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A complete set of resistive compressible ballooning
equations for 2-D flow equilibria
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Abstract: Based on the linearized compressible resistive MHD equations we derive a
system of five equations describing the time dependent behaviour of ballooning modes in
equilibria with sheared flow. The subsequent ordering scheme is based on a two scale
expansion, where the fast varying scale is prescribed by an appropriately chosen eikonal.

1. Introduction: Recently considerable effort has been taken to study the stability be-
haviour of ballocning modes for MHD flow equilibria. In Refs. 1.2 the ideal MHD equations
are investigated, where the equilibrium flow consists of a component parallel to the mag-
netic field and a rigid toroidal rotation. This ideal limit allows a stability analysis in terms
of a single quantity £, the Lagrangian displacement vector, which is well known from the
energy principle. In their analysis Chun and Hameiri [2] find periodic bursts in the time
dependence of the perturbed flow velocity due to a parametric resonance in their equation.
Similar conclusions are reached by Cooper [3], who studies the resistive but incompressible
case in the framework of the WKB-method [4.5]. where periodic bursts in the perturbed
flow velocity as a function of time are found numerically. Now, looking at investigations
of stability of resistive ballooning modes for static MHD equilibria [6.7]. the governing
equations are derived in a certain ordering scheme, which is directly applied to the lin-
earized MHD equations. In the following section we will follow this line and derive a set
of five ballooning equations for MHD flow equilibria. i.e. containing resistivity as well as
compressibility effects.

2. The ballooning equations: We start from the usual linearized MHD equations.
Momentum balance :

(1) pﬁ

50 = ~PFIIV = p(V - V)7 = F(V-V)V = V5 + (V x b) x B + (V x B) x b.

Continuity equation :
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(2)

Energy balance :
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(3) % =-V.Vp—- V'VP“FW'V—FPV-{;'
Maxwell’s equations:

ab - ~ =~
(4) E:Vx(va)+Vx(be)—nVX{VXb)
(5) Vb=0

All perturbations are indicated by twidles. To consistently introduce our ordering scheme,
we specify two distinct scales denoted by Tjast = Z 1, Tatow = || and ¢ a4t, talow for rapid
and slow variation of quantities in space and time, respectively. The scales are distinguished
by the 'bookkeeping” parameter € and our requirements on derivatives

Vla’:O(E_l), V"E= O(l), le=O(1), V"A:O(l)

da

da _ o5 _
(6) & El_fnl! o O(E ); at |uh)w — O(I)

of perturbations and equilibrium quantities, as well as
(7) ; m=0()
for the resistivity. The symbols V; and V| denote derivatives perpendicular and par-

allel to the equilibrium magnetic field, respectively. All perturbations are now expanded
asymptotically in powers of ¢, e.g.

(8) E(I_L, $|1:tfa.ahtalaw) = Eﬂ(zl: 1:|]:tfnctqtalaw) + EEl{IJ_,I”,t_,’nah talow) + ..

The scales are separated by means of an eikonal ansatz of the form

35 i .
(9) a; = af(IJ.:I||:tfna!:talow)CIP;S(l'J..tfast): 1=0,1, ...

Equations (1)-(5) are now consistently solved to order e !, if the eikonal satisfies

as
(10) Elfa.at + V'VJ_S =0




1359
and the constraints from momentum balance

i .
(11) EV.S‘(po+Bbg) =0,

From the continuity equation .energy balance and Maxwell's equations we obtain :
1 1
(12) EVS'VQ =0, EVSbg =0
These constraints are equivalent to the following representations of the perturbations

v BxVS
(13) Vo= gEBHo o

Po ' B x VS
==—B+b —=
bo BZB ( J2

Physically this ordering scheme implies effectively an incompressible motion on the fast
time scale. After some algebra we obtain for the momentum balance equations :

(19 o2 = oV Vo + pu g - [(V - V)B~ (B V) V]

+p;3i2[(13 x V§)-(V-V)B-B-|[(B x VS)-V]V]

2
—poB-(V-V)V =B Vpo+ by o (V x B) - VS

(V5)?
(15) p(VS)Z% =2pv, V5 - (VS V)V — p(VS)*}(V -V )
400 OB (v.V)B+ (B-T)V)
—pu 1 (VS)*V -V — po(B x VS)- (V- V)V —2pox - (B x VS) + B*(B- V)b,
' —-,au"(—B%S) (V-V)B+ (B-V)V].
From Faraday's law we obtain :
3%, VS (VS-V)V. B _

(16) ¥ T T by =27 -((B- V)V +(V-V)BJ5,
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(vs)?

B (B-V)vy —nn?(VS)%b,

(BxVS) B
e e

and from the continuity equation and energy balance :

.V)V—(V-V)%]b" —(V°V||)bj_+

9
(17) ra;af — -—-(V-V")po—-VQ'Vp—pov-V*pV” *Vo —pVL V)

o

(18) e

::—(V-V”)pohvo-fol“ng-VfI‘pV” Vo —I‘pvi “¥i.

Note that the term o< ¥V - v, in the last two equations is of the next to leading order in
and has to be eliminated by the parallel component of Faraday's law :

E) 1
(19) B2V, v, = §+B-(bo-V)V—B-(v-vu)bﬁpov-v-E(VO-V)BMnn?(vsfpg

3. Discussion: In the flowless case the system of equations (14)-(19) trivially reproduces
the ordinary time dependent ballooning equations of Refs.(6.7). Furthermore we see from
€q.(10) that the parametric resonance disappears in the case of parallel flow. In this limit
the eikonal remains, as in the static case, constant in time.

One important feature of our ordering scheme is the appearance of slow time derivatives
only. Since the system appears to be incompressible on the fast time scale, we do not have
to consider effects of the fast magnetoacoustic wave in this ordering.

Numerical solutions of these equations will be presented in a forthcoming publication.
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