighted image.
In contrast to the ex-vivo experiment, we labelled not only highly curved regions
but had to include parts of flat cortex, in order to have enough values to establish
a meaningful histogram.

The histograms shown in Fig. B.5C, D and E are obtained by multiplying the stria
mask with the layering of the three different models, respectively. As described
in section B.3.1, we convolve von Economo’s data with a Gaussian that accounts
for the resolution of the T⇤

2

weighted image (400µm). This results in a curve
that is normalised to the area of the equivolume histogram (Fig. B.5E) and has
µ
EG2

= 0.46± 0.11.
The Laplace model gives a histogram that is wide, flat and does not resemble a

Gaussian distribution (Fig. B.5C). This means that the marked stria is equally often
occuring at locations with many different values of the Laplace layering. Hence,
the Laplace layering does not contain any laminae that follows the stria of Gennari
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Figure B.5: Quantitative analysis of the Laplace, the equidistant and the equivolume model
on in-vivo data: (A) T⇤

2

weighted image of the occipital pole, 400µm cubic reso-
lution, inset: mask of the stria of Gennari on well segmented cortex; (B) equiv-
olume layering from interpolating 20 computed intracortical laminae; (C), (D),
(E) blue bar plots: histograms of cortical depth values at the stria of Gennari
mask for the different models with respective mean and standard deviation µ;
ochre lines: convolution of von Economo’s data with a Gaussian accounting
for partial volume effects with a normalisation to the area of the histogram of
E.

all along the cortex. It is possible though that the Laplace model would give a
bimodal histogram if the stria contained only voxels from highly curved regions.
Even then and given the fact of lower resolution, these findings confirm the result
from the analysis of the postmortem data: The Laplace equation does not conform
to observable cortical layers.

This is different in the case of the equidistant model. Here, the histogram looks
almost unimodal (Fig. B.5D). The bimodality of the equidistant histogram of the
postmortem data (Fig. B.3D) has vanished. This may be due to the values from
the voxels in flat cortex and the lower resolution. The mean and the standard
deviation is µ = 0.55± 0.16. This means that the equidistant layering contains a
broad laminae that follows the stria of Gennari everywhere in the cortex.

However, the equivolume model gives the narrowest histogram and it is clearly
unimodal. Mean and standard deviation are µ

iv

= 0.54± 0.15. Hence, the equiv-
olume layering contains a narrow laminae that follows the stria everywhere that is
observable within the cortex. This confirms the result from the postmortem data:
The equivolume model conforms to observable cortical layers.
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b.4 discussion and conclusions

This study was motivated by the finding that the Laplace equation does not de-
scribe the morphology of the anatomical cortical layering [Waehnert et al., 2012].
The inspiration for a better model arises from Bok’s (1929) study on the volume
preservation of cortical segments. We do not aim to rebuild the six cytoarchitec-
tonic layers, which in any case vary in relative thickness across cortical areas, but
instead we intend to provide a coordinate system of depth on which to describe
these layers, independently of the cortical folding. To our knowledge, this is the
only implementation of the equivolume model so far using MRI data.

However, de Vos et al. [2004] were inspired by Bok’s findings. They found that
cortical curvature introduces artificial boundaries in the cytoarchitectonic mapping
on two-dimensional stained slices. Therefore they tried to improve the Laplace
profiles by applying Bok’s ideas sampling at intervals of equal areas. In addition,
histological studies of cortical geometry on two-dimensional stained sections de-
pend strongly on the cutting angle of the section. To study the morphometry of
cortical layers observed in histology most accurately one would also need to stack
computationally the two-dimensional stained slices to three-dimensional volumes.

To validate our model, its performance on postmortem and in-vivo data was
compared to those of the equidistant and the Laplace model. When assessed using
the 150µm postmortem data, the equivolume model is the only model that gives
a unimodal histogram of layering values on the mask of gyral and sulcal locations
of the stria of Gennari.

Mean and standard deviation of this histogram is µ
pm

= 0.48± 0.09. Compared
to µ

EG1

= 0.46± 0.06, the equivolume model works impressively well, consider-
ing that it makes several simplifying assumptions in order to approximate Bok’s
cortical segments. These results indicate very clearly the need for the equivolume
model in studies of cortical anatomy on 3D MRI and histology at resolutions of
150µm or better.

It is also clear that the Laplace model is inaccurate even at lower resolutions,
and will likely decrease sensitivity and introduce biased results in folded regions.
Even in the 400µm in-vivo data its estimation of the location of the stria of Gennari
was far poorer than the one of the equidistant and the equivolume model. The
equidistant model is better than the Laplace model, and for low resolutions it may
be an acceptable approximation to the equivolume model. Still, even on our in-
vivo data set with cortical boundary surfaces defined from 700µm resolution data,
the equivolume model was most successful.

The main weakness of this implementation of the equivolume model is the esti-
mation of curvature. To give consistent values, the size of the curvature sampling
neighborhood must be chosen appropriately. This requires some care at resolu-
tions of 150µm and better. When the sampling window is smaller than the scale
of curvature the estimates become noisy and result in irregular laminae. When the
sampling neighborhood is too large, the quadric approximation may not be ade-
quate to model the surface locally and results in curvature estimates that go toward
zero. In this case, the equivolume model turns into the equidistant model which
may be an acceptable approximation. Moreover, the computation time increases
cubically with the size of the curvature sampling neighborhood.
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A quantitative measure for optimising the size of the curvature sampling neigh-
borhood could be the standard deviation of an average profile. For a perfect layer-
ing it will be zero. Minimising it with varying curvature sampling neighborhood
could provide a means of optimisation.

Profiles derived using the equivolume model are likely to improve cortical ob-
server-independent parcellation. Bok warned against placing boundaries between
cortical areas at locations where the layer structure is changed only by curvature
and not by a really different architecture [Bok, 1929]. The equivolume model con-
structs an undistorted well-adapted coordinate system of the cortex. Thus, mea-
suring cortical thickness and depth along profiles constructed with the equivolume
model is neuro-anatomically more appropriate. Moreover, the approach offers it-
self for analysis of laminar-specific fMRI, where the data can be correlated with
meaningful profiles and laminaes derived from structural images of the cortex.

Future work includes investigation of the impact of the equivolume layering
model on measures of cortical thickness and the definition of cortical profiles, in
particular as it assists in distinguishing cortical areas for architectonic parcellation.

186



B I B L I O G R A P H Y

O. Acosta, P. Bourgeat, M.A. Zuluaga, J. Fripp, O. Salvado, and S. Ourselin. Auto-
mated voxel-based 3D cortical thickness measurement in a combined Lagrangia-
Eulerian PDE approach using partial volume maps. Medical Image Analysis, 13

(5):730–743, 2009. (Cited on page 176.)

D. Adalsteinsson and J.A. Sethian. A fast level set method for propagating inter-
faces. Journal of Computational Physics, 118(2):269–277, 1995. (Cited on page 86.)

A. Aizerman, E.M. Braverman, and L.I. Rozoner. Theoretical foundations of the
potential function method in pattern recognition learning. Automation and Remote
Control, 25:821–837, 1964. (Cited on page 79.)

N.S. Altman. An introduction to kernel and nearest-neighbor nonparametric re-
gression. The American Statistician, 46(3):175–185, 1992. (Cited on page 76.)

L. Alvarez, F. Guichard, P.-L. Lions, and J.-M. Morel. Axioms and fundamental
equations of image processing. Archive for Rational Mechanics and Analysis, 123

(3):199–257, 1993. (Cited on page 84.)

Alzheimer’s Disease International. Economoc impact - World Alzheimer Report
2010. September 2014. URL http://www.alz.co.uk/research/world-report.
(Cited on page 34.)

A.A. Amini, T.E. Weymouth, and R.C. Jain. Using dynamic programming for
solving variational problems in vision. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 12(9):855–867, 1990. (Cited on page 81.)

P. Andlin-Sobocki, B. Jönsson, H.-U. Wittchen, and J. Olesen. Cost of disorders of
the brain in EuropeÅ¿. European Journal of Neurology, 12:1–27, 2005. (Cited on
page 34.)

J. Annese. The importance of combining MRI and large-scale digital histology in
neuroimaging studies of brain connectivity and disease. Frontiers in Neuroinfor-
matics, 6(13):1–6, 2012. (Cited on page 46.)

J. Annese, A. Pitiot, I.D. Dinov, and A.W. Toga. A myelo-architectonic method
for the structural classification of cortical areas. NeuroImage, 21(1):15–26, 2004.
(Cited on pages 99, 101, and 176.)

A. Anwander, M. Tittgemeyer, D.Y. von Cramon, A.D. Friederici, and T.R. Knösche.
Connectivity-Based Parcellation of Broca’s Area. Cerebral Cortex, 17(4):816–825,
2007. (Cited on page 96.)

Y. Assaf and O. Pasternak. Diffusion tensor imaging DTI-based white matter map-
ping in brain research: a review. Journal of Molecular Neuroscience, 34(1):51–61,
2008. (Cited on page 59.)

187



188 Bibliography

B. Aubert-Broche, M. Griffin, G.B. Pike, A.C. Evans, and D.L. Collins. Twenty
new digital brain phantoms for creation of validation image data bases. IEEE
Transactions on Medical Imaging, 25(11):1410–1416, 2006. (Cited on page 116.)

L. Axel and D. Morton. Correction of Phase Wrapping in Magnetic Resonance
Imaging. Medical Physics, 16(2):284–287, 1989. (Cited on page 56.)

J.G.F. Baillarger. Recherches sur la structure de la couche corticale des circonvolutions du
cerveau, volume 8. Mémoires de l’Académie Royale de Médecine, 1840. (Cited
on pages 28 and 29.)

P.J. Basser, J. Mattiello, and D. Le Bihan. Estimation of the effective self-diffusion
tensor from the NMR spin echo. Journal of Magnetic Resonance, 103(3):247–254,
1994a. (Cited on page 59.)

P.J. Basser, J. Mattiello, and D. Le Bihan. MR diffusion tensor spectroscopy and
imaging. Biophysical Journal, 66(1):259, 1994b. (Cited on page 59.)

P.-L. Bazin and D.L. Pham. Homeomorphic brain image segmentation with topo-
logical and statistical atlases. Medical Image Analysis, 12(5):616–625, 2008. (Cited
on page 116.)

P.-L. Bazin, L.M. Ellingsen, and D.L. Pham. Digital homeomorphisms in de-
formable registration. In Information Processing in Medical Imaging, pages 211–222.
Springer, 2007. (Cited on pages 117 and 119.)

P.-L. Bazin, A. Schäfer, J. Dinse, C. Tardif, M. Waehnert, E. Hashim, L. Huber,
S. Geyer, N. Bock, and R. Turner. Fine details of cortical and sub-cortical anatomy
revealed in-vivo by ultra-high resolution quantitative T1 mapping. Proceedings
of the 19th Annual Meeting of the Organization for Human Brain Mapping, 2013a.
(Cited on pages 50 and 114.)

P.-L. Bazin, M. Weiss, J. Dinse, A. Schäfer, R. Trampel, and R. Turner. A com-
putational framework for ultra-high resolution cortical segmentation at 7 Tesla.
NeuroImage, 93(0):201–209, 2013b. (Cited on pages 115, 117, and 127.)

M.F. Bear, B.W. Connors, and M.A. Paradiso. Neuroscience: Exploring the Brain.
Lippincott Williams & Wilkins, 3 edition, 2007. (Cited on pages 9, 15, and 32.)

M. Beckmann, H. Johansen-Berg, and M.F.S. Rushworth. Connectivity-Based Par-
cellation of Human Cingulate Cortex and Its Relation to Functional Specializa-
tion. The Journal of Neuroscience, 29(4):1175–1190, 2009. (Cited on page 96.)

T.E.J Behrens and H. Johansen-Berg. Relating connectional architecture to grey
matter function using diffusion imaging. Philosophical Transactions of the Royal
Society B: Biological Sciences, 360(1457):903–911, 2005. (Cited on page 59.)

R. Berlin. Beitrag zur Strukturlehre der Grosshirnwindungen. Inaugural dissertation,
1858. (Cited on page 18.)

M. Bernstein, K. King, and X. Zhou. Handbook of MRI pulse sequences. Elsevier, 2004.
(Cited on page 41.)

188



Bibliography 189

W. Betz. Anatomischer Nachweis zweier Gehirncentra. Zentralblatt für die Medi-
zinischen Wissenschaften, 12(578–580; 595–599), 1874. (Cited on pages 18 and 30.)

J.C. Bezdek. Pattern recognition with fuzzy objective function algorithms. Kluwer Aca-
demic Publishers, 1981. (Cited on page 72.)

Blausen Medical Communications, Inc. Wikiversity Journal of Medicine. Blausen
Gallery 2014. URL https://en.wikiversity.org/wiki/Blausen_gallery_2014.
(Cited on page 12.)

K.T. Block, M. Uecker, and J. Frahm. Suppression of MRI truncation artifacts using
total variation constrained data extrapolation. International Journal of Biomedical
Imaging, 2008, 2008. (Cited on page 55.)

T. Blumensath, S. Jbabdi, M. Glasser, D. Van Essen, K. Ugurbil, T. Behrens, and
S. Smith. Spatially constrained hierarchical parcellation of the brain with resting-
state fMRI. NeuroImage, 76:313–324, 2013. (Cited on pages 96 and 97.)

N.A. Bock, A. Kocharyan, J.V. Liu, and A.C. Silva. Visualizing the Entire Cortical
Myelination Pattern in Marmosets with Magnetic Resonance Imaging. Journal
of Neuroscience Methods, 185(1):15–22, 2009. doi: 10.1016/j.jneumeth.2009.08.022.
(Cited on page 132.)

J.A. Bogovic, J.L. Prince, and P.-L. Bazin. A multiple object geometric deformable
model for image segmentation. Computer Vision and Image Understanding, 117(2):
145–157, 2013. (Cited on page 118.)

S.T. Bok. Der Einfluß der in den Furchen und Windungen auftretenden Krüm-
mungen der Großhirnrinde auf die Rindenarchitektur. Zeitschrift für die gesamte
Neurologie und Psychiatrie, 121(1):682–750, 1929. (Cited on pages 16, 122, 123, 175,
and 186.)

B.E. Boser, I.M. Guyon, and V.N. Vapnik. A training algorithm for optimal margin
classifiers. In Proceedings of the 5th Annual Workshop on Computational Learning
Theory, pages 144–152. ACM, 1992. (Cited on page 79.)

P. Bradley, U. Fayyad, and C. Reina. Initialization of iterative refinement clustering
algorithms. Proceedings of ACMSIGKDD, 1998. (Cited on page 69.)

V. Braitenberg. A Note on Myeloarchitectonics. Journal of Comparative Neurology,
118(2):141–156, 1962. (Cited on pages 20, 28, 31, 100, 101, 131, 141, and 154.)

V. Braitenberg. Thoughts on the Cerebral Cortex. Journal of Theoretical Biology, 46

(2):421–447, 1974. (Cited on pages 31 and 100.)

H. Bridge and S. Clare. High-resolution MRI: in vivo histology? Philosophical Trans-
actions of the Royal Society B: Biological Sciences, 361(1465):137–146, 2006. (Cited
on pages 46 and 140.)

H. Bridge, S. Clare, M. Jenkinson, P. Jezzard, A.J. Parker, and P.M. Matthews. Inde-
pendent anatomical and functional measures of the V1/V2 boundary in human
visual cortex. Journal of Vision, 5(2):93–102, 2005. (Cited on pages 46 and 129.)

189



190 Bibliography

K. Brodmann. Vergleichende Lokalisationslehre der Großhirnrinde in ihren Prinzipien
dargestellt auf Grund des Zellenbaues. Leipzig: JA Barth, 1909. (Cited on pages 18,
22, 23, 25, 26, 27, 30, 140, 167, 178, and 180.)

R. Buckner, F. Krienen, and B. Yeo. Opportunities and limitations of intrinsic
functional connectivity MRI. Nature neuroscience, 16(7):832–837, 2013. (Cited
on page 98.)

A. Cachia, J.-F. Mangin, D. Riviére, D. Papadopoulos-Orfanos, F. Kherif, I. Bloch,
and J. Régis. A generic framework for the parcellation of the cortical surface
into gyri using geodesic Voronoï diagrams. Medical Image Analysis, 7(4):403–416,
2003. Medical Image Computing and Computer Assisted Intervention. (Cited
on pages 92 and 93.)

M.F. Callaghan, P. Freund, B. Draganski, E. Anderson, M. Cappelletti, R. Chowd-
hury, J. Diedrichsen, T.H.B. FitzGerald, P. Smittenaar, G. Helms, A. Lutti, and
N. Weiskopf. Widespread age-related differences in the human brain microstruc-
ture revealed by quantitative magnetic resonance imaging. Neurobiology of Aging,
35(8):1862–1872, 2014. (Cited on page 157.)

A.W. Campbell. Histological studies on the localisation of cerebral function. The
British Journal of Psychiatry, 50(211):651–662, 1904. (Cited on pages 18 and 31.)

V. Caselles, F. Catté, T. Coll, and F. Dibos. A geometric model for active contours
in image processing. Numerische Mathematik, 66(1):1–31, 1993. (Cited on pages 81

and 84.)

V. Caselles, R. Kimmel, and G. Sapiro. Geodesic active contours. International
Journal of Computer Vision, 22(1):61–79, 1997. (Cited on page 81.)

V. Caviness, J. Meyer, N. Makris, and D. Kennedy. MRI-based topographic par-
cellation of human neocortex: an anatomically specified method with estimate
of reliability. Cognitive Neuroscience, Journal of, 8(6):566–587, 1996. (Cited on
page 92.)

J. Charan and T. Biswas. How to calculate sample size for different study designs in
medical research? Indian Journal of Psychological Medicine, 35(2):121, 2013. (Cited
on page 102.)

E. Choi, B. Yeo, and R. Buckner. The organization of the human striatum estimated
by intrinsic functional connectivity. Journal of Neurophysiology, 108(8):2242–2263,
2012. (Cited on page 97.)

S. Clare and H. Bridge. Methodological Issues Relating to In Vivo Cortical Myelog-
raphy using MRI. Human Brain Mapping, 26(4):240–250, 2005. (Cited on page 46.)

V.P. Clark, E. Courchesne, and M. Grafe. In Vivo Myeloarchitectonic Analysis
of Human Striate and Extrastriate Cortex using Magnetic Resonance Imaging.
Cerebral Cortex, 2(5):417–424, 1992. (Cited on page 46.)

C. Clouchoux, O. Coulon, J.-L. Anton, J.-F. Mangin, and J. Régis. A New Cortical
Surface Parcellation Model and Its Automatic Implementation. In R. Larsen,

190



Bibliography 191

M. Nielsen, and J. Sporring, editors, Medical Image Computing and Computer-
Assisted Intervention – MICCAI 2006, volume 4191 of Lecture Notes in Computer
Science, pages 193–200. Springer, 2006. (Cited on page 93.)

C. Clouchoux, D. Riviére, J.-F. Mangin, G. Operto, J. Régis, and O. Coulon. Model-
driven parameterization of the cortical surface for localization and inter-subject
matching. NeuroImage, 50(2):552–566, 2010. (Cited on page 93.)

A. Cohen, D. Fair, N. Dosenbach, F. Miezin, D. Dierker, D. Van Essen, B. Schlaggar,
and S. Petersen. Defining functional areas in individual human brains using
resting functional connectivity MRI. NeuroImage, 41(1):45–57, 2008. (Cited on
page 96.)

I. Cohen, L.D. Cohen, and N. Ayache. Using deformable surfaces to segment 3-
d images and infer differential structures. CVGIP: Image Understanding, 56(2):
242–263, 1992. (Cited on page 83.)

L.D. Cohen. On active contour models and balloons. CVGIP: Image Understanding,
53(2):211–218, 1991. (Cited on pages 81, 82, and 83.)

L.D. Cohen and I. Cohen. Finite-element methods for active contour models and
balloons for 2-d and 3-d images. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 15(11):1131–1147, 1993. (Cited on page 83.)

J. Cohen-Adad. What can we learn from T⇤
2

maps of the cortex? NeuroImage, 93:
189–200, 2014. (Cited on page 47.)

J. Cohen-Adad, J.R. Polimeni, K.G. Helmer, T. Benner, J.A. McNab, L.L. Wald, B.R.
Rosen, and C. Mainero. T⇤

2

mapping and B
0

orientation-dependence at 7T reveal
cyto-and myeloarchitecture organization of the human cortex. NeuroImage, 60(2):
1006–1014, 2012. (Cited on page 47.)

M Colonnier and E Sas. An Anterograde Degeneration Study of the Tangential
Spread of Axons in Cortical Areas 17 and 18 of the Squirrel Monkey (Saimiri Sci-
ureus). Journal of Comparative Neurology, 179(2):245–262, 1978. (Cited on page 31.)

D. Coomans and D.L. Massart. Alternative k-nearest neighbour rules in supervised
pattern recognition: Part 1. k-nearest neighbour classification by using alterna-
tive voting rules. Analytica Chimica Acta, 136:15–27, 1982a. (Cited on page 77.)

D. Coomans and D.L. Massart. Alternative k-nearest neighbour rules in supervised
pattern recognition: Part 2. Probabilistic classification on the basis of the kNN
method modified for direct density estimation. Analytica Chimica Acta, 138:153–
165, 1982b. (Cited on page 77.)

C. Cortes and V. Vapnik. Support-vector networks. Machine Learning, 20(3):273–297,
1995. (Cited on page 79.)

R. Courant and D. Hilbert. Methods of Mathematical Physics, volume 1. New York:
Interscience, 1953. (Cited on page 82.)

191



192 Bibliography

O.D. Creutzfeldt, L.J. Garey, R. Kuroda, and J.-R. Wolff. The Distribution of Degen-
erating Axons after Small Lesions in the Intact and Isolated Visual Cortex of the
Cat. Experimental Brain Research, 27(3-4):419–440, 1977. (Cited on page 31.)

P. Croxson, H. Johansen-Berg, T. Behrens, M. Robson, M. Pinsk, C. Gross,
W. Richter, M. Richter, S. Kastner, and M. Rushworth. Quantitative investigation
of connections of the prefrontal cortex in the human and macaque using proba-
bilistic diffusion tractography. The Journal of Neuroscience, 25(39):8854–8866, 2005.
(Cited on page 95.)

L.F. Czervionke, J.M. Czervionke, D.L. Daniels, and V.M. Haughton. Characteristic
features of MR truncation artifacts. American Journal of Neuroradiology, 9(5):815–
824, 1988. (Cited on page 55.)

A.M. Dale, B. Fischl, and M.I. Sereno. Cortical Surface-Based Analysis: I. Segmen-
tation and Surface Reconstruction. NeuroImage, 9(2):179–194, 1999. (Cited on
page 94.)

J. Damoiseaux and M. Greicius. Greater than the sum of its parts: a review of stud-
ies combining structural connectivity and resting-state functional connectivity.
Brain Structure and Function, 213(6):525–533, 2009. (Cited on page 97.)

F. De Martino, F. Esposito, P. Van de Moortele, N. Harel, E. Formisano, R. Goebel,
K. Ugurbil, and E. Yacoub. Whole brain high-resolution functional imaging at ul-
tra high magnetic fields: an application to the analysis of resting state networks.
NeuroImage, 57(3):1031–1044, 2011. (Cited on page 97.)

A.A. de Sousa, C.C. Sherwood, A. Schleicher, K. Amunts, C.E. MacLeod, P.R. Hof,
and K. Zilles. Comparative cytoarchitectural analyses of striate and extrastriate
areas in hominoids. Cerebral Cortex, 20(4):966–981, 2010. (Cited on page 176.)

K. de Vos, C.W. Pool, E.J. Sanz-Arigita, and H.B.M. Uylings. Curvature effects
in observer independent cytoarchitectonic mapping of the human cerebral cor-
tex. In Proceedings of the Second Vogt-Brodmann Symposium, Research Center Jülich,
Germany, 2004. (Cited on pages 176 and 185.)

G. Deco and V. Jirsa. Ongoing cortical activity at rest: criticality, multistability, and
ghost attractors. The Journal of Neuroscience, 32(10):3366–3375, 2012. (Cited on
page 98.)

A. Deistung, A. Schäfer, F. Schweser, U. Biedermann, R. Turner, and J.R. Reichen-
bach. Toward in vivo histology: A comparison of quantitative susceptibility
mapping (QSM) with magnitude-, phase-, and R⇤

2

-imaging at ultra-high mag-
netic field strength. NeuroImage, 65:299–314, 2013. (Cited on page 47.)

R.S. Desikan, F. Ségonne, B. Fischl, B.T. Quinn, B.C. Dickerson, D. Blacker, R.L.
Buckner, A.M. Dale, R.P. Maguire, B.T. Hyman, M.S. Albert, and R.J. Killiany.
An automated labeling system for subdividing the human cerebral cortex on
MRI scans into gyral based regions of interest. NeuroImage, 31(3):968–980, 2006.
(Cited on page 94.)

192



Bibliography 193

C. Destrieux, B. Fischl, A. Dale, and E. Halgren. Automatic parcellation of human
cortical gyri and sulci using standard anatomical nomenclature. NeuroImage, 53

(1):1–15, 2010. (Cited on page 92.)

A. Di Martino, A. Scheres, D. Margulies, A. Kelly, L. Uddin, Z. Shehzad, B. Biswal,
J. Walters, F. Castellanos, and M. Milham. Functional connectivity of human
striatum: a resting state fMRI study. Cerebral Cortex, 18(12):2735–2747, 2008.
(Cited on page 97.)

F. Dick, A. Tierney, A. Lutti, O. Josephs, M. Sereno, and N. Weiskopf. In Vivo
Functional and Myeloarchitectonic Mapping of Human Primary Auditory Areas.
The Journal of Neuroscience, 32(46):16095–16105, 2012. (Cited on pages 47 and 100.)

J. Dinse, P. Martin, A. Schäfer, S. Geyer, R. Turner, and P.-L. Bazin. Quantifying Dif-
ferences Between Primary Cortical Areas in Humans Based on Laminar Profiles
in In-Vivo MRI Data. In H.-P. Meinzer, T.M. Deserno, H. Handels, and T. Tolx-
dorff, editors, Bildverarbeitung für die Medizin 2013, Informatik aktuell 2013, pages
39–44. Springer, 2013a. (Cited on pages 101, 129, 131, 132, and 134.)

J. Dinse, M. Waehnert, C.L. Tardif, A. Schäfer, S. Geyer, R. Turner, and P.-L. Bazin.
A Histology-Based Model of Quantitative T1 Contrast for In-vivo Cortical Parcel-
lation of High-Resolution 7 Tesla Brain MR Images. In Medical Image Computing
and Computer-Assisted Intervention–MICCAI 2013, volume 8150 of Lecture Notes in
Computer Science, pages 51–58. Springer, 2013b. (Cited on page 100.)

J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting
compact well-separated clusters. Journal of Cybernetics, 30:32–57, 1973. (Cited on
page 72.)

R. Ďurikovič, K. Kaneda, and H. Yamashita. Dynamic contour: a texture approach
and contour operations. The Visual Computer, 11(6):277–289, 1995. (Cited on
page 84.)

H.M. Duvernoy. The human brain: surface, three-dimensional sectional anatomy with
MRI, and blood supply. Springer Science & Business Media, 2012. (Cited on
page 92.)

H.M. Duvernoy, E.A. Cabanis, and J.L. Vannson. The Human Brain. Surface, Three-
Dimensional Sectional Anatomy and MRI. Springer, 1991. (Cited on page 92.)

J. Duyn. The future of ultra-high field MRI and fMRI for study of the human brain.
NeuroImage, 62(2):1241–1248, 2012. (Cited on page 39.)

S. Eickhoff, N.B. Walters, A. Schleicher, J. Kril, G.F. Egan, K. Zilles, J.D.G. Watson,
and K. Amunts. High-Resolution MRI Reflects Myeloarchitecture and Cytoarchi-
tecture of Human Cerebral Cortex. Human Brain Mapping, 24(3):206–215, 2005a.
(Cited on page 46.)

S.B. Eickhoff, K.E. Stephan, H. Mohlberg, C. Grefkes, G.R. Fink, K. Amunts, and
K. Zilles. A new SPM toolbox for combining probabilistic cytoarchitectonic maps
and functional imaging data. NeuroImage, 25(4):1325–1335, 2005b. (Cited on
pages 23, 31, 99, and 102.)

193



194 Bibliography

S.B. Eickhoff, A. Schleicher, F. Scheperjans, N. Palomero-Gallagher, and K. Zilles.
Analysis of neurotransmitter receptor distribution patterns in the cerebral cortex.
NeuroImage, 34(4):1317–1330, 2007. (Cited on page 176.)

M. Eltibi and W. Ashour. Initializing k-means clustering algorithm using statisti-
cal information. International Journal of Computer Applied Technology, 29(7):51–55,
2011. (Cited on page 69.)

L.J. Erasmus, D. Hurter, M. Naudé, H.G. Kritzinger, and S. Acho. A short overview
of MRI artefacts: review article. SA Journal of Radiology, 8(2):p–13, 2004. (Cited
on page 53.)

X. Fan, P.-L. Bazin, and J.L. Prince. A multi-compartment segmentation framework
with homeomorphic level sets. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–6. IEEE, 2008. (Cited on page 118.)

Girish M Fatterpekar, Thomas P Naidich, Bradley N Delman, Juan G Aguinaldo,
S Humayun Gultekin, Chet C Sherwood, Patrick R Hof, Burton P Drayer, and
Zahi A Fayad. Cytoarchitecture of the Human Cerebral Cortex: MR Microscopy
of Excised Specimens at 9.4 Tesla. American Journal of Neuroradiology, 23(8):1313–
1321, 2002. (Cited on pages 47 and 177.)

B. Fischl, M.I. Sereno, and A.M. Dale. Cortical Surface-Based Analysis: II. Inflation,
Flattening, and a Surface-Based Coordinate System. NeuroImage, 9(2):195–207,
1999a. (Cited on page 94.)

B. Fischl, M.I. Sereno, R.B.H. Tootell, A.M. Dale, et al. High-Resolution Intersub-
ject Averaging and a Coordinate System for the Cortical Surface. Human Brain
Mapping, 8(4):272–284, 1999b. (Cited on page 94.)

B. Fischl, D.H. Salat, A.J.W. van der Kouwe, N. Makris, F. Ségonne, B.T. Quinn, and
A.M. Dale. Sequence-independent segmentation of magnetic resonance images.
NeuroImage, 23:S69–S84, 2004a. (Cited on page 53.)

B. Fischl, A. Van Der Kouwe, C. Destrieux, E. Halgren, F. Ségonne, D.H. Salat,
E. Busa, L.J. Seidman, J. Goldstein, D. Kennedy, V. Caviness, N. Makris, R. Bruce,
and A.M. Dale. Automatically Parcellating the Human Cerebral Cortex. Cerebral
Cortex, 14(1):11–22, 2004b. (Cited on page 94.)

B. Fischl, N. Rajendran, E. Busa, J. Augustinack, O. Hinds, BT Yeo, H. Mohlberg,
K. Amunts, and K. Zilles. Cortical Folding Patterns and Predicting Cytoarchitec-
ture. Cerebral Cortex, 18(8):1973–1980, 2008. (Cited on page 99.)

M.A. Fischler and R.A. Elschlager. The representation and matching of pictorial
structures. IEEE Transactions on Computers, 22(1):67–92, 1973. (Cited on page 80.)

P.E. Flechsig. Anatomie des menschlichen Gehirns und Rückenmarks auf myelogenetis-
cher Grundlage, volume 1. G. Thieme, 1920. (Cited on page 18.)

N.E.V. Foster and R.J. Zatorre. Cortical structure predicts success in performing
musical transformation judgments. NeuroImage, 53(1):26–36, 2010. (Cited on
page 176.)

194



Bibliography 195

A.F. Frangi, W.J. Niessen, K.L. Vincken, and M.A. Viergever. Multiscale ves-
sel enhancement filtering. In Medical Image Computing and Computer-Assisted
Interventation-MICCAI’98, pages 130–137. Springer, 1998. (Cited on page 115.)

M. Fukunaga, T. Li, P. van Gelderen, J.A. de Zwart, K. Shmueli, B. Yao, J. Lee,
D. Maric, M.A. Aronova, G. Zhang, R.D. Leapman, J.F. Schenck, H Merkle, and
J.H. Duyn. Layer-specific variation of iron content in cerebral cortex as a source
of MRI contrast. Proceedings of the National Academy of Sciences, 107(8):3834–3839,
2010. (Cited on page 47.)

K.C. Gatter, J.J. Sloper, and T.P. Powell. The intrinsic connections of the cortex of
area 4 of the monkey. Brain, 101(3):513–541, 1978. (Cited on page 31.)

D. Geiger, A. Gupta, L.A. Costa, and J. Vlontzos. Dynamic programming for detect-
ing, tracking, and matching deformable contours. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 17(3):294–302, 1995. (Cited on page 84.)

M. Gerlach, D. Ben-Shachar, P. Riederer, and M. Youdim. Altered brain metabolism
of iron as a cause of neurodegenerative diseases? Journal of Neurochemistry, 63

(3):793–807, 1994. (Cited on page 33.)

E. Geuze, H.G.M. Westenberg, A. Heinecke, C.S. de Kloet, R. Goebel, and E. Ver-
metten. Thinner prefrontal cortex in veterans with posttraumatic stress disorder.
NeuroImage, 41(3):675–681, 2008. (Cited on page 176.)

S. Geyer and R. Turner. Microstructural Parcellation of the Human Cerebral Cortex.
Springer, 2013. (Cited on pages 17, 21, and 173.)

S. Geyer, A. Schleicher, and K. Zilles. Areas 3a, 3b, and 1 of Human Primary So-
matosensory Cortex: 1. Microstructural Organization and Interindividual Vari-
ability. NeuroImage, 10(1):63–83, 1999. (Cited on pages 22 and 135.)

S. Geyer, M. Weiss, K. Reimann, G. Lohmann, and R. Turner. Microstructural Par-
cellation of the Human Cerebral Cortex–From Brodmann’s Post-Mortem Map
to in vivo Mapping with High-Field Magnetic Resonance Imaging. Frontiers in
Human Neuroscience, 5, 2011. (Cited on pages 48 and 132.)

Matthew F Glasser, Manu S Goyal, Todd M Preuss, Marcus E Raichle, and David C
Van Essen. Trends and properties of human cerebral cortex: correlations with
cortical myelin content. Neuroimage, 93:165–175, 2014. (Cited on page 100.)

M.F. Glasser and D.C. Van Essen. Mapping Human Cortical Areas In Vivo based
on Myelin Content as Revealed by T1-and T2-Weighted MRI. The Journal of
Neuroscience, 31(32):11597–11616, 2011. (Cited on pages 47, 132, and 140.)

A. Goulas, H. Uylings, and P. Stiers. Unravelling the intrinsic functional orga-
nization of the human lateral frontal cortex: a parcellation scheme based on
resting state fMRI. The Journal of Neuroscience, 32(30):10238–10252, 2012. (Cited
on page 97.)

W. Graumann and D. Sasse. Compact Lehrbuch Anatomie: in 4 Bänden, volume 2.
Schattauer Verlag, 2005. (Cited on pages 23 and 24.)

195



196 Bibliography

H. Gray. Anatomy of the human body. Lea & Febiger, 1918. (Cited on pages 10

and 60.)

M.A. Grayson. Shortening embedded curves. Annals of Mathematics, pages 71–111,
1989. (Cited on page 85.)

C. Grefkes, S. Geyer, T. Schormann, P. Roland, and K. Zilles. Human Somatosen-
sory Area 2: Observer-Independent Cytoarchitectonic Mapping, Interindivid-
ual Variability, and Population Map. NeuroImage, 14(3):617–631, 2001. doi:
10.1006/nimg.2001.0858. (Cited on page 135.)

A. Gustavsson, M. Svensson, F. Jacobi, C. Allgulander, J. Alonso, E. Beghi, R. Dodel,
M. Ekman, C. Faravelli, L. Fratiglioni, et al. Cost of disorders of the brain in
europe 2010. European Neuropsychopharmacology, 21(10):718–779, 2011. (Cited on
page 34.)

M. Guye, G. Parker, M. Symms, P. Boulby, C. Wheeler-Kingshott, A. Salek-Haddadi,
G. Barker, and J. Duncan. Combined functional MRI and tractography to demon-
strate the connectivity of the human primary motor cortex in vivo. NeuroImage,
19(4):1349–1360, 2003. (Cited on page 96.)

H. Haidar and J.S. Soul. Measurement of Cortical Thickness in 3D Brain MRI Data:
Validation of the Laplacian Method. Journal of Neuroimaging, 16(2):146–153, 2006.
(Cited on page 175.)

J. Hale, M. Brookes, E. Hall, J. Zumer, C. Stevenson, S. Francis, and P. Morris. Com-
parison of functional connectivity in default mode and sensorimotor networks
at 3 and 7T. Magnetic Resonance Materials in Physics, Biology and Medicine, 23(5-6):
339–349, 2010. (Cited on page 97.)

B. Hallgren and P. Sourander. The effect of age on the non-haemin iron in the
human brain. Journal of Neurochemistry, 3(1):41–51, 1958. (Cited on page 157.)

C. Hammarberg. Studien über Klinik und Pathologie der Idiotie, nebst Untersuchungen
über die normale Anatomie der Hirnrinde. Berling, Akademische Buchdruckerie,
Upsala, 1895. (Cited on page 18.)

X. Han, C. Xu, and J.L. Prince. A Topology Preserving Level Set Method for
Geometric Deformable Models. Pattern Analysis and Machine Intelligence, IEEE
Transactions on, 25(6):755–768, 2003. (Cited on page 118.)

X. Han, D.L. Pham, D. Tosun, M.E. Rettmann, C. Xu, and J.L. Prince. CRUISE:
Cortical reconstruction using implicit surface evolution. NeuroImage, 23(3):997–
1012, 2004. (Cited on pages 119 and 120.)

M. Hearst, S. Dumais, E. Osman, J. Platt, and B. Schölkopf. Support vector ma-
chines. Intelligent Systems and their Applications, IEEE, 13(4):18–28, 1998. (Cited
on page 79.)

B. Hellwig. How the Myelin Picture of the Human Cerebral Cortex can be com-
puted from Cytoarchitectural Data. A Bridge between von Economo and Vogt.
Journal für Hirnforschung, 34(3):387–402, 1993. (Cited on pages 2, 3, 100, 101, 103,
129, 130, and 131.)

196



Bibliography 197

G. Henderson, B.E. Tomlinson, and P.H. Gibson. Cell Counts in Human Cerebral
Cortex in Normal Adults Throughout Life using an Image Analysing Computer.
Journal of the Neurological Sciences, 46(1):113–136, 1980. (Cited on page 161.)

C.C. Henery and T.M. Mayhew. The cerebrum and cerebellum of the fixed human
brain: efficient and unbiased estimates of volumes and cortical surface areas.
Journal of Anatomy, 167:167–180, 1989. (Cited on page 15.)

K. Heuer, R. Schurade, J. Böttger, D.S. Margulies, T.R. Knösche, A.D. Friederici, and
A. Anwander. Browsing the connectome: 3D functional and structural brainnet-
works in the cloud. In 20th Annual Meeting of the Organization for Human Brain
Mapping (OHBM), 2014. (Cited on pages 60 and 62.)

O. Hinds, N. Rajendran, J. Polimeni, J. Augustinack, G. Wiggins, L. Wald, H. Rosas,
A. Potthast, E. Schwartz, and B. Fischl. Accurate prediction of V1 location from
cortical folds in a surface coordinate system. NeuroImage, 39(4):1585–1599, 2008.
(Cited on page 94.)

O. Hinds, J.R. Polimeni, N. Rajendran, M. Balasubramanian, K. Amunts, K. Zilles,
E.L. Schwartz, B. Fischl, and C. Triantafyllou. Locating the functional and
anatomical boundaries of human primary visual cortex. NeuroImage, 46(4):915–
922, 2009. (Cited on page 46.)

L.J. Hogstrom, L.T. Westlye, K.B. Walhovd, and A.M. Fjell. The Structure of
the Cerebral Cortex Across Adult Life: Age-Related Patterns of Surface Area,
Thickness, and Gyrification. Cerebral Cortex, 23(11):2521–2530, 2013. (Cited on
page 18.)

A. Hopf. Über die Verteilung myeloarchitektonischer Merkmale in der isokor-
tikalen Schläfenlappenrinde beim Menschen. Journal für Hirnforschung, 2(1):36–
54, 1955. (Cited on pages 21, 28, 140, 141, 167, and 173.)

A. Hopf. Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirn-
rinde beim Menschen. Journal für Hirnforschung, 2(4):311–333, 1956. (Cited on
pages 21, 28, 29, 30, 140, 141, 167, and 173.)

A Hopf. Registration of the Myeloarchitecture of the Human Frontal Lobe with
an Extinction Method. Journal für Hirnforschung, 10(3):259–269, 1967. (Cited on
pages 101, 110, 127, 131, 141, and 150.)

A Hopf. Photometric studies on the myeloarchitecture of the human temporal lobe.
Journal für Hirnforschung, 10(4):285–297, 1968. (Cited on pages 20, 28, 101, 131,
150, and 151.)

A Hopf. Photometric studies on the myeloarchitecture of the human parietal lobe. I.
Parietal region. Journal für Hirnforschung, 11(4):253–265, 1969. (Cited on pages 20,
28, 101, 131, 150, and 151.)

A. Hopf. Photometric studies on the myeloarchitecture of the human parietal lobe.
II. Postcentral region. Journal für Hirnforschung, 12(1):135–141, 1970. (Cited on
pages 20, 28, 101, and 131.)

197



198 Bibliography

A. Hopf and H. Gräfin Vitzthum. Über die Verteilung myeloarchitektonischer
Merkmale in der Scheitellappenrinde beim Menschen. Journal für Hirnforschung,
3(2/3):79–104, 1957. (Cited on pages 21, 28, 29, 140, 141, 167, and 173.)

L. Huber, J. Goense, A.J. Kennerley, R. Trampel, M. Guidi, E. Reimer, D. Ivanov,
N. Neef, C.J. Gauthier, R. Turner, and H. Möller. Cortical lamina-dependent
blood volume changes in human brain at 7T. NeuroImage, 2014. (Cited on
page 46.)

L. Huber, J. Goense, A. Kennerly, R. Trampel, M. Guidi, D. Ivanov, N. Neef,
C. Gauthier, R. Turner, and H. Möller. Cortical lamina-dependent blood vol-
ume changes in human brain at 7 T. NeuroImage, 107:22–33, 2015. (Cited on
page 98.)

A.C. Hurley, A. Al-Radaideh, L. Bai, U. Aickelin, R. Coxon, P. Glover, and P.A.
Gowland. Tailored RF pulse for Magnetization Inversion at Ultrahigh Field.
Magnetic Resonance in Medicine, 63(1):51–58, 2010. (Cited on pages 107 and 178.)

J.B. Hursh. Conduction velocity and diameter of nerve fibers. American Journal of
Physiology, 127(9), 1939. (Cited on page 14.)

C. Hutton, E. De Vita, J. Ashburner, R. Deichmann, and R. Turner. Voxel-based
cortical thickness measurements in MRI. NeuroImage, 40(4):1701, 2008. (Cited on
page 176.)

K. Im, J. Lee, J. Lee, Y. Shin, I. Kim, J. Kwon, and S. Kim. Gender difference anal-
ysis of cortical thickness in healthy young adults with surface-based methods.
NeuroImage, 31(1):31–38, 2006. (Cited on page 176.)

C. Jäger, D. Lendvai, G. Seeger, G. Brückner, R.T. Matthews, T. Arendt, A. Alpar,
and M. Morawski. Perineuronal and perisynaptic extracellular matrix in the
human spinal cord. Neuroscience, 238:168–184, 2013. (Cited on page 109.)

M. Jenkinson and S. Smith. A global optimisation method for robust affine reg-
istration of brain images. Medical Image Analysis, 5(2):143–156, 2001. (Cited on
page 113.)

H. Johansen-Berg and T.E.J. Behrens. Diffusion MRI: From Quantitative Measure-
ment to In vivo Neuroanatomy, 2009. (Cited on page 60.)

H. Johansen-Berg, T.E.J. Behrens, M.D. Robson, I. Drobnjak, M.F.S. Rushworth, J.M.
Brady, S.M. Smith, D.J. Higham, and P.M. Matthews. Changes in connectivity
profiles define functionally distinct regions in human medial frontal cortex. Pro-
ceedings of the National Academy of Sciences of the United States of America, 101(36):
13335–13340, 2004. (Cited on pages 95 and 97.)

H. Johansen-Berg, T.E.J. Behrens, E. Sillery, O. Ciccarelli, A.J. Thompson, S. M.
Smith, and P.M. Matthews. Functional-Anatomical Validation and Individual
Variation of Diffusion Tractography-based Segmentation of the Human Thala-
mus. Cerebral Cortex, 15(1):31–39, 2005. (Cited on page 96.)

S.C. Johnson. Hierarchical clustering schemes. Psychometrika, 32(3):241–254, 1967.
(Cited on page 72.)

198



Bibliography 199

D.K. Jones and A. Leemans. Diffusion tensor imaging. In Magnetic Resonance
Neuroimaging, pages 127–144. Springer, 2011. (Cited on page 59.)

S.E. Jones, B.R. Buchbinder, and I. Aharon. Three-dimensional mapping of cortical
thickness using Laplace’s Equation. Human Brain Mapping, 11(1):12–32, 2000.
(Cited on page 175.)

J. Karbowski. How does connectivity between cortical areas depend on brain size?
Implications for efficient computation. Journal of Computational Neuroscience, 15

(3):347–356, 2003. (Cited on page 17.)

M. Kass, A. Witkin, and D. Terzopoulos. Snakes: Active Contour Models. Interna-
tional Journal of Computer Vision, 1(4):321–331, 1988. (Cited on pages 80, 81, 82,
and 83.)

D.N. Kennedy, N. Lange, N. Makris, J. Bates, J. Meyer, and V.S. Caviness. Gyri of
the human neocortex: an MRI-based analysis of volume and variance. Cerebral
Cortex, 8(4):372–384, 1998. (Cited on page 17.)

R. Khan, Q. Zhang, S. Darayan, S. Dhandapani, S. Katyal, C. Greene, C. Bajaj, and
D. Ress. Surface-based analysis methods for high-resolution functional magnetic
resonance imaging. Graphical Models, 73(6):313–322, 2011. (Cited on page 177.)

J. Kim, J. Lee, H. Jo, S. Kim, J. Lee, S. Kim, S. Seo, R. Cox, D. Na, S. Kim, and Z. Saad.
Defining functional SMA and pre-SMA subregions in human MFC using resting
state fMRI: functional connectivity-based parcellation method. NeuroImage, 49

(3):2375–2386, 2010. (Cited on page 97.)

B.B. Kimia, A. Tannenbaum, and S.W. Zucker. Toward a computational theory of shape:
An overview. Springer, 1990. (Cited on page 85.)

B.B. Kimia, A.R. Tannenbaum, and S.W. Zucker. Shapes, shocks, and deformations
i: the components of two-dimensional shape and the reaction-diffusion space.
International Iournal of Computer Vision, 15(3):189–224, 1995. (Cited on page 84.)

R. Kimmel, A. Amir, and A.M. Bruckstein. Finding shortest paths on surfaces using
level sets propagation. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 17(6):635–640, 1995. (Cited on page 84.)

J.C. Klein, T.E.J. Behrens, M.D. Robson, C.E. Mackay, D.J. Higham, and
H. Johansen-Berg. Connectivity-based parcellation of human cortex using dif-
fusion MRI: Establishing reproducibility, validity and observer independence
in BA 44/45 and SMA/pre-SMA. NeuroImage, 34(1):204–211, 2007. (Cited on
page 96.)

V.A. Klyachko and C.F. Stevens. Connectivity optimization and the positioning of
cortical areas. Proceedings of the National Academy of Sciences, 100(13):7937–7941,
2003. (Cited on page 17.)

S.H. Koenig. Cholesterol of myelin is the determinant of gray-white contrast in
MRI of brain. Magnetic Resonance in Medicine, 20(2):285–291, 1991. (Cited on
page 49.)

199



200 Bibliography

D. Le Bihan, J.-F. Mangin, C. Poupon, C.A. Clark, S. Pappata, N. Molko, and
Hughes Chabriat. Diffusion tensor imaging: concepts and applications. Journal
of Magnetic Resonance Imaging, 13(4):534–546, 2001. (Cited on page 59.)

G. Le Goualher, E. Procyk, D. L. Collins, R. Venugopal, C. Barillot, and A.C. Evans.
Automated extraction and variability analysis of sulcal neuroanatomy. Medical
Imaging, IEEE Transactions on, 18(3):206–217, 1999. (Cited on page 93.)

W.E. Le Gros Clark and S. Sunderland. Structural changes in the isolated visual
cortex. Journal of Anatomy, 73(4):563–574, 1939. (Cited on page 31.)

Y. Leprince, C. Fischer, J.-F. Mangin, B. Larrat, S. Meriaux, C. Poupon, I. Reillo,
V. Borrell, O. Foubet, R. Toro, and D. Riviere. Architectonics-informed partition
of the cortex at sub-millimetre resolution. Proceedings of the 20th Annual Meeting
of the Organization for Human Brain Mapping, 2014. (Cited on page 100.)

W.B Lewis. On the Comparative Structure of the Cortex Cerebri. Brain, 1(1):79–96,
1878. (Cited on page 18.)

W.B. Lewis. Researches on the comparative structure of the cortex cerebri. Philo-
sophical Transactions of the Royal Society of London, 171:35–64, 1880. (Cited on
page 18.)

G. Li, L. Guo, J. Nie, and T. Liu. Automatic cortical sulcal parcellation based on
surface principal direction flow field tracking. NeuroImage, 46(4):923–937, 2009.
(Cited on page 93.)

P. Lintl and H. Braak. Loss of intracortical myelinated fibers: a distinctive age-
related alteration in the human striate area. Acta neuropathologica, 61(3-4):178–
182, 1983. (Cited on page 157.)

S. Lobregt and M.A. Viergever. A discrete dynamic contour model. Medical Imaging,
IEEE Transactions on, 14(1):12–24, 1995. (Cited on page 84.)

G. Lohmann. Extracting line representations of sulcal and gyral patterns in MR
images of the human brain. Medical Imaging, IEEE Transactions on, 17(6):1040–
1048, 1998. (Cited on page 92.)

G. Lohmann and D.Y. von Cramon. Automatic labelling of the human cortical
surface using sulcal basins. Medical Image Analysis, 4(3):179–188, 2000. (Cited on
page 92.)

Lohmann, G. and von Cramon, D. and Colchester, A. Deep Sulcal Landmarks
Provide an Organizing Framework for Human Cortical Folding. Cerebral Cortex,
18(6):1415–1420, 2008. (Cited on page 92.)

H. Lu, L.M. Nagae-Poetscher, X. Golay, D. Lin, M. Pomper, and P. van Zijl. Routine
clinical brain MRI sequences for use at 3.0 Tesla. Journal of Magnetic Resonance
Imaging, 22(1):13–22, 2005. (Cited on page 52.)

B.C. Lucas, J.A. Bogovic, A. Carass, P.-L. Bazin, J.L. Prince, D.L. Pham, and B.A.
Landman. The Java Image Science Toolkit (JIST) for Rapid Prototyping and

200



Bibliography 201

Publishing of Neuroimaging Software. Neuroinformatics, 8(1):5–17, 2010. (Cited
on page 127.)

A. Lutti, F. Dick, M.I. Sereno, and N. Weiskopf. Using high-resolution quantitative
mapping of R

1

as an index of cortical myelination. NeuroImage, 93:176–188, 2014.
(Cited on pages 50 and 100.)

J. MacQueen. Some methods for classification and analysis of multivariate obser-
vations. In Proceedings of the fifth Berkeley symposium on mathematical statistics and
probability, volume 1, pages 281–297. California, USA, 1967. (Cited on page 70.)

J.E. Makris, N and. Schlerf, S.M. Hodge, C. Haselgrove, M.D. Albaugh, L.J. Seid-
man, S.L. Rauch, G. Harris, J. Biederman, V.S. Caviness Jr, D.N. Kennedy, and
J.D. Schmahmann. MRI-based surface-assisted parcellation of human cerebellar
cortex: An anatomically specified method with estimate of reliability. NeuroIm-
age, 25(4):1146–1160, 2005. (Cited on pages 15 and 93.)

N. Makris, J. Kaiser, C. Haselgrove, L.J. Seidman, J. Biederman, D. Boriel, E.M.
Valera, G.M. Papadimitriou, B. Fischl, V.S. Caviness Jr, and D.N. Kennedy. Hu-
man cerebral cortex: A system for the integration of volume-and surface-based
representations. NeuroImage, 33(1):139–153, 2006. (Cited on page 93.)

A. Malikovic, K. Amunts, A. Schleicher, H. Mohlberg, S.B. Eickhoff, M. Wilms,
N. Palomero-Gallagher, E. Armstrong, and K. Zilles. Cytoarchitectonic analy-
sis of the human extrastriate cortex in the region of V5/MT+: a probabilistic,
stereotaxic map of area hOc5. Cerebral Cortex, 17(3):562–574, 2007. (Cited on
page 99.)

R. Malladi, J.A. Sethian, and B.C. Vemuri. Shape modeling with front propagation:
A level set approach. Pattern Analysis and Machine Intelligence, IEEE Transactions
on, 17(2):158–175, 1995. (Cited on pages 81 and 84.)

J.-F. Mangin, V. Frouin, I. Bloch, J. Régis, and J. López-Krahe. From 3D magnetic
resonance images to structural representations of the cortex topography using
topology preserving deformations. Journal of Mathematical Imaging and Vision, 5

(4):297–318, 1995. (Cited on page 93.)

J.P. Marques and R. Gruetter. New Developments and Applications of the
MP2RAGE Sequence - Focusing the Contrast and High Spatial Resolution R

1

Mapping. PloS one, 8(7):e69294, 2013. doi: 10.1371/journal.pone.0069294. (Cited
on page 47.)

J.P. Marques, T. Kober, G. Krueger, W. van der Zwaag, P.F. Van de Moortele, and
R. Gruetter. MP2RAGE, a self bias-field corrected sequence for improved seg-
mentation and T

1

-mapping at high field. NeuroImage, 49(2):1271–1281, 2010.
(Cited on pages 50, 51, 52, 107, and 178.)

R. Mars, S. Jbabdi, J. Sallet, J. O’Reilly, P. Croxson, E. Olivier, M. Noonan,
C. Bergmann, A. Mitchell, M. Baxter, et al. Diffusion-weighted imaging
tractography-based parcellation of the human parietal cortex and comparison
with human and macaque resting-state functional connectivity. The Journal of
Neuroscience, 31(11):4087–4100, 2011. (Cited on page 97.)

201



202 Bibliography

T. Mauss. Die faserarchitektonische Gliederung des Cortex cerebri der anthropo-
morphen Affen. J Psychol Neurol, 18:410–467, 1911. (Cited on page 30.)

J. Mayhew. Sedation for MRI. Pediatric Anesthesia, 15(10):900–900, 2005. (Cited on
page 37.)

M. McAuliffe, F. Lalonde, D. McGarry, W. Gandler, K. Csaky, and B. Trus. Medical
image processing, analysis and visualization in clinical research. In Computer-
Based Medical Systems, 2001. CBMS 2001. Proceedings. 14th IEEE Symposium on,
pages 381–386. IEEE, 2001. (Cited on page 127.)

T. McInerney and D. Terzopoulos. A dynamic finite element surface model for
segmentation and tracking in multidimensional medical images with application
to cardiac 4D image analysis. Computerized Medical Imaging and Graphics, 19(1):
69–83, 1995a. (Cited on page 81.)

T. McInerney and D. Terzopoulos. Topologically adaptable snakes. In Computer
Vision, 1995. Proceedings., Fifth International Conference on, pages 840–845. IEEE,
1995b. (Cited on page 84.)

G. McLachlan and D. Peel. Finite mixture models. John Wiley & Sons, 2004. (Cited
on page 75.)

MedlinePlus. Degenerative Nerve Diseases. National Institute of Health, 2014. URL
http://www.nlm.nih.gov/medlineplus/degenerativenervediseases.html.
(Cited on page 32.)

A. Merbach and E. Tóth. The chemistry of contrast agents in medical magnetic resonance
imaging, volume 46. Wiley Online Library, 2001. (Cited on page 37.)

T.H. Meynert. Neue Untersuchungen über den Bau der Grosshirnrinde und ihre
örtlichen Verschiedenheiten. Allgemeine Wiener Medizinische Zeitung, 13:419–428,
1868. (Cited on pages 18 and 30.)

M.I. Miller, G.E. Christensen, Y. Amit, and U. Grenander. Mathematical textbook
of deformable neuroanatomies. Proceedings of the National Academy of Sciences, 90

(24):11944–11948, 1993. (Cited on page 81.)

E.M. Mirkes. K-NN and Potential Energy. University of Leicester, 2011. URL
http://www.math.le.ac.uk/people/ag153/homepage/KNN/KNN3.html. (Cited on
page 77.)

T. Moon. The expectation-maximization algorithm. Signal Processing Magazine,
IEEE, 13(6):47–60, 1996. (Cited on page 75.)

A. Moore. The Andrew Moore Tutorial slides. 2001. URL http://www.autonlab.

org/tutorials/gmm14.pdf. (Cited on page 75.)

D.A. Mouritzen. Shrinkage of the brain during histological procedures with fix-
ation in formaldehyde solutions of different concentrations. Journal für Hirn-
forschung, 20(2):115–119, 1978. (Cited on page 156.)

202



Bibliography 203

M. Mulisch and U. Welsch, editors. Romeis - Mikroskopische Technik. Springer, 18th
edition, 2010. (Cited on page 63.)

Z. Nagy, H. Lagercrantz, and C. Hutton. Effects of preterm birth on cortical thick-
ness measured in adolescence. Cerebral Cortex, 21(2):300–306, 2011. (Cited on
page 176.)

Z. Nagy, D. Alexander, D. Thomas, N. Weiskopf, and M. Sereno. Using high
angular resolution diffusion imaging data to discriminate cortical regions. PloS
one, 8(5):e63842, 2013. (Cited on pages 96 and 98.)

L. Nanetti, L. Cerliani, V. Gazzola, R. Renken, and C. Keysers. Group analyses of
connectivity-based cortical parcellation using repeated k-means clustering. Neu-
roImage, 47(4):1666–1677, 2009. (Cited on page 96.)

C. Nastar and N. Ayache. Frequency-based nonrigid motion analysis: Application
to four dimensional medical images. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 18(11):1067–1079, 1996. (Cited on page 84.)

R. Nieuwenhuys. The myeloarchitectonic studies on the human cerebral cortex of
the Vogt–Vogt school, and their significance for the interpretation of functional
neuroimaging data. Brain Structure and Function, 218(2):303–352, 2013. (Cited on
pages 28, 31, and 99.)

R. Nieuwenhuys, C.A.J. Broere, and L. Cerliani. A new myeloarchitectonic map of
the human neocortex based on data from the Vogt–Vogt school. Brain Structure
and Function, pages 1–23, 2014. (Cited on pages 28 and 99.)

C.A. Olman, N. Harel, D.A. Feinberg, S. He, P. Zhang, K. Ugurbil, and E. Yacoub.
Layer-specific fMRI reflects different neuronal computations at different depths
in human V1. PLoS ONE, 7(3):e32536, 03 2012. (Cited on page 177.)

M. Ono, S. Kubik, and C.D. Abernathey. Atlas of the cerebral sulci. Thieme, 1990.
(Cited on pages 15 and 92.)

B. Pakkenberg and H. J.G. Gundersen. Neocortical neuron number in humans: ef-
fect of sex and age. Journal of Comparative Neurology, 384(2):312–320, 1997. (Cited
on pages 12 and 13.)

B. Pakkenberg, D. Pelvig, L. Marner, M.J. Bundgaard, H.J.G. Gundersen, J.R. Nyen-
gaard, and L. Regeur. Aging and the human neocortex. Experimental Gerontology,
38(1):95–99, 2003. (Cited on pages 12 and 13.)

AM Paldino and E. Harth. Some quantitative results on golgi impregnated axons
in rat visual cortex using a computer assisted video digitizer. The Journal of
comparative neurology, 176(2):247–261, 1977. (Cited on pages 32, 100, and 130.)

H.-J. Park, J.J. Kim, S.-K. Lee, J.H. Seok, J. Chun, D.I. Kim, and J.D. Lee. Corpus
callosal connection mapping using cortical gray matter parcellation and DT-MRI.
Human Brain Mapping, 29(5):503–516, 2008. (Cited on page 96.)

203



204 Bibliography

J. Pena, J. Lozano, and P. Larranaga. An empirical comparison of four initialization
methods for the k-means algorithm. Pattern Recognition Letters, 20(10):1027–1040,
1999. (Cited on page 69.)

A. Peters. The effects of normal aging on myelin and nerve fibers: a review. Journal
of Neurocytology, 31(8-9):581–593, 2002. (Cited on page 157.)

D.L. Pham and J.L. Prince. Adaptive fuzzy segmentation of magnetic resonance
images. IEEE Transactions on Medical Imaging, 18(9):737–752, 1999. (Cited on
page 179.)

J.R. Polimeni, B. Fischl, and D. Greve. Laminar-specific functional connectivity: dis-
tinguishing directionality in cortical networks. In Proceedings of the 16th Annual
Meeting of the Organization for Human Brain Mapping, 2010a. (Cited on page 46.)

J.R. Polimeni, B. Fischl, D.N. Greve, and L.L. Wald. Laminar analysis of 7T BOLD
using an imposed spatial activation pattern in human V1. NeuroImage, 52(4):
1334–1346, 2010b. (Cited on pages 46 and 177.)

C.S. Poon and M. Braun. Image segmentation by a deformable contour model
incorporating region analysis. Physics in Medicine and Biology, 42(9):1833, 1997.
(Cited on page 83.)

C. Preibisch and R. Deichmann. Influence of RF spoiling on the stability and accu-
racy of T

1

mapping based on spoiled FLASH with varying flip angles. Magnetic
Resonance in Medicine, 61(1):125–135, 2009. (Cited on page 50.)

O. Querbes, F. Aubry, J. Pariente, J. Lotterie, J. Démonet, V. Duret, M. Puel, I. Berry,
J. Fort, P. Celsis, and The Alzheimer’s Disease Neuroimaging Initiative. Early
diagnosis of alzheimer’s disease using cortical thickness: impact of cognitive
reserve. Brain, 132(8):2036–2047, 2009. (Cited on page 176.)

M.E. Rettmann, X. Han, C. Xu, and J.L. Prince. Automated Sulcal Segmentation Us-
ing Watersheds on the Cortical Surface. NeuroImage, 15(2):329–344, 2002. (Cited
on page 93.)

J.L. Ringo. Neuronal interconnection as a function of brain size. Brain, Behavior and
Evolution, 38(1):1–6, 1991. (Cited on page 18.)

J.L. Ringo, R.W. Doty, S. Demeter, and P.Y. Simard. Time is of the essence: a con-
jecture that hemispheric specialization arises from interhemispheric conduction
delay. Cerebral Cortex, 4(4):331–343, 1994. (Cited on page 18.)

D. Riviere, J. Mangin, D. Papadopoulos-Orfanos, J. Martinez, V. Frouin, and
J. Régis. Automatic recognition of cortical sulci of the human brain using a
congregation of neural networks. Medical Image Analysis, 6(2):77–92, 2002. (Cited
on page 93.)

E.C. Robinson, S. Jbabdi, J.L.R. Andersson, S.M. Smith, M.F. Glasser, D.C. Van Es-
sen, G.C. Burgess, M.P. Harms, D.M. Barch, and M. Jenkinson. Multimodal
Surface Matching: Fast and Generalisable Cortical Registration Using Discrete

204



Bibliography 205

Optimisation. In J.C. Gee, S. Joshi, K.M. Pohl, W.M. Wells, and L. Zöllei, edi-
tors, Information Processing in Medical Imaging, volume 7917 of Lecture Notes in
Computer Science, pages 475–486. Springer, 2013. (Cited on page 162.)

R. Ronfard. Region-based strategies for active contour models. International Journal
of Computer Vision, 13(2):229–251, 1994. (Cited on page 83.)

W.D. Rooney, G. Johnson, X. Li, E.R. Cohen, S.G. Kim, K. Ugurbil, and C.S.
Springer. Magnetic Field and Tissue Dependencies of Human Brain Longitu-
dinal 1H

2

O Relaxation In Vivo. Magnetic Resonance in Medicine, 57(2):308–318,
2007. (Cited on pages 52, 117, 133, and 154.)

M. Ruschel, T. Knösche, A. Friederici, R. Turner, S. Geyer, and A. Anwander.
Connectivity architecture and subdivision of the human inferior parietal cor-
tex revealed by diffusion MRI. Cerebral Cortex, 24(9):2436–2448, 2014. (Cited on
page 96.)

R.M. Sánchez-Panchuelo, S.T. Francis, D. Schluppeck, and R.W. Bowtell. Corre-
spondence of human visual areas identified using functional and anatomical
MRI in vivo at 7 T. Journal of Magnetic Resonance Imaging, 35(2):287–299, 2012.
(Cited on page 47.)

F. Sanides. Die Architektonik des menschlichen Stirnhirns: zugleich eine Darstellung der
Prinzipien seiner Gestaltung als Spiegel der stammesgeschichtlichen Differenzierung der
Grosshirnrinde. Springer, 1962. (Cited on pages 31, 100, and 154.)

A. Schleicher, K. Amunts, S. Geyer, P. Morosan, and K. Zilles. Observer-
Independent Method for Microstructural Parcellation of Cerebral Cortex: A
Quantitative Approach to Cytoarchitectonics. NeuroImage, 9(1):165–177, 1999.
(Cited on pages 99 and 101.)

A. Schleicher, K. Amunts, S. Geyer, T. Kowalski, T. Schormann, N. Palomero-
Gallagher, and K. Zilles. A stereological approach to human cortical architecture:
identification and delineation of cortical areas. Journal of Chemical Neuroanatomy,
20(1):31–47, 2000. (Cited on page 99.)

A. Schleicher, N. Palomero-Gallagher, P. Morosan, S.B. Eickhoff, T. Kowalski,
K. Vos, K. Amunts, and K. Zilles. Quantitative architectural analysis: a new
approach to cortical mapping. Anatomy and Embryology, 210(5):373–386, 2005.
(Cited on pages 99 and 176.)

J. Schulz, T. Siegert, E. Reimer, C. Labadie, J. Maclaren, M. Herbst, M. Zaitsev, and
R. Turner. An embedded optical tracking system for motion-corrected magnetic
resonance imaging at 7T. Magnetic Resonance Materials in Physics, Biology and
Medicine, 25(6):443–453, 2012. (Cited on pages 54 and 162.)

R. Schweizer, G. Helms, and J. Frahm. Revisiting a historic human brain with
magnetic resonance imaging–the first description of a divided central sulcus.
Frontiers in Neuroanatomy, 8, 2014. (Cited on page 137.)

M. Sereno, A. Lutti, N. Weiskopf, and F. Dick. Mapping the Human Cortical
Surface by Combining Quantitative T

1

with Retinotopy. Cerebral Cortex, 23(9):
2261–2268, 2012. (Cited on pages 47, 100, and 177.)

205



206 Bibliography

J.A. Sethian. Curvature and the evolution of fronts. Communications in Mathematical
Physics, 101(4):487–499, 1985. (Cited on page 85.)

J.A. Sethian. A fast marching level set method for monotonically advancing fronts.
Proceedings of the National Academy of Sciences, 93(4):1591–1595, 1996. (Cited on
page 87.)

J.A. Sethian. Level set methods and fast marching methods: evolving interfaces in compu-
tational geometry, fluid mechanics, computer vision, and materials science. Number 3.
Cambridge University Press, 1999. (Cited on pages 84, 85, and 122.)

R. Sharma. 21 Tesla MRI of Mouse Brain: Structural Segmentation and Volumetrics.
Nanotechnology Research Journal, 2(2):33–38, 2009. (Cited on page 39.)

N. Shental, A. Bar-Hillel, T. Hertz, and D. Weinshall. Computing Gaussian mixture
models with EM using equivalence constraints. Advances in Neural Information
Processing Systems, 16(8):465–472, 2004. (Cited on page 74.)

Y. Shi, P.M. Thompson, I. Dinov, and A.W. Toga. Hamilton-Jacobi Skeleton on Cor-
tical Surfaces. Medical Imaging, IEEE Transactions on, 27(5):664–673, 2008. (Cited
on page 93.)

K. Siddiqi, S. Bouix, A. Tannebaum, and S.W. Zucker. Hamilton-jacobi skeletons.
International Journal of Computer Vision, 48(3):215–231, 2002. (Cited on page 93.)

I.S. Sigalovsky, B. Fischl, and J.R. Melcher. Mapping an intrinsic MR property of
gray matter in auditory cortex of living humans: a possible marker for primary
cortex and hemispheric differences. NeuroImage, 32(4):1524–1537, 2006. (Cited
on page 47.)

G.E. Smith. A new Topographical Survey of the Human Cerebral Cortex, being
an account of the Distribution of the Anatomically Distinct Cortical Areas and
their Relationship to the Cerebral Sulci. Journal of Anatomy and Physiology, 41(Pt
4):237–254, 1907. (Cited on pages 18, 28, 30, 140, and 167.)

J. Sobotta and J. Playfair McMurrich. Atlas and text-book of human anatomy.
volume iii. Annals of Surgery, 48(2):318, 1908. (Cited on page 12.)

K. Somasundaram and P. Kalavathi. Analysis of imaging artifacts in MR brain
images. Orient. J. Comput. Sci. Technol, 5:135–141, 2012. (Cited on page 53.)

M. Strenziok, F. Krueger, A. Heinecke, R.K. Lenroot, K.M. Knutson, E. van der
Meer, and J. Grafman. Developmental effects of aggressive behavior in male
adolescents assessed with structural and functional brain imaging. Social Cogni-
tive and Affective Neuroscience, 6(1):2–11, 2011. (Cited on page 176.)

C. Stüber, M. Morawski, A. Schäfer, C. Labadie, M. Wähnert, C. Leuze, M. Streicher,
N. Barapatre, K. Reimann, S. Geyer, D. Spemann, and R. Turner. Myelin and
iron concentration in the human brain: A quantitative study of MRI contrast.
NeuroImage, 93:95–106, 2014. (Cited on pages 47, 49, and 161.)

206



Bibliography 207

C. Stueber, M. Morawski, K. Reimann, N. Barapatre, S. Geyer, and R. Turner. Iron,
Ferritin, Myelin and MR-Contrast: Proton-Induced X-Ray Emission (PIXE) Maps
of Cortical Iron Content . Proceedings of the 19th Annual Meeting of the International
Society for Magnetic Resonance in Medicine, 2011. (Cited on page 47.)

C.L. Tardif, J. Dinse, A. Schäfer, R. Turner, and P.-L. Bazin. Multi-modal Surface-
Based Alignment of Cortical Areas Using Intra-Cortical T1 Contrast. In L. Shen,
T. Liu, P.-T. Yap, H. Huang, D. Shen, and C.-F. Westin, editors, Multimodal Brain
Image Analysis, volume 8159, pages 222–232. Springer, 2013. (Cited on pages 47,
49, 101, 131, 154, and 162.)

H. Tek and B.B. Kimia. Volumetric segmentation of medical images by three-
dimensional bubbles. In Physics-Based Modeling in Computer Vision, 1995., Pro-
ceedings of the Workshop on, page 9. IEEE, 1995. (Cited on page 83.)

D. Teraopoulos. On matching deformable models to images. Topical Meeting on
Machine Vision, Technical Digest Series, 12:160–167, 1987. (Cited on page 81.)

G.R. Terrell and D.W. Scott. Variable kernel density estimation. The Annals of
Statistics, pages 1236–1265, 1992. (Cited on page 76.)

R.D. Terry, R. DeTeresa, and L.A. Hansen. Neocortical Cell Counts in Normal Hu-
man Adult Aging. Annals of Neurology, 21(6):530–539, 1987. (Cited on page 161.)

D. Terzopoulos and K. Fleischer. Deformable models. The Visual Computer, 4(6):
306–331, 1988. (Cited on page 80.)

D. Terzopoulos, A. Witkin, and M. Kass. Constraints on deformable models: Re-
covering 3D shape and nonrigid motion. Artificial Intelligence, 36(1):91–123, 1988.
(Cited on pages 81 and 83.)

D.L. Thomas, E. De Vita, R. Deichmann, R. Turner, and R.J. Ordidge. 3D MDEFT
imaging of the human brain at 4.7 T with reduced sensitivity to radiofrequency
inhomogeneity. Magnetic Resonance in Medicine, 53(6):1452–1458, 2005. (Cited on
page 51.)

V. Tomassini, S. Jbabdi, J.C. Klein, T.E.J. Behrens, C. Pozzilli, P.M. Matthews, M.F.S.
Rushworth, and H. Johansen-Berg. Diffusion-Weighted Imaging Tractography-
Based Parcellation of the Human Lateral Premotor Cortex Identifies Dorsal and
Ventral Subregions with Anatomical and Functional Specializations. The Journal
of Neuroscience, 27(38):10259–10269, 2007. (Cited on page 96.)

R. Toro and Y. Burnod. Geometric atlas: modeling the cortex as an organized
surface. NeuroImage, 20(3):1468–1484, 2003. (Cited on page 93.)

D. Tosun, M.E. Rettmann, X. Han, X. Tao, C. Xu, S.M. Resnick, D.L. Pham, and J.L.
Prince. Cortical surface segmentation and mapping. NeuroImage, 23:S108–S118,
2004. (Cited on page 93.)

R. Trampel, D. Ott, and R. Turner. Do the congenitally blind have a stria of gennari?
first intracortical insights in vivo. Cerebral Cortex, 21(9):2075–2081, 2011. (Cited
on page 46.)

207



208 Bibliography

R. Trampel, P.-L. Bazin, A. Schäfer, R. Heidemann, D. Ivanov, G. Lohmann,
S. Geyer, and R. Turner. Laminar-specific BOLD fingerprints of sensorimotor
areas during imagined and actual finger tapping. Proceedings of the 18th Annual
Meeting of the Organization for Human Brain Mapping, 2012. (Cited on pages 46

and 177.)

R Turner. Neuroscientific applications of high-field MRI in humans. In High-Field
MR Imaging, pages 137–149. Springer, 2012. (Cited on page 49.)

R. Turner. MRI methods for in-vivo cortical parcellation. In Microstructural Par-
cellation of the Human Cerebral Cortex, pages 197–220. Springer, 2013. (Cited on
page 49.)

R. Turner, A.-M. Oros-Peusquens, S. Romanzetti, K. Zilles, and N.J. Shah. Opti-
mised in vivo visualisation of cortical structures in the human brain at 3 T using
IR-TSE. Magnetic Resonance Imaging, 26(7):935–942, 2008. (Cited on pages 46

and 49.)

M. Vaillant and C. Davatzikos. Finding parametric representations of the cortical
sulci using an active contour model. Medical Image Analysis, 1(4):295–315, 1997.
(Cited on page 93.)

P.F. Van de Moortele, E.J. Auerbach, C. Olman, E. Yacoub, K. Ugurbil, and
S. Moeller. Unbiased high resolution T1 weighted brain images at high field
with a new interleaved 3D-MPRAGE/proton density GE sequence. Proceedings
of the 14th Annual Meeting of the Organization for Human Brain Mapping, 2008.
(Cited on page 51.)

P.F. Van de Moortele, E.J. Auerbach, C. Olman, E. Yacoub, K. Ugurbil, and
S. Moeller. T1 weighted brain images at 7 Tesla unbiased for proton density,
T⇤
2

contrast and RF coil receive B
1

sensitivity with simultaneous vessel visualiza-
tion. NeuroImage, 46(2):432–446, 2009. (Cited on page 51.)

D.C. Van Essen. A tension-based theory of morphogenesis and compact wiring
in the central nervous system. Nature, 385:313–318, 1997. (Cited on pages 17

and 18.)

D.C. Van Essen and D.L. Dierker. Surface-Based and Probabilistic Atlases of Pri-
mate Cerebral Cortex. Neuron, 56(2):209–225, 2007. ISSN 0896-6273. (Cited on
page 94.)

C. van Swam, A. Federspiel, D. Hubl, R. Wiest, C. Boesch, P. Vermathen, R. Kreis,
W. Strik, and T. Dierks. Possible dysregulation of cortical plasticity in auditory
verbal hallucinations: A cortical thickness study in schizophrenia. Journal of
Psychiatric Research, 46(8):1015–1023, 2012. (Cited on page 176.)

V. Vapnik. Pattern recognition using generalized portrait method. Automation and
Remote Control, 24:774–780, 1963. (Cited on page 77.)

V. Vapnik and A.J. Chervonenkis. On the one class of the algorithms of pattern
recognition. Automation and Remote Control, 25(6), 1964. (Cited on page 77.)

208



Bibliography 209

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache. Diffeomorphic demons:
Efficient non-parametric image registration. NeuroImage, 45(1):S61–S72, 2009.
(Cited on page 117.)

C. Vogt and O. Vogt. Allgemeinere Ergebnisse unserer Hirnforschung. Erste Mit-
teilung. Ziele und Wege unserer Hirnforschung. Journal für Psychologie und Neu-
rologie, 25:281–291, 1919a. (Cited on pages 20, 21, 27, 30, 31, 100, 101, 131, 140,
141, 167, 173, and 178.)

C. Vogt and O. Vogt. Allgemeinere Ergebnisse unserer Hirnforschung. Zweite Mit-
teilung. Das Wesen der topischen architektonischen Differenzen des Cortex cere-
bri. Journal für Psychologie und Neurologie, 25:292–360, 1919b. (Cited on pages 20,
21, 27, 30, 31, 100, 131, 140, 141, 167, and 173.)

C. Vogt and O. Vogt. Allgemeinere Ergebnisse unserer Hirnforschung. Dritte
Mitteilung. Die architektonische Rindenfelderung im Lichte unserer neuesten
Forschungen. Journal für Psychologie und Neurologie, 25:361–398, 1919c. (Cited on
pages 20, 21, 30, 31, 167, and 173.)

O. Vogt. Die myeloarchitektonische Felderung des menschlichen Stirnhirns. Journal
für Psychologie und Neurologie, 15(4/5):221–232, 1910. (Cited on pages 22, 28, 29,
64, 127, and 135.)

O. Vogt. Furchenbildung und architektonische Rindenfelderung. Journal für Psy-
chologie und Neurologie, 29:438–439, 1923. (Cited on page 27.)

C. von Economo and G.N. Koskinas. Die Cytoarchitektonik der Hirnrinde des Erwach-
senen Menschen. Textband und Atlas. Wien und Berlin, 1925. (Cited on pages 18,
19, 20, 21, 22, 23, 25, 26, 27, 30, 32, 100, 101, 129, 130, 131, 132, 133, 135, 138, 140,
159, 167, 168, 169, 170, 171, 172, and 180.)

M. Waehnert, M. Weiss, M. Streicher, P.-L. Bazin, S. Geyer, and R. Turner. Do
cortical layers conform to the laplace equation? Proceedings of the 18th Annual
Meeting of the Organization for Human Brain Mapping, 2012. (Cited on pages 181,
183, and 185.)

M. Waehnert, J. Dinse, C. Tardif, A. Schäfer, S. Geyer, P. Bazin, and R. Turner. How
Much Resolution Is Needed for in-vivo Analysis of Cortical Myeloarchitecture?
Proceedings of the 21th Annual Meeting of the International Society for Magnetic Reso-
nance in Medicine, 2013a. (Cited on pages 132 and 139.)

M. Waehnert, J. Dinse, C. Tardif, A. Schäfer, S. Geyer, P.-L. Bazin, and R. Turner.
Identifying heavily myelinated areas of the cortex using subject-specific cortical
profiles of T1. Proceedings of the 19th Annual Meeting of the Organization for Human
Brain Mapping, 2013b. (Cited on page 48.)

M.D. Waehnert, J. Dinse, M. Weiss, M.N. Streicher, P. Waehnert, S. Geyer, R. Turner,
and P.-L. Bazin. Anatomically motivated modeling of cortical laminae. Neu-
roImage, 93(2):210–220, 2013c. ISSN 1053-8119. (Cited on pages 108, 111, 122,
and 175.)

209



210 Bibliography

G. Wagenknecht and S. Winter. Volume-of-interest segmentation of cortical regions
for multimodal brain analysis. In Nuclear Science Symposium Conference Record,
2008. IEEE, pages 4368–4372. IEEE, 2008. (Cited on page 92.)

N.B. Walters, G.F. Egan, J.J. Kril, M. Kean, P. Waley, M. Jenkinson, and J.D.G. Wat-
son. In vivo identification of human cortical areas using high-resolution MRI:
an approach to cerebral structure–function correlation. Proceedings of the National
Academy of Sciences, 100(5):2981–2986, 2003. (Cited on pages 46 and 140.)

N.B. Walters, S.B. Eickhoff, A. Schleicher, K. Zilles, K. Amunts, G.F. Egan, and
J.D.G. Watson. Observer-Independent Analysis of High-Resolution MR Images
of the Human Cerebral Cortex: In Vivo Delineation of Cortical Areas. Human
Brain Mapping, 28(1):1–8, 2007. (Cited on pages 129 and 140.)

J.P. Wansapura, S.K. Holland, R.S. Dunn, and W.S. Ball. NMR relaxation times in
the human brain at 3.0 Tesla. Journal of Magnetic Resonance Imaging, 9(4):531–538,
1999. (Cited on page 52.)

E. Waters and S. Wickline. Contrast agents for MRI. Basic Research in Cardiology,
103(2):114–121, 2008. (Cited on page 37.)

N. Weiskopf, J. Suckling, G. Williams, M.M. Correia, B. Inkster, R. Tait, C. Ooi, E.T.
Bullmore, and A. Lutti. Quantitative multi-parameter mapping of R1, PD⇤, MT,
and R⇤

2

at 3T: a multi-center validation. Frontiers in Neuroscience, 7, 2013. (Cited
on page 50.)

B. Widrow. The "rubber-mask" technique - I. Pattern measurement and analysis.
Pattern Recognition, 5(3):175–197, 1973a. (Cited on page 80.)

B. Widrow. The "rubber-mask" technique - II. pattern storage and recognition.
Pattern Recognition, 5(3):199–211, 1973b. (Cited on page 80.)

G. Wig, T. Laumann, and S. Petersen. An approach for parcellating human cortical
areas using resting-state correlations. NeuroImage, 93:276–291, 2014. (Cited on
page 96.)

H. Wilms, L. Zecca, P. Rosenstiel, J. Sievers, G. Deuschl, and R. Lucius. Inflamma-
tion in Parkinson’s diseases and other neurodegenerative diseases: cause and
therapeutic implications. Current Pharmaceutical Design, 13(18):1925–1928, 2007.
(Cited on page 33.)

A. Worth, C. Haselgrove, and D. Kennedy. The Internet Brain Segmentation Repos-
itory (IBSR) on NITRC. November 1996. URL http://www.nitrc.org/projects/

ibsr/. (Cited on page 116.)

P.J. Wright, O.E. Mougin, J.J. Totman, A.M. Peters, M.J. Brookes, R. Coxon, P.E.
Morris, M. Clemence, S.T. Francis, R.W Bowtell, and P.A. Gowland. Water pro-
ton T1 measurements in brain tissue at 7, 3, and 1.5 T using IR-EPI, IR-TSE,
and MPRAGE: results and optimization. Magnetic Resonance Materials in Physics,
Biology and Medicine, 21(1-2):121–130, 2008. (Cited on page 52.)

C. Xu and J.L. Prince. Generalized gradient vector flow external forces for active
contours. Signal processing, 71(2):131–139, 1998a. (Cited on page 84.)

210



Bibliography 211

C. Xu and J.L. Prince. Snakes, shapes, and gradient vector flow. Image Processing,
IEEE Transactions on, 7(3):359–369, 1998b. (Cited on page 84.)

C. Xu, D.L. Pham, and J.L. Prince. Medical Image Segmentation using Deformable
Models, chapter 6. (Cited on pages 81 and 82.)

C. Xu, D.L. Pham, and J.L. Prince. Image segmentation using deformable models.
Handbook of Medical Imaging, 2:129–174, 2000. (Cited on page 84.)

L. Yang, J. Effler, B. Kutscher, S. Sullivan, D. Robinson, and P. Iglesias. Modeling
cellular deformations using the level set formalism. BMC Systems Biology, 2(1):
68, 2008. (Cited on page 87.)

J.D. Yeatman, B.A. Wandell, and A.A. Mezer. Lifespan maturation and degener-
ation of human brain white matter. Nature Communications, 5, 2014. (Cited on
page 18.)

B. Yeo, F. Krienen, J. Sepulcre, M. Sabuncu, D. Lashkari, M. Hollinshead, J. Roff-
man, J. Smoller, L. Zöllei, J. Polimeni, B. Fischl, H. Liu, and L. Buckner. The
organization of the human cerebral cortex estimated by intrinsic functional con-
nectivity. Journal of neurophysiology, 106(3):1125–1165, 2011. (Cited on page 96.)

A. Yezzi and J.L. Prince. An Eulerian PDE approach for computing tissue thickness.
IEEE Transactions on Medical Imaging, 22(10):1332–1339, 2003. (Cited on page 176.)

X. Zeng, L.H. Staib, R.T. Schultz, H. Tagare, L. Win, and J.S. Duncan. A new
approach to 3D sulcal ribbon finding from MR images. In Medical Image Comput-
ing and Computer-Assisted Intervention–MICCAI’99, pages 148–157. Springer, 1999.
(Cited on page 93.)

D. Zhang, L. Guo, G. Li, J. Nie, F. Deng, K. Li, X. Hu, T. Zhang, X. Jiang, D. Zhu,
Z. Qun, and T. Liu. Automatic cortical surface parcellation based on fiber density
information. In Proceedings of the 2010 IEEE international Conference on Biomedi-
cal Imaging: from nano to macro, pages 1133–1136. IEEE Press, 2010. (Cited on
page 96.)

Y. Zhou, P. Thompson, and A. Toga. Extracting and representing the cortical sulci.
Computer Graphics and Applications, IEEE, 19(3):49–55, 1999. (Cited on page 93.)

J. Zimmermann, R. Goebel, F. De Martino, P.-F. van de Moortele, D. Feinberg,
G. Adriany, D. Chaimow, A. Shmuel, K. Ugurbil, and E. Yacoub. Mapping the
Organization of Axis of Motion Selective Features in Human Area MT Using
High-Field fMRI. PLoS ONE, 6(12):e28716, 2011. (Cited on page 176.)

211



1 Anja Hahne
 Charakteristika syntaktischer und semantischer Prozesse bei der auditi-
 ven Sprachverarbeitung: Evidenz aus ereigniskorrelierten Potentialstudien

2 Ricarda Schubotz
 Erinnern kurzer Zeitdauern: Behaviorale und neurophysiologische  
 Korrelate einer Arbeitsgedächtnisfunktion

3 Volker Bosch
 Das Halten von Information im Arbeitsgedächtnis: Dissoziationen  
 langsamer corticaler Potentiale

4 Jorge Jovicich
 An investigation of the use of Gradient- and Spin-Echo (GRASE) imaging  
 for functional MRI of the human brain

5 Rosemary C. Dymond
 Spatial Speci!city and Temporal Accuracy in Functional Magnetic  
 Resonance Investigations

6 Stefan Zysset
 Eine experimentalpsychologische Studie zu Gedächtnisabrufprozessen  
 unter Verwendung der funktionellen Magnetresonanztomographie

7 Ulrich Hartmann
 Ein mechanisches Finite-Elemente-Modell des menschlichen Kopfes

8 Bertram Opitz
 Funktionelle Neuroanatomie der Verarbeitung einfacher und komplexer  
 akustischer Reize: Integration haemodynamischer und elektrophysiolo-
 gischer Maße

9 Gisela Müller-Plath
 Formale Modellierung visueller Suchstrategien mit Anwendungen bei der
 Lokalisation von Hirnfunktionen und in der Diagnostik von Aufmerksam-
 keitsstörungen

10 Thomas Jacobsen
 Characteristics of processing morphological structural and inherent case  
 in language comprehension

11 Stefan Kölsch
 Brain and Music
 A contribution to the investigation of central auditory processing with a  
 new electrophysiological approach

12 Stefan Frisch
 Verb-Argument-Struktur, Kasus und thematische Interpretation beim  
 Sprachverstehen

13  Markus Ullsperger
 The role of retrieval inhibition in directed forgetting – an event-related  
 brain potential analysis

14  Martin Koch
 Measurement of the Self-Di"usion Tensor of Water in the Human Brain

15  Axel Hutt
 Methoden zur Untersuchung der Dynamik raumzeitlicher Signale

16  Frithjof Kruggel
 Detektion und Quanti!zierung von Hirnaktivität mit der funktionellen  
 Magnetresonanztomographie

17  Anja Dove
 Lokalisierung an internen Kontrollprozessen beteiligter Hirngebiete  
 mithilfe des Aufgabenwechselparadigmas und der ereigniskorrelierten  
 funktionellen Magnetresonanztomographie

18  Karsten Steinhauer
 Hirnphysiologische Korrelate prosodischer Satzverarbeitung bei gespro- 
 chener und geschriebener Sprache

19 Silke Urban
 Verbinformationen im Satzverstehen

20 Katja Werheid
 Implizites Sequenzlernen bei Morbus Parkinson

21  Doreen Nessler
 Is it Memory or Illusion? Electrophysiological Characteristics of True and  
 False Recognition

22  Christoph Herrmann
 Die Bedeutung von 40-Hz-Oszillationen für kognitive Prozesse

23  Christian Fiebach
 Working Memory and Syntax during Sentence Processing. 
 A neurocognitive investigation with event-related brain potentials and  
 functional magnetic resonance imaging

24  Grit Hein
 Lokalisation von Doppelaufgabende!ziten bei gesunden älteren  
 Personen und neurologischen Patienten

25  Monica de Filippis
 Die visuelle Verarbeitung unbeachteter Wörter. Ein elektrophysiologischer  
 Ansatz

26  Ulrich Müller
 Die katecholaminerge Modulation präfrontaler kognitiver Funktionen  
 beim Menschen

27  Kristina Uhl
 Kontrollfunktion des Arbeitsgedächtnisses über interferierende Information

28  Ina Bornkessel
 The Argument Dependency Model: A Neurocognitive Approach to  
 Incremental Interpretation

29  Sonja Lattner
 Neurophysiologische Untersuchungen zur auditorischen Verarbeitung  
 von Stimminformationen

30  Christin Grünewald
 Die Rolle motorischer Schemata bei der Objektrepräsentation: Untersu-
 chungen mit funktioneller Magnetresonanztomographie

31  Annett Schirmer
 Emotional Speech Perception: Electrophysiological Insights into the  
 Processing of Emotional Prosody and Word Valence in Men and Women

32  André J. Szameitat
 Die Funktionalität des lateral-präfrontalen Cortex für die Verarbeitung  
 von Doppelaufgaben

33 Susanne Wagner
 Verbales Arbeitsgedächtnis und die Verarbeitung ambiger Wörter in  
 Wort- und Satzkontexten

34  Sophie Manthey
 Hirn und Handlung: Untersuchung der Handlungsrepräsentation im  
 ventralen prämotorischen Cortex mit Hilfe der funktionellen Magnet- 
 Resonanz-Tomographie

35  Stefan Heim
 Towards a Common Neural Network Model of Language Production and  
 Comprehension: fMRI Evidence for the Processing of Phonological and  
 Syntactic Information in Single Words

36  Claudia Friedrich
 Prosody and spoken word recognition: Behavioral and ERP correlates

37  Ulrike Lex
 Sprachlateralisierung bei Rechts- und Linkshändern mit funktioneller  
 Magnetresonanztomographie

MPI Series in Human Cognitive and Brain Sciences:



38  Thomas Arnold
 Computergestützte Befundung klinischer Elektroenzephalogramme

39 Carsten H. Wolters
 In#uence of Tissue Conductivity Inhomogeneity and Anisotropy on EEG/ 
 MEG based Source Localization in the Human Brain

40  Ansgar Hantsch
 Fisch oder Karpfen? Lexikale Aktivierung von Benennungsalternative bei  
 der Objektbenennung

41  Peggy Bungert
 Zentralnervöse Verarbeitung akustischer Informationen
 Signalidenti!kation, Signallateralisation und zeitgebundene Informati-
 onsverarbeitung bei Patienten mit erworbenen Hirnschädigungen

42  Daniel Senkowski
 Neuronal correlates of selective attention: An investigation of electro-
 physiological brain responses in the EEG and MEG

43  Gert Wollny 
 Analysis of Changes in Temporal Series of Medical Images

S 1 Markus Ullsperger & Michael Falkenstein
 Errors, Con#icts, and the Brain Current Opinions on Performance  
 Monitoring

44  Angelika Wolf
 Sprachverstehen mit Cochlea-Implantat: EKP-Studien mit postlingual  
 ertaubten erwachsenen CI-Trägern

45  Kirsten G. Volz
 Brain correlates of uncertain decisions: Types and degrees of uncertainty

46  Hagen Huttner
 Magnetresonanztomographische Untersuchungen über die anatomische  
 Variabilität des Frontallappens des menschlichen Großhirns

47  Dirk Köster
 Morphology and Spoken Word Comprehension: Electrophysiological  
 Investigations of Internal Compound Structure

48  Claudia A. Hruska
 Ein#üsse kontextueller und prosodischer Informationen in der audito-
 rischen Satzverarbeitung: Untersuchungen mit ereigniskorrelierten  
 Hirnpotentialen

49  Hannes Ruge
 Eine Analyse des raum-zeitlichen Musters neuronaler Aktivierung im  
 Aufgabenwechselparadigma zur Untersuchung handlungssteuernder  
 Prozesse
 
50  Ricarda I. Schubotz
 Human premotor cortex: Beyond motor performance

51  Clemens von Zerssen
 Bewusstes Erinnern und falsches Wiedererkennen: Eine funktionelle MRT  
 Studie neuroanatomischer Gedächtniskorrelate

52  Christiane Weber
 Rhythm is gonna get you.
 Electrophysiological markers of rhythmic processing in infants with and  
 without risk for Speci!c Language Impairment (SLI)

53  Marc Schönwiesner
 Functional Mapping of Basic Acoustic Parameters in the Human Central  
 Auditory System

54  Katja Fiehler
 Temporospatial characteristics of error correction

55  Britta Stolterfoht
 Processing Word Order Variations and Ellipses: The Interplay of Syntax  
 and Information Structure during Sentence Comprehension

56  Claudia Danielmeier 
 Neuronale Grundlagen der Interferenz zwischen Handlung und visueller  
 Wahrnehmung

57  Margret Hund-Georgiadis 
 Die Organisation von Sprache und ihre Reorganisation bei ausgewählten,
 neurologischen Erkrankungen gemessen mit funktioneller Magnetreso-
 nanztomographie – Ein#üsse von Händigkeit, Läsion, Performanz und  
 Perfusion

58  Jutta L. Mueller 
 Mechanisms of auditory sentence comprehension in !rst and second  
 language: An electrophysiological miniature grammar study

59  Franziska Biedermann
 Auditorische Diskriminationsleistungen nach unilateralen Läsionen im  
 Di- und Telenzephalon

60 Shirley-Ann Rüschemeyer
 The Processing of Lexical Semantic and Syntactic Information in Spoken  
 Sentences: Neuroimaging and Behavioral Studies of Native and Non-
 Native Speakers

61 Kerstin Leuckefeld 
 The Development of Argument Processing Mechanisms in German.
 An Electrophysiological Investigation with School-Aged Children and  
 Adults

62 Axel Christian Kühn
 Bestimmung der Lateralisierung von Sprachprozessen unter besondere  
 Berücksichtigung des temporalen Cortex, gemessen mit fMRT

63 Ann Pannekamp
 Prosodische Informationsverarbeitung bei normalsprachlichem und
 deviantem Satzmaterial: Untersuchungen mit ereigniskorrelierten
 Hirnpotentialen

64 Jan Derrfuß
 Functional specialization in the lateral frontal cortex: The role of the  
 inferior frontal junction in cognitive control

65 Andrea Mona Philipp
 The cognitive representation of tasks – Exploring the role of response  
 modalities using the task-switching paradigm

66 Ulrike Toepel
 Contrastive Topic and Focus Information in Discourse – Prosodic  
 Realisation and Electrophysiological Brain Correlates

67  Karsten Müller 
 Die Anwendung von Spektral- und Waveletanalyse zur Untersuchung  
 der Dynamik von BOLD-Zeitreihen verschiedener Hirnareale

68 Sonja A.Kotz
 The role of the basal ganglia in auditory language processing: Evidence  
 from ERP lesion studies and functional neuroimaging

69 Sonja Rossi
 The role of pro!ciency in syntactic second language processing: Evidence  
 from event-related brain potentials in German and Italian

70 Birte U. Forstmann
 Behavioral and neural correlates of endogenous control processes in task  
 switching

71 Silke Paulmann
 Electrophysiological Evidence on the Processing of Emotional Prosody:  
 Insights from Healthy and Patient Populations

72 Matthias L. Schroeter 
 Enlightening the Brain – Optical Imaging in Cognitive Neuroscience

73 Julia Reinholz
 Interhemispheric interaction in object- and word-related visual areas

74 Evelyn C. Ferstl
 The Functional Neuroanatomy of Text Comprehension

75  Miriam Gade
 Aufgabeninhibition als Mechanismus der Kon#iktreduktion zwischen  
 Aufgabenrepräsentationen



76 Juliane Hofmann
 Phonological, Morphological, and Semantic Aspects of Grammatical  
 Gender Processing in German

77 Petra Augurzky
 Attaching Relative Clauses in German – The Role of Implicit and Explicit  
 Prosody in Sentence Processing

78 Uta Wolfensteller
 Habituelle und arbiträre sensomotorische Verknüpfungen im lateralen  
 prämotorischen Kortex des Menschen

79 Päivi Sivonen
 Event-related brain activation in speech perception: From sensory to  
 cognitive processes

80 Yun Nan
 Music phrase structure perception: the neural basis, the e"ects of  
 acculturation and musical training

81 Katrin Schulze
 Neural Correlates of Working Memory for Verbal and Tonal Stimuli in  
 Nonmusicians and Musicians With and Without Absolute Pitch

82 Korinna Eckstein
 Interaktion von Syntax und Prosodie beim Sprachverstehen: Untersu-
 chungen anhand ereigniskorrelierter Hirnpotentiale

83 Florian Th. Siebörger
 Funktionelle Neuroanatomie des Textverstehens: Kohärenzbildung bei  
 Witzen und anderen ungewöhnlichen Texten

84 Diana Böttger
 Aktivität im Gamma-Frequenzbereich des EEG: Ein#uss demographischer  
 Faktoren und kognitiver Korrelate

85 Jörg Bahlmann
 Neural correlates of the processing of linear and hierarchical arti!cial  
 grammar rules: Electrophysiological and neuroimaging studies

86 Jan Zwickel
 Speci!c Interference E"ects Between Temporally Overlapping Action and  
 Perception

87 Markus Ullsperger
 Functional Neuroanatomy of Performance Monitoring: fMRI, ERP, and  
 Patient Studies

88 Susanne Dietrich
 Vom Brüllen zum Wort – MRT-Studien zur kognitiven Verarbeitung  
 emotionaler Vokalisationen

89 Maren Schmidt-Kassow
 What‘s Beat got to do with ist? The In#uence of Meter on Syntactic  
 Processing: ERP Evidence from Healthy and Patient populations

90 Monika Lück
 Die Verarbeitung morphologisch komplexer Wörter bei Kindern im  
 Schulalter: Neurophysiologische Korrelate der Entwicklung

91 Diana P. Szameitat
 Perzeption und akustische Eigenschaften von Emotionen in mensch- 
 lichem Lachen

92 Beate Sabisch
 Mechanisms of auditory sentence comprehension in children with  
 speci!c language impairment and children with developmental dyslexia:  
 A neurophysiological investigation

93 Regine Oberecker
 Grammatikverarbeitung im Kindesalter: EKP-Studien zum auditorischen  
 Satzverstehen
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