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Itis proved that any static system that is spacetime-gécalgscomplete at infinity, and
whose spacelike-topology outside a compact set is th&tahinus a ball, isasymp-
totically flat The matter is assumed compactly supported and no energlticonis
required. A similar (though stronger) result applies tacklholes too. This allows us
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1 Introduction

Asymptotic flatness is the basic notion used in General R#la(GR) to model systems that can
be thought as “isolated” from the rest of the universe. It wasd by Einstein himself at least
in heuristic form and is now a standard piece of differergiedmetry and of gravitational and
theoretical physics.

The notion of asymptotic flatness is also epistemologidaiked to the Newtonian theory
of gravitation. [@n the 1916 manuscripthe Foundation of the Generalised Theory of Rela-
tivity, Einstein addressed what he calku epistemological defe¢but not mistake) of classical
mechanics, whose origin he linked to E. Mach. He imaginedhadies, A and B, made of the
same fluid material and sufficiently separated from eachraktiz none of the properties of one
could be attributed to the existence of the other. Obsertaisst in one body see the other body
rotating at a constant angular velocity, yet these sameredssemeasure a perfect round surface
in one case and an ellipsoid of rotation in the other case hele asked: “Why is this difference
between the two bodies?”. Necessarily, he continues, the@mncannot be found inside the sys-
tem A+B only; It must lie in its exterior: the outer empty spacinstein found that the source
of the peculiar disparity was omitting that the empty spditd also obey physical laws. These
laws, which treat the parts A and B of the system A + BXTERIOR EMPTY SPACE on an equal
footing, are the Einstein equations of GR. There is one paifdinstein’s elegant conclusions
that is left slightly inconclusive. It can be argued on thedaf GR, that the absolute space of
the 18th and 19th centuries was an inevitable concept, asgtmns” to the Newtonian gravity
are simply too small. Though this is unquestionable, it dan be demanded to GR to explain
too, why this “background solution”, representing theTERIOR EMPTY SPACE of the system
described earlier, is so distinguished in a theory thatdrdee geometry and the asymptotic of
space, essentially as a variable.

We find then that a problem of some theoretical importance antlyse asymptotically flat
(AF) solutions within the set of solutions of General Reféyiand to find contexts in which they
are indeed inevitable. Regardless of the “aesthetic” ratiin just described, the study of the

{1} The following passage is made upon a text prepared by me wghtidtit in CQG+.
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asymptotic of spacetimes is of course interesting in itsetf can provide relevant information on
structure of solutions to the Einstein equations.

To give our result a framework, we redefine hstatic isolated systemis the simplest pos-
sible way without assuming asymptotic flatness at infinitg prove then that these systems are
necessarily AF. The definition static isolated systeis as follows. The region of the spacetime
outside some set containing the sources should of the form

M=Rx(R3\B®, g=-N2dt?+g (1.1)

where herd? is the unit open ball ilR®, N > 0 is the lapse function (the norm of the static Killing
field), andg is a three-metric ifR® \ B2. Moreover this spacetime region shoulddendesically
complete until its boundaryamely, spacetime geodesics (of any spacetime charadtez) end
at its boundary or are defined for infinite parametric time.

Admittedly, the topological condition, (which as we will below is fundamental), is moti-
vated mostly by historical considerations, although ofrseuto model a system like a neutron
star, it is meaningless to make any other choice. On the diiied the geodesic completeness
until the boundary of[{I]1) is the most basic condition tha¢ @an impose to ensure that the
spacetime is, roughly speaking, “endless”. From now on wkoall it geodesic completeness
at infinity; This terminology is justified by the following fact: geodesompleteness until the
boundary holds iff every spacetime geodesic, whose piojeatto R® « B® leaves any compact
set, is complete.

In this setup we prove,

Theorem 1.1. Static isolated systems are asymptotically flat with Schaschildian fall off.

This theorem is an expression of the remarkable consistfi@eneral Relativity as a physi-
cal theory and shows the inevitability of asymptotic flagescertain contexts.

Figure 1: Representation of an AF end and a non-AF end.

To understand the importance and scope of the conditionsinigftatic isolated systems, let
us bring two purely relativistic examples into considerati The first is the Schwarzschild black
hole. Itis a static vacuum solution with a topological-sted hole, its curvature decays to zero
at infinity, and the spacetime is geodesically completefatity. Yet, (though not always properly
emphasised), Schwarzschild it is not the only static vachlack hole solution in 3+1 dimensions
enjoying these attributes. The other solution we are rgfgro is the Korotkin-Nicolai static
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black hole[[7]. It represents a topologically-sphericdehaot inside an open (infinite) three-ball
B2 as in Schwarzschild, but inside an open (infinite) solidisd? x S*. It is axially symmetric
and has the asymptotic of a static Kashér [7] spacetimepéisesis not simply connected; For this
reason the horizon is prolate, as it feels the influence elfitsdong an axis of symmetry of finite
length. The particular Kasner asymptotic is the simultaisgesult of the presence of the hole on
one side and of the non-trivial global topology on the othHenite covers of the solution yield
static spacetimes with a finite number of black holes in égpilm. From the point of view of the
General theory of Relativity, the Korotkin-Nicolai and tBehwarzschild solution are perfectly
acceptable, still one is AF and the other is not. This showas th Theorenh 111, the topological
assumption required for isolated systems cannot be removed

The proof of Theoreri 111 is based on the reslits [&], [9] whigFfewas proved under the
extra hypothesis that (outside a compact beit3 bounded from below away from 288, This
hypothesis was used only to guarantee that the conformalamétg is metrically complete,
property that was used fundamentally. In a sense, all thadaie this article is to remove this
undesired hypothesis dw but for static solutions. We show that the completenesé’gfholds
always in static isolated systems, as we defined them edrhertechniques of this article do not
apply directly to strictly stationary solutions (cf. Rerk&.2). The question of whether strictly
stationary isolated systems are always AF is still opernygho(as shown i [8][]9]), they are AF
when the norm of the Killing field is bounded from below awagrfr zero at infinity.

Along the same lines as in Theor€ml1.1, we can generalisesthbrated uniqueness of the
Schwarzschild solution (Israﬂl, Robinson([10], Bunting-Masood Um Alaml[3]) to a unique-
ness statement among an (a priori) much larger class o€ saititions than those AF. Accord-
ingly, we consider static solutions given by a vacuum sai@a(;g,N), i.e. with

NRic=VVN,  AN=0, (1.2)

and with compact but not necessarily connected horZoa{N = 0} # @. As earlier, the solutions
are said to bgeodesically compete at infinifyspacetime geodesics, of any spacetime character,
either end at the horizon (i.e. the boundary) or are definethfimite parametric time.

The theorem is the following.

Theorem 1.2. Let(Z;g,N) be the data set of a static vacuum spacetime with compaadmand
geodesically complete at infinity. Then, the spacetimefis/@zschild iff a connected component
of the complement of a compact sekiis diffeomorphic taR>\ B3.

Observe that in this statement nothing is said about thayif ather connected components of
the complement of the compact set. In principle there coalthbny other unbounded connected
components. That this cannot happen must be discernedsaftee analysis. This is in spirit
similar to “topological censorship” - type of theorems afdij although our technique is different
as we cannot rely on any given structure at infinity.

In parallel to the discussion given at the beginning of thetuction, it is worth noting that
Theoreni Il can be interpreted as a result on “asymptotipieniess”, (here asymptotic flatness),
and that, in this sense, it is a close relative of the unigseié the flat Minkowski spacetime
among complete (simply connected) vacuum static spacetmmaved by M. T. Anderson in[1].
Anderson’s result is a direct consequence of a curvaturaydénat we will explain in Section

{2} The definition of static isolated system iifl [8] is the saméhasohe here, except that it includes the hypothesishhat
is bounded from below away from zero, see the remark insiel@tbof of Theoreri 1]1.

{3} Israel breakthough in 1967, was the first uniqueness thetwe®chwarschild and required thistcould be chosen
as a global radial coordinate.
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[Z.1. We stress however that such decay is not nearly suffitieleduce asymptotic flatness. The
Korotkin-Nicolai solution satisfies this curvature decaylas not AF.

The rest of the article is roughly organised as follows. ®es{2.1[2.2 anf 213 deal with
some important facts about the global structure of the viacstatic solutions. Sectidd 3 contains
the proofs of Theorenis1.1 ahd1.2. Proposifioh 3.1 showsxistence of a natural partition of
static ends of the forri®® « B. Propositiof 3.2 then proves that the lapsean have only three
types of behaviours at infinity and Propositfon]3.3 provesdbmpleteness df%g on the end.
The proof of Theoren{s.1 ahd 1.2 are given afterwards.

Acknowledgments. | am grateful to Marc Mars for interesting discussions oated topics.

2 Background material.

A smooth Riemannian metrig on a smooth connected manifafd(with or without boundary,
compact or not) induces the metric

dist(p,q) = inf{length(ypq) : ypq SMoOth curve joining to q}. (2.2)

The spacdZ;g) is saidmetrically completéf (Z;dist) is complete. IfZ has compact boundary
then metric completeness is equivalent togeedesic completeness until the boundzfrgz; g),
(by Hopf-Rinow). On the other hand, geodesicg{Hg) lift to geodesics perpendicular to the
static Killing field in the associated spacetime. i.e. in

M=RxS,  g=-N2dt?+g (2.2)

Hence, ifd% is compact, geodesic completeness until the boundaiiMafy) implies metric
completeness dfZ;g). This is used in Propositidn 3.3.

Geodesic completeness until the boundaryMf,g) is a basic assumption in the two main
theorems in this article. However, regarding possible eratitical applications, it is important
when possible to assume only the metric completeness ofdatae t/e will make some remarks
in this respect.

If 0% + @, we define thenetric annulus4(a,b) of radii 0<a<b by
A(a,b) ={peZ:a<dist(p,dz) < b} (2.3)

where disfp,dZ) =inf{dist(p,q) : qe dZ}.

2.1 Anderson’s curvature decay.

Anderson’s curvature decd¥] is an important property of static solutions. It saystttieere is a
universal constan > 0 such that for any static dat@;g,N) we have

2
n
(p) < dis€(p.d5) (2.4)

The optimal constany can be seen to be greater or equal than one, but it is not kribig ibne.
Upper bounds can be given but far from one.

As an application of the curvature decay let us prove her@pgsition that will be used in
the proof of Theoreri 112 to rule multiple ends when it is knaivat there is one that is AF.
In the statement we uses to denote the manifold resulting from removing fr@rthe tubular

|Rid(p) < and ‘VWN

n
dis§(p,0%)’
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neighbourhood 0% and radiusd, i.e. 5 =X\ {p:disty(p,0%) < 8}. We assume thal < &
with & small enough thadZ 5 is always smooth.

Proposition 2.1. Let(Z;g,N) be a static vacuum initial data set with compact horizéh € {N =
0} + @) and (Z;g) metrically compete. Then there(sx & < 1 such that for everg < & there is

3 < & such that(5;N~%¢q) is metrically complete andZ s is strictly convex (with respect to the
inward normal).

Proof. Given O< € < 1, the convexity oDZs for & < & small enough is direct (and we leave it to
the reader) as the factdt~%¢ “blows up” the boundarg> uniformly, (observe however that, as
£<1,0% “remains” at a finite distance from the bulk Bf.

So let us prove that, if we chosesmall enough, the spa¢&;s, N~%¢g) is metrically complete.
As we are assuming < &, it is enough to prove that, i§ is small enough(zao,N‘zgg) is
metrically complete. We will do that below, the argumentiss independent aJ.

Itis enough to prove that, (& small enough), the following holds: for any sequence of {sin
pi whoseg-distance tadz 5 diverges, theg N~%¢g)-distance twZ s, also diverges. Equivalently,
itis enough to prove that for any sequence of cunyesarting aid> 5, and ending ap; we have

fs 1 4w (2.5)
o N&(y(s))

wheresis theg-arc length ofy starting fromdZ s . The curvature deca/ (2.4) implies right away
the estimate,
N(p) <c(1+disty(p,0%s))" (2.6)

foranype > and where) > 0 is universal bu¢ depends oiZ,g) anddp. As disg(y(s),0Z5) <S,
then we have
N(y(s)) <c(1+s)" 2.7)

Thus, ife <1/n then,

S 1 S 1 ) 1 .

b W@ gt wa ey (9D 2.8)
2c‘f(liisn)((“0“5’9(piaazao))l_m—1)—><><> (2.9)

as wished. .

The importance of Propositidn 2.1 roots in that the Riccivature of the metrig= N~%g
has the expressi

Ri=-§1+ 2015 (2.10)
wheref andc depend org and are given by
~ 1 (1-2¢-¢?)
f——(1+8)|nN, and E—W (211)

In particular, if 0< £ < /2—-1 thenc > 0. This means that-Bakry-Emery Ricci tensolRNici given
by

s~ C

ic; = "ic+%%f—%%f%f, (2.12)

{4}Use for this that ifg= €#%g then Ric = Ric— (VV@ - VoV ) - (Ap+|V¢?)g and thatViVj = ViVj — (V| Vig+
Vivio- (VKVk@)gi)).
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is zero. We will use this fundamentally later.

2.2 TheBall Covering Property.

As observed in]2], Liu'dball covering propertyholds for (metrically complete) static solutions
(Z;g) with compact boundary. Namely, for anyx@ < b there isrg andng such that for any >rg
there is a set of ball§B(pj,ar/2), pi € A(ar,br),i=1,....,n, <ng}, coveringA(ar,br). Here and
below A is the closure ofA.

As a direct corollary we have that, for any@< b andr > rg, as in the ball covering property,
any two points in the same connected componem (@, br) can be joined by a curve of length
less or equal thampar entirely contained ind(ar/3,3br).

Let Ac(ar,br) be a connected componentdfar, br). By the curvature deca/ (2.4) we have
|[VN/N| <3n/ar all over.Ac(ar/3,3br). Integrating this inequality along curves as in the presiou
paragraph we obtain

max{N(p) : pe Ac(ar,br)} )
min{N(p): pe Ac(ar,br)} ~

This is a type of Harnack inequality fof and is fundamental.

C(a,b) (2.13)

Remark 2.2. It is not known at the moment if a similar ball covering protyenolds for strictly
stationary solutions. This is a main obstacle to extend Téved.1 to stationary isolated systems.

2.3 Spacetime geodesics in static spacetimes.

Let (Z;9,N) be a static vacuum data and (4 ,g) be its associated spacetime. We recall here a
useful way to describe spacetime geodeEics) in terms of certain metrics conformal ¢oin .
This goes back at least to the work of H. Weyl][12] from 1917.

Lety=1(I") be the projection of into Z. Then it is direct to see thatsatisfies the equation

VN
Vy’y/:azm (214)
wherey’ = dy/dt and where is the constaré=g(I'’, & ). Moreover we have
2
5 a
V| :£+m (2.15)

where the norm on the |.h.s is with respecgtand wheres = -1,0,1 according to the character
type of the geodesic.
Then define®? by

9= (e+—) (2.16)

wherever the right hand side is positive (this includes ttggegtion of the geodesic). Finally
consider the conformal metrics
g=¢%g, §-e%qg. (2.17)

and denote bgs dé=efds andd$=e fdsthe elements of length gfwith respect tay,§ andg’
respectively.

In this setup we have the following characterisatiliri:( 7) is a spacetime geodesic thg(f)
is a geodesic of and dr = dS. Conversely if/($) is a geodesic of then the curve

. § a y
r(s):([ de,y(s))cszzm (2.18)
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is a spacetime geodesic wiglil'’,I"") = &, hence withr = §.

Two points are particularly important about this charéastgion of spacetime geodesics, (i)
spacetime geodesics can be constructed out of the projeatees which in turn can be easily
found through length-minimisation, (ii) as the affine paeden of spacetime geodesics is thart
length of the projected curve, a way is opened to link spameteodesic completeness at infinity
to the metric completeness @f N?g. We will exploit these two observations during the proof of
Propositio 3.8. We will use only the characterisation df gaodesics, i.ec = 0, although other
types of geodesics can be useful in similar contexts.

3 Theproofs

Every, smooth, connected, compact, boundaryless andtabiensurfacee embedded inR3
dividesR® in two connected components. Below we will work with suchfacesF embed-
ded inR3\ B3 and will denote byM(F) to the closure of the bounded connected component
of (R®\B3)\F. Two facts are direct to check. First, for any disjoRt and F» such that
0B c M(F) for i = 1,2, then eithefF; c M°(F,) or F, c M°(Fy), (here® = Interior). Second,

if aset{F,i=1,...,n>1} of such surfaces is such thaiR® belongs to a bounded component of
PIN U}jl:l then there is at least offe such tha®B® c M(F). We will use these facts in the proof
of the following proposition.

Proposition 3.1. Let (2;g,N) be a metrically complete vacuum static data set itk R3 \
BS3. Then, there is a set of (smooth, connected, compact, boyleda and orientable) surfaces
{Sj;1=0,1,2,3,...}, such that the following holds for every j,

1. § is embedded ipA (2121 22+21),
2. 95 c M(S;),
3' M(SJ) c M(SJ+1)|

The surface§ will be used only as references inside the manifltheir geometries play no
role. Observe tha&f \M(&) = U}zl‘f M(Sj.+1) N M(S)) with the union disjoint and thegj,1US; =
O(M(Sj+1) \M°(Sj)). This last observation will be used when we apply the maxirpumnciple
toN onM(Sj;1) \M°(§j).

Proof. In the argument that follows we treatandR® « B® indistinctly. The construction of the
surfacesS;, j=0,1,2,... is as follows. Letf : Z - [0,00) be a (any) smooth function such that
f =1 on{p:dist(p,d%) <21*2} andf =0 on{p: dist(p,d%) > 222/}, Letx be any regular value
of f in (0,1). Then we can writéf ~*(x) = Fyu...UF, where eaclF; is a (connected, compact,
boundaryless and orientable) surface embeddgd 121, 22721, Now, asS is the disjoint union
of the setsf ~1((x,00)), f~1(x) = Uz F and f1((~c0,x)), and as{p: dist(p,d=) > 222/} c
f~1((~c0,x)) we conclude thad=, which lies insidef ~1((x, o)), must belong to a bounded
component ok \ U%ZEH- HencedZ c M(F.,.) for someF;., (see the beginning of this section).
We setS; = Fi..

We verify now that the surfaces satisfy the properties 1-3. By construction $iés satisfy
already 1 and 2. Now, eith@V(S;) c M°(Sj;1) or M(Sj+1) c M°(S;). If M(Sj;1) c M°(S))
thenSj,1 c {p: dist(p,d%) < 222} which is impossible becausg,; c A(232,242)). Thus,
M(S;j) c M°(Sj+1), showing property 3. |

We claim that, for anyj > 0, the surface§;.1 andS; lie in the same connected component
of the annuliA(21+2) 2421, To see this, consider a rays), s> 0, starting avX ats=0, (i.e.
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dist(y(s),0%) = sfor all s> 0; sis arc-length). Les; be the last time thag(s) € Sj and letsj.,
be the first time thay(s) € Sj,1. Then,s; > 21*2) becausesj c A(21+21,22+2) ands;,; < 2++2]
becaus&;,1 c A(232) 24+21) Hence the ar€y(s) : se [sj,Sj+1]} must lie insided(21+21 24+21)
because digy(s),0%) = s for all s. We conclude then th&; and Sj,1 must lie in the same
connected component gf(21+2) 24+21),

This claim and Propositidn 3.1 will be used in the proof of fibllowing proposition.

Proposition 3.2. Let(3;g,N) be a metrically complete vacuum static data set \EithR® \ B3
and N> 0. Then, one of the following holds,

1. N converges uniformly to zero over the end of
2. N converges uniformly to infinity over the endof
3. C <N <Gy forconstant < Cy; <Cp < o0.

Proof. To shorten notation we will write mgk; Q} := max{N(p) : pe Q} whereQ are compact
sets (same notation for miN; Q}).

Suppose that there is a divergent sequgmnder which N(p;) — 0 asi — co. We claim that,
in this caseN tends uniformly to zero over the end.

For everyi let j; be such thap; e M(S;j;) \ M°(Sj,_1). Suppose first that

max{N;S;; } - 0 (3.1)
Then, for anyi’ > i the maximum principle gives
max{N;M(S;, ) \M°(S;)} < max{ max{N;S;, },max{N;S; } } (3.2)
Lettingi’ — oo and using[(3]1) we obtain
sup{N(p): pe Z\M°(S;j)} <max{N;S; } (3.3)

where the r.h.s tends to zeroia®nds to infinity. This proves that tends uniformly to zero as
claimed.

To prove [(3.1) we recall first tha$; and S;;_; lie in the same connected component of
A(22171,221+2) Therefore, as commented in Section 2.2, we have

max{N;S;; } <cmin{N;S; uS;_1} (3.4)
where the constamtis independent of. On the other hand, by the maximum principle we have
min{N;S;; uSj,_1} <MIN{N;M(S;;) \M°(Sj_1)} <N(pi) (3.5)
Combining [3.:#) and(3]5) we obtain
max{N;S; } <N(pi) (3.6)

where the r.h.s tends to zero. This implies}3.1) as desired.

In the same manner one proves that if there is a divergenesegp; such thaiN(p;) - oo
asi — oo thenN tends uniformly to infinity over the end.

If none of the situations considered above occurs theG{x N <C, for constant£;,C,. =

To show asymptotic flatness for isolated systems usihg [@3],Wye need only to prove the
completeness dfl°g using that the static spacetime is geodesically compleisiaity. This is
done in the next proposition.
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Proposition 3.3. Let (Z;g,N) be a static vacuum data set, with~ R3~ B3 and N> 0 on X.
Assume that the associated spacetime

M=RxS,  g=-N2dt?+g (3.7)

is geodesically complete at infinity. Then the spéG;N?g) is metrically complete.

Proof. The proof is by contradiction. So let us assume #aiN?g) is not metrically complete.
We will explain later how this contradicts tlygodesic completeness at infiniBuring the proof
we use the same notation as in Proposifioh 3.2. We will alsg aswas explained in Sectigh 2,
that under the hypothesis of the proposition, the sgaceg) is metrically complete.
We begin by proving that

j=o0 )

S max{N;Sj}2?! < oo (3.8)

j=1
LetB:[sj,Sj+1] =~ M(Sj+1) N M°(Sj) be any curve wittB(sj) € S; andf(Sj+1) € Sj+1. We claim
that then s

/ " N(B(s))ds> c;max{N; S } 2% (3.9)
Si

where the constamy is independent of. To see this write
Sj+
f "IN(B(9))ds> min{N;M(S51) ~ M°(S;) }length(B) (3.10)
Sj

and note that,

1. length(B) > (2321 -21+21) =622, becaus®; c A(2'+21 22+21) andS; 1 c A(23+2) 24+2)),
and,

2. min{N;M(Sj+1) \M°(S;)} > max{N;S;}, because
min{N;M(Sj+1) \M°(S;)} >min{N;S;,1US;} (3.11)
by the maximum principle, and because
min{N;Sj,1USj} > comax{N;S;}, (3.12)

wherec; is independent of, by what was explained in Sectibn P.2, (see also the remark
after the proof of Prog._311).

The formula[(3:D) is then obtained makiog= 6¢,.

Now, if (Z;N2g) is not metrically complete, then one can find a sequence oitppi, with
disy(pi,dZ) — oo but with disfz4(pi,dZ) uniformly bounded. From the definition of dist, this
implies that there is a sequence of curegés); se[0,5] starting atdZ and ending ap;, for
which

fsjm(a(s))dsgmoo (3.13)

whereK is independent of. For everyi let j; be the greatest such thatp; ¢ M(Sj). Then, for
everyj < ji—1one can find an intervgs; ;,sj, 1 ] such that the curvg; defined byg;(s) = ai(s),
se [sj,Sj+1i], has range iM(Sj,1) \ M°(S;) and moreover wittBj(s;;) € S; and Bj(Sj+1,) €
Sj+1. Using [3.9) we write

i=ji-1 i=ji-1

S=§ Sj+1,i . 92
Kz[SFO N(a)ds> 1:21 fs,. N(Bj)ds> 2 cimax{N;S;}2 (3.14)
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Taking the limiti — oo gives [3.8) as wished.

We proceed now with the proof. By Proposit[on]3.2 we know thatust go uniformly to zero
at infinity otherwiseN would be bounded from below away from zero and the métfig would
be automatically complete. N — 0 uniformly at infinity, then(>; N~2g) is metrically complete.

As was explained in Sectidn 2.3, null-spacetime geodesajegt into(N~2g)-geodesics and
the affine parameter is th&g)-arc length. We will see below that {&; N2g) is not metrically
complete then there is an infinit&~?g)-geodesic whoséN?g)-length is finite. This would be
against the hypothesis that the spacetime is geodesicatiplete at infinity and the proof will be
finished.

LetT(s), s> 0 be a ray for the metric thi~2g and starting ab>. For eachj > 1 lets; be the
last time thaf (s) € Sj. LetTj be the restriction of to [sj,Sj;+1]. Thenl'j c (Z\M°(Sj)) andl’
is the concatenation of the curvieg j > 1. Now,

/WN(r(s))ds: jffSHlN(Fj(s))dss jiomax{N;Sj}lengtf(Fj) (3.15)
=51 j=17Si j=1

where to obtain the inequality we use that,
Sup{N(j(s)) :se[sj,sj+1]} <SUp(N(p): pe ZxM°(Sj)} <max{N;S;}. (3.16)

which is obtained from the inclusion; c (X \ M°(S;)) (for the first inequality), and from the
maximum principle (for the second). Thus, if we prove thatdf@onstantz independent of we
have _

length(T"j) < c32? (3.17)

then we can us€(3.8) in conjunctionfa(3.15) to conclude tha
/N(I’(s))ds<oo (3.18)
which would imply that there is an incomplete null geodesithie spacetime.

Let us prove then the inequalify (3]117). We will play with flaet thatl™ is a ray forN~2g.
First note

/Sm 1 . length(I"j) . length(T"j) (3.19)
§j

N(Tj(s)) ~ max{N;l'j} ~max{N;S;}

where the second inequality is obtained from the inclubipn \ M° (S;) and because mgi; >\
M(S;j)} <max{N;S;} by the maximum principle.

Then recall from the discussion after Proposifiod 3.1, 8jaandS;. 1 lie in the same con-
nected componemd (212, 24+2)) of A(21+21 24+21). Hence[ (sj) (¢ Sj) andl (sj;1)(€ Sj+1)
lie also inA¢(21+2,2*+21). Then, as in Section 2.2, we can join(s;) to I'(sj.1) through a
curverﬁ of length less or equal tha2?/, (c is a constant independent §f, entirely contained
in a connected componet;(21+21/3,32*2)) of A(21+21/3,32**21). This curvel”/ must have
(N~2g)-length greater or equal than ttid~2g)-length ofl"j becausé j, (being a ray), minimises
the (N~2g)-length between any two of its points. Thus we can the write

S1 1 du 1 2
——d ds — . - 3.20
/s N(F(9) o= fg NS © min{N; Aq(2+21/3,32+°21) ) (3.20)

]
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Together with[(3.19) we obtain

length(rj) <¢| — XN} | (3.21)
min{N; Ac(21+21/3,324+21)}
But from (2.13) we have
r. A (91+2] +2j
| _max{N,.FJ} . mgx{N,,_atc(z _/3,324 .)} < (3.22)
min{N; Ac(21+21/3,32%+21)} ~ min{N; A(21+2]/3,324+2])}
wherec’ is independent of. Thus, [3.1l7) follows. |

Proof of Theorem[L.l From the same definition of static isolated system, we knaat the
spacetime outside a set (invariant under the Killing fiedd) i

M=Rx(R3\B%), g=-N2dt?+g (3.23)

which is described by the da@3« B3;g,N). As the spacetime is geodesically complete at
infinity we can use Propositidn3.3 to deduce that the mbifigis complete oiR3 < B3, Theorem
1.3in [8] then apples and asymptotic flatness follows.

(Remark: The notion of Isolated System used[ih [8] is the sam this paper but with
the extra assumption that is bounded from below away from zero outside a compact set. As
commented in[8], Theorem 1.3 still holds if this hypothemisN is replaced by the metric com-
pleteness oN?g.) n

Remark 3.4. If the matter model, (which is always assumed compactlyatgg), satisfies the
weak energy condition then the conclusions of Thedrein hbeaseen to follow only from the
metric completeness of the static data. The geodesic ctenples at infinity is unnecessary.

We can now prove Theorem 1.2.

Proof of Theorem[L.Z Suppose that a connected component of the complement of pamdm
set inZ is diffeomorphic toR3 minus a closed ball. Then, as in the proof of Theokem 1.1, this
component has to be an AF endflf we prove tha& has only one end, then the Main Theorem
in [5] shows that is diffeomoprhic taR® minus a finite set of open balls. The Israel - Robinson -
Bunting - Masood-ul-Alam uniqueness Theorem then appliesthe solution is Schwarzschild.
Let us prove then that must have only one end.

We will proceed by contradiction. Assume then thatas more than one end. From now on
we work in a spacéZs,N=2¢g) as in Proposition 211 but with < \/2-1.

The end that was AF (and had Schwarzschildian fall off)dds also AF forN=2¢g. On
this end consider large (“almost round”) embedded sph&re®n them we hav¢VN|szgg S
1/aredS) while for the mean curvatur@s, (with respect to the outward unit normal, we have
Os~2\/4m/aredS). Hence one can clearly take an embedded spBstficiently far away that

65—(1+£)$>0 (3.24)
at every point ofS. We work with suchS below. The particular combinatiof (3124) will be
relevant. The spher8dividesZ; in two connected components. DenoteZythe closure of
the connected componentd§ \ Scontainingd>. We havedZs = 9> u Sand, more importantly,
X contains at least one more end. Sim; is strictly convex, we can construct a geodesic ray
y(s), s> 0, in X5\ 9% and with the following properties,

11
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1. y(s) starts aSand perpendicularly to it,
2. y(s) diverges through and end X, ass — oo,
3. disty-2¢4(¥(s),S) =sforall s> 0.

These properties imply that the expansi#d(s), along the geodesig(s), of the congruence of

geodesics emanating perpendicularlySomust remain finite for alk (i.e. 6(s) > —oo for all

s> 0). If not then there is a focal point gnafter which property 3 fails. We will prove now that

indeedd(s) = —oo for somes> 0, thus reaching a contradiction.
Let

N'(s)

N(s)

whereN(s) = N(y(s)) andN’(s) =dN(y(s))/ds At s=0, mis equal to minus the left hand side
of (8.:24), therefore negative (note thaf0) = —n). On the other hand, as we explained in Section
2., if £ < /2-1 then the Bakry-Emery Ricci tensor

m(s) =0(s)+(1+¢) (3.25)

Rict :Ric+vvf—%vaf (3.26)

is zero, wherd = (1+¢&)InN and Yc= (1-2&-£2)/(1+¢)?. Now, itis shown in[11] (Appendix
A) thatm(s) satisfies the differential inequality

m<-—— (3.27)

Thus, ifm(0) < 0 then there is' > 0 such tham(s') = —co. But asN’(s)/N(s) is finite for all s
then we must havé(s') = —co. |

Remark 3.5. If the complement of a compact setdiris diffeomorphic taR® <B3 and (Z;9) is
metrically complete, then the solution is Schwarzschitd (pe. the geodesic completeness of the
spacetime at infinity is unnecessary). To see this obsestdtfat N cannot go uniformly to zero
on the end ok because this would violate the maximum principle (N is hamimand is zero only
ondz). By Propositiof 313 N is then bounded away from zero on tldeagid asymptotic flatness
follows.

Remark 3.6. Itis easy to show that Propositions B.1.13.2 3.3 hold whenZ ~ S x R* with
S a compact two-surface of arbitrary genus, (Proposifiod @fresponds te& = S?). This could
be of interest in further studies.
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