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Abstract

We present the N/ = 2 supersymmetric completion of a scalar curvature
squared term in a completely gauge independent form. We also elaborate on
its component structure.
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1 Introduction

Recently, there has been renewed interest in R* gravity [I, 2, 3] and N' = 1 su-
pergravity [4]. In particular, it has been confirmed that the pure R? gravity theory is
ghost free [3]. This provides a rationale to look more closely at the structure of cur-
vature squared terms in four-dimensional (4D) N = 2 supergravity. On dimensional

grounds, all such terms should be given by chiral integrals.

The N = 2 locally supersymmetric invariant Ic2 . containing the Weyl tensor
squared (which coincides with the action for N/ = 2 conformal supergravity) was con-
structed by Bergshoeff, de Roo and de Wit almost thirty five years ago [5]. However,
the A = 2 supersymmetric extension [ R2,~1R? of the term R®R,;, — 3 R? was obtained
only two years ago [6]. A special combination of the super-Weyl invariants Iz —and
I,

a third curvature squared invariant — a locally supersymmetric extension of the R?

_ 12 constitutes the N = 2 Gauss-Bonnet term [6]. In this note we describe

term that is of special interest in the context of the ideas advocated in [I] 2 3, 4].
Although the invariant has been discussed in [7, [§], there has not appeared a complete
description of the invariant due to some missing elements. In particular, the invariant
was given in [7] in a special gauge and the explicit component action has never been
worked out. In this note we provide a more complete exposition of the invariant and

construct it in a gauge independent form.

This note is organised as follows. In section 2 we present the superspace de-
scription of curvature squared invariants within A" = 2 superspace. In section [3] we
elaborate on the component structure of a A/ = 2 supersymmetric invariant contain-

ing a curvature squared term. Section []is devoted to a discussion of our results.

We have included a couple of technical appendices. Appendix [Al provides the
essential details of the formulation for A/ = 2 conformal supergravity [9] in SU(2)
superspace [10], while Appendix [Bl summarises the important details of conformal

superspace [11].

2 The curvature squared invariants in superspace

In this section we use the formulation for A/ = 2 conformal supergravity [9] in
SU(2) superspace [10]. Some technical details concerning this supergravity formula-
tion are collected in Appendix [Al We proceed by recalling the explicit structure of

the invariants Iz —and I R2, - 1R2-



The invariant containing the Weyl tensor squared is

I¢,

2
abed

:/d4xd495W°‘BWa5 + c.c., (2.1)

where W,z is the super-Weyl tensor, see Appendix [A] and £ is the chiral density, see,
e.g., [12] for the definition of £.

The invariant containing R* R, — §R2 is
Ip2, 1pe = /d4x d'0E= + cc., (2.2)
where = denotes the following composite scalar [6]:
=._ liiig Gij G VARV:T: > 5. D
2= EDJSU + 598 + Y 5V Dy; := DDy - (2.3)

The torsion superfields S;;, W,s and Y, 5 and their conjugates S WdB and YdB are
defined in Appendix [Al The fundamental properties of = are as follows [6]:

(1) it is covariantly chiral,
DIZ=0; (2.4)
(ii) its super-Weyl transformation is
5,2 = 20= — 2AG . (2.5)
Here A denotes the chiral projection operator [12} [13]

_ 1/ . o . L
A= ((D” +1659)D;; — (D% — 16Y0‘5)Dd5)
1 /- . .
= (Dij(pw +1657) — Dy (D — 16Yaﬁ)) , (2.6)
with D% .= @,gdﬁs)k. The main properties of A can be formulated using a super-

Weyl inert scalar U as follows:

DIAU =0 , (2.7a)
U=0 = 6,AU =20AU , (2.7b)
/d4:):d49d49EU = /d4xd495AU. (2.7¢)

Here E denotes the full superspace density.

The super-Weyl invariance of (2.2)) follows from the relations ([2.5) and (2.7d) in
conjunction with the identity

Dic=0 = /d4xd4ed4e‘Ea:o, (2.8)
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for any covariantly chiral scalar o.

As shown in [6], the functional
/d‘*:): a9 & {Waﬁwaﬁ - E} (2.9)

is a topological invariant being related to the difference of the Gauss-Bonnet and

Pontryagin invariants.

The specific feature of the invariants (2.I)) and (2.2) is that they do not involve
any conformal compensator However, such a compensator is required in order to
construct a supersymmetric extension of the R? term, and it should be the improved

tensor multiplet [15].

The tensor (or linear) multiplet can be described in curved superspace by its gauge
invariant field strength G which is defined to be a real SU(2) triplet subject to the

covariant constraints [16], [17]
DlgH = Pligit) = | (2.10)
These constraints are solved in terms of a chiral prepotential ¥ [18| [19, 20, 21] via
G — i(pij+4siﬂ')m+ i(z‘)"u@”)@, Div =0, (2.11)
which is invariant under shifts ¥ — W + iA, with A a reduced chiral superﬁeld
DA =0, (D“ n 45“)/\ — (15“‘ n 45“)]\ . (2.12)
The super-Weyl transformation laws of ¥ and G¥ are
U =0V = 0,69 = (0c+05)GY. (2.13)

The improved tensor multiplet is characterised by the condition G := $G"G,; # 0.

Using the improved tensor multiplet one can construct the following reduced chiral
superfield W:

W:

(Dy; +125;;)G" +
G

g
!Super-Weyl anomalies in N/ = 2 superconformal theories coupled to supergravity [14] are given

by linear combinations of the integrands in (2.I]) and (2.2)).
2The field strength W of an Abelian vector multiplet is a reduced chiral superfield.

_L 1 N .. Cckipnacnljo
24g 36g3pakg D[ g gu
= —g('Dij + 4§zy)

- (2.14)




The regular procedure to derive W is described in [22]. This multiplet (up to nor-
malisations) was discovered originally in [15] using superconformal tensor calculus. It

was later reconstructed in curved superspace [21] with the aid of the results in [15]
and [23].

The supersymmetric completion of the R? term will prove to be described by the

invariant
Ipe = / d*z d*0EW? + c.c. (2.15)

In the next section we will explicitly show that the above invariant does indeed contain

a R? term at the component level.

The scalar curvature squared invariant (2.153]) is analogous to the one constructed
in five dimensions in [24]. There a supersymmetric completion of a R? term was
obtained by considering the Chern-Simons coupling between a vector multiplet and
two identical composite vector multiplets constructed out of the tensor multiplet. A
similar procedure was performed in superspace in [25]. In contrast to five dimensions
the component action corresponding to ([2.IH) contains a R? term without the need

to impose any gauge condition.

3 Supersymmetric invariants in components

The curvature squared invariants (2I)) and (Z2) are independent of any com-
pensator and were reduced to components in [6]. In order to perform component
reduction of the R? invariant (2.I5]) it is advantageous to lift the superspace actions

to conformal superspace.

Besides the R? invariant (ZI5]) is it also worth elaborating on the component

structure of the tensor multiplet action [15], which in the formulation of [9] is given
by

Stonsor = — /d4x A0 ETW + c.c. , (3.1)

where W is given in eq. (2I4). The above action can be shown to contain an

Einstein-Hilbert term upon imposing a certain gauge.

In this section we first lift the descriptions of the tensor multiplet action and the
R? invariant to conformal superspace and then reduce them to components. The

salient details of conformal superspace are summarised in Appendix [Bl



3.1 Invariants in conformal superspace

The tensor multiplet is described in conformal superspace by a real primary su-
perfield G¥ = G’* of dimension 2,

DGY =2GY |, K,G9 =0, (3.2)
satisfying the constraint
VGt = . (3.3)

The tensor multiplet can be described by a two-form gauge potential. Its superform
formulation in conformal superspace can be found in [26]. The tensor multiplet can

be solved in terms of an unconstrained chiral prepotential ¥,
i 1 i 1 i
g]:ZVJ\IHLZVJ\II, (3.4)

where we have defined V¥ := VoGy?).,

We can lift the superspace expressions for the tensor multiplet and the scalar
curvature squared actions to conformal superspace. In conformal superspace, the
tensor multiplet action is defined by (B.I]) but with the composite W now constructed
with the covariant derivative of conformal superspace:

G G”

One can check that W is indeed a vector multiplet since it is a primary superfield of

W = ?ijgij + ?dkgki??gljgij = - (3'5)

24G 36G3

dimension 1 satisfying the reduced chiral constraints

ViWw=0, VYW=V'W . (3.6)
The above expression for W degauges to the one given by eq. (ZI4]) upon using the
degauging procedure given in [11].

It is important to note that the action (3.1]) only involves G¥ without a compensat-
ing vector multiplet. This is in contrast to, for example, the AN/ = 2 supersymmetric
BF action@ which is described by

Spp = / d*zd*0 EIW + c.c. , (3.7)

3In general, a BF theory on a d-dimensional orientable manifold is a Schwarz-type topological
gauge theory with action S(g,) = [ By AdAg_n_1 = [ By A Fy_p,, where B, and A4, are
differential forms and Fj,_, is the gauge invariant field strength associated with Ay;_,_1. For a

review of BF theories, see [27]. The action (8.7) is a supersymmetric generalisation of S4 5.
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where W is the chiral field strength of a vector multiplet.

In conformal superspace, the scalar curvature squared action is described by eq.
(2.15) but with the composite W replaced by the one given in eq. (8.5). It is important
to emphasise that the invariant (Z.15]) has the same type as the vector multiplet action,

SQQM::/}ﬁxdW8)V2+CC. (3.8)

with the vector superfield strength replaced by the composite W. The component
vector multiplet and tensor multiplet actions were given in [26] in our notation and
conventions] In the next subsection we apply the results of [26] to elaborate on the

component structure of the invariants Siensor and Ige2.

3.2 The tensor multiplet action and scalar curvature squared

invariant in components

Here we identify the component fields of the Weyl multiplet of conformal super-
gravity in accordance with [IT]. The vierbein e,,*, the gravitino ,,?, the U(1) and

SU(2) gauge fields A,, and ¢,,"”, and the dilatation gauge field b,, are defined as

follows:

ema = Ema| ) ¢m? = 2Em? ) QZmloz = 2Emfl‘ )
Ap =Dl ) Gl =B, by, = B . (3.9)

The component (or bar) projection of a superfield V'(z) is defined in the usual way
V| := V(2)|g=g—o- There are several composite gauge connections. The spin connec-

tion w,,%, the special conformal §,,% and S-supersymmetry connections ¢,,’,,
Wmab = Qmab‘ ) fma = Sma‘ ) qula = 25m1a| ) (310)

are all composed of the previously defined component fields. Their expressions can
be found in [11, 26].

The Weyl multiplet also contains some non-gauge fields. These are encoded in the

components of W,z as follows:

Way = Wi+ Wap . Wik = (0u) " Wagl ,  Wgp = —(Ga)agW®] . (3.11a)
: 1_. 1 1 - - .
N = VW D= VW] = =V ;W 11b

4However, here we denote the Lorentz curvature constructed from the spin connection by Ry
instead of 7A€ab0d.




The component field Waib satisfies the self-duality relation %5adeW£ = :I:Waib. As in
[26], to avoid cluttered notation, we will often use W,z also for the corresponding
component field. It should be clear from context to which we are referring. In what

follows, we will also make use of the following bosonic covariant derivative:

1 .
V= em (am 5o Moo + 6Ty +iA0Y + me> . (3.12)

The matter components of the tensor multiplet are defined as follows:
- . 1_. 1 _ ..
GY .= g2]| s Xoi = gingﬂ 5 F = EVUQU| . (313)

There is also an additional component field, the two-form b,,,. Its supercovariant

field strength is given by

~ i

ht = (04[5, V5167

24
U oead, R o
= §5ade(§hbcd - l(Ucd)aB@Dka]E —i(0ca) 5%2)(5 + (Ub)aﬁwckwdlﬁ'le) ,(3.14)

where
Rape = 3eameb“ec”8[mbnp] . (3.15)

The tensor multiplet action was reduced from conformal superspace to components

in [26]. The action up to fermion contributions is

Stensor = /d41'6 (%|F|2 - G(%R + D) - % (ﬁaila - GijV;V/aGiJ)

1 : , 1
—4—G3GijV'“GmV;GﬂGM + §6m"qumnqu) + fermion terms , (3.16)
where .
and ) )
I, = ﬁgbm’jGij + ﬁem“ﬁa + fermion terms . (3.18)

We see that in the gauge where G = 1, Sicnsor contains the Einstein-Hilbert term with

a wrong sign.

The component form for the invariant /> may be obtained by replacing the com-
ponent fields of the vector multiplet in the vector multiplet action in [26] with the

component fields of the composite W. The invariant up to fermionic contributions is

Ipe = /d4:ce ( — VUGV (G'F) + %WPD -

1

s RIEP
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1. .. 2 _ 2
+3 XXy = 20" far = F(0) g FW far + Z(0)ag FW fup

G
1 = = ah= 1
_Q—GQWdBWaﬁFQ ~5n WO‘BWOCBF2> + fermion terms , (3.19)
where
Xij _ l( . 2v/ v/aGij + QDGU + 2RG”) + i (v/aGikv/ Gle
G a 3 a3 K
+hheG? + GVFF — QEQV;Gk(iGj)k> + fermion terms (3.20)
and
fab = eamebnfmn . (321)

One can see that a R? term arises in the X X;; contribution to the invariant (3.19)).

It should be emphasised that the invariant (3.19) is independent of any gauge choice.

4 Discussion

In this paper we have completed the description of all off-shell curvature squared
invariants in A = 2 supergravity. Such invariants are described by the linear combi-
nation

I:Alcgbcd+B[R§b_%R2 + Clpg2 (4.1)

where A, B and C' are real parameters, and the invariants Iez,  Ipe _ipo and Ipe
abe 3

2
ab

are given by the equations (2.1), (2.2) and (2.I5]), respectively. The bosonic sector of
Ip: = f d*z e L2 requires some discussion.

First of all, let us consider the part of L2 containing the auxiliary scalar D:

D y .
g = —— _ la / la 1) ! L a
L = = G2< AVGV.G + VGV, Gy — 2hoh,
+2V"V, GGy — SRG? 4|F\2> YD (4.2)

where the ellipsis represents terms not directly involving D. We see that the equation
of motion for D is consistent and allows one to integrate D out. To understand the
importance of this result, it is worth recalling why two compensators are required in
ordinary N' = 2 supergravity [15]. The D-terms in the vector and tensor multiplet
Lagrangians are

Lvector = 4|¢|2D + - 5 Ltonsor =-DG + - ) (43)

where ¢ = W|. It is seen that the equation of motion for D is contradictory if one

chooses Lsa = —Lyector OF Lsa = —Litensor- However, the supergravity Lagrangian
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Lsg = —Lyector — Litensor 1€ads to a sensible equation of motion for D, which is G =
4]¢|%. Now, looking at the Lagrangian (£2)), we see that we can circumvent the need
of having two compensators. We can have the invariant Iz2 on its own or we can have

a linear combination of Iz2 and Siensor, and still have consistent dynamics.

The second important feature of Iz2 concerns the component field W# and its
conjugate, which are auxiliary in ordinary N = 2 supergravity. The equation of
motion for W#  which is derived from Ixz, allows one to integrate W,s out (if we

assume F' # 0) giving

_ 1
Ipe = /d%e (- V*(C VLG ) + o FPD
1 2 Lyiiy o opab -
6G2R|F\ + 8X Xij +2f* fa + fermion terms) ) (4.4)

Comparing with eq. ([3.I9), one notices that there is a sign flip in the ff,;, term.
In the above action the auxiliary field has not yet been eliminated. In ordinary
supergravity F' was auxiliary, however, now it becomes dynamical. It should also be
noted that upon eliminating the auxiliary field D in the combined invariant of the
form Siensor +1, We generate not only an R? term but also an R and a potential |F/G|*

term. This will be discussed below.

Let us further elaborate on the elimination of the auxiliary field D. To begin with

we consider the invariant
aSvoctor + 5Stensor + fVIRQ ) (45)

where «, § and v are arbitrary constants. The bosonic component action can be
constructed by using (8.16) and (B.I9), and the vector multiplet action in [26]. One
can check that upon eliminating the auxiliary field D, the R? term cancelsH It is worth
mentioning that in five dimensions there also exists a R? invariant in the standard
Weyl multiplet [24, 25], which involves an auxiliary scalar ﬁeld.H Upon eliminating

the auxiliary field, the R? term can be similarly shown to vanish.
The component action of (A5]) will contain the potential contribution

1 /a

— (50 —2819P)

5 , (4.6)

as well as the term A
—~BRIO (47)

SWe are grateful to Sergey Ketov for pointing out this observation.
6A pR? invariant in the standard Weyl multiplet was given in [24] since a different gauge condition

was used.



Upon imposing an appropriate gauge, the first term contains a cosmological term,

while the second gives rise to an Einstein-Hilbert term in the gauge ¢ = const.

Although the invariant Iz: does not give rise to a pure R? term alone upon in-
tegrating out the auxiliary field D, it can still lead to a non-trivial R? contribution
if one adds to it another invariant. For instance, one can make use of the invariant

(22) and consider the linear combination
AStonsor + BIRZ + C[R2b—%R2 . (48)

The invariant /p2 15, contains a D? term and no RD term at the component level,
see [6]. This allows one to keep a R? contribution from Ip: upon eliminating the
auxiliary field D. The invariant will also obtain an Einstein-Hilbert term and a

cosmological constant in a gauge where G = 1.

It should be mentioned that one can fix the special conformal transformations,
dilatations and break the SU(2) R-symmetry down to U(1) by imposing the following

gauge conditions on the improved tensor multiplet
Ba=0, GY=69G, G=1. (4.9)
These conditions correspond to the following choice for the component fields:
b =0, G=1, X.=x,=0, Gy=0,G. (4.10)

The first gauge choice fixes the special conformal summetry, the second fixes dilata-
tions, the third fixes the S-supersymmetry transformations and the last breaks the
SU(2) R-symmetry to U(1). Upon imposing the above gauge choice, the R? invari-
ant (ZIH) coincides with the R? invariant in [7], which was only specified in the
above gauge in superspace. Our invariant, however, is described in both conformal
superspace and the conventional superspace formulation of [9] without specifying any
gauge condition on the compensator. As demonstrated, it is also readily reduced to

components using the results of [26].

It may be shown that no R? invariant can be constructed with a compensating
vector multiplet only. However, one can generalise the invariant x> by coupling it to

some vector multiplets. One can consider the following simple generalisation of [pge:

/ﬂ%ﬂ%5f+oo, (4.11)

where F is a homogeneous function of degree two in W/ = (W, W) with W! denoting
a number of vector multiplets. Such invariants were considered only in the gauge (£.9)

in [7]. Using the results of [26] one can reduce the action to components.
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So far we have considered constructing a R? invariant using a single compensator.
Is it possible to use both a compensating tensor and vector multiplet together to
generate a R? term? In principle, other invariants may be constructed with the use of
the results in [22]. For instance, one can consider a projective-superspace Lagrangian
L1 (v) of the form

)2

_ (HT)
L= G++
where HY = VYW and v* € C?\ {0} denotes homogeneous coordinates for CP!.

Using the results of [22], the corresponding invariant may be cast in the form of a
BF action, [d*zd*0 &YW, + c.c., where

H*(v) = H9vv; | Gt (v) = Gvw; (4.12)

g v 1 VI 1 ij (kl zymn)
It can be shown that the invariant contains a %Rz term at the component level. In
pure supergravity, |¢|> = G on the mass shell, and then the above invariant gives a
R? term. However, this condition does not hold in general. We conclude that our R?

invariant (2.I5) has no obvious alternative.
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A SU(2) superspace

This appendix contains a brief summary of the formulation for N/ = 2 conformal
supergravity [9] in SU(2) superspace [10]. Our notation and conventions follow those
of [28§].

To describe SU(2) superspace one begins with a curved A = 2 superspace M*8
parametrised by local coordinates zM = (2™, 64, 5:1 = (0,)"), wherem =0,1,---, 3,
w=1,2, 1 =1,2and ¢ = 1,2. The structure group is chosen to be SL(2,C) x SU(2),
and the covariant derivatives Dy = (D,, D!, D¢) have the form

1
Da = Ex+ @4 Ty + §QAbchc

= Ea+ 04"+ QuP Mg, + Q4P M, (A1)
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Here B4 = EAM(2)0y is the supervielbein, with dy; = 9/02M, Jyy = Jy, are genera-
tors of the group SU(2) and M, are the Lorentz generators. The one-forms (2 4% and

P 4* are the Lorentz and SU(2) connections.

The generators act on the covariant derivatives as follows:

[Mag,D,iy] = 67(041)%) y [th,Dfl] = — ékDal) . (A2)

The algebra of covariant derivatives is [9]

(DL, D)} = 48T My +27e05Y P M5 + 26Ues WM. 5
+2€a5€ij5kljkl + 4Yag<]ij , (A3a)
(D1, DI} = ~2i61(0°)0" D, + 46:G% Mos + 461G MY +8G,7J'; . (A.3b)
The explicit expressions for the commutator [D,, DJB] can be found in [9]. Here the real
four-vector Gag, the complex symmetric tensors SY = S7 W5 = W, Yo = Yaa
and their complex conjugates S;; := Sii WdB = Wag, }7@6 := Y, are constrained by

certain Bianchi identities [I0} [9]. The latter comprise the dimension-3/2 identities

DS =DM =0, (A.da)
DiW, =0, (A.4b)
DiaYsy =0, (A.4c)
D.Sij+DVsa =0, (A.4d)

7 1 ~7 1 — id 1 =TT
DaGﬁB = _EDBYO!B + Egaﬁpﬁjsj — 18065'1)7 WB’Y , (A4e)

as well as the dimension-2 relation

(D, Dpyi — 4Yap) W = (DD — 4V P) TV . (A.5)
The algebra of covariant derivatives ([A.3) is invariant under the super-Weyl trans-

formations [9]

1 . ,
501)51 = 55-1)51 + (D%U)M'ya - (,Dako')fjm 3 (A6a)
1 s i a k ~3 1 o (b= k
0Da = 5(0+7)Da + 7(0a)"5(Pao) Dy + 7(00)" (D) Dy

—% (D(0 +5)) My, , (A.6b)

with the parameter o being an arbitrary covariantly chiral superfield,

DdiO' =0 y (A7>
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provided the dimension 1 components of the torsion transform as follows:

. . 1 .
6,5 = 7S — ZDWDQQO— : (A.8a)
1
6Yup = 0Yop — ZDfaDg)ka , (A.8b)
50Wa5 = O’Wag s (A8C)
1 _ i _
60Ga6 = §(U+U)Gaﬁ' — ZDQB(U — 0’) . (A8d)

As is seen from (A.8d), the super-Weyl tensor W,s transforms homogeneously.

B Conformal superspace

In this appendix we present the salient details of the superspace formulation of
N = 2 conformal supergravity [11], known as conformal superspace. The SU(2)
superspace of the previous section may be viewed as a gauged fixed version of confor-
mal superspace [L1], which gauges the entire superconformal group SU(2,2/2). Our

conventions and presentation follows that of [26].

The covariant derivatives of conformal superspace V4 = (V,, V¢, V%) have the

form

1 -
Vai=FE4+ 5QAabMab + @47 Ty +1PAY + BaD + FaPKp . (B.1)

Here Y is the generator of the U(1) subgroup of the N' = 2 R-symmetry group
SU(2) x U(1), and K4 = (K% S S) are the special superconformal generators,

while the one-forms ® 4, B4 and F4” are the corresponding connections.

The Lorentz, SU(2), U(1) and dilatation generators act on the spinor covariant

derivatives as
[Mabavfx] = (O-ab)aﬁ Zﬁ 5 [Jijavg] = _5égivocj) 5 (B2a)
. . . 1 .
Y. Vil =V, [D,Vi=3V.. (B.2b)

The S-supersymmetry generators S¢ transform under Lorentz, SU(2), U(1)g and

dilatations as

[Map, 571 = =(0w)s"S] , [Jigs S = —ew:S)) (B.3a)
V5] = ~5¢ [D,S¢] =558 (B.3b)

Among themselves, the generators K“ obey the algebra
{7, 51} = 2i6](0")a ke (B-4)
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while the special conformal generators K4 act on Vp as

(S, Vi) = 267630 — 407 M5 — 6163 + 48507, [S¢, V) = i(0)*5 V7 , (B.5a)
(K, V5] = —i(0")s"S% . [K*, V] = 26;D + 2M*% . (B.5b)

The algebra of covariant derivatives is

{Vi, Vi} = 26,5 W,; M7 + %sijeawwv‘vwég - %giﬂ'eaﬁvwv‘v%KW . (B.6a)
(ViV} = —2i8iV," . (B.6b)
Vi V] = —izasWas V¥ — Leas WD — Leas VP 4 iy V17,57

iz VWP — Lo s VTR, 5% 4 eus VT8

+ iaagvgvuwwfgﬂ- . (B.6c)

The super-Weyl tensor W,s = Wj, and its complex conjugate WdB = Wyp are

superconformally primary, K,4W,s = 0, and obey the additional constraints
ViWs, =0,  VEVW = Veviy, . . (B.7)

In contrast to SU(2) superspace the entire algebra of covariant derivatives is con-

structed in terms of the super-Weyl tensor Wz.
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