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Static solutions from the point of view of comparison geometry.
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Abstract.

We analyze (the harmonic map representation of) static solutions of the Einstein Equa-
tions in dimension three from the point of view of comparisongeometry. We find simple
monotonic quantities capturing sharply the influence of theLapse function on the fo-
cussing of geodesics. This allows, in particular, a sharp estimation of the Laplacian of
the distance function to a given (hyper)-surface. We apply the technique to asymptoti-
cally flat solutions with regular and connected horizons and, after a detailed analysis of
the distance function to the horizon, we recover the Penroseinequality and the unique-
ness of the Schwarzschild solution. The proof of this last result does not require proving
conformal flatness at any intermediate step.
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1 Introduction.

In this article we introduce a family of quantities, denotedbyMa (wherea, an arbitrary real number, is

the parameter of the family) naturally attached to (integrable) geodesic congruencesF , of Static Solu-

tions of the Einstein Equations in dimension three. The invariants (which can be seen as a real functions

over the range of the congruence) are shown to be monotonic along each of the geodesics ofF . Moreover

wheneverMa is stationary along a geodesicγ of F , then the local geometry alongγ can be seen to be

of Schwarzschild form. In this senseMa measures a certain departure of the given static solution tothe

Schwarzschild solution. The framework that we will developout of these invariants is a natural extension

of the standard comparison techniques of Riemannian spacesof non-negative Ricci curvature. However,

as we incorporate intoMa the influence that the lapse exerts on the Ricci curvature, and, as a result, the

monotonicity ofMa sharply captures the departure from the Schwarzschild solution (not from the Eu-

clidean space), the framework here developed can be best described as one that compares static solutions

to the Schwarzschild solution. It is thus not peculiar that when the technique is applied to asymptotically

flat static solutions with regular and connected horizons, the uniqueness of the Schwazschild solution

is achieved with remarkable naturalness. It is worth notingthat the novel proof of this central result in

General Relativity that we shall provide does not require the intermediate step of proving conformal flat-

ness of previous proofs. The ideas that we will describe can be interpreted as partial results on the bigger

proposal of developing a more complex comparison theory forstatic solutions in arbitrary dimensions.

Before continuing with the description of the contents, we briefly introduce static solutions of the

Einstein equations and summarize some properties that would place the contents into an adequate per-

spective.

1.1 Elements of static solutions.

A static solution of the Einstein equations in dimension three2, is given by a triple (Σ, g,N) whereΣ is a

smooth Riemannian three manifold possibly with boundary,g is a smooth Riemannian metric andN, the

Lapse Function, is a smooth function, strictly positive in int(Σ), and satisfying

NRic= ∇∇N,(1)

∆N = 0.(2)

These equations, note, are invariant under simultaneous but independent scalings ong andN.

The description of static solutions is better separated into local and global properties. From the

local point of view, the geometry of static solutions is controlled in C∞ by two weak invariants. This

is a direct consequence of Anderson’s curvature estimates [1] (applying in dimension three) which

are described as follows. Let (Ω, g,N) be a static solution of the Einstein equations, where (Ω, g) is a

2In this article we will restrict to dimension three. Our mostimportant invariant, the quantityM (see later), is monotonic only
in dimension three and we do not know, at the moment, a replacement of it to higher dimensions. The static Einstein equations
(1)-(2) are valid in any dimension.
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complete Riemannian manifold with or without boundary. Then there is a universal constantK > 0 such

that for anyp ∈ Ω we have

(3) |Rm| + |∇ ln N|2 ≤ K
dist(p, ∂Ω)2

,

where if∂Ω = ∅ we setdist(p, ∂Ω) = ∞. Note that this shows in particular that the only complete and

boundary-less static solution in dimension three is covered (after normalizingN to one) by the trivial

solution (R3, gR3,N = 1). Anderson’s curvature estimates together with the Bishop-Gromov volume

comparison and standard elliptic estimates, imply the following interior estimatesfor static solutions in

dimension three.

Lemma 1 (Interior’s estimates (Anderson)) LetΩ be a closed three-dimensional manifold with non-

empty boundary∂Ω. Suppose that(Ω, g,N) is a static solution of the Einstein equations. Let p∈ Ω, let

d = dist(∂Ω) and let V1 = Vol(B(p, d1)) for d1 < d. Then there is d2(d, d1,V1) > 0, and for any i≥ 0

there areΛ(d, d1,V1, i) > 0, I(i, d1,V1) > 0, such that in j(p) ≥ I and ‖∇iRm‖L∞g (B(p,d2)) ≤ Λ.

These interior estimates, in turn imply, as is well known, the control of theCi
{x j } norm of the entrancesgi j

of g, in suitable harmonic coordinates{x j} coveringB(p, d2), and from them precompactness statements

can be obtained.

The global geometry of static solutions instead is greatly influenced by boundary conditions and, in

many cases, boundary conditions provide uniqueness. This occurs when, for instance, one assumes that

∂Σ consist of a finite set ofregular horizonsplus further hypothesis on the asymptotic of (Σ, g) at infinity.

We will adopt the following definition (see [1]).

Definition 1 The boundary∂Σ of the smooth manifoldΣ is a regular horizon iff ∂Σ is a finite union of

compact (boundary-less) surfaces Hi , i = 1, . . .n,∂Σ = {q/N(q) = 0} and at each Hi we have|∇N|
∣

∣

∣

∣

∣

Hi

> 0.

It follows easily from the static equations (1)-(2) that every regular horizon∂Σ is totally geodesic and

|∇N| is constant and different from zero on each component.

Perhaps the easiest examples of complete solutions with regular horizons are theFlat solutionsthat

we will denote by the triple (ΣF , gF ,NF). They have the presentation

(4) ΣF = [0,∞) × T2, NF = r, gF = dr2
+ hF ,

wherehF is a flat metric inT2. The family is parameterized by the set of flat metrics inT2 (non-

isometric). Note that we have demanded thatN grows linearly with respect to arc length and with slope

one. Of course anyN that grows linearly can be scaled to have growth of slope one.

Yet, the prototypical and central examples of static metrics are the Schwarzschild solutions. Recall,

the Schwarzschild solution (ΣN, gS,NS) of massm≥ 0 has the presentation

(5) ΣS = [2m,∞) × S2, NS =

√

1− 2m
r
, gS = dr2

+ r2(1− 2m
r

)dΩ2,
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while if m< 0 the presentation

(6) ΣS = (0,∞) × S2, NS =

√

1− 2m
r
, gS = dr2

+ r2(1− 2m
r

)dΩ2.

The “uniqueness of the Schwazschild solution”, as in known today and in the form presented below,

came as the result of several efforts, starting from the seminal work of Israel in 1967. For the history of

the developments which lead to the proof of this important result as well as accurate references we refer

to the article [5].

Theorem 1 (Schwarzschild’s uniqueness [6], [8], [4])Let (Σ, g,N) be a static solution of the Einstein

equations of dimension three. Suppose it is asymptoticallyflat (with one end) and with regular, possibly

empty, and possibly disconnected horizon∂Σ. Then the solutions is a Schwarzschild solution of non-

negative mass.

Several hypothesis of this theorem can be relaxed still obtaining the same uniqueness outcome. For

instance suppose there is one end but the hypothesis of asymptotic flatness, or even the topological nature

of the end, is withdrawn, then results exist showing that thesolution is still one of the Schwazschild

family of positive mass. In particular whenN ≤ N0 < ∞ but nothing of the end is known, not even

the a priori topology, then it can be shown3 that the solution is indeed a Schwarzschild solution. The

same occurs when it is known that outside a compact set, each end is homeomorphic toR3 minus a ball4

and over there the metricN2g is complete, which occurs for example whenN ≥ N0 > 0. In all these

generalizations, which are important for deeper understanding of Einstein’s theory, it is assumed that the

space (Σ, g), as a metric space, is complete.

We feel that the following broader conjecture may be accessible.

Conjecture 1 Let (Σ, g,N) be a complete solution of the Static Einstein equations withregular but pos-

sibly disconnected (non-empty) horizon∂Σ. Suppose that the conformal metrics N2g and N−2g are

complete outside given domains of compact closure on each end of (Σ, g). Then the solution is either a

Schwarschild solution or a flat solution.

Observe that no assumption is made on the topology of the ends.

When boundary data is prescribed, and is not the data of a regular horizon, and the hypothesis of

asymptotic flatness is kept, then much less is known about theexistence of solutions although a conjecture

3This follows from a combination of results. First observe that N cannot go uniformly to zero over the end, for in such case, as
N is harmonic and is zero over the horizon, we would violate themaximum principle. Using the notation in [1] denote byt(p) the
g-distance from a pointp to the horizonH. Denote also byB(H, t̄) the ball of centerH and radius̄t, namelyB(H, t̄) = {p/t(p) < t̄}.
Now, from Theorem 0.3 (ii) in [1], either the end is asymptotically flat or small in the sense that

∫ ∞ 1
A(∂B(H,t̄)) dt̄ = ∞. Assume

N ≤ N0. Considerf = N0 + 1− N. Then∆ f = 0 and∆ ln f = −|∇ ln f |2. DefineF(t) :=
∫

B(H,t)\B(H,t̄1) |∇ ln f |2dV. For t1 small, we

have
∫

∂B(H,t1) g(∇ ln f , nin)dA> 0, wherenin is the unit normal to∂B(H, t1) pointing inwards to the ball. Using this fact, integrating

∆ ln f = −|∇ ln f |2 over B(H, t) \ B(H, t̄1) and using Cauchy-Schwarz one easily deduce the inequalityF′/F2 ≥ 1/A. From it one
gets 1/F(t) ≤ 1/F(t2) −

∫ t
t2

1
Adt̄, wheret2 > t1. Thus if the end is small, one would getF = ∞ at a finite distance formH, which is

not possible.
4arXiv:1002.1172
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[2] and partial results do exist5 under some hypothesis. In whatever case, Dirichlet-type ofproblems

for the Einstein equations are interesting from physical and mathematical reasons. A theory, a highly

necessary task, is still lacking.

The Schwarzschild family is unique, but, why?. Are the present proofs satisfactory as an answer to

this question?. Do we need to place the problem of the uniqueness of the Schwarzschild family into a

larger one to understand it better?. Which one would be that bigger perspective?. Could it be a Dirichlet-

type of theory for the Static Einstein equations?. Despite all the accumulated knowledge, some aspects

of the uniqueness of the Schwarzschild solutions remains (to us) somehow mysterious. The present work

would try to clarify the phenomenon from the perspective of comparison geometry. It is worth finally to

remark that there are yet further reasons of why it is important to have different proofs and points of view

regarding Theorem 1. Just mention that the elusive and yet inconclusive notions of localized energy or

the even more conjectural notion of entropy may have to do andcould be better clarified with different

understandings of the Schwazschild uniqueness.

1.2 Ma and comparison geometry.

The idea underlying the technique that we will describe is rather simple. First, and most important, we

will work in the harmonic map representationof static solutions. Namely, instead of working with the

variables (g,N) we will work with the variables (g, N) = (N2g, ln N). The Einstein equations (1)-(2) now

become

Ric = 2dN ⊗ dN,(7)

∆N = 0.(8)

It is apparent from here thatRic ≥ 0, which is a quite central property. Consider now a congruence of

geodesics (or geodesic segments)F for the metricg minimizing the distance from any of their points

to a (hyper)-surfaceS. Thus any geodesic inF has an initial point inS. We will assume the geodesics

(or geodesic segments) are inextensible beyond their last point or that the last point is the point onγ

whereγ stops to be length minimizing toS. It can be that such last point does not exists in which case

the geodesic “ends” at “infinity”. It is known that theCut locusC, namely the set of last points of the

geodesics in the congruence is a closed set of measure zero. OutsideC the distance function toS is a

smooth function with gradient of norm one. Given a pointp in Σ, we will denote bys(p) the distance

from p to S. Consider now a pointp, not inC and not inS and around it consider the smooth surface

formed by the set of points which have the same distance toS thanp (the equidistant surface or the level

set of the distance function). The second fundamental form of such surface in the outgoing direction

(fromS) at p will be denoted byΘ(p) or simplyΘ. The mean curvature will beθ(p) = trh(p)Θ(p) where

trh(p)Θ(p) means the trace ofΘ(p) with respect to the induced two-metric in the surface or level set. Thus

5arXiv:0909.4550
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we can thinkθ as a function along geodesicsγ in F . The mean curvature satisfies the importantfocussing

equationor Riccati equationalong the geodesicsγ

(9) θ′ = −|Θ|2 − Ric(γ′, γ′) = −θ
2

2
− Ric(γ′, γ′) − |Θ̂|2.

Above,′ denotes derivative with respect to arc length andΘ̂ is the traceless part ofΘ. Recall that

∆s = θ.

Thus any estimate onθ obtained out of the focussing equation serves as an estimateon the Laplacian of

the distance function.

For instance ifRic ≥ 0 then standard estimates in comparison theory follow by discarding the last

two terms in equation (9) and integrating the inequalityθ′ ≤ −θ2/2. If s is the distance function to a

point, or, the same, the distance function to the boundary ofa small geodesic ball plus the radius of the

ball, one gets (Calabi 1958),θ ≤ 2/s and

∆s ≤ 2/s,

everywhere and in the barer sense ( [7], pg. 262). Comparisonestimates on areas and volumes of

geodesic balls are obtained from
dA′

dA
= θ, dV′ = dA.

wheredA is the element of area of the equidistant surfaces toS anddV is the element of volume enclosed

by dA.

The situation we face is similar in that the Ricci curvature is non-negative, but this time the structure

of the Ricci curvature is explicitly given. By incorporatingRic as part of the focussing inequality, namely

considering

θ′ ≤ −θ
2

2
− 2N′2,

we will obtain a sharp estimate forθ. We will show that for any real numbera the quantity

Ma = (
θ

2
(s + a)2 − (s + a))N2,

is monotonically decreasing (Proposition 1) along any geodesic of the congruence and is stationary if

and only if the geometry along the geodesic is of Schwarzschild form (Proposition 2). Thus we get the

estimate

θ ≤ 2
s + a

(1+
M0

(s + a)2N2
).

whereM0 is the value ofMa at the start, onS, of the geodesic. The fundamental set of equations out of

6



which comparison estimates can be obtained is therefore

θ ≤ 2
s + a

(1+
M0

(s + a)2N2
),(10)

∆s = θ,
dA′

dA
= θ, dV′ = dA,(11)

∆ ln N = 0.(12)

To use these set of equations efficiently one must first use the system

∆s ≤ 2
s + a

(1+
M0

(s + a)2N2
),

∆ ln N = 0,

together with additional boundary data onN andM0. For the case of the application to the uniqueness

of the Schwarszchild solutions, that we carry out later, thesubstantial information that is extracted out of

this system is, in a sense, concentrated in Theorem 2, where adistance comparison result is established

betweens andŝ = 2mN2/(1− N2).

From the point of view of areas and volumes comparisons, we note that, by using equations (10)-(12),

the expression
dA
dA0

exp(
∫ s

s0

2
s̄ + a

(1+
M0

s̄ + a)2N2
)ds̄),

is seen to be monotonically decreasing too. From it anddV′ = dA suitable information on the growth of

areas and volumes of geodesic balls (with centerS) can be obtained. These type of estimates will play

an important role in the proof of the uniqueness of the Schwarzschild solutions in Section 3.7.2.

Yet, the structure of the harmonic-map representation of the Einstein equations is richer than the

information contained in the system (10)-(12). Indeed, Weitzenböch’s formula for the static equations

1
2
∆|∇ f |2 = |∇∇ f |2+ < ∇∆ f ,∇ f > +2 <

∇N
N
,∇ f >2,

valid for any functionf , together with equation (12) can provide useful estimates on functions of the

form f = f (N). They, in turn, provide useful information onN. These estimates, is worth remarking,

have nothing to do with the distance function. The most obvious consequence of Weitzenböck’s formula

comes out when we chosef = ln N. In this case we obtain

1
2
∆|∇ ln N|2 = |∇∇ ln N|2 + 2|∇ ln N|2.

In applications to the uniqueness of the Scharzschild solutions, we will use however the Weintzenböck

formula with the choicef = ŝ = 2mN2/(1 − N2). This will provide the important estimate|∇ŝ| ≤ 1

in Section 3.7.1, which, as we will see, it is necessary to close up the proof of the uniqueness of the

Schwarzschild solutions.
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It is worth remarking at this point that many of the techniques here developed carry over the much

bigger family of metrics and potentials satisfying

Ric ≥ 2dN ⊗ dN,

∆N ≥ 0, 0 < N < 1.

To show the applicability of equations (10)-(11), as we saidbefore, we will fully analyze from this

perspective asymptotically flat static solutions with regular and connected horizons and recover Theorem

1. It is worth remarking the naturalness from which the uniqueness of the Schwarzschild solutions

will come out of these comparison techniques. Despite of that, the required analysis will be somewhat

extensive. To prove Theorem 1 we carefully compare the distance function to the horizon,s, to the

function ŝ, through the set of equations (10)-(11). The final goal to achieve is to show the equality

s = ŝ = 2mN2/(1 − N2) from which it will follow thatM2m has to be stationary along any length-

minimizing geodesic toH (in this case the integral lines of∇ŝ) and equal tom. It then follows, from the

sharpness of the monotonicity ofM that the solution has to be a Schwazschild solution (of positive mass).

Note a technical aspect however. AsN = 0 over the horizonH, the metricg = N2g is singular there.

Although this will make the analysis technically delicate,a satisfactory remedy is found if one replaces

H by a sequenceHΓi = {N = Γi} of theΓi-level set ofN (Γi ↓ 0), approachingH, and perform then a

limit analysis. This circumvention of the singularity at the horizon will appear often in the reasonings.

It is worth noting that, at the moment, we do not know how to obtain Theorem 1, when the horizon

is not connected. The exact reproduction of the arguments that leads to the proof of Theorem 1 for

connected horizons, applied to the case of non-connected horizons, give interesting results, which are

not difficult to obtain but that will not be given here.

We will now give guidelines of the structure of the article. In Section 2 we introduce and discuss

the main monotonic quantityM, give explicit examples of the monotonicity and discuss thestationary

case. This section is the core of the article. The other sections discuss further properties ofM and

applications. In particular in Section 3 we start the discussion of asymptotically flat solutions with regular

and connected horizons. In Section 3.1 we studyM over regular horizons. In Section 3.2 we recall the

notion of asymptotic flatness and cite a classical result [3]on the possibility to chose special coordinates

at infinity in static solutions displaying precisely the Scwarzschild-type of fall off. The existence of such

coordinate system{x̄} will be central. In Section 3.3 we introduce the important notion of coordinate-

distancelag, measuring a mismatch between the distance from a pointp to the horizon,s(p), and the

coordinate distance|x̄(p)|. In Section 3.4 we discuss our first substantial result. We prove adistance

comparisonresult (Theorem 2) betweens andŝ = 2mN2/(1−N2). To achieve it, we must show first that

the inequality

∆s ≤ 2
s + a

(1+
M0

(s + a)2N2
),

holds in a barer sense all over the manifoldΣ. This is done in Proposition 10. Without that tool, the

comparison result would not be possible to achieve. Using that we show in Section 3.5 that the Penrose

8



inequality A ≤ 16πm2, whereA is the area of the connected horizon andm is the ADM mass, must

hold. In Section 3.6 we show, again using the distance comparison, that the opposite Penrose inequality

must hold, namelyA ≥ 16πm2. Thus, after Section 3.6 we would have proved thatA = 16πm2. Despite

the strong implications of this inequality, the uniquenessof the Schwarzschid solutions requires further

analysis. This is carried out in Section 3.7. Indeed it is in this section that it is proved thats = ŝ. This

follows from a further study of the coordinate-distance lagin Section 3.7.1 where it is shown that it must

be zero. An elaboration of the area and volume comparison in Section 3.7.2 finishes the analysis of all

the elements of the proof which is summarized in Theorem 3. Further explanations on the contents and

strategies are given at the beginning of each Section.

We will use alternatively the notation (Σ, g,N) or (Σ, g, N) = (Σ, g, ln N), used according to which rep-

resentation is best suited to describe a claim or a statement. When we say that (Σ, g, ln N) is an asymptot-

ically flat static solution with regular and connected horizon, we mean that (Σ, g,N) is an asymptotically

flat static solution with regular horizon as was described before, but that we will working in its harmonic

map representation.

2 A comparison approach to static solutions in the harmonic map

representation.

Let (Σ, g, ln N) be a static solution in the harmonic representation. To every oriented integrable congru-

enceF of g-geodesics, we will associate a family of real functions{Ma, a ∈ R} defined over the range

of F . We will show that, fixeda,Ma(γ(s)) is monotonically decreasing for anyγ ∈ F (s is theg-arc

length, increasing in the positive direction). This central fact will follow by making use of the focusing

equation (9). The definition ofMa and the proof of its monotonicity are given in the Proposition below.

To avoid excessive notation we will use the following convention in the notation: for every functionf

defined over the range ofF (for examplef = θ or f = N) andγ ∈ F we will write f := f (γ(s)) and

d f(γ(s))/ds := d f/ds := f ′. Also, for the same reason of economy and simplicity, we willsuppress the

sub-indexa and write simplyM.

Proposition 1 Let F be an oriented integrable congruence of geodesics. Letγ(s), s ∈ [s0, s1] be a

geodesic inF . Let a be a real number and lets̃ = a+ s. Then we have

(13) ((
θ

2
s̃2 − s̃)N2)′ = −s̃2N2 |Θ̂|2

2
− (s̃
θ

2
− 1− s̃N′

N
)2N2.

Therefore, fixed any real number a, the quantityM = ( θ2 s̃
2 − s̃)N2 is monotonically decreasing along

anyγ ∈ F (the notationM accounts for “mass”).

Proof:

We compute

((
θ

2
s̃2 − s̃)N2)′ =

θ′

2
s̃2N2

+ θs̃N2 − N2
+ θs̃2NN′ − s̃2NN′.

9



We use now the focusing equation (9) to get

((
θ

2
s̃2 − s̃)N2)′ = −|Θ̂|

2

2
s̃2N2 − θ

2

4
s̃2N2 − s̃N′2 + θs̃N2 − N2

+ θs̃2NN′ − s̃2NN′.

The six terms following the first on the right hand side of thisexpression can be arranged as−(s̃θ/2 −
1− N′/N)2N2, thus obtaining (13). ✷

Example 1 (The Schwarzschild case.) Consider a Schwarzschild metric of massm, of arbitrary sign, in

the presentations, according to the sign of the mass, of equations (5) or (6). Note thatg = dr2
+ r2(1−

2m/r)dΩ2 andN2
= (1− 2m/r). For any given pointq in S2 consider the ray [2m,∞) × {q} (if m≥ 0) or

(o,∞) × {q} (if m < 0) parameterized by the arc lengths = r − 2m of s = r (respectively to the sign of

the mass). In either case we compute the mean curvatureθ as

(14) θ =
2
r
+

2m
r(r − 2m)

=
2
r

(r −m)
r − 2m

.

Let b = a− 2m if m≥ 0 andb = a if m< 0, then the quantityM has the following form,

M = (
1
r

r −m
r − 2m

(r + b)2 − (r + b))(1− 2m
r

) = ((m+ b) − mb
r

)(1+
b
r

).

independently of the sign of the mass. Taking the derivativewith respect to arc length and rearranging

terms we obtain

M′ = b2

r
(
2m
r
− 1),

which is explicitly non-positive independently of the signof the mass. This shows the monotonicity of

M for any value ofb. Note thatlims→∞M = m+ b. Observe too that whenb = 0, i.e. a = 2m, thenM
is constant and equal tom. ✷

Example 2 (The flat solutions.) For a flat solution (ΣF , gF ,NF ) we haveg = r2dr2
+ r2hF . Making

r2/2 = s we getg = ds2
+ 2shF andN2

= 2s wheres > 0. For any pointp in T2 consider the ray

[0,∞) × p. Consider the congruence of geodesics conformed by all these rays. The mean curvature is

calculated asθ = 1/s. Thus for any real numbera we have

(15) M = (
1
2s

(s+ a)2 − (s+ a))2s= −s2
+ a2,

which is monotonically decreasing in the domain ofs, namely (0,∞).

Note that for the “dual” solution (ΣF , gF , 1/NF) we have, for any real numbera, the expression

M = −1/4+a2/s2 which is monotonically decreasing in the domain ofs, namely (0,∞). Note that when

a = 0 thenM is stationary and equal to−1/4. ✷

The next proposition discusses the case whenMa is stationary.
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Proposition 2 LetF be an oriented and integrable congruence of geodesics. When, for a given a,M is

constant along a geodesic segmentγ(s), s ∈ [s1, s2] then alongγ we have

(16) Θ̂ = 0,

and

(17) N2
= N2

0 + 2
M0

s0 + a
− 2
M0

s + a
,

where N0 andM0 are the values of N andM at s = s0 ∈ (s1, s2). We also obtain

(18) θ =
2
s + a

+ 2
M0

(s + a)2N2
.

Proof:

If along a geodesicγ the value ofM remains constant, then the right hand side of (13) must be

identically zero. This implies that

Θ̂ = 0,

which shows (16), and also implies that

s̃
θ

2
− 1− s̃N′

N
= 0.

Multiply now this expression bỹs and rearrange it as

(19) s̃2 θ

2
− s̃ = s̃2 N′

N
.

Recall thatM = (s̃2 θ
2 − s̃)N

2. Using this expression, the equation (19), and (because we are assuming

thatM is constant) writingM =M0 =M(s0), we obtain

M0 = s̃
2NN′ = s̃2 (N2)′

2
.

Moving s̃2 to the denominator of the left hand side and integrating (ins) from s = s0 to s we obtain

(17). To obtain (18) solve forθ in (s̃2 θ
2 − s̃)N

2
=M0. ✷

Remark 1 (Further remarks to Proposition 2) Observe form Proposition (2) that (if for some numbera)

M is constant along a geodesicγ of infinite length andlims→∞N(γ(s)) = 1, then making the change of

variablesr = s + a in (17) and (18) we obtain, alongγ, the expressions

N2(r) = 1− 2M0

r
,

θ =
2
r
+

2M0

r(r − 2M0)
=

2
r

(r −M0)
r − 2M0

.
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and, including (16)

Θ̂ = 0,

which, comparing with Example 1, are exactly of Schwarzschild form if we identifyM0 with “a” ADM

massm. Moreover ifγ is defined on (s0 = 0,∞) andγ(s0) “lies” on a “horizon” (lims→0 N(γ(s)) = 0),

thenN0 = 0 and 1= N2
0 + 2M0/(s0 + a) = 2m/a. Thereforea = 2m ands = r − 2m. Note thatm=M0

cannot be negative otherwiseθ reaches infinity for ans ∈ (0,∞) (thus the wholeγ cannot belong toF ).

Thus we establish the same relations = r − 2m as in a Schwarzschild solution of positive mass. On the

other hand ifγ is defined on (s0 = 0,∞) andγ(s0) “lies” on a “naked singularity” (lims→0 N(γ(s)) =

+∞), thena = 0 ands = r. Note that in this casem=M0 must be negative otherwiseN2
= 1− 2m/r =

1− 2m/s gets negative for smalls > 0. Thus we establish the same relations = r as in a Schwarzschild

solution of negative mass.

Remark 2 There are several ways to include the summand−2(Ṅ/N)2 to obtain an estimation on the

growth ofθ. The following Proposition, whose proof is left to the reader, is one such instance. Although

we will not use it for the rest of the article, it illustrates very well, the many ways in which the focussing

equation can be used to extract geometric information.

Proposition 3 Let θ be the mean curvature of the integrable congruenceF . Letγ(s), s ∈ [s0, s1] be in

F . Then we have

1. θN2 is monotonically decreasing, namely(θN2)̇ ≤ −( θN√
2
−
√

2Ṅ)2. Therefore we haveθ ≤
θ0(N0/N)2, whereθ0 = θ(s0) and N0 = N(s0).

2. Suppose thatθ(s) > 0 for all s in [s0, s1]. Then we have

(20) θ(s) ≤ 1

1
θ0
+
s−s0

2 +
1

2θ20N4
0

(N2−N2
0 )2

(s−s0)

.

Asθ is monotonically decreasing the same formula holds for alls in the domain whereγ is length

minimizing provided onlyθ0 > 0.

✷

Equation (20) clearly displays the influence of the Lapse N inthe focussing of geodesics beyond the

natural focussing that comes out of the non-negativity of the Ricci curvature. Equation (20) can serve, in

particular, to obtain information on the relationship between volume growth of tubular neighborhoods

of a horizon and the growth of N from it.
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3 Applications to asymptotically flat static solutions with regular

and connected horizons.

In this section we show that any asymptotically flat static solution with regular and connected horizon

must satisfy the Penrose inequality. This is proved in Section 3.5. Separately, in Section 3.6 we will

prove that one such solution must satisfy the opposite Penrose inequality and that the horizon must be

geometrically round. This will lead us into the verge of proving Theorem 1 which is carried out in

Section 3.7. To achieve the inequalities some preliminary material is introduced in Sections 3.1, 3.2,

3.3 and 3.4. In Section 3.1 we compute “the value ofM” for the “congruence of geodesics emanating

perpendicularly toH” (note thatg is singular onH) which we will be usied crucially in the other Sections.

Technically we will elude the fact thatg is singular onH by considering instead ofH suitable sequences

{HΓi } of two-surfaces approachingH as i → ∞. In this way “the value ofM over H” will be defined

as a limit. Similarly we will defines(p) := distg(p,H) := lim i→∞ distg(p,HΓi ). In Section 3.1 we

recall the notion ofAsymptotic Flatnessand introduce, following [3], a coordinate system adapted to

asymptotically flat static solutions that will be very useful later. In Section 3.3 we introduce the notion

of Coordinate-Distance Lagwhich is necessary to prove, in Theorem 2 of Section 3.4, a central Distance

Comparisonwhere we establish a lower bound for theg-distance function to the horizon (the function

s) in terms of a certain function ofN, m andA (the functionˆ̂s). For any divergent sequence of points

{pi} the coordinate-distance lag associated to{pi} is defined as̄δ({pi}) = lim sups(pi) − r(pi) + 2m,

wherer = |x̄| and {x̄ = (x1, x2, x3)} is the coordinate system introduced in Section 3.2 and it will be

seen to bēδ({pi}) = lim sups(pi) − ŝ(pi). The Penrose inequality in Section 3.5 is then proved by

showing first, using a standard comparison of mean curvatures, that if P := A/(16πm) > 1 (i.e. the

Penrose inequality does not hold) then there is a divergent sequence whose coordinate-distance lag is

non-negative (Corollary 2) and on the other hand proving, using the distance comparison of Section 3.4,

that if P > 1 then the coordinate-distance lag must be negative for any divergent sequence (Proposition

12). This reaches a contradiction. To prove the opposite Penrose inequality it is shown that the Gaussian

curvatureκ of H must satisfyκ ≥ 4(4πm/A)2 to prevent a violation of the distance comparison near the

horizon. integrating this inequality overH and using Gauss-Bonnet the opposite Penrose inequality is

achieved. As a byproduct of both inequalities one obtains that the horizon must be geometrically round,

namely thatκ = 4π/A.

3.1 The value ofM over regular horizons.

Let (Σ, g, ln N) be an static solution and letH be a regular and connected horizon. Consider an embedded

(orientable) surfaceS ⊂ Σ \ H. Let n1 andn2 be the two unit-normal vector fields toS. As we noted

before ifF is the congruence of geodesics emanating perpendicularly to S and following one of the

perpendicular directions toS, sayn1, then the mean curvatureθ of the congruenceF overS is equal to

the mean curvature of the surfaceS in the direction ofn1. Now to defineM overH (whereg is singular)

for the “congruence of geodesics emanating perpendicular to H” we will calculateM over a suitable
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sequence of surfaces and then take the limit as the surfaces approacheH. Such calculation is performed

in the paragraphs below. The following Notation will be usedin this Section and those that follow.

Notation 1 LetΓ0 be a number sufficiently small in such a way that for anyΓ ≤ Γ0, Γ is a regular value

for the lapse N and the set HΓ := {N = Γ} is isotopic to H (note that|∇N| , 0 over a regular horizon H).

One suchΓ0 will be called regular. For any twoΓ < Γ̄ denote byΩΓ,Γ̄ the closed region enclosed by HΓ

and HΓ̄. The region enclosed by HΓ and H will be denoted byΩH,HΓ .

Let {Γi}i=∞i=1 be a sequence such thatΓi ↓ 0 andΓi ≤ Γ0 with Γ0 as in Notation 1. Define

MH := lim
Γi→0

(
θ

2
a2 − a)N2|HΓi .

The next Proposition shows the limit above exists (so it is well defined) and is always constant overH.

Define|∇N|H = |∇N|g|H .

Proposition 4 Let(Σ, g,N) be a static solution with regular horizon∂Σ. Let H be a connected component

of ∂Σ. Then we have

(21) MH = |∇N|Ha2.

Proof:

Denote (as we have done before) byθ the mean curvature ofHΓ with respect tog andθg the mean

curvature with respect tog. From the conformal relationg = N2g we know that

θ =
θg

N
+ 2

n(N)
N2
,

wheren(N) is the normal derivative ofN in the outgoing direction (outgoing to∂ΩH,HΓi
andn a unit

vector with respect tog). Thus we get

(
θ

2
a2 − a)N2

= a2n(N) +
a2θgN

2
− aN2.

We get equation (21) in the limit whenΓi → 0. ✷

3.2 Asymptotically flat static solutions.

We will use a useful characterization of asymptotically flatstatic solutions (Σ, g, ln N) due to Beig and

Simon [3]. Following [3] we say that (Σ, g, ln N) is asymptotically flatiff there is a coordinate system

{x̄ = (x1, x2, x3) with x2
1 + x2

2 + x2
3 = |x̄|2 ≥ |x̄|20} outside a a compact set inΣ such that

1. lnN = O2( 1
|x̄| ) and gi j − δi j = O2( 1

|x̄|2 ); where we use the notationφ(x̄) = O2( f (|x̄|)) to mean that

for some positive numbersc1, c2 andc3 we have

|φ| ≤ c1| f (|x̄|)|, |∂iφ| ≤ c2|∂|x̄| f (|x̄|)| and|∂i∂ jφ| ≤ c3|∂2
|x̄| f (|x̄|)|.

14



2. The second derivatives of lnN andgi j − δi j have boundedCα-norm (defined with respect to the

coordinate system{x̄}) bounded; namely ifφ = ∂k∂l ln N orφ = ∂k∂l(gi j−δi j ) for all 1 ≤ k, l, i, j ≤ 3

then

‖φ‖Cα = sup
|x̄−x̄′ |≤1

|φ(x̄) − φ(x̄′)|
|x̄− x̄′|α < ∞.

Proposition 5 (Beig-Simon [3])Let (Σ, g, ln N) be an asymptotically flat static solution. Then, there is

a coordinate system{x̄ = (x1, x2, x3), |x̄| ≥ |x̄|1} (not necessarily equal to the one defining asymptotic

flatness), such that

(22) lnN2
= −2m
|x̄| +O2(

1
|x̄|3 ),

(23) gi j = δi j −
m2

|x̄|4 (δi j |x̄|2 − xi x j) +O2(
1
|x̄|3 ).

where|x̄|2 = x2
1 + x2

2 + x2
3 and m is the ADM mass of the solution.

Note that the remainders areO2(1/|x̄|3) in particular lnN has zero dipole moment. This fact will be

important later. Note too that|x̄|2dΩ2
= |x̄|2(dθ2+sin2 θdϕ2) = (δi j − (xi x j)/|x̄|2)dxidxj therefore we have

g = δi j dxidxj −m2dΩ2
+O2(

1
|x̄|3 ) = (d|x̄|)2

+ (|x̄|2 −m2)dΩ2
+O2(

1
|x̄|3 ).

To make contact with the representation (5) of the Schwarzschild solution proceed as follows. Let

(|x̄|, θ, ϕ) be the spherical coordinate system associated to the coordinate system{x̄}. Make the change of

variables (|x̄|, θ, ϕ)→ (r, θ, ϕ) with r = |x̄| +m. Then, for the metricg, we obtain

g = dr2
+ r2(1− 2m

r
)dΩ2

+O2(
1
r3

) = gS +O2(
1
r3

).

For the LapseN instead, we obtain the following expansion. From (22) we have

N2
= 1− 2m

|x̄| +
2m2

|x̄|2 +O2(
1
|x̄|3 ).

Now use
1
|x̄| =

1
r −m

=
1
r
+

m
r2
+

m2

r3
+O2(

1
r4

).

to get

N2
= 1− 2m

r
+O2(

1
r3

).

We can thus rephrase the Proposition 5 in the following form

Proposition 6 Let(Σ, g, ln N) be an asymptotically flat static solution. Then, there is a coordinate system

{x̄ = (x1, x2, x3), (x2
1+ x2

2+ x2
3)

1
2 = r ≥ r1} (not necessarily equal to the one defining asymptotic flatness),
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such that

(24) N2
= 1− 2m

r
+O2(

1
r3

),

(25) g = dr2
+ r2(1− 2m

r
)dΩ2

+O2(
1
r3

).

where m is the ADM mass of the solution.

The following Proposition on the asymptotic of the mean curvatures of the coordinate spheresSr =

{p/r(p) = r} is now direct.

Proposition 7 Let (Σ, g,N) be an asymptotically flat static solution and consider a coordinate system as

in Proposition 6. Then, the mean curvatureθr of the level surfaces Sr = {p/r(p) = r} satisfy, at every

point in Sr , the estimate

(26) θr =
2
r
+

2m
r2
+O(

1
r3

).

3.3 The coordinate-distance lag.

Let (Σ, g, ln N) be an asymptotically flat static solution with regular and connected horizonH. We would

like first to introduce thedistance functionto H, the definition of which is more or less evident. We will

follow the Notation 1.

Let p ∈ Σ \ H and let{Γi}i=∞i=1 be a strictly decreasing sequence such that,Γi ≤ Γ0, lim Γi = 0 and

p < ΩH1,H . We note that ifj > i then

dist(p,HΓi ) < dist(p,HΓ j ),

and we have

(27) dist(p,HΓi ) ≤ dist(p,HΓ j ) ≤ dist(p,HΓi ) + diam(ΩHΓ j ,HΓi
),

where the diameter ofΩHΓ j ,HΓi
, diam(ΩHΓ j ,HΓi

), tends to zero asi(< j)→ ∞. DenotesΓ(p) := dist(p,HΓ).

The inequality (27) shows that

s(p) := lim
i→∞

sΓi (p),

for any sequence{Γi} as above, is well defined and independent on{Γi}. We thus define the distance from

p to H in that way. Note that given a pointp in Σ \ H one can always construct a length minimizing

geodesic fromp to H by taking the limit of length minimizing geodesics fromp to HΓi . This fact will be

used later without further mention.

Now consider the Schwazschild solutionḡS = dr2
+(1− 2m

r )r2dΩ2 and consider a rayγ(r) = (r, θ0, ϕ0),

r ∈ [2m,∞), which is, naturally, length minimizing between any two ofits points. Lets(γ(r)) be the
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length ofγ betweenr = 2mandr. Thens(γ(r)) = r−2mand therefore the limitlimr→∞s(γ(r))−r+2m=

0. Now consider a rayγ(τ) on an (another) asymptotically flat static solution with regular and connected

horizonH, joiningH to infinity. Then in this different scenario, instead, the limit lims(γ(τ))−r(γ(τ))+2m

may be different from zero. We advocate now to definethe coordinate distance lagmeasuring precisely

this a priori mismatch.

Definition 2 Let (Σ, g, ln N) be an asymptotically flat static solution with connected andregular horizon.

Let {x̄ = (x1, x2, x3), |x̄| = r ≥ r1} be a coordinate system as in Proposition 6. Let{pi} be a diverging

sequence of points (i.e. s(pi) → ∞) (lying inside the range of{x̄}). Then, the coordinate distance lag,δ̄,

associated to the sequence{pi} is defined as

δ̄ = lim sup
i→∞

s(pi) − r(pi) + 2m.

Note that coordinate-distance lags are always zero in the Schwarschild solution. From the next Proposi-

tion it will follow that coordinate-distance lags are always finite.

Proposition 8 Let (Σ, g, ln N) be an asymptotically flat static solution with connected andregular hori-

zon H. Let{x̄ = (x1, x2, x3), |x̄| = r ≥ r1} be a coordinate system as in Proposition 6. Then there are finite

c1 > c2, depending on(Σ, g, ln N), with the following property: for every divergent sequenceof points

{pi} (lying inside the range of{x̄}) we have

(28) s(pi) − c2 ≤ r(pi) ≤ s(pi) − c1.

Proof:

We start showing the first inequality in equation (28). Let usfirst considerr2 such that for every ¯x

such thatr(|x|) ≥ r2 and a tangent vectorv at x̄ we have

|R(v, v)|
|gS(v, v)| ≤

R0

r3
≤ 1,

whereR is the remainder tensorR := g − gS, gS is the Schwarsdchild metric (5) andR0 is a positive

constant. It is clear that we do not loose anything in assuming thatr2 = r1.

Let d0 = supq∈Sr2
{dist(q,H)} and for eachi ≥ 0 consider the curveα(r) = (r, θ(pi)), ϕ(pi)) starting at

Sr2 and ending atpi (namely the range ofr is [r2, r(pi)]. We will make use of the inequality

(29)
√

1+ x ≤ 1+ |x|, if |x| < 1,

to estimate the distances(pi) from above. We have

(30) s(pi) ≤ d0 +

∫ r(pi )

r2

√

gS(α′, α′) + R(α′, α′)dr.
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As the integration is on [r2, r(pi)] we have, by the definition ofr2, |R(α′, α′)|/|gS(α′, α′)| ≤ R0/r3 ≤ 1

(note thatα′ = ∂r ). Thus by inequality (29) we have

√

gS(α′, α′) + R(α′, α′) ≤
√

g(α′, α′) +
R0

r3
.

Putting this into equation (30) and integrating we have

s(pi) ≤ r(pi) + (d0 +
R0

2r2
2

− r2).

This proves the first inequality.

To show the second inequality on the right hand side of equation (28) we proceed as follows. Consider

now an arbitrary curveα(τ) joining Sr2 to pi , lying inside the region enclosed bySr2 andSr(pi ) and

parameterized by the arc length, with respect togS, τ. Then, for the length ofα, l(α), we have

l(α) =
∫

√

gS(α′, α′) + R(α′, α′)dτ.

We are going to make use of the inequality

(31) 1− |x| ≤
√

1+ x, if |x| ≤ 1.

Note that becausegS(α′, α′) = 1 we have|R(α′, α′)| ≤ R0/r3. Therefore, from the inequality (31) we

have

(32) l(α) ≥
∫

(1− R0

r3
)dτ.

Now note that|dr/dτ| ≤ 1. To see this consider an arbitrary parameterization ofα by, sayt. Then

dτ/dt =
√
gS(∂tα, ∂tα) ≥ |dr/dt|. Thus, noting that the integrand in equation (32) is positive, we can

write

l(α) ≥
∫

(1− R0

r3
)dτ ≥

∫

(1− R0

r3
)|dr

dτ
|dτ ≥

∫

(1− R0

r3
)
dr
dτ

dτ.

Integrating we get

(33) l(α) ≥ r i − r2 −
R0

2r2
2

.

Now clearly we haves(pi) is greater or equal than the infimum of the lengths of all the curvesα joining

pi to Sr2 and lying inside the region enclosed bySr2 andSr(pi ). By the estimation in equation (33) above

we have thus

s(pi) ≥ r(pi) − (r2 +
R0

2r2
).

which proves the inequality on the right hand side of equation (28). ✷

Corollary 1 Let (Σ, g, ln N) be an asymptotically flat static solution with connected andregular horizon
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H. Let {x̄ = (x1, x2, x3), |x̄| = r ≥ r1} be a coordinate system as in Proposition 6. There are c1 > c2

depending on(Σ, g, ln N) with the following property: for every diverging sequence of points{pi} (lying

inside the range of{x̄}) we have

c2 ≤ δ̄({pi}) ≤ c1.

3.4 Distance comparison.

Consider an asymptotically flat static solution with regular and connected horizon, (Σ, g, ln N). Lets(p) =

dist(p,H). If the the solution (Σ, g, ln N) were the Schwarzschild solution then we would have

s(p) = r(p) − 2m=
2m

1− N(p)2
− 2m.

As it turns out, given an arbitrary solution (Σ, g, ln N), the functionŝ defined exactly by

ŝ(p) :=
2m

1− N(p)2
− 2m,

provides, via acomparison of Laplacians, a lower bound for the distance functions. The next Proposition

computes the expression of the Laplacian ofŝ.

Proposition 9 Let (Σ, g, ln N) be a static solution of the Einstein equations. Then, the Laplacian of ŝ

has the following expression

(34) ∆ŝ =
2

s̄+ 2m
(1+

m
(ŝ + 2m)N2

)|∇ŝ|2.

Proof:

Note first the identities

(35) ŝ = 2m
N2

1− N2
,

(36) N2
=

ŝ

ŝ + 2m
, N2

+ 1 = 2
ŝ +m
ŝ + 2m

.

We calculate

∇ 1
1− N2

= 2
N∇N

(1− N2)2
= 2

N2

(1− N2)2
∇ ln N.

Next we compute the divergence of this expression to get

∆
1

1− N2
= 4

|∇N|2
(1− N2)2

+ 8
N2|∇N|2
(1− N2)3

= 4
|∇N|2

(1− N2)3
(1+ N2),
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where we have used the fact that∆ ln N = 0. This expression is equal to

∆
1

1− N2
= |∇ 1

1− N2
|2(1+ N2)(

1− N2

N2
).

After inserting back the coefficient 2mand using the identity (35) we get

∆ŝ =
1+ N2

ŝ
|∇ŝ|2.

Finally, using the identity (36) we have

N2
+ 1
ŝ

= 2
ŝ +m
ŝ + 2m

1
ŝ
=

2
ŝ + 2m

(1+
m

(ŝ + 2m)N2
).

✷

The asymptotic behavior of̂s(p), whenr(p)→ ∞ is deduced from Proposition 6 and we have

(37) ŝ(p) =
2m

2m
r(p) +O( 1

r(p)3 )
− 2m= r(p) − 2m+O(

1
r(p)

),

if r(p) is big enough. This asymptotic expression will be important and will be used many times later.

The reason why we have expressed the Laplacian ofŝ in the form (34) was to make it comparable

with the Laplacian ofs, that satisfies the inequality

(38) ∆s ≤ 2
s + 2Pm

(1+
Pm

(s + 2Pm)N2
)|∇s|2.

in a certainbarer senseas is explained in Proposition 10. In the equation aboveP is equal to the expres-

sion

P =
A

16πm2
,

and will be calledthe Penrose quotient. Note that the Penrose inequalityA ≤ 16πm2 holds iff P ≤ 1.

Note too that wherevers is smooth we have|∇s|2 = 1. We have included such factor in (38) to make the

comparison to (34) more evident.

The fact that the inequality (38) holds in a barer sense will allow us to assume, when comparings

to ŝ, thats is a smooth function. This fact will be further explained in Theorem 2. We now introduce a

Proposition describing thesensein which inequality (38) holds.

Proposition 10 Let (Σ, g, ln N) be an asymptotically flat static solution with regular and connected hori-

zon. Let{pi}i=∞i=1 be a sequence of points inΣ converging to p inΣ\H. Let{Γi}i=∞i=1 be a sequence such that

lim i→0 Γi ↓ 0, Γ1 ≤ Γ0 with Γ0 regular (Notation 1) and{pi , i = 1, . . . , i = ∞} ⊂ Σ \ΩH,HΓ0
. Consider the

sequence of distance functions{sΓi (p) = dist(p,HΓi )}i=∞i=1 . Then, there is sequence of continuous functions

s̃Γi such that for eachΓi :

1. s̃Γi is defined on the domainΣ \ΩH,HΓi
,
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2. s̃Γi is smooth at pi ,

3. s̃Γi ≥ sΓi , s̃Γi (pi) = sΓi (pi) and |∇s̃|2(pi) = 1.

4.

∆s̃Γi (pi) ≤ 2
1

s̃Γi (pi) + ãi
(1+

ãi

2(s̃Γi (pi) + ãi)N2(pi)
)|∇s̃Γi |2(pi),

where{ãi} is a sequence such thatlim i→∞ ãi = 2mP.

5. Moreover,{s̃Γi } converges uniformly in C0 to s(p) = dist(p,H) in the sense that

lim
i→∞

sup
q∈Σ\ΩH,HΓi

|s̃Γi (q) − s(q)| = 0.

The proof of this Proposition will be a direct consequence ofthe following Proposition in Riemannian

geometry. We will use the following notation and terminology.

Notation 2 Let (Σ, g) be a complete Riemannian manifold with non-empty and connected boundary∂Σ.

The inner-normal bundleN(∂Σ) of Σ at ∂Σ is defined as the set of vectorsv(q), normal to∂Σ at q, and

pointing inwards toΣ. We will consider the exponential map exp: N(∂Σ) → Σ such that to every

v(q) ∈ N(∂Σ) assigns the end point of the geodesic segment of length|v(q)| that start at q with velocity

v(q)/|v(q)|.

Proposition 11 Let (Σ, g) be a complete Riemannian three-manifold, not necessarily compact. LetS1 be

an immersed smooth surface separatingΣ into two connected (open) componentsΣ1 andΣ2. Let p be a

point inΣ1 andγq,p be a geodesic segment minimizing the distance between p and∂Σ1 = S1, starting at

q ∈ ∂Σ1 and ending at p. We can writeγq,p(τ) = exp(τv(q)), τ ∈ [0, 1], with v(q) = l(γq,p)n(q) where n(q)

is the inward unit-normal vector to∂Σ1 at q. If the differential of the exponential map exp: N(∂Σ1)→ Σ1

is not injective atv(q), then for every smooth surfaceS2 immersed inΣ1 ∪ S1 such that

1. S2 touchesS1 only at q,

2. The second fundamental formsΘ1(q) andΘ2(q) of S1 andS2 (respectively) at q and defined with

respect to n(q) satisfy

Θ2(q) > Θ1(q).

we have,

1. γq,p is the only geodesic segment minimizing the distance between p andS2,

2. The exponential map exp: N(∂Σ̃1)→ Σ̃1 is injective atv(q), whereΣ̃1 is the connected component

of Σ \ S2 containingS1.

Proof:
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First it is clear thatγp,q is the only geodesic segment minimizing the distance between p andS2 for

S2 touchesS1 only atq. This proves the firstitemof the claim.

To prove the second suppose on the contrary that the exponential mapexp : N(∂Σ̃1) → Σ̃1 is not

injective atv(q). Then there is a curvew(λ), λ ∈ [0, λ1] of vectors inN(Σ̃) of norm (for all λ) equal

to l(γp,q), such thatw(0) = v(q) and such thatd exp(w′(0)) = 0. ThereforeJ(s) = d exp( s
l(γp,q)w

′(0) is

a Jacobi field such thatJ(s) , 0 for any s ∈ [0, l(γp,q)). Let α(s, λ), (s, λ) ∈ [0, l(γp,q)] × [0, λ1] be a

smooth one-parameter family of curves such that∂λα(s, 0) = J(s) and such that∂sα(0, λ) ∈ N(Σ̃1). Then

becauseJ(s) is a Jacobi field we have that the second variation of the length of the curvesαλ(s) = α(s, λ)

(variation with respect toλ) is equal to zero6. On the other hand consider the curves ¯α(s, λ) = α(s, λ),

with (s, λ) ∈ [0, s(λ)] × [0, l(γp,q)] where the pointα(s(λ), λ) is the intersection ofα(s, λ) (a curve as a

function ofs) andS1. Now, because of the conditon initem 2,Θ2(q) > Θ1(q), the second variation (with

respect toλ) of ᾱ is positive. Thus the second variation (with respect toλ) of the length of the curves

α̃(s, λ) = α(s, λ), (s, λ) ∈ [s(λ), l(γp,q)] × [0, λ1] is negative, which is a contradiction asγp,q is length

minimizing betweenp andS1. ✷

Proof (of Proposition 10):

Letγpi ,qi , qi ∈ HΓi be a length minimizing geodesic joiningpi andHΓi . Suppose first thatsΓi is smooth

at pi for eachi. Then we claim that taking̃sΓi = sΓi is enough. It is clear that theitems 1,2,3and5 of the

claim are satisfied with this choice. We need therefore to check that there is sequence ˜ai for which the

equation initem 4is satisfied and limi→∞ ãi = 2mP. For this we are going to use the monotonicity, for

everya ofM = Ma an overγpi ,qi , and then we will chosea conveniently (which will be our choice of

ãi). Of courseM is defined, for eachi, for the congruencesFi of length minimizing geodesics segments

to HΓi . Thus we have

θ(pi)
2

(sΓi (pi) + a)2N2(pi) − (sΓi (pi) + a)N2(pi) =Ma(pi) ≤ Ma(qi).

Solving forθ(pi) = ∆sΓi (pi) we get

∆sΓi (pi) ≤
2

(sΓi (pi) + a)
(1+

MΓi (qi)

(sΓi (pi) + a)N2(pi)
).

We need now to show that we can chosea for eachi (thus havinga = ãi) in such a way thatMΓi (qi) ≤
ãi/2. Therefore we need to have

MΓi (qi) =
θΓi (qi)

2
a2N2(qi) − aN(qi)2 ≤ a

2
.

6Although it is a standard fact in Riemannian geometry, the reader can check this fact in pages 227-228 of [9]. The proof there
is for Jacobi fields vanishing at the two extreme points, but it is simply adapted to this situation as well.
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Thus we chose

(39) a = sup
q∈HΓi
{
2(1

2 + N(q)2)

θ(q)N2(q)
}.

Now, the numerator tends to one and the denominator, becauseof equation (21), tends to 2|∇N|H =
8πm/A = 1/(2mP). The claim in this case follows.

If on the contrary the functionssΓi are not smooth atpi , then we know by Proposition 11 that the

distance functions̃sΓi to a hypersurfacẽHΓi included inΩH,HΓi
will be smooth atpi provided they touch

HΓi only atqi and have strictly grater second fundamental form atqi. Besides these last two conditions

nothing else is required on the hypersurfacesH̃Γi for s̃Γi to be smooth atpi . Thus, it is clear that if we

chose the hypersurfaces̃HΓi close enough toHΓi (but satisfying the two requirements) and ˜ai using the

same formula as in equation 39 (but withq varying onH̃Γi ) thens̃Γi will satisfy items 1- 5of the claim.

✷

Theorem 2 (Distance comparison).Let(Σ, g, ln N) be an asymptotically flat static solution with regular

and connected horizon. Then we have

(40)
2m

1− N2(p)
− 2m= ŝ(p) ≤ max{1, 1

P
}s(p) = max{1, 16πm2

A
}dist(p,H),

for all p in Σ, where P is the Penrose quotient. Moreover

lim
s(p)→∞

ŝ(p)
s(p)

= 1, and lim
s(p)→0

ŝ(p)
s(p)

=
1
P
,

Proof:

We will consider the quotient̂s/s as a function onΣ \ H. Let us first find the boundary conditions,

namely limŝ(p)/s(p) whens(p) → ∞ ands(p) → 0 (at infinity and at the horizon respectively). From

Proposition 8 and the estimation (37) we deduce

lim
s(p)→∞

ŝ(p)
s(p)

= 1.

To calculate the quotient at the horizon we proceed like this. Consider the congruence of geodesics with

respect tog, emanating perpendicularly toH and parameterized by the arc lengthτ which is measured

from the initial point of the geodesic atH. Any given coordinate system{x̄ = (x1, x2)} on an open set

of H can be propagated along the congruence to the level sets of the distance function with respect tog,

namely theτ0-level sets{τ = τ0} and we can write

g = dτ2 + hi j (x̄, τ)dxidxj,
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and

(41) ŝ(τ, x̄) =
2m

1− N2(τ, x̄)
− 2m= 2m|∇N|2Hτ2 +O(τ3).

We note then that becauseH is totally geodesic, the second fundamental form is zero andwe have

∂τhi j (τ, x̄)
∣

∣

∣

∣

∣

τ=0
= 0.

Thus

(42) g = dτ2 + hi j (0, x̄)dxidxj +O(τ2).

Combining (41) and (42) we get

g = N2g = |∇N|2Hτ2(dτ2 + hi j (0, x̄)dxidxj) +O(τ3)dτ2 +O(τ4)hi j dxidxj.

From this expression it is simple that if{pi} is a sequence inΣ \ H converging to a point inH we have

(43) s(pi) = |∇N|H
τ(pi)2

2
+O(τ(pi)

3).

We can combine (41) and (43) to conclude that for any sequence{pi} in Σ \H converging to a point inH

we have

(44) lim
ŝ(pi)
s(pi)

= 4m|∇N|H.

Now, |∇N|H is equal to 4πm/A as can be seen by integrating∆N = 0 betweenSr = {p/r(p) = r} andH

and taking the limit whenr → ∞. With this value of|∇N|H we get from (44)

lim
s(p)→0

ŝ(p)
s(p)

=
16πm2

A
=

1
P
.

We would like now to comparês to s using (34) and (38). For this purpose it is simpler to consider

the dimensionless quantities ˆu = ŝ/2mandu = s/2mP. In terms of them (34) and (38) become

(45) ∆û =
2

û+ 1
(1+

1
2(û+ 1)N2

)|∇û|2,

(46) ∆u ≤ 2
u+ 1

(1+
1

2(u+ 1)N2
)|∇u|2,

We will consider now the quotientφ = û/u and note that the boundary conditions atH and at infinity

become, respectively, lims(p)→0 û(p)/u(p) = 1 and lims(p)→∞ û(p)/u(p) = P. If we prove that ˆu/u ≤
max{1,P} then we will be proving (40). Thus we will proceed by contradiction and assume that there is a
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point p̄ ∈ Σ\H such that ˆu(p̄) > max{1,P}u(p̄) and that such point is an absolute maximum for ˆu/u (note

the boundary conditions). We will assume below that the function s is smooth at ¯p, or, equivalently that

u is smooth at ¯p. Otherwise use the fact thats satisfies equation (38) in a barer sense as follows. Replace

s by sΓ for Γ sufficiently small in such a way that ˆu/uΓ, with uΓ = sΓ/2mPstill has a maximum greater

than max{1,P}, say at ¯̄p. Then substitute once moresΓ by s̃Γ ≥ sΓ as in Proposition 10 and consider

thus the quotient ˆu/ũΓ, with ũΓ = s̃Γ/2mP, which still has a maximum greater than max{1,P} at ¯̄p. If Γ

is sufficiently small we would reach a contradiction following the same argument as below.

We compute

(47) ∆
û
u
=
∆û
u
− 2
< ∇û,∇u >

u2
− û

u2
∆u+ 2

û
u3
|∇u|2.

Because ˆu/u reaches an absolute maximum at ¯p we have∇(û/u|p̄) = 0 and thus

(48)
∇û
û

∣

∣

∣

∣

∣

p̄
=
∇u
u

∣

∣

∣

∣

∣

p̄
,

with |∇u|2(p̄) = 1/2mP , 0. If we use (48) in (47) we note that the second and fourth terms on the

right hand side cancel out at ¯p. Thus we will get a contradiction of the fact that ˆu/u reaches an absolute

maximum at ¯p if we can prove that the sum of the first and third terms on the right hand side of (47) is

positive atp̄ (the Maximum Principle). We will prove that in what follows.

We compute

∆
û
u

∣

∣

∣

∣

∣

p̄
=

1
u2(p̄)

(u∆û− û∆u)
∣

∣

∣

∣

∣

p̄
.

and using (45) and (46) we get the inequality

∆
û
u

∣

∣

∣

∣

∣

p̄
≥ 2

u2
(

u
(1+ û)

(1+
1

2(1+ û)N2
))

û2

u2
|∇u|2 − û

(1+ u)
(1+

1
2(1+ u)N2

)|∇u|2)
∣

∣

∣

∣

∣

p̄
.

Thus we would like to prove that

(49)
û

1+ û
(1+

1
2(1+ û)N2

)
∣

∣

∣

∣

∣

p̄
>

u
1+ u

(1+
1

2(1+ u)N2
)
∣

∣

∣

∣

∣

p̄
.

Recalling from (36) thatN2
= û/(1+ û) and substituting that into (49) we deduce that we would liketo

show that
û

(1+ û)
(1+

1
2û

)
∣

∣

∣

∣

∣

p̄
>

u
1+ u

(1+
1+ û

2(1+ u)û
)
∣

∣

∣

∣

∣

p̄
.

We will arrange now this equation in a different form. To this, right hand termu/(1+ u) is moved to the

left hand side, while the left hand term 1/(2(1+ û)) is moved to the right hand side. In this way we obtain

a new inequality where the left hand side is

û
1+ û

− u
1+ u

∣

∣

∣

∣

∣

p̄
=

û− u
(1+ u)(1+ û)

∣

∣

∣

∣

∣

p̄
,
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and where the right hand side is

u(1+ û)
2û(1+ u)2

− 1
2(1+ û)

∣

∣

∣

∣

∣

p̄
=

1
2û(1+ û)(1+ u)2

(u(1+ û)2 − û(1+ u)2)
∣

∣

∣

∣

∣

p̄
.

This last expression can be further arranged into

1
2û(1+ û)(1+ u)2

(û− u)(ûu− 1)
∣

∣

∣

∣

∣

p̄
.

Thus combining the results on the left and right hands we conclude that we would like the inequality

û− u
(1+ u)(1+ û)

∣

∣

∣

∣

∣

p̄
>

1
2û(1+ û)(1+ u)2

(û− u)(ûu− 1)
∣

∣

∣

∣

∣

p̄
,

to be satisfied. Thus we would like to have

2(û− u)û(1+ u)
∣

∣

∣

∣

∣

p̄
> (û− u)(ûu− 1)

∣

∣

∣

∣

∣

p̄
,

but because we are assuming ˆu(p̄) > max{1,P}u(p̄) ≥ u(p̄) the inequality above is clearly satisfied.✷

3.5 The Penrose inequality.

In this section we will prove the Penrose inequality for asymptotically flat static solutions with regular

and connected horizon. We start by observing and interesting Corollary to Theorem 2.

Corollary 2 (To Theorem 2)Let (Σ, g, ln N) be an asymptotically flat static solution with connected and

regular horizon. Suppose that the Penrose inequality does not hold, namely, assume that the Penrose

quotient P= A
16πm2 is greater than one. Then, for any divergent sequence of points {pi}, the associated

coordinate-distance lag is greater or equal than zero, namely δ̄({pi}) ≥ 0.

Proof:

If P > 1 then max{1, 1
P} = 1 and from Theorem 2 we have then

ŝ(p) =
2m

1− N2(p)
− 2m≤ s(p), for all p ∈ Σ.

Evaluating this inequality at{pi} and using the asymptotic ofŝ described in equation (37) we get

0 ≤ s(pi) − r(pi) + 2m+O(
1

r(pi)
),

Therefore

0 ≤ lim sup
i→∞

s(pi) − r(pi) + 2m= δ̄({pi}).

as desired. ✷
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The following Proposition however shows (in particular) that if the Penrose inequality does not hold

then there is a divergent sequence{pi} whose coordinate-distance lag is negative, namelyδ̄({pi}) < 0.

The two results thus show the Penrose inequality on asymptotically flat static solutions with regular and

connected horizon.

Proposition 12 Let (Σ, g, ln N) be an asymptotically flat static solution with regular and connected hori-

zon H. Then, there is a divergent sequence{pi} such that

δ̄({pi}) ≤ m(1− P).

In particular if P > 1 thenδ̄({pi}) < 0.

Proof:

Let {Γi}i=∞i=1 be a sequence such thatΓi ↓ 0 (with Γ1 ≤ Γ0 andΓ0 regular as in Notation 1), and let

{r i}i=∞i=1 be a sequence such thatr i ↑ ∞ (andr1 as in Proposition 6). Consider the congruence of length

minimizing geodesicsF emanating perpendicularly toHΓi . The geodesic segment,γi , minimizing the

length betweenHΓi andSr i is clearly inF . Let pi be the point ofγi at Sr i , let qi be the initial point at

HΓi and letv(qi) the (unit) velocity ofγi at qi . γi is naturally perpendicular toSr i at pi and toHΓi at qi .

Consider now the exponential mapexp : Ni → Σ, whereNi is the inner-normal bundle ofΣ \ ΩH,HΓi

at HΓi as in Notation 2. Assume that the differential of the exponential map is smooth at the point

l(γi)v(qi) in Ni , if not, work instead with a suitable functioñsΓi as in Proposition 10. Note that, in the

notation of Proposition 10, we havel(γi) = sΓi (pi). Then, there isǫi such that the surface defined by

S̄i = {exp(l(γi)v(q)), q ∈ BHΓi
(qi, ǫi)} is smooth. Moreover̄Si is tangent toSr i at pi , its mean curvature is

equal to the mean curvatureθ of F restricted to it, and, becauseγi is length minimizing betweenSr i and

HΓi , it lies inside the region enclosed byHΓi andSr i . Therefore from the standard comparison of mean

curvatures we have

θ(pi) ≥ θr i (pi),

whereθr i is the mean curvature ofSr i . Consider nowMwith a = A/8πmand overγi . AsM is monotonic

we have

θ(pi) ≤
2

sΓi +
A

8πm

+
2M(qi)

(sΓi +
A

8πm)2N2(pi)
.

Now, to use this equation we need several facts. First, from Proposition 7 we haveθr i = 2/r i + 2m/(r2
i )+

O(1/r3
i ). Therefore we have

(50)
2
r i
+

2m
r i(r i − 2m)

+O(1/r3
i ) ≤ 2

sΓi +
A

8πm

+
2M(qi)

(sΓi +
A

8πm)2N2(pi)
.

We can arrange this better as

(51)
2(sΓi +

A
8πm − r i)

r i(sΓi +
A

8πm)
+

2m
r i(r i − 2m)

− 2M(qi)

(sΓi +
A

8πm)2N2(pi)
≤ O(1/r3

i ).
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Secondly, from Proposition 21 we have limM(qi) = |∇N|H( A
8πm)2

=
A

16πm. Finally, we have lims(pi) −
sΓi (pi) = 0 and from Proposition 8 it is limr i/sΓi = 1. Multiplying equation (51) bys2

Γi
, taking the

limsup while using the facts described above gives finally

δ̄({pi}) = lim sups(pi) − r i + 2m≤ m(1− P).

as desired. ✷

Using Corollary 2 and Proposition 12 we deduce the Penrose inequality.

Proposition 13 (The Penrose inequality).Let (Σ, g,N) be an asymptotically flat static solution with a

regular and connected horizon H. Let A be the area of H and m theADM mass of the solution. Then

(52) A ≤ 16πm2.

3.6 The opposite Penrose inequality.

In this Section we prove theopposite Penrose inequalitynamely thatA ≥ 16πm2. The proof will follow

after carefully studying the behavior of the quotientŝ/s at the singularity ofg, namely the (unique)

horizonH, and using then the distance comparison in Theorem 2. We willdenote byκ the Gaussian

curvature of the two-metric onH inherited fromg.

Proposition 14 Let(Σ, g,N) be an asymptotically flat static solution with regular and connected horizon.

Consider ag-geodesicγ starting perpendicularly from H at q, and parameterized with respect to theg-

arc length ofγ from q,τ. Defineˆ̂s(γ(τ)) =
∫ τ

0
N(γ(τ))dτ. Then we have

(53)
d

d ˆ̂s

ŝ

ˆ̂s

∣

∣

∣

∣

∣

q
= 8m(

4πm
A

)2 − 2mκ
∣

∣

∣

∣

∣

q
.

Proof:

Note that, as is written in the statement of the Proposition,we will work in the natural representation

(Σ, g,N) of the static solution.

Now first we note thatd ˆ̂s(τ)/dτ = N(α(τ)). Derivatives with respect toτ will be denoted by a prima,

i.e. f ′(α(τ))′ = d f(α(τ))/dτ. We compute (whenτ , 0)

(54)
d

d ˆ̂s

ŝ

ˆ̂s
=

2m((2 N′

1−N2 + 2 N2N′

(1−N2)2 ) ˆ̂s − 2m N2

(1−N2) )

ˆ̂s2
.

We want to calculate now the limit of this expression whenτ → 0. We will separate the right hand side

of (54) into two terms and calculate the limit for each one of them separately. The first limit we will

calculate is

(55) lim
τ→0

4mN2N′

(1− N2)2 ˆ̂s
= 4m|∇N|H lim

τ→0

N2

ˆ̂s
,
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which arises from the middle term on the right hand side of equation (54). The right hand side of (55)

was obtained using thatN′(τ)→ |∇N|H and (1− N2)2→ 1. We calculate now the limit on the right hand

side of (55) using L’Hôpital rule and we have

lim
τ→0

N2

ˆ̂s
= lim
τ→0

2N′ = 2|∇N|H .

Thus we get

(56) lim
τ→0

4mN2N′

(1− N2)2 ˆ̂s
= 8m(|∇N|2H) = 8m(

4πm
A

)2.

The second limit that we will calculate is

(57) lim
τ→0

2m
1− N2

(2N′ ˆ̂s − N2)
ˆ̂s2

= 2m lim
τ→0

(2N′ ˆ̂s − N2)
ˆ̂s2

.

which arises from the combination of the first and third term on the right hand side of (54). Again, to

obtain the right hand side of (57), we use the fact that the factor 2m/(1− N2) would be, in the limit, 2m.

We calculate the limit on the right hand side of (57) by L’Hôpital rule, and obtain

(58) 2mlim
τ→0

(2N′ − 2N′ + 2ˆ̂sN′′

N )

2ˆ̂s
= 2m Ric(n, n),

wheren = α′(0) is the outwardg-unit normal vector toH atα(0). To obtain the right hand side above we

used the static equation (2), namelyN′′(α(0)) = Ric(α′(0), α′(0))N(α(0)) (note thatα(τ) is ag-geodesic).

Recall now the structure equation 2κ(q)+ |Θ|2(q)− θ2(q) = R(q)− 2Ric(n(q), n(q)), whereq is a point

in H. Again,n is the outwardg-unit normal vector toH at q. Θ(q) andθ(q) are the second fundamental

forms of H, calculated usingg, and evaluated atq. For a regular horizon we know thatΘ = 0, θ = 0.

R andRic are the scalar and Ricci curvatures ofg respectively. For a static solution (Σ, g,N) it is R = 0

everywhere.κ, as said above is the Gaussian curvature ofH with the two-metric inherited fromg. Thus,

from the structure equation we get that for allq in H we haveκ(q) = −Ric(n, n). Using this fact in (58)

and combining (58) and (56) to complete the limit (54), we obtain (53). ✷

Proposition 15 Let(Σ, g,N) be an asymptotically flat static solution with regular and connected horizon.

If there is a point q at H for which

(59) κ(q) < 4(
4πm

A
)2.

then there is a point p inΣ \ H such that̂s(p)/s(p) > 1/P, where P is the Penrose quotient.

Proof:
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Suppose there is a pointq in H for which inequality (59) hods. By Proposition 14, there is ag-

geodesic emanating perpendicularly toH for which

d

d ˆ̂s

ŝ

ˆ̂s
> 0.

Also applying L’hôpital rule we get

lim
τ→0

ŝ

ˆ̂s
= lim
τ→0

4mNN′

(1−N2)2

N
= 4m|∇N|H =

1
P
.

Therefore we havês(γ(τ))/ ˆ̂s(γ(τ)) > 1/P for τ small. Now we observe thatˆ̂s(γ(τ)) ≥ s(γ(τ)) becauses

is theg-distance function toH and ˆ̂s(γ(τ)) is theg-length ofγ betweenγ(0) andγ(τ). Thus, forτ small

we have
ŝ(γ(τ))
s(γ(τ))

=
ŝ(γ(τ))
ˆ̂s(γ(τ))

ˆ̂s(γ(τ))
s(γ(τ))

≥ ŝ(γ(τ))
ˆ̂s(γ(τ))

>
1
P
.

✷

Corollary 3 Let (Σ, g,N) be an asymptotically flat static solution with regular and connected horizon

H. Then, H is homeomorphic to a two-sphere and the inverse Penrose inequality holds, A≥ 16πm2.

Moreover if the Penrose inequality holds, namely A≤ 16πm2, thenκ = 4π/A and the horizon is round.

Proof:

By Proposition 15 if there is a pointq in H for which κ(q) < 4(4πm/A)2 then there is pointp in

Σ \ H such that ˆs(p)/s(p) > 1/P but this contradicts the distance comparison of Theorem 2. Therefore

κ ≥ 4(4πm/A)2 and, by Gauss-Bonnet,H must be homeomorphic to a two sphere. Moreover

∫

H
κdA= 4π ≥ 4(

4πm
A

)2.

Thus

A ≥ 16πm2,

which finishes the first part of the claim. Suppose now thatA ≤ 16πm2 then, asκ ≥ 4(4πm/A)2 we must

havek = 4(4πm/A)2
= 4π/A which finishes the claim. ✷

3.7 The uniqueness of the Schwarzschild solution.

3.7.1 Further properties of the coordinate-distance lag.

The proof of the uniqueness of the Schwarschild solutions does not follows directly in our setting from

the equalityA = 16πm2. Indeed it is required first to prove that for any divergence sequence{pi} the

associated coordinate-distance lagδ̄({pi}) is zero. We advocate now to prove this intermediate step. We

need two preliminary Propositions. We start showing that|∇ŝ| ≤ 1.
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Proposition 16 Let (Σ, g, ln N) be an asymptotically flat static solution with regular an connected hori-

zon. Then,|∇ŝ|g ≤ 1.

Proof:

We observe first that lims(p)→∞ |∇ŝ|g(p) = 1. But we also have lims(p)→0 |∇ŝ|g = 1. To see this last

claim we compute

|∇ŝ|g(p) =
4m

(1− N2(p))2
|∇N(p)|g → 4m|∇N|H.

But we already know from Corollary 3 thatP = 1 and thus|∇N|H = 4πm/A = 1/4m. The claim follows.

We show now that there cannot exist a pointp in Σ\H for which |∇ŝ|(p) > 1. We will assume without

loss of generality thatm= 1. The assumption simplifies the writing. Define

ŝα =
1

1− N2α
− 1,

and thus

N2α
=
ŝα

ŝα + 1
.

Then we compute

2αN2α−1∇N =
1

(ŝα + 1)2
∇ŝα,

and thus
∇N
N
=

1
2αŝα(ŝα + 1)

∇ŝα.

But ∆ ln N = 0 and then∇(1/(ŝα(ŝα + 1))∇ŝα) = 0 which can be written as

(60) ∆ŝα =
2ŝα + 1
ŝα(ŝα + 1)

|∇ŝα|2.

The interesting thing about this expression is that it does not depend explicitly onα. We note too that we

have

(61) <
∇N
N
,∇ŝα >=

1
2αŝα(ŝα + 1)

|∇ŝα|2.

The crucial and obvious observation about the family{ŝα} is that given any open setΩ of compact closure

Ω̄ ⊂ Σ \ H thenŝα converges uniformly inC2 to s overΩ̄ asα → 1. Thus it follows from the limits of

s at H and infinity observed at the beginning that if max{|∇s|(q), q ∈ Σ} > 1 then there is anǫ > 0 such

that for everyα with |α − 1| < ǫ the function|∇ŝα| posses at least one local maximum greater than one.

For a givenα we will denote bypα a point at which a local maximum ofŝα greater than one takes place.

We will use Weitzenböck’s formula

(62)
1
2
∆|∇ŝα|2 = |∇∇ŝα|2+ < ∇∆ŝα,∇ŝα > +2 <

∇N
N
,∇ŝα >2,
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and we will use it evaluated atpα. We note first that for every vectorw ∈ TpαΣwe have< ∇w∇ŝα,∇ŝα >=
0. Because of this we have|∇∇ŝα|2 = |∇∇ŝα|2TpαΣ

= |∇∇ŝα|∇ŝα(pα)⊥ where∇ŝα(pα)⊥ is the perpendicular

subspace to∇ŝα in TpαΣ. Thus we have

|∇∇ŝα|2(pα) ≥
1
2

tr∇ŝα(pα)⊥∇∇ŝα =
1
2
∆ŝα(pα).

This expression will be used in the first term on the right handside of equation (62). For the second

instead we note from equation (60) that

∇∆ŝα
∣

∣

∣

∣

∣

pα
= −(

1
ŝ2
α

+
1

(ŝα + 1)2
)|∇ŝα|2

∣

∣

∣

∣

∣

pα
.

For the third term on the right hand side of equation (62) we will use equation (61). All together gives

for equation (62) the expression

0 ≥ 1
2
∆|∇ŝα|2

∣

∣

∣

∣

∣

pα
≥ |∇ŝα|2(

(2ŝα + 1)2

2(ŝ2
α(ŝα + 1)2

−
ŝ2
α + (ŝα + 1)2

ŝ2
α(ŝα + 1)2

+
2

4α2

1
ŝ2
α(ŝα + 1)2

)
∣

∣

∣

∣

∣

pα
.

Further expanding the term in parenthesis we obtain

0 ≥ 1
2
∆|∇ŝα|2

∣

∣

∣

∣

∣

pα
≥ |∇ŝα|2

2ŝ2
α(ŝα + 1)2

(−1+
1
α

)
∣

∣

∣

∣

∣

pα
.

Choosingα such that 1− ǫ < α < 1 we get a contradiction. This finishes the proof of the Proposition. ✷

Define nowδ = s − ŝ. We will study δ, and it will be shown that it has asymptotically positive

Laplacian (in a barer sense).

Proposition 17 Let (Σ, g, ln N) be an asymptotically flat static solution with regular and connected hori-

zon H. The Laplacian ofδ has the following asymptotic expression

∆δ ≤ −δ
(s+ 2m)2

+O(
1
s3

),

in the barer sense.

Note thatδ ≥ 0. However note too that because there are sequences{pi} for whichδ(pi)→ 0, it cannot

be said that∆δ becomes negative outside a sufficiently big compact set. The asymptotic expression is

however still valid.

Proof:

Recall first the expression for∆ŝ in equation (34). We find first the asymptotic expression for|∇ŝ|2.

But observing that̂s = 2m( 1
1−N2 − 1) it is easily deduced from the asymptotic expression ofN that

∇ŝ = ∇r +O(1/r2). Thus|∇ŝ|2 = 1+ (1/r2) = 1+O(1/s2).

Now subtract to the expression (38) withP = 1 and|∇s|2 = 1, the expression (34). That gives

∆δ ≤ 2
s + 2m

(1+
m

s + 2m
) − 2
ŝ + 2m

(1+
m

ŝ + 2m
) +O(

1
s3

) =
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=
−2δ

(s + 2m)(ŝ + 2m)
+ 2m

(ŝ2 − s2)
(s + 2m)2(ŝ2 + 2m)2

+O(
1
s3

).

Thus

∆δ ≤ −δ
(s + 2m)2

+O(
1
s3

).

as claimed. ✷

We prove now a crucial property ofδ, namely that it is Lipschitz “at large scales”. To explain the

concept we need to introduce some terminology. Let{(r, θ, ϕ)} a be a coordinate system as in Proposition

6. Let D be the annulus inR3, D = {(r, θ, ϕ), 1 ≤ r ≤ 2}. For anyλ > 0 sufficiently small consider the

map fromD into Σ given byx̄→ x̄/λ. Denote byδλ the pull-back ofδ to D, namelyδλ(x̄) = δ(x̄/λ). Let

x̄1 and x̄2 be two points inD. Denote byφ(x̄s, x̄2) the angle formed by ¯x1 and x̄2, namely< x̄1, x̄2 >=

|x̄1||x̄2| cosφ(x̄1, x̄2). We would like to show that there isλ0 > 0 andK > 0 such thatδλ is Lipschitz with

constantK for any 0< λ < λ0. The next Proposition explains this property and two further that will also

be needed later. It is perhaps the most technical, but otherwise straightforward Proposition of the article.

Proposition 18 Let δ = s − ŝ. Then

1. There exists K> 0 andλ0 > 0 such that for anȳx1, x̄2 in D and0 < λ < λ0 we have

|δλ(x̄1) − δλ(x̄2)| ≤ K|x̄1 − x̄2|,

2. Letx̄1 andx̄2 be two points in D belonging to the same radial line, namelyx̄1 = βx̄2. Then for any

sequence{λi} ↓ 0 we have|δλ1(x̄1) − δλi (x̄2)| → 0.

Proof:

In Σ consider a coordinate sphereSr0 = {x̄/r(x̄) = r0} (where{x̄} is a coordinate system as in Propo-

sition 6). The distance function fromSr0 to H is Lipschitz, say with constantK1, namely for anyq0, q1

in Sr0 we have|s(q0) − s(q1)| ≤ K1|φ(q0, q1)|.
Let now x̄1 be a point inD. Let λ such that|x̄1|/λ >> r0. Denotep1 = x̄1/λ. Let γ1 be the length

minimizing geodesic joining ¯x1/λ to H. Let q1 be the point of intersection ofγ1 with Sr0. Consider a

rotation of angleφ0 in R3, denote it byRφ0. Also denote byp2 = Rφ0(p1), γ2 = Rφ0(γ1) andq2 = Rφ0(q1).

Let l1 be the length ofγ1 betweenp1 andq1 and letl2 be the length betweenp2 andq2 of γ2.

We will show first that there is a constantK2 > 0 independent onλ such that|l1 − l2| ≤ K2|φ0|. Note

that in the coordinate system{x̄} we haveg = gS + O(1/r3). Supposeγ1 is parameterized with respect

to the arc-length,̄s, provided by the Schwarzschild metricgS. Let l(φ) = l(Rφ(γ1)), where 0< φ < φ0.

Then we have

(63) |∂φl| = |
∫ s̄1

s̄0=0

g(∇∂φγ′, γ′)
g(γ′, γ′)

1
2

ds̄|.
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Moreover

g(∇∂φγ′, γ′) = g((∇∂φ − ∇S
∂φ

)γ′, γ′) + (g − gS)(∇S
∂φ
γ′, γ′) + gS(∇S

∂φ
γ′, γ′).

We note now that the last term on the right hand side of the previous equation is zero, and the first two

terms on the right hand side areO(1/s̄2). Using this in equation (63) we get that|l1 − l2| ≤ K2|φ0| as

desired.

We have now

s(p2) ≤ l2 + s(q2) ≤ l1 + s(q1) + K1|φ0| + K2|φ0| = s(p1) + (K1 + K2)|φ0|.

Becausep1 andφ are arbitrary we have

|s(p1) − s(p2)| ≤ K|φ0|.

Thus for any ¯x1 andx̄2 in D of equal norm,|x̄1| = |x̄2|, andλ (sufficiently small), we have

(64) |δλ(x̄1) − δλ(x̄2)| = |s(
x̄1

λ
) − |x̄1|
λ
+ 2m− s( x̄2

λ
) +
|x̄2|
λ
− 2m| = |s( x̄1

λ
) − s( x̄2

λ
)| ≤ K|φ(x̄1, x̄2)|.

We continue with an observation. Recall that the Ricci curvature ofg decays, inr, asO(1/r3) (in

facts it decays as 1/r4). Consider the annulusDλ = {x̄, λ1/12 ≤ |x̄| ≤ 2} and consider the map fromDλ

into Σ given by x̄→ x̄/λ. Let gλ be the pull-back of the metricg under this map. The from the fact that

|Ric| decays asO(1/r3) we get sup{|Ricgλ(x̄)|gλ/x̄ ∈ Dλ} = O(λ
1
4 ). From this it follows that, asλ tends to

zero, and therefore asDλ tends to the closed ball of radius two minus the origin, the metricsgλ converge

in C1,β (for any 0< β < 1) to the flat metric over any fixed annulusDλ1, 0 < λ1 < 2. Thus for any ¯x ∈ D

and sequence{λi} ↓ 0, length minimizing geodesics,γp, joining p = x̄/λ to H converge inC1 over any

Dλ1 to the radial line passing through ¯x.

What we would like to know now is the “rate” at which the geodesics approach the radial lines. More

precisely, we will study thegS-angleξ, formed by∂r andγ′ at any point alongγ. To this respect we

proceed as follows. Consider the rotational killing fieldsX of the Schwarzschild solution. For everyX,

we have|X|g = r(1+O(1/r)). Given one of theX’s, we compute, along the geodesicγp (againp = x̄/λ)

g(γ′,X)′ = g(γ′,∇γ′X) = g(γ′, (∇γ′ − ∇S
γ′ )X) + gS(γ′,∇S

γ′X) + (g − gS)(γ′,∇S
γ′X).

The second term on the right hand side of the previous equation is zero, while the other two are of the

orderO(1/r2) = O(1/s2). Let q be the first point whereγp reaches the radial sphereSr0 (r0 is fixed)

and let p1 be any intermediate point betweenp andq. Integrate nowg(γ′,X)′ (with respect to theg

arc-length,s) betweens(p1) and the value ofs(q) using the estimate we have found before forg(γ′,X)

to get

|g(γ′,X)(p1) − g(γ′,X)(q)| ≤ c1,
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wherec1 is a constant independent onp1 andq. Note that this inequality is valid for any rotational Killing

field X. Observing that rotational killing fields atSr0 have bounded norm, we get

|g(γ′,X)(p1)| ≤ c2,

wherec2 is a constant. Moreover

gS(γ′,X) = g(γ′,X) + (gS − g)(γ′,X) = g(γ′,X) +O(1/r).

Thus we have

|gS(γ′,X)| ≤ c3,

wherec3 is a constant. Pick now the rotational killing fieldX which is collinear, atp1, to the component

of γ′, gS-perpendicular to∂r . Let ξ be thegS-angle formed by∂r andγ′. We have

|gS(γ′,X)(p1)| = |X|gS(p1)||γ′|gS | sinξ(p1)| ≤ c4,

wherec4 is a constant. So we get

| sinξ| ≤ c5

r
,

wherec5 is a constant. We have

(65)
dr
ds
= gS(∇Sr, γ′) = 1+O(1/r2) = 1+O(1/s2).

We will use this inequality in what follows. Let ¯x1 be a point inD. Let p1 = x̄1/λ and letγ be a geodesic

minimizing the length betweenp1 and H. Let p2 be a point inγ such thatp2 = x̄2/λ with x̄2 in D.

Integrating (65) betweens(p1) ands(p2) we get

r(p1) − s(p1) = r(p2) − s(p2) + |x̄1 − x̄2|O(λ).

Therefore

(66) |δλ(x̄1) − δλ(x̄2)| = |x̄1 − x̄2|O(λ).

We are ready to prove the Proposition. Let ¯x1 and x̄2 be two points inD. Let p1 = x̄1/λ and

p2 = x̄2/λ. Let p3 = x̄3/λ be the point of intersection of the length minimizing geodesic joining p1 to H

and the coordinate sphereS|x̄2/λ|. From (64) and (66) we get

|δλ(x̄1) − δλ(x̄2| ≤ |δλ(x̄1) − δλ(x̄3)| + |δλ(x̄3 − δλ(x2)| ≤ |x̄1 − x̄3|O(λ) + Kφ(x̄3, x̄2).

As |x̄1 − x̄3| ≤ c6dD(x̄1, x̄3), for some constantc6, the item 1of the Proposition follows.Item 2follows

from the fact thatO(λ)→ 0, asλ→ 0. ✷
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The following direct implication will be crucial for the discussion that follows.

Corollary 4 For any sequence{λi} such thatλi ↓ 0, there exists a subsequence{λik} ↓ 0 and a Lipschitz

functionδ0 (depending on{λik}) for whichδλik
converges uniformly toδ0 on D. The functionδ0 is constant

on radial lines.

We would like now to prove that the coordinate-distance lagδ̄({pi}) of any divergent sequence{pi}
is zero. Naturally, this is the same as saying thatδ converges uniformly to zero at infinity. If this is not

the case, then it is simple to see, arguing by contradiction,that we would be in the following situation.

There would exist{λi} with λi ↓ 0 such thatδλi converges uniformly to a Liptschitz function function

δ0 and there would exist pointsx, y in D for which δ0(x) = 0, |x| = 3/2 andδ0(y) > 0, |y| = 3/2 and

|x − y| < 1/2. Assume we are in such situation. Define inD the Euclidean ballsBx = B(x, |x− y|) and

By = B(y, ξ) whereξ is small enough to haveδ0|By > c1 > 0, wherec1 is a constant. Following [7] (pg.

258) we can find a functionh on B̄x such that

1. h
∣

∣

∣

∣

∣

(∂(Bx)\By)
< c2 < 0, wherec2 is a constant,

2. h(x) = 0,

3. ∆gλi h
∣

∣

∣

∣

∣

B̄x

> c3 > 0, wherec3 is a constant andgλi is the scaled metricλ2
i g.

Note that the scaled metricsλ2
i g converge (inC∞) to the flat Euclidean metric. Asδλi converges uniformly

to δ0 we deduce that there isµ0 > 0 such that for any 0< µ ≤ µ0 (andi ≥ i0(µ0)) we have (−δλi+µh)|∂Bx <

µc4 < 0, wherec4 is a constant. We also have lim(−δλi (x) + µh(x)) → 0. It follows that having chosen

i1 big enough, the function−δλi + µh, (µ ≤ µ0), for i ≥ i1 has a maximum onBx. Denote it byzi . If the

functions were to be smooth atzi/λi and therefore−δλi + µh were smooth atzi then one would get a

contradiction to the maximum principle, as fori sufficiently big, one would have

∆gλi
(−δ̃λi + µh)(zi) ≥

µc3

2
> 0.

We explain now how to use Proposition 10 to overcome the case whenzi are not smooth points ofs.

One can replaces by sΓi , for a suitable{Γi} ↓ 0, in the expressionδλi (x) = (s − ŝ)(x/λi) in such a way

that the new expression (−(sΓi − ŝ)+ µh)(x/λi), has a maximum ˜zi on Bx. Further, by Proposition 10 one

can replacesΓi by s̃Γi in such a way that the new expressionδ̃λi (x) = (s̃Γi − ŝ)(x/λi) satisfies

1. −δ̃λi (x) = −(s̃Γi − ŝ)(x/λi) ≤ −(sΓi − ŝ)(x/λi),

2. −δ̃λi (z̃i) = (sΓi − ŝ)(z̃i/λi), and thus−δ̃λi + µh has a maximum at ˜zi on Bx.

3. ∆gλi (−δ̃λi + µh)(z̃i) ≥ µc3

2 .

These three facts now contradict the maximum principle. ✷

We have thus proved

Proposition 19 Let (Σ, g, ln N) be an asymptotically flat static solution with regular and connected hori-

zon. Then for any divergent sequence{pi}, the coordinate-distance laḡδ({pi}) is zero.
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3.7.2 Area and volume comparison.

Proposition 20 Let (Σ, g, ln N) be an asymptotically flat static solution with regular an connected hori-

zon. Consider a sequence{Γi} ↓ 0. LetFΓi be the congruence of length minimizing geodesics to HΓi .

Then for every L> 0 we have

Vol(∪γ∈FΓi ,l(γ)≤L{γ})→ 0,

asΓi ↓ 0. Above{γ} means the set of points inγ.

Proof:

The first goal to achieve is to make the monotonicity ofM to look like acomparison of areasand

consequently acomparison of volumes. Let {Γi} ↓ 0. Consider for eachΓi the congruenceFΓi of length

minimizing geodesics toHΓi . We will work outside the locus at all times. LetdA be the element of area

of the level sets of the congruence. LetsΓi be the distance function toHΓi . Then

θ =
1
A

dA
dsΓi

.

Let γ be a geodesic inFΓi . ConsiderMa with a = 2moverγ. Denote byMΓi the value ofM at the initial

point ofγ in HΓi . Then from the monotonicity ofM we have

(
1

2A
dA
dsΓi

(sΓi + 2m)2 − (sΓi + 2m))N2 ≤ MΓi .

Rearranging terms we get
d

dsΓi

(
dA

(sΓi + 2m)2)
) ≤

2MΓi

N2(sΓi + 2m)2
dA.

We thus get
d

dsΓi

ln
dA

(sΓi + 2m)2
≤

2MΓi

N2(sΓi + 2m)2
.

Integrating we obtain

(67)
dA

(sΓi + 2m)2
≤ dA0

(2m)2
exp(
∫ sΓi

0

2MΓi

N2(sΓi + 2m)2
dsΓi ).

wheredA0 is the element of area ofHΓi . Recalling thatN2
= ŝ/(ŝ + 2m) it is clear that we need an

estimation ofŝ in terms ofsΓi to have an inequality in terms ofsΓi only. We advocate to that in the

following lines. We explain first how to get a relation between s andsΓi and then we explain how to

obtain one in terms of̂s andsΓi .

First recall from (43) that for any pointq in HΓi we have (forΓi small enough) thats(q) = ŝ(q)+O(ŝ
3
2 ).

Now let p be a point inγ. Then we haves(p) ≤ sΓi (p)+ s(q), where hereq is the initial point ofγ at HΓi .

Thuss(p) ≤ sΓ(p) + (1 + ǫ)ŝ(p) whereǫ = O(ŝ(p)
1
2 ). On the other hand let ¯γ be a length minimizing
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geodesic joiningp to H. Let q̄ be the point of intersection toHΓi . Then we have

s(p) = dist(p, q̄) + s(q̄) ≥ sΓi (p) + ŝ(q̄) +O(ŝ(q̄)
3
2 ) ≥ sΓi (p) + (1− ǫ)ŝ(q),

whereǫ = O(ŝ(q)
1
2 ). Thus for every pointp in γ we have

(1− ǫ)ŝ0 + sΓi (p) ≤ s(p) ≤ sΓi (p) + (1+ ǫ)ŝ0,

where we have madês0 = ŝ(q) to simplify the notation. This establishes the relation betweens andsΓi .

We obtain now the desired relation betweensΓi andŝ. We will keep the notation as before. Precisely,γ

will be length minimizing geodesic segment toHΓi andq andq1 will be its initial and final points. From

Proposition 16, we know that|∇ŝ| ≤ 1 therefore for any pointp betweenq andq1 we have

ŝ(q1) − ŝ(p) ≤ sΓi (q1) − sΓi (p),

ŝ(p) − ŝ(q) ≤ sΓi (p).

Using this we have

(1+ ǫ)ŝ0 ≥ ŝ(q) ≥ ŝ(p) − sΓi (p) ≥ ŝ(q1) − sΓi (q1) ≥ ŝ(q1) − s(q1) + (1− ǫ)ŝ0.

Now if s(q1) ≥ L̄ andL̄ = L̄(Γi) is big enough we havês(q1) − s(q1) ≥ −ǫŝ0. As a result we have the

relation

(68) (1+ ǫ)ŝ0 ≥ ŝ(p) − sΓ(p) ≥ (1− 2ǫ)ŝ0.

We have now all the elements to proceed with the proof of the Proposition. Consider the set of the

initial points onHΓi of the geodesics inFΓi whose lengths are greater thanL̄(Γi). Denote such set byΩΓi .

We will show now that asΓi ↓ 0, and therefore asHΓi approachesH, the area ofΩΓi with respect to the

area element induced fromg tends to the total area of the horizonH.

Consider the argument in the exponential function of (67) with the upper limit of integration equal to

L̄. Using the relation (68) we obtain

∫ L̄

0

M0

N2(sΓi + 2m)2
dsΓi =

∫ L̄

0

M0(ŝ + 2m)
ŝ2(sΓi + 2m)2

dsΓi

≤
∫ L̄

0

M0(sΓi + 2m+ (1+ ǫ)ŝ0)

(sΓi + (1− 2ǫ)ŝ0)(sΓi + 2m)2
dsΓi .

This last integral can be further split into

∫ L̄

0

M0

(sΓi + (1− 2ǫ)ŝ0)(sΓi + 2m)
dsΓi + R(ŝ0),
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whereR(ŝ0) is an expression which is easily seen to tend to zero asŝ0 tends to zero. We integrate

now equation (67) indA. After integrating indA, the left hand side tends to 4π for a suitable divergent

sequence of̄L’s. The right hand side is easily integrated to be (discard the termR(ŝ0))

∫

ΩΓi

ŝ0

(ŝ0 + 2m)(2m)2
(

2m
(1− 2ǫ)ŝ0

)
2M0

2m−(1−2ǫ)ŝ0 dAg,

wheredAg = N2dA0 =
ŝ0
ŝ0+2mdA is the element of area induced onHΓi from the metricg. As a result we

get the inequality

(69) 4π ≤
lim supA(ΩΓi )

4m2
lim supŝ

2M0−2m+(1−2ǫ)ŝ0
2m−(1−2ǫ)ŝ0

0 .

Now, from the proof of Proposition 4 it is seen that|M0 − m| ≤ c1ŝ
1
2

0 wherec1 is a positive constant.

Thus we get

ŝ

2M0−2m+(1−2ǫ)ŝ0
2m−(1−2ǫ)ŝ0

0 ≤ ŝc2ŝ
1
2
0

0 → 1, asŝ0→ 0,

wherec2 is a positive constant. Therefore we get from this and equation (69)

16πm2 ≤ lim supA(ΩΓi ) ≤ A = 16πm2,

whereA is the area of the horizon. Thus lim supA(ΩΓi ) = A. This was the crucial estimate. From it,

it will follow that for any L < ∞ fixed, there is a subsequenceΓi j such that the area of the set of initial

points inHΓi j
of the geodesics inFΓi j

whose length is less or equal thanL, tends actually to zero. This

would finish the proof of the Proposition. We do that now. For every j, denote byΩL,Γi j
such set. For

everyq in ΩL,Γi j
let γq be the corresponding geodesic inFΓi j

whose total length is less than or equal to

L. Denote byUL,Γi j
the unionU = ∪q∈ΩL,Γi j

{γq}. Now, recalling thatdV′ = dA, integrating equation (67),

and following the same treatment at the horizon as before gives

Volg(UL,Γi j
) ≤ c(L)Ag(ΩL,Γi j

).

Note that in this equation, the volume is found withg while the area is found withg. As A(Ωi j )→ 0, the

Proposition follows. ✷

The Proposition before has the following quite important Corollary.

Corollary 5 Let (Σ, g, ln N) be an asymptotically flat static solution with regular an connected horizon.

Then

1. s = ŝ and therefores is smooth.

2. |∇ŝ|2 = 1.

3. The integral curves of∇ŝ are geodesics minimizing the length between any two of its points.

39



4. The set of integral curves of∇ŝ form an integrable congruence of geodesics.

Proof:

Let p ∈ Σ \ H. Let {Γi} such thatΓi ↓ 0. Following Proposition 20 there is a sequence{γi} of length

minimizing geodesics toHΓi with initial point qi (at HΓi ), l(γi) → ∞ andγi(s(p)) → p. Let pi be either

the end point ofγi or, if l(γi) = ∞, a point onγi such thats(pi)→ ∞. We have

(70) ŝ(pi) − ŝ(qi) =
∫ s̄(pi )

s̄(qi )=0
< ∇ŝ, γ′ > ds̄= s̄(pi) − s̄(qi) −

∫ s̄(pi )

s̄(qi )
(1− < ∇ŝ, γ′ >)ds̄.

wheres̄ is the arc-length. But by Proposition 19 we have limδ(pi) = s(pi) − ŝ(pi) = 0 and thus we have

lim s̄(pi) − ŝ(pi) = 0 (note that lim|s(pi) − s̄(pi)| = 0). By Proposition 16 we have (1− < ∇ŝ, γ′ >) ≥ 0,

thus from equation (70) we get

0 ≤ lim
∫

(1− < ∇ŝ, γ′ >)ds̄ = 0,

This shows|∇s|(p) = 1. Moreover we have

ŝ(p) = lim ŝ(pi) − ŝ(qi) = lim s̄(pi) − s̄(qi) −
∫ s̄(pi )

s̄(qi )
(1− < ∇ŝ, γ′ >)ds̄ = lim s̄(pi) = s(p).

Becausep is an arbitrary point we have thus proveditems 1,2of the Proposition.

To prove the thirditem we proceed like this. Letγ be an integral curve of∇ŝ with initial point p

and final pointq. Suppose thatγ does not minimize the distance betweenp andq, namely that there is

another curve ˜γ joining p andq and having smaller length. Then

s(q) = s(p) + (s(q) − s(p)) = s(p) + l(γ) < s(p) + l(γ̃) ≤ s(q).

which is a contradiction.

Item 4of the Proposition follows directly from the fact that the congruence is orthogonal to the level

set of any regular value ofs. ✷

3.7.3 The uniqueness of the Schwarzschild solutions.

Theorem 3 Let (Σ, g, ln N) be an asymptotically flat static solution with regular an connected horizon.

Then the solutions is a Schwarzschild solution of positive mass.

Proof:

By Corollary 5 the set of integral curves of∇ŝ is an integrable congruence of geodesics. Recalling

that |∇ŝ| = 1 and∆ŝ = θ, whereθ is the mean curvature of the congruence. Using these facts inequation

(34 we get that

Ma=2m = (
θ(s + 2m)2

2
− (s + 2m))N2

= m,
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over any geodesic of the congruence. The conclusion that thesolution is the Schwarzschild solution

follows from Proposition 2 and the Remark after it. ✷
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