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It is proved that any static system that is spacetime-geodesically complete at infinity, and
whose spacelike-topology outside a compact set is that ofR

3 minus a ball, isasymp-
totically flat. The matter is assumed compactly supported and no energy condition is
required. A similar (though stronger) result applies to black holes too. This allows us
to state a large generalisation of the uniqueness of the Schwarzschild solution not re-
quiring asymptotic flatness. The Korotkin-Nicolai static black-hole shows that, for the
given generalisation, no further flexibility in the hypothesis is possible.
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1 Introduction

Asymptotic flatness is the basic notion used in General Relativity (GR) to model systems that can
be thought as “isolated” from the rest of the universe. It wasused by Einstein himself at least
in heuristic form and is now a standard piece of differentialgeometry and of gravitational and
theoretical physics.

The notion of asymptotic flatness is also epistemologicallylinked to the Newtonian theory
of gravitation. {1}In the 1916 manuscriptThe Foundation of the Generalised Theory of Rela-
tivity, Einstein addressed what he calledan epistemological defect(but not mistake) of classical
mechanics, whose origin he linked to E. Mach. He imagined twobodies, A and B, made of the
same fluid material and sufficiently separated from each other that none of the properties of one
could be attributed to the existence of the other. Observersat rest in one body see the other body
rotating at a constant angular velocity, yet these same observers measure a perfect round surface
in one case and an ellipsoid of rotation in the other case. He then asked: “Why is this difference
between the two bodies?”. Necessarily, he continues, the answer cannot be found inside the sys-
tem A+B only; It must lie in its exterior: the outer empty space. Einstein found that the source
of the peculiar disparity was omitting that the empty space should also obey physical laws. These
laws, which treat the parts A and B of the system A + B + EXTERIOR EMPTY SPACE on an equal
footing, are the Einstein equations of GR. There is one pointin Einstein’s elegant conclusions
that is left slightly inconclusive. It can be argued on the base of GR, that the absolute space of
the 18th and 19th centuries was an inevitable concept, as “corrections” to the Newtonian gravity
are simply too small. Though this is unquestionable, it can also be demanded to GR to explain
too, why this “background solution”, representing the EXTERIOR EMPTY SPACE of the system
described earlier, is so distinguished in a theory that treats the geometry and the asymptotic of
space, essentially as a variable.

We find then that a problem of some theoretical importance is to analyse asymptotically flat
(AF) solutions within the set of solutions of General Relativity and to find contexts in which they
are indeed inevitable. Regardless of the “aesthetic” motivation just described, the study of the

{1}The following passage is made upon a text prepared by me to a highlight in CQG+.
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1 INTRODUCTION

asymptotic of spacetimes is of course interesting in itselfand can provide relevant information on
structure of solutions to the Einstein equations.

To give our result a framework, we redefine herestatic isolated systemsin the simplest pos-
sible way without assuming asymptotic flatness at infinity. We prove then that these systems are
necessarily AF. The definition ofstatic isolated systemis as follows. The region of the spacetime
outside some set containing the sources should of the form

M =R×(R3∖B3), g = −N2dt2+g (1.1)

where hereB3 is the unit open ball inR3, N > 0 is the lapse function (the norm of the static Killing
field), andg is a three-metric inR3∖B3. Moreover this spacetime region should begeodesically
complete until its boundary, namely, spacetime geodesics (of any spacetime character)either end
at its boundary or are defined for infinite parametric time.

Admittedly, the topological condition, (which as we will sebelow is fundamental), is moti-
vated mostly by historical considerations, although of course, to model a system like a neutron
star, it is meaningless to make any other choice. On the otherhand the geodesic completeness
until the boundary of (1.1) is the most basic condition that one can impose to ensure that the
spacetime is, roughly speaking, “endless”. From now on we will call it geodesic completeness
at infinity; This terminology is justified by the following fact: geodesic completeness until the
boundary holds iff every spacetime geodesic, whose projection intoR

3∖B3 leaves any compact
set, is complete.

In this setup we prove,

Theorem 1.1. Static isolated systems are asymptotically flat with Schwarzschildian fall off.

This theorem is an expression of the remarkable consistenceof General Relativity as a physi-
cal theory and shows the inevitability of asymptotic flatness in certain contexts.

End not AF

End AF

Figure 1: Representation of an AF end and a non-AF end.

To understand the importance and scope of the conditions defining static isolated systems, let
us bring two purely relativistic examples into consideration. The first is the Schwarzschild black
hole. It is a static vacuum solution with a topological-spherical hole, its curvature decays to zero
at infinity, and the spacetime is geodesically complete at infinity. Yet, (though not always properly
emphasised), Schwarzschild it is not the only static vacuumblack hole solution in 3+1 dimensions
enjoying these attributes. The other solution we are referring to is the Korotkin-Nicolai static
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black hole [7]. It represents a topologically-spherical hole, not inside an open (infinite) three-ball
B

3 as in Schwarzschild, but inside an open (infinite) solid-torusB2×S1. It is axially symmetric
and has the asymptotic of a static Kasner [7] spacetime. Its space is not simply connected; For this
reason the horizon is prolate, as it feels the influence of itself along an axis of symmetry of finite
length. The particular Kasner asymptotic is the simultaneous result of the presence of the hole on
one side and of the non-trivial global topology on the other.Finite covers of the solution yield
static spacetimes with a finite number of black holes in equilibrium. From the point of view of the
General theory of Relativity, the Korotkin-Nicolai and theSchwarzschild solution are perfectly
acceptable, still one is AF and the other is not. This shows that, in Theorem 1.1, the topological
assumption required for isolated systems cannot be removed.

The proof of Theorem 1.1 is based on the results [8], [9] whereAF was proved under the
extra hypothesis that (outside a compact set)N is bounded from below away from zero{2}. This
hypothesis was used only to guarantee that the conformal metric N2g is metrically complete,
property that was used fundamentally. In a sense, all that wedo in this article is to remove this
undesired hypothesis onN but for static solutions. We show that the completeness ofN2g holds
always in static isolated systems, as we defined them earlier. The techniques of this article do not
apply directly to strictly stationary solutions (cf. Remark 2.2). The question of whether strictly
stationary isolated systems are always AF is still open, though, (as shown in [8], [9]), they are AF
when the norm of the Killing field is bounded from below away from zero at infinity.

Along the same lines as in Theorem 1.1, we can generalise the celebrated uniqueness of the
Schwarzschild solution (Israel [6]{3}, Robinson [10], Bunting-Masood Um Alam [3]) to a unique-
ness statement among an (a priori) much larger class of static solutions than those AF. Accord-
ingly, we consider static solutions given by a vacuum staticdata(Σ;g,N), i.e. with

NRic= ∇∇N, ∆N = 0, (1.2)

and with compact but not necessarily connected horizon∂Σ={N=0} ≠∅. As earlier, the solutions
are said to begeodesically compete at infinityif spacetime geodesics, of any spacetime character,
either end at the horizon (i.e. the boundary) or are defined for infinite parametric time.

The theorem is the following.

Theorem 1.2. Let(Σ;g,N) be the data set of a static vacuum spacetime with compact horizon and
geodesically complete at infinity. Then, the spacetime is Schwarzschild iff a connected component
of the complement of a compact set inΣ is diffeomorphic toR3∖B3.

Observe that in this statement nothing is said about the (if any) other connected components of
the complement of the compact set. In principle there could be many other unbounded connected
components. That this cannot happen must be discerned aftersome analysis. This is in spirit
similar to “topological censorship” - type of theorems as in[4], although our technique is different
as we cannot rely on any given structure at infinity.

In parallel to the discussion given at the beginning of the introduction, it is worth noting that
Theorem 1.1 can be interpreted as a result on “asymptotic uniqueness”, (here asymptotic flatness),
and that, in this sense, it is a close relative of the uniqueness of the flat Minkowski spacetime
among complete (simply connected) vacuum static spacetimes proved by M. T. Anderson in [1].
Anderson’s result is a direct consequence of a curvature decay that we will explain in Section

{2}The definition of static isolated system in [8] is the same as the one here, except that it includes the hypothesis thatN
is bounded from below away from zero, see the remark inside the proof of Theorem 1.1.
{3}Israel breakthough in 1967, was the first uniqueness theoremfor Schwarschild and required thatN could be chosen

as a global radial coordinate.
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2.1. We stress however that such decay is not nearly sufficient to deduce asymptotic flatness. The
Korotkin-Nicolai solution satisfies this curvature decay and is not AF.

The rest of the article is roughly organised as follows. Sections 2.1, 2.2 and 2.3 deal with
some important facts about the global structure of the vacuum static solutions. Section 3 contains
the proofs of Theorems 1.1 and 1.2. Proposition 3.1 shows theexistence of a natural partition of
static ends of the formR3∖B3. Proposition 3.2 then proves that the lapseN can have only three
types of behaviours at infinity and Proposition 3.3 proves the completeness ofN2g on the end.
The proof of Theorems 1.1 and 1.2 are given afterwards.

Acknowledgments. I am grateful to Marc Mars for interesting discussions on related topics.

2 Background material.

A smooth Riemannian metricg on a smooth connected manifoldΣ (with or without boundary,
compact or not) induces the metric

dist(p,q) = inf{length(γpq) ∶ γpq smooth curve joiningp to q}. (2.1)

The space(Σ;g) is saidmetrically completeif (Σ;dist) is complete. IfΣ has compact boundary
then metric completeness is equivalent to thegeodesic completeness until the boundaryof (Σ;g),
(by Hopf-Rinow). On the other hand, geodesics in(Σ;g) lift to geodesics perpendicular to the
static Killing field in the associated spacetime. i.e. in

M =R×Σ, g = −N2dt2+g (2.2)

Hence, if ∂Σ is compact, geodesic completeness until the boundary of(M;g) implies metric
completeness of(Σ;g). This is used in Proposition 3.3.

Geodesic completeness until the boundary of(M;g) is a basic assumption in the two main
theorems in this article. However, regarding possible mathematical applications, it is important
when possible to assume only the metric completeness of the data. We will make some remarks
in this respect.

If ∂Σ ≠ ∅, we define themetric annulusA(a,b) of radii 0< a< b by

A(a,b) = {p ∈ Σ ∶ a< dist(p,∂Σ) < b} (2.3)

where dist(p,∂Σ) = inf{dist(p,q) ∶ q ∈ ∂Σ}.
2.1 Anderson’s curvature decay.

Anderson’s curvature decay[1] is an important property of static solutions. It says that there is a
universal constantη > 0 such that for any static data(Σ;g,N) we have

∣Ric∣(p) ≤ η
dist2g(p,∂Σ) , and ∣∇N

N
∣
2

(p) ≤ η
dist2g(p,∂Σ) (2.4)

The optimal constantη can be seen to be greater or equal than one, but it is not know ifit is one.
Upper bounds can be given but far from one.

As an application of the curvature decay let us prove here a proposition that will be used in
the proof of Theorem 1.2 to rule multiple ends when it is knownthat there is one that is AF.
In the statement we useΣδ to denote the manifold resulting from removing fromΣ the tubular
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2 BACKGROUND MATERIAL. 2.1 Anderson’s curvature decay.

neighbourhood of∂Σ and radiusδ , i.e. Σδ = Σ∖{p ∶ distg(p,∂Σ) < δ}. We assume thatδ < δ0

with δ0 small enough that∂Σδ is always smooth.

Proposition 2.1. Let(Σ;g,N) be a static vacuum initial data set with compact horizon (∂Σ={N =
0} ≠ ∅) and(Σ;g) metrically compete. Then there is0< ε0 < 1 such that for everyε < ε0 there is
δ < δ0 such that(Σδ ;N−2ε g) is metrically complete and∂Σδ is strictly convex (with respect to the
inward normal).

Proof. Given 0< ε < 1, the convexity of∂Σδ for δ ≤ δ0 small enough is direct (and we leave it to
the reader) as the factorN−2ε “blows up” the boundary∂Σ uniformly, (observe however that, as
ε < 1, ∂Σ “remains” at a finite distance from the bulk ofΣ).

So let us prove that, if we choseε small enough, the space(Σδ ,N
−2ε g) is metrically complete.

As we are assumingδ < δ0, it is enough to prove that, ifε is small enough,(Σδ0
,N−2ε g) is

metrically complete. We will do that below, the argument is thus independent ofδ .
It is enough to prove that, (ifε small enough), the following holds: for any sequence of points

pi whoseg-distance to∂Σδ0
diverges, the(N−2εg)-distance to∂Σδ0

also diverges. Equivalently,
it is enough to prove that for any sequence of curvesγi starting at∂Σδ0

and ending atpi we have

∫
si

0

1
Nε(γi(s))dsÐ→∞ (2.5)

wheres is theg-arc length ofγi starting from∂Σδ0
. The curvature decay (2.4) implies right away

the estimate,
N(p) ≤ c(1+distg(p,∂Σδ0

))η (2.6)

for anyp∈Σ and whereη >0 is universal butc depends on(Σ,g) andδ0. As distg(γi(s),∂Σδ0
) ≤ s,

then we have
N(γi(s)) ≤ c(1+s)η (2.7)

Thus, ifε < 1/η then,

∫
si

0

1
Nε(γi(s))ds≥ ∫ si

0

1
cε(1+s)ηε ds= 1

cε(1−εη)((1+si)1−εη −1) (2.8)

≥ 1
cε(1−εη)((1+distg(pi,∂Σδ0

))1−εη −1)Ð→∞ (2.9)

as wished. ∎
The importance of Proposition 2.1 roots in that the Ricci curvature of the metric ˜g = N−2ε g

has the expression{4}

R̃ic= −∇̃∇̃ f + 1
c
∇̃ f ∇̃ f (2.10)

where f andc depend onε and are given by

f = −(1+ε) lnN, and
1
c
= (1−2ε −ε2)
(1+ε)2 (2.11)

In particular, if 0< ε <√2−1 thenc> 0. This means thatc-Bakry-Emery Ricci tensorR̃ic
c
f given

by

R̃ic
c
f = R̃ic+∇̃∇̃ f − 1

c
∇̃ f ∇̃ f , (2.12)

{4}Use for this that if ˜g = e2φ g then R̃ic= Ric−(∇∇φ −∇φ∇φ) − (∆φ + ∣∇φ ∣2)g and that∇̃iVj = ∇iVj −(Vj∇iφ +
Vi∇ j φ −(Vk∇kφ)gi j ).
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2 BACKGROUND MATERIAL. 2.2 The Ball Covering Property.

is zero. We will use this fundamentally later.

2.2 The Ball Covering Property.

As observed in [2], Liu’sball covering propertyholds for (metrically complete) static solutions(Σ;g) with compact boundary. Namely, for any 0< a< b there isr0 andn0 such that for anyr ≥ r0

there is a set of balls{B(pi,ar/2), pi ∈A(ar,br), i = 1, . . . ,nr ≤ n0}, coveringA(ar,br). Here and
belowA is the closure ofA.

As a direct corollary we have that, for any 0< a< b andr ≥ r0, as in the ball covering property,
any two points in the same connected component ofA(ar,br) can be joined by a curve of length
less or equal thann0ar entirely contained inA(ar/3,3br).

LetAc(ar,br) be a connected component ofA(ar,br). By the curvature decay (2.4) we have∣∇N/N∣ ≤3η/ar all overAc(ar/3,3br). Integrating this inequality along curves as in the previous
paragraph we obtain

max{N(p) ∶ p ∈Ac(ar,br)}
min{N(p) ∶ p ∈Ac(ar,br)} ≤C(a,b) (2.13)

This is a type of Harnack inequality forN and is fundamental.

Remark 2.2. It is not known at the moment if a similar ball covering property holds for strictly
stationary solutions. This is a main obstacle to extend Theorem 1.1 to stationary isolated systems.

2.3 Spacetime geodesics in static spacetimes.

Let (Σ;g,N) be a static vacuum data and let(M,g) be its associated spacetime. We recall here a
useful way to describe spacetime geodesicsΓ(τ) in terms of certain metrics conformal tog in Σ.
This goes back at least to the work of H. Weyl [12] from 1917.

Let γ =Π(Γ) be the projection ofΓ into Σ. Then it is direct to see thatγ satisfies the equation

∇γ′γ ′ = a2∇N

N3
(2.14)

whereγ ′ = dγ/dτ and wherea is the constanta= g(Γ′,∂t). Moreover we have

∣γ ′∣2 = ε + a2

N2
(2.15)

where the norm on the l.h.s is with respect tog and whereε = −1,0,1 according to the character
type of the geodesic.

Then definee2φ by

e2φ = (ε + a2

N2
) (2.16)

wherever the right hand side is positive (this includes the projection of the geodesic). Finally
consider the conformal metrics

ĝ= e2φ g, ǧ= e−2φ g. (2.17)

and denote byds, dŝ= ef ds, anddš= e− f ds the elements of length ofγ with respect tog, ĝ andǧ
respectively.

In this setup we have the following characterisation:If Γ(τ) is a spacetime geodesic thenγ(ŝ)
is a geodesic of̂g and dτ = dš. Conversely ifγ(ŝ) is a geodesic of̂g then the curve

Γ(š) = (∫ š a

N(γ(š′))dš′,γ(š)) ⊂R×Σ =M (2.18)

6
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is a spacetime geodesic withg(Γ′,Γ′) = ε, hence withτ = š.
Two points are particularly important about this characterisation of spacetime geodesics, (i)

spacetime geodesics can be constructed out of the projectedcurves which in turn can be easily
found through length-minimisation, (ii) as the affine parameter of spacetime geodesics is the ˇg-arc
length of the projected curve, a way is opened to link spacetime geodesic completeness at infinity
to the metric completeness of ˇg=N2g. We will exploit these two observations during the proof of
Proposition 3.3. We will use only the characterisation of null geodesics, i.e.ε = 0, although other
types of geodesics can be useful in similar contexts.

3 The proofs

Every, smooth, connected, compact, boundaryless and orientable surfaceF embedded inR3

dividesR3 in two connected components. Below we will work with such surfacesF embed-
ded inR

3∖B3 and will denote byM(F) to the closure of the bounded connected component
of (R3∖B3) ∖F . Two facts are direct to check. First, for any disjointF1 and F2 such that
∂B3 ⊂M(Fi) for i = 1,2, then eitherF1 ⊂M○(F2) or F2 ⊂M○(F1), (here○ = Interior). Second,
if a set{Fi, i = 1, . . . ,n≥ 1} of such surfaces is such that∂R3 belongs to a bounded component of
Σ∖⋃i=n

i=1Fi then there is at least oneFi such that∂B3 ⊂M(Fi). We will use these facts in the proof
of the following proposition.

Proposition 3.1. Let (Σ;g,N) be a metrically complete vacuum static data set withΣ ≈ R3∖
B

3. Then, there is a set of (smooth, connected, compact, boundaryless and orientable) surfaces{Sj ; j = 0,1,2,3, . . .}, such that the following holds for every j,

1. Sj is embedded inA(21+2 j
,22+2 j),

2. ∂Σ ⊂M(Sj),
3. M(Sj) ⊂M(Sj+1),
The surfacesSi will be used only as references inside the manifoldΣ, their geometries play no

role. Observe thatΣ∖M(Sk) =⋃ j=∞
j=k M(Sj+1)∖M(Sj) with the union disjoint and thatSj+1∪Sj =

∂(M(Sj+1)∖M○(Sj)). This last observation will be used when we apply the maximumprinciple
to N onM(Sj+1)∖M○(Sj).
Proof. In the argument that follows we treatΣ andR3∖B3 indistinctly. The construction of the
surfacesSj , j = 0,1,2, . . . is as follows. Letf ∶ Σ→ [0,∞) be a (any) smooth function such that
f ≡ 1 on{p ∶ dist(p,∂Σ) ≤ 21+2 j} and f ≡ 0 on{p ∶ dist(p,∂Σ) ≥22+2 j}. Letx be any regular value
of f in (0,1). Then we can writef−1(x) = F1∪ . . .∪Fn where eachFi is a (connected, compact,
boundaryless and orientable) surface embedded inA(21+2 j

,22+2 j). Now, asΣ is the disjoint union
of the setsf−1((x,∞)), f−1(x) =⋃i=∞

i=1 Fi and f−1((−∞,x)), and as{p ∶ dist(p,∂Σ) ≥ 22+2 j} ⊂
f−1((−∞,x)) we conclude that∂Σ, which lies insidef−1((x,∞)), must belong to a bounded
component ofΣ∖⋃i=n

i=1Fi. Hence∂Σ ⊂M(Fi∗) for someFi∗, (see the beginning of this section).
We setSj = Fi∗.

We verify now that the surfacesSj satisfy the properties 1-3. By construction theSj ’s satisfy
already 1 and 2. Now, eitherM(Sj) ⊂M○(Sj+1) or M(Sj+1) ⊂M○(Sj). If M(Sj+1) ⊂M○(Sj)
thenSj+1 ⊂ {p ∶ dist(p,∂Σ) < 22+2 j} which is impossible becauseSj+1 ⊂A(23+2 j

,24+2 j). Thus,
M(Sj) ⊂M○(Sj+1), showing property 3. ∎

We claim that, for anyj ≥ 0, the surfacesSj+1 andSj lie in the same connected component
of the annuliA(21+2 j

,24+2 j). To see this, consider a rayγ(s), s≥ 0, starting at∂Σ at s= 0, (i.e.

7
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dist(γ(s),∂Σ) = s for all s≥ 0; s is arc-length). Letsj be the last time thatγ(s) ∈ Sj and letsj+1

be the first time thatγ(s) ∈ Sj+1. Then,sj ≥ 21+2 j becauseSj ⊂A(21+2 j
,22+2 j) andsj+1 ≤ 24+2 j

becauseSj+1⊂A(23+2 j
,24+2 j). Hence the arc{γ(s) ∶ s∈ [sj ,sj+1]}must lie insideA(21+2 j

,24+2 j)
because dist(γ(s),∂Σ) = s for all s. We conclude then thatSj and Sj+1 must lie in the same
connected component ofA(21+2 j

,24+2 j).
This claim and Proposition 3.1 will be used in the proof of thefollowing proposition.

Proposition 3.2. Let (Σ;g,N) be a metrically complete vacuum static data set withΣ ≈R3∖B3

and N> 0. Then, one of the following holds,

1. N converges uniformly to zero over the end ofΣ,

2. N converges uniformly to infinity over the end ofΣ,

3. C1 <N <C2 for constants0<C1 <C2 <∞.

Proof. To shorten notation we will write max{N;Ω} ∶=max{N(p) ∶ p ∈Ω} whereΩ are compact
sets (same notation for min{N;Ω}).

Suppose that there is a divergent sequencepi for which N(pi)→ 0 asi →∞. We claim that,
in this case,N tends uniformly to zero over the end.

For everyi let j i be such thatpi ∈M(Sj i)∖M○(Sj i−1). Suppose first that

max{N;Sj i}→ 0 (3.1)

Then, for anyi′ > i the maximum principle gives

max{N;M(Sj i′ )∖M○(Sj i)} ≤max{max{N;Sj i′},max{N;Sj i}} (3.2)

Letting i′ →∞ and using (3.1) we obtain

sup{N(p) ∶ p ∈ Σ∖M○(Sj i)} ≤max{N;Sj i} (3.3)

where the r.h.s tends to zero asi tends to infinity. This proves thatN tends uniformly to zero as
claimed.

To prove (3.1) we recall first thatSj i and Sj i−1 lie in the same connected component of
A(22 j−1

,22 j+2). Therefore, as commented in Section 2.2, we have

max{N;Sj i} ≤ cmin{N;Sj i ∪Sj i−1} (3.4)

where the constantc is independent ofi. On the other hand, by the maximum principle we have

min{N;Sj i ∪Sj i−1} ≤min{N;M(Sj i )∖M○(Sj i−1)} ≤N(pi) (3.5)

Combining (3.4) and (3.5) we obtain

max{N;Sj i} ≤N(pi) (3.6)

where the r.h.s tends to zero. This implies (3.1) as desired.
In the same manner one proves that if there is a divergent sequencepi such thatN(pi)→∞

asi→∞ thenN tends uniformly to infinity over the end.
If none of the situations considered above occurs then 0<C1 <N <C2 for constantsC1,C2. ∎
To show asymptotic flatness for isolated systems using [8], [9], we need only to prove the

completeness ofN2g using that the static spacetime is geodesically complete atinfinity. This is
done in the next proposition.
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3 THE PROOFS

Proposition 3.3. Let (Σ;g,N) be a static vacuum data set, withΣ ≈ R3∖B3 and N> 0 on Σ.
Assume that the associated spacetime

M =R×Σ, g = −N2dt2+g (3.7)

is geodesically complete at infinity. Then the space(Σ;N2g) is metrically complete.

Proof. The proof is by contradiction. So let us assume that(Σ;N2g) is not metrically complete.
We will explain later how this contradicts thegeodesic completeness at infinity. During the proof
we use the same notation as in Proposition 3.2. We will also use, as was explained in Section 2,
that under the hypothesis of the proposition, the space(Σ;g) is metrically complete.

We begin by proving that
j=∞

∑
j=1

max{N;Sj}22 j <∞ (3.8)

Let β ∶ [sj ,sj+1]→M(Sj+1)∖M○(Sj) be any curve withβ(sj) ∈Sj andβ(sj+1) ∈Sj+1. We claim
that then

∫
sj+1

sj

N(β(s))ds≥ c1max{N;Sj}22 j (3.9)

where the constantc1 is independent ofj. To see this write

∫
sj+1

sj

N(β(s))ds≥min{N;M(Sj+1)∖M○(Sj)}length(β) (3.10)

and note that,

1. length(β)≥ (23+2 j−21+2 j)=622 j , becauseSj ⊂A(21+2 j
,22+2 j) andSj+1⊂A(23+2 j

,24+2 j),
and,

2. min{N;M(Sj+1)∖M○(Sj)} ≥max{N;Sj}, because

min{N;M(Sj+1)∖M○(Sj)} ≥min{N;Sj+1∪Sj} (3.11)

by the maximum principle, and because

min{N;Sj+1∪Sj} ≥ c2max{N;Sj}, (3.12)

wherec2 is independent ofj, by what was explained in Section 2.2, (see also the remark
after the proof of Prop. 3.1).

The formula (3.9) is then obtained makingc1 = 6c2.
Now, if (Σ;N2g) is not metrically complete, then one can find a sequence of points pi , with

distg(pi,∂Σ)→∞ but with distN2g(pi ,∂Σ) uniformly bounded. From the definition of dist, this
implies that there is a sequence of curvesαi(s); s ∈ [0,si] starting at∂Σ and ending atpi , for
which

∫
s=si

s=0
N(α(s))ds≤K <∞ (3.13)

whereK is independent ofj. For everyi let j i be the greatestj such thatpi ∉M(Sj). Then, for
every j ≤ j i −1 one can find an interval[sj ,i ,sj+1,i] such that the curveβ j defined byβ j(s) =αi(s),
s∈ [sj ,i ,sj+1,i], has range inM(Sj+1)∖M○(Sj) and moreover withβ j(sj ,i) ∈ Sj andβ j(sj+1,i) ∈
Sj+1. Using (3.9) we write

K ≥ ∫ s=si

s=0
N(α)ds≥ j= j i−1

∑
j=1
∫

sj+1,i

sj,i

N(β j)ds≥ j= j i−1

∑
j=1

c1max{N;Sj}22 j (3.14)
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Taking the limiti→∞ gives (3.8) as wished.
We proceed now with the proof. By Proposition 3.2 we know thatN must go uniformly to zero

at infinity otherwiseN would be bounded from below away from zero and the metricN2g would
be automatically complete. IfN→ 0 uniformly at infinity, then(Σ;N−2g) is metrically complete.

As was explained in Section 2.3, null-spacetime geodesics project into(N−2g)-geodesics and
the affine parameter is the(N2g)-arc length. We will see below that if(Σ;N2g) is not metrically
complete then there is an infinite(N−2g)-geodesic whose(N2g)-length is finite. This would be
against the hypothesis that the spacetime is geodesically complete at infinity and the proof will be
finished.

Let Γ(s), s≥ 0 be a ray for the metric toN−2g and starting at∂Σ. For eachj ≥ 1 let sj be the
last time thatΓ(s) ∈Sj . Let Γ j be the restriction ofΓ to [sj ,sj+1]. ThenΓ j ⊂ (Σ∖M○(Sj)) andΓ
is the concatenation of the curvesΓ j , j ≥ 1. Now,

∫
s=∞

s=s1

N(Γ(s))ds= j=∞

∑
j=1
∫

sj+1

sj

N(Γ j(s))ds≤ j=∞

∑
j=1

max{N;Sj}length(Γ j) (3.15)

where to obtain the inequality we use that,

sup{N(Γ j(s)) ∶ s∈ [sj ,sj+1]} ≤ sup{N(p) ∶ p ∈ Σ∖M○(Sj)} ≤max{N;Sj}. (3.16)

which is obtained from the inclusionΓ j ⊂ (Σ∖M○(Sj)) (for the first inequality), and from the
maximum principle (for the second). Thus, if we prove that for a constantc3 independent ofj we
have

length(Γ j) ≤ c322 j (3.17)

then we can use (3.8) in conjunction to (3.15) to conclude that

∫ N(Γ(s))ds<∞ (3.18)

which would imply that there is an incomplete null geodesic in the spacetime.
Let us prove then the inequality (3.17). We will play with thefact thatΓ is a ray forN−2g.
First note

∫
sj+1

sj

1
N(Γ j(s))ds≥ length(Γ j)

max{N;Γ j} ≥
length(Γ j)
max{N;Sj} (3.19)

where the second inequality is obtained from the inclusionΓ j ⊂Σ∖M○(Sj) and because max{N;Σ∖
M(Sj)} ≤max{N;Sj} by the maximum principle.

Then recall from the discussion after Proposition 3.1, thatSj andSj+1 lie in the same con-
nected componentAc(21+2 j

,24+2 j) of A(21+2 j
,24+2 j). Hence,Γ(sj)(∈ Sj) andΓ(sj+1)(∈ Sj+1)

lie also inAc(21+2 j
,24+2 j). Then, as in Section 2.2, we can jointΓ(sj) to Γ(sj+1) through a

curveΓ′j of length less or equal thanc22 j , (c is a constant independent ofj), entirely contained

in a connected componentAc(21+2 j/3,324+2 j) of A(21+2 j/3,324+2 j). This curveΓ′j must have

(N−2g)-length greater or equal than the(N−2g)-length ofΓ j becauseΓ j , (being a ray), minimises
the(N−2g)-length between any two of its points. Thus we can the write

∫
sj+1

sj

1
N(Γ(s))ds≤ ∫ s′j+1

s′j

1
N(Γ′j(s′))ds′ ≤ c22 j

min{N;Ac(21+2 j/3,324+2 j)} (3.20)

10



3 THE PROOFS

Together with (3.19) we obtain

length(Γ j) ≤ c[ max{N;Γ j}
min{N;Ac(21+2 j/3,324+2 j)}] 22 j (3.21)

But from (2.13) we have

max{N;Γ j}
min{N;Ac(21+2 j/3,324+2 j)} ≤

max{N;Ac(21+2 j/3,324+2 j)}
min{N;Ac(21+2 j/3,324+2 j)} ≤ c′ (3.22)

wherec′ is independent ofj. Thus, (3.17) follows. ∎
Proof of Theorem 1.1. From the same definition of static isolated system, we know that the
spacetime outside a set (invariant under the Killing field) is

M =R×(R3∖B3), g = −N2dt2+g (3.23)

which is described by the data(R3∖B3;g,N). As the spacetime is geodesically complete at
infinity we can use Proposition 3.3 to deduce that the metricN2g is complete onR3∖B3. Theorem
1.3 in [8] then apples and asymptotic flatness follows.

(Remark: The notion of Isolated System used in [8] is the sameas in this paper but with
the extra assumption thatN is bounded from below away from zero outside a compact set. As
commented in [8], Theorem 1.3 still holds if this hypothesisonN is replaced by the metric com-
pleteness ofN2g.) ∎
Remark 3.4. If the matter model, (which is always assumed compactly supported), satisfies the
weak energy condition then the conclusions of Theorem 1.1 can be seen to follow only from the
metric completeness of the static data. The geodesic completeness at infinity is unnecessary.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. Suppose that a connected component of the complement of a compact
set inΣ is diffeomorphic toR3 minus a closed ball. Then, as in the proof of Theorem 1.1, this
component has to be an AF end ofΣ. If we prove thatΣ has only one end, then the Main Theorem
in [5] shows thatΣ is diffeomoprhic toR3 minus a finite set of open balls. The Israel - Robinson -
Bunting - Masood-ul-Alam uniqueness Theorem then applies and the solution is Schwarzschild.
Let us prove then thatΣ must have only one end.

We will proceed by contradiction. Assume then thatΣ has more than one end. From now on
we work in a space(Σδ ,N

−2ε g) as in Proposition 2.1 but withε <√2−1.
The end that was AF (and had Schwarzschildian fall off) forg is also AF forN−2εg. On

this end consider large (“almost round”) embedded spheresS. On them we have∣∇N∣N2−ε g ≲
1/area(S) while for the mean curvatureθS, (with respect to the outward unit normaln), we have
θS≈ 2

√
4π/area(S). Hence one can clearly take an embedded sphereSsufficiently far away that

θS−(1+ε)n(N)
N
> 0 (3.24)

at every point ofS. We work with suchS below. The particular combination (3.24) will be
relevant. The sphereS dividesΣδ in two connected components. Denote byΣ′δ the closure of
the connected component ofΣδ ∖Scontaining∂Σ. We have∂Σ′δ = ∂Σ∪Sand, more importantly,
Σ′δ contains at least one more end. Since∂Σδ is strictly convex, we can construct a geodesic ray
γ(s), s≥ 0, in Σ′δ ∖∂Σ and with the following properties,

11
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1. γ(s) starts atSand perpendicularly to it,

2. γ(s) diverges through and end inΣ′δ ass→∞,

3. distN−2ε g(γ(s),S) = s for all s≥ 0.

These properties imply that the expansionθ(s), along the geodesicγ(s), of the congruence of
geodesics emanating perpendicularly toS, must remain finite for alls (i.e. θ(s) > −∞ for all
s≥ 0). If not then there is a focal point onγ after which property 3 fails. We will prove now that
indeedθ(s) = −∞ for somes> 0, thus reaching a contradiction.

Let

m(s) = θ(s)+(1+ε)N′(s)
N(s) (3.25)

whereN(s) =N(γ(s)) andN′(s) = dN(γ(s))/ds. At s= 0, m is equal to minus the left hand side
of (3.24), therefore negative (note thatγ ′(0) = −n). On the other hand, as we explained in Section
2.1, if ε <√2−1 then the Bakry-Emery Ricci tensor

Ricc
f =Ric+∇∇ f − 1

c
∇ f∇ f (3.26)

is zero, wheref = (1+ε) lnN and 1/c= (1−2ε−ε2)/(1+ε)2. Now, it is shown in [11] (Appendix
A) thatm(s) satisfies the differential inequality

m′ ≤ − m2

2+c
(3.27)

Thus, if m(0) < 0 then there iss′ > 0 such thatm(s′) = −∞. But asN′(s)/N(s) is finite for all s
then we must haveθ(s′) = −∞. ∎
Remark 3.5. If the complement of a compact set inΣ is diffeomorphic toR3∖B3 and(Σ;g) is
metrically complete, then the solution is Schwarzschild too, (i.e. the geodesic completeness of the
spacetime at infinity is unnecessary). To see this observe first that N cannot go uniformly to zero
on the end ofΣ because this would violate the maximum principle (N is harmonic and is zero only
on∂Σ). By Proposition 3.3 N is then bounded away from zero on the end and asymptotic flatness
follows.

Remark 3.6. It is easy to show that Propositions 3.1, 3.2 and 3.3 hold truewhenΣ ≈S ×R+ with
S a compact two-surface of arbitrary genus, (Proposition 3.1corresponds toS = S2). This could
be of interest in further studies.

References

[1] Michael T. Anderson. On stationary vacuum solutions to the Einstein equations.Ann. Henri
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