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Abstract: Based on the linearized compressible resistive MHO equations we derive a 
system of five equations describing the time dependent behaviour of ballooning modes in 

equilibria with sheared flow. The subsequent ordering scheme is based on a two scale 

expansion, where the fast va rying scale is prescribed by an appropriately chosen ei konal. 

1. Introduction: Recently considerable effort has been taken to study the stabi lity be­
haviour of ballooning modes fo r MHO flow equilibria. In Refs. 1.2 the idea l MHO equations 

are investigated. whe re the equilibri um flow consists of a component parallel to the mag­

neti c field and a rigid toro idal rotation. Th is ideal limit allows a stab ility analysis in terms 

of a s ingle quantity e, the Lagrangian displacement vector, which is well known from the 

energy principle . In their analysis Chun and Hameiri [2] find periodic bursts in the tim e 

dependence of t he perturbed flow velocity due to a parametric resonance in thei r equation. 

Simila r conclusions are reached by Cooper [3]. who studies the resistive but incompressible 

case in th e framework of the WKB-method [4.51. where periodic bursts in th e pert urbed 

flow velocity as a function of t ime are found numerica lly. Now. looking at investigations 

of s tability of res istive ballooning modes for static MHO eq uilibria [6 .71. the governing 

equations are derived in a certain ordering scheme. which is directly app lied to the lin­

earized MHO equations. In the follow ing section we wi ll follow thi s line a nd derive a set 

of five balloon ing equations fo r MHO flow equilib ria. i.e. containing resistivity as well as 

co mpress ibility effects. 

2. The b a llooning equations : We s tart from the usuallinearized MHD equations. 

Momentum ba lance: 

(I ) P ay = - p(Y·V)Y _ p(Y . V)y _ p(y·,,)y _ Vp + (V x b) x B + (" x B) x b. at 
Continu ity equation : 

(2) a:, = - Y·Vp - v·Vp - p<:1.y - pV· v. 

Energy balance : 



(3) 
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aii = _ v .vii _ v·vp - rpv·v - rpv · v. at 
Ma xwell' s eq uat ions: 

(4) 

(5) 

ab -­
- = v x (v x B ) + V x (V x b) - "V x (V x b) at 

All perturbations are in di cated by twidles. To consistentl y introduce our ordering scheme. 

we specify two d isti nct sca les denoted by 'X/rH ! = X l. ,X, IQW = XII and t/a,(,t . l o'W for rapid 
an d s low variation of quantities in space an d time. respectively. The scales are di sti nguished 

by the ' bookkeeping' pa ra meter ~ and ou r requiremen ts on derivatives 

(6) aa
l 

( -' ) at f lU ! = 0 E: , 
aa 
at 1. low = 0 (1) 

of perturbations and equilibrium quantities. as well as 

(7) 

for the resIstivi ty The symbols tJ 1. a nd 'V U denote deri vatives perpendicula r and pa r­

allel to the equ ilibr ium magnetic field. respectively. All perturbations are now el(panded 
asymptotica ll y in powers of E:. e .g . 

The scales are se parated by means of an eikona l a nsa tz of the form 

(9) 

Equations (1)-(!;) are now consi s tently solved to order ~- l . if the ei konal satisfies 

(10) 
as 
all/ad + V ·\] J.. S = 0 



1359 

and the constra ints from momentum balance 

(11) 
1 
- 'JS(po + B · bo) = O. 
< 

From the continuity equation ,energy balance and Maxwell's equations we obtain: 

(12) 
1 
-VS-v o = 0, 
< 

1 
- 'JS·bo = 0 
< 

These constraints are equivalent to the following representations of the perturbations 

(13) 
VII B x 'JS 

vo=-B+v.l - --B2 B2 
Po B x 'VS 

bo=--B + bl.-- -
E' ('JS)' 

Physically this ordering scheme implies effectively an incompressible motion on the fast 

time scale. After some algebra we obtain for the momentum balance equations: 

(14) 

(15) 

aV II B 
PTt = - p(V· 'J1I)vll + pVII E' . ((V· 'J )B - (B · 'J)VI 

VL I +p E, I(B x 'JS)· (V . 'J)B -B·I(B x 'JS)· 'JIV 

E' 
- PoB · (V· 'J)V - B · 'Jpo + bL ('Js),('J x B )· 'J S 

2 8vl. 2 p('JS) Tt = 2pVL 'JS· ('JS· 'J)V - p('JS) (V· 'J II)VL 

('J SI' 
+ pVL B"B ' I(V ' 'J)B + (B· 'J)VI 

- PVL('J S)''J . V - po(B x 'J S)· (V . 'JIV - 2po'" (B x 'J S) + E'(B . 'J )bL 

(B x 'JS) 
-pvlI E' 'I(V . 'J)B + (B· 'J)VI · 

From Faraday's law we obtain : 

(16) ilbL = - 2 'JS · ('JS · 'J)V b _ .~ . liB . 'J)V + (V · 'J)B lbL 
ilt ('J S)' L E' 
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and from the continuity equation and energy balance: 

(17) 
apo at" = -(V · 'V rr)po - VO' 'Vp - PO'V· V - p'V u · Vo - P'V.L · VI 

(18) 

Note that the term a: 'V .1 . V 1 in the last two equations is of the next to leading order in £: 

and has to be el iminated by the parallel component of Faraday·s law: 

2 apo 1 2 2 )' (19) B \7~ovl = -+Bo (b oo \7)Y -B o(Yo\7U)bo+po \7oY--(voo\7)B +,n (\7S Po at 2 

3 . Discussion: In the flowless case the system of equations (14) - (19) triv ially reproduces 
the ordinary time dependent ballooning equations of Refs .(6.7). Furthermore we see from 

eq.(10) that the parametric res onance disappea rs in the case of parallel fl ow. In thi s limit 
the eikonal remains, as in th e static case. cons tant in time. 
One important featu re of ou r ordering scheme is the appearance of slow time derivat ives 
on ly. Since the system appears to be incompressible on the fa s t time sca le. we do not have 

to consider effects of the fa st magnetoacoustic wave in this ord ering. 
Numerica l solu t ions of these eq uations will be presented in a forthcoming publication . 

Acknowledgement: We thank K. Lackner for helpful disc uss ions. 
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