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Manifestly gauge-covariant representation of
scalar and fermion propagators

Adam Latosiński

Max-Planck-Institut für Gravitationsphysik (Albert-Einstein-Institut)
Am Mühlenberg 1, D-14476 Potsdam, Germany

A new way to write the massive scalar and fermion propagators on a background of a

weak gauge field is presented. They are written in a form that is manifestly gauge-covariant

up to several additional terms that can be written as boundary terms in momentum space.

These additional terms violate Ward-Takahashi identities and need to be renormalized by

appropriate counterterms if the complete theory is to be gauge-covariant. This form

makes it possible to calculate many amplitudes in a manifestly gauge-covariant way (at

the same time reducing the number of Feynman diagrams). It also allows to express some

counterterms in a way independent of the regularization scheme and provides an easy way

to derive the anomalous term affecting the chiral current conservation.
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1 Introduction

In a quantum field theory, when one wants to calculate a specific amplitude
in the form of a formal series, one often uses Feynman diagrams [1]. This
is doubtlessly an amazing method which allows to swiftly write a number of
expressions contributing to the desired amplitude. However it is not with-
out weaknesses. Because it is based on a division of the lagrangian into the
free-field lagrangian, the interaction lagrangian and the counterterms, the
individual expressions often do not have the symmetries of the theory if the
parts of the lagrangian do not posses them on their own. One such symmetry
that is never manifestly preserved is the gauge symmetry, since the initially
gauge-invariant terms in the lagrangian are broken up into pieces, and dif-
ferent pieces are treated differently. Eventually the individual expressions
are not gauge-covariant, and even when summed up the gauge-covariance of
the final result is often not visible at once, and is only recovered because of
cancellations between many terms.

The alternative approach by Schwinger [2] and Tomonaga [3] is gauge
covariant, but at the same time it is difficult to calculate with and opaque.

While the development of the numerical method in last decades and rising
power of the computers made it possible to calculate many diagrams with
relative ease, at the same time, by receiving only the final result we lose the
insight on how it came to be. Algorithms that perform the calculations rarely
even give the result in the form of a gauge-covariant formula, producing in-
stead only numerical values that one needs a lot of experience to comprehend
easily. I believe that to preserve the understanding of the gauge theory one
should look for analytical expression if possible, and be more aware of how
certain results are produced. However, the method I’m going to present is
also algorithmic and can be put on a computer if you wish so.

I am going to present a way of obtaining the formulae for scalar and
fermion propagators that are gauge invariant and can be used as a building
block in Feynman diagrams. It is done by trying to express the matter prop-
agators on the background of a gauge field using path-ordered exponentials
and a quasi-local formal series made of exclusively gauge-covariant quanti-
ties. One may be familiar with the following approximation for the quark
propagator in a background of gluon fields:

〈q(x1)q̄(x2)〉 ≈ Pexp
(

− ig

∫ x1

x2

Ga
µ(x)T

adxµ
)

〈q(x1)q̄(x2)〉0 (1)

where Pexp denotes a path-ordered exponential (along some path connecting
points x1 and x2) and subscript 0 refers to free quark fields. Typically, one
needs to average over all possible paths, the concept that is used in the lattice
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gauge theory introduced by Wilson [4]. The idea I follow in this work is to
focus one one path - the straight line - and find the corrections to the formula
above in the form of a series constructed with gauge-covariant operators.

First of all, the corrections I find exhibit nontrivial spinor structure, the
true propagator cannot be expressed simply by multiplying the free propaga-
tor with some function of the gauge field. Notably, amongst other terms in
the propagator, I find one proportional to γ5, which can be used to obtain the
chiral anomaly (ABJ-anomaly [5, 6]) in a new, transparent way, without the
need of any regularization. The full formula for the propagator, in the form
of a series, can also be used in Feynman diagrams, making them to produce
only gauge-invariant expressions and sparing us the need of calculating terms
that would cancel each other in the final result anyway.

2 Presentation of the method, scalar case

Let us consider a theory of a scalar field minimally coupled to an external
gauge field:

L = Dµφ†Dµφ−m2φ†φ (2)

where
Dµφ = ∂µφ− Aµφ

Aµ = −igAaµT
a = −A

†
µ (3)

For now, we are going to consider the field Aµ to be a background field, so we
do not include its kinetic energy in the lagrangian, and it will not appear as
a propagating field inside the diagrams. This lagrangian is invariant under a
local redefinition of fields with U(x) = exp(−igθa(x)T a):

φ(x) = U(x)φ′(x), Aµ(x) = U(x)A′
µ(x)U(x)

−1 + ∂µU(x)U(x)
−1 (4)

In the path integral formulation of the quantum theory, we have

Zφ[J, J
†, A] = eiW [J,J†,A] =

∫

Dφ ei
∫
d4x

(

L[A]+J†φ+φ†J
)

(5)

Let us consider the 2-point Green function

Gφ(x1, x2)[A] = 〈φ(x1)φ
†(x2)〉 = −i

δ2Wφ[J, J
†, A]

δJ†(x1)δJ(x2)

∣

∣

∣

∣

J=0

(6)

This function should follow the appropriate gauge covariance rule

G(x1, x2)[A] = U(x1)G(x1, x2)[A
′]U(x2)

−1 (7)
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which gives us the following Ward-Takahashi identity:

∂

∂xµ
δGφ(x1, x2)[A]

δAaµ(x)
− gfabcAbµ(x)

δGφ(x1, x2)[A]

δAcµ(x)
=

= −ig

(

Gφ(x1, x2)[A]T
aδ(x2 − x)− δ(x1 − x)T aGφ(x1, x2)[A]

)

(8)

The issue we are going to address is the fact that when we calculate Green
function G2(x1, x2)[A] using perturbative expansion, the satisfaction of eq.
(8), which comes from the gauge-covariance, is completely invisible. The
formulae we get are not-gauge-covariant, only when summed up the gauge-
covariance is restored. As a consequence, the Feynman diagrams that use
free propagators of φ and add interaction with gauge field as a perturbation,
don’t give gauge-covariant results as well, unless summed up. This means
that during the calculation of every single Feynman diagram, we needlessly
calculate also some not-gauge-covariant expression that is bound to cancel
out with other such expressions from other diagrams. In this work we are
going to show that it is possible to present function G2(x1, x2)[A] in gauge-
covariant form, and using that form to simplify some Feynman diagrams.

The method focuses on using the function G(x1, x2)[A] in the form

Gφ(x1, x2)[A] = Pexp
(

∫ x1

z

A

)

G̃φ(z; x1, x2)Pexp
(

∫ z

x2

A

)

(9)

where Pexp(
∫

A) denotes a path-ordered exponential of the gauge field along
a straight line, which can be defined by the following differential equation:







d
dλ
Pexp

(

∫ x+λa

x
A

)

= aµAµ(x+ λa)Pexp
(

∫ x+λa

x
A

)

Pexp
(

∫ x

x
A

)

= 1
(10)

It can be shown that it satisfies

Pexp
(

∫ x1

x2

A

)

= U(x1)Pexp
(

∫ x1

x2

A
′
)

U(x2)
−1 (11)

or

∂

∂xµ

δPexp
(

∫ x1

x2
A

)

δAaµ(x)
− gfabcAbµ(x)

δPexp
(

∫ x1

x2
A

)

δAcµ(x)
=

= −ig

(

Pexp
(

∫ x1

x2

A

)

T aδ(x2 − x)− δ(x1 − x)T aPexp
(

∫ x1

x2

A

)

)

(12)
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Combining equations (8)–(11) we get

G̃(z; x1, x2)[A] = U(z)G̃(z; x1, x2)[A
′]U(z)−1 (13)

∂

∂xµ
δG̃φ(z; x1, x2)[A]

δAaµ(x)
− gfabcAbµ(x)

δG̃φ(z; x1, x2)[A]

δAcµ(x)
=

− ig
[

G̃φ(z; x1, x2)[A], T
a
]

δ(z − x)

(14)

The simplification we have obtained with respect to eq. (8) gives us hope
that G̃φ(z; x1, x2) can be written in simpler form than G(x1, x2). Especially
if we focus on weak external fields A, and calculate G̃φ(z; x1, x2) as a series
in powers of A(z) and its derivatives, we expect to see only gauge covariant
structures, like Aµν , DµAνρ etc.
The point z can be in principle arbitrary, but the easiest choice seems to
be z = x1, z = x2 or z = x1+x2

2
, though if we know beforehand in what

Feynman diagram they will be needed, a better choice may be available.
We will present the results for z = x1+x2

2
, as in general, it is the one which

simplifies many Feynman diagrams the most. In this case I’m going to write
the function G̃φ(

x1+x2
2

; x1, x2) as a function of two arguments G̃φ(
x1+x2

2
, x1 −

x2), from now on.

To calculate G̃φ(x, a), we move the path-ordered exponentials from (9) to
the other side:

G̃φ(x, a)[A] = Pexp
(

∫ x

x+ a
2

A

)

Gφ(x+
1

2
a, x−

1

2
a)Pexp

(

∫ x− a
2

x

A

)

(15)

We will use Gφ(x + 1
2
a, x − 1

2
a) in the form of series in A, which comes

naturally if we use Feynman diagrams. At the leading order we calculate
only tree-level diagrams, with one scalar line and an arbitrary number of
gauge field lines attached to it.

. . .
Fig. 1. The tree-level diagrams that contribute to the scalar propagator in an external gauge field.
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We also need to expand the formula in powers of momenta/derivatives of field
A. Let us remember that this is just G(x1, x2), which doesn’t yet transform
simply under gauge transformations, and without path-ordered exponentials
we don’t expect to be able to gather different terms to create only gauge-
covariant tensors like Aµν = ∂µAν − ∂νAµ − [Aµ,Aν ]. For now, let us just
list all the terms that appear up to the order of O(A5), (counting derivatives
and A to be of the same order, as suggested by the form of the covariant
derivative)1:

Gφ(x+ a/2, x− a/2)[A] =

= i

∫

p

e−ipa

{

1

p2 −m2
+

2ipµ
(p2 −m2)2

A
µ(x)+

+

(

gµν
(p2 −m2)2

+
−4pµpν

(p2 −m2)3

)

A
µ(x)Aν(x)+

+

(

igαβpµ
(p2 −m2)3

+
−2ipαpβpµ
(p2 −m2)4

)

∂α∂βAµ(x)+

+

(

2ipµgνα
(p2 −m2)3

+
−4ipµpνpα
(p2 −m2)4

)

[

∂αAµ(x),Aν(x)
]

+

+

(

2i(pµgνρ + pρgµν)

(p2 −m2)3
+

−8ipµpνpρ
(p2 −m2)4

)

A
µ(x)Aν(x)Aρ(x)+

+

( 1
2
gαβgµν

(p2 −m2)3
+

−pαpβgµν − pµpαgνβ − pµpβgνα − 3pµpνgαβ
(p2 −m2)4

+

+
8pµpνpαpβ
(p2 −m2)5

)

{

∂α∂βAµ(x),Aν(x)
}

+

+

(

gαβgµν − gναgµβ
(p2 −m2)3

+
−2pαpβgµν + 2pµpβgνα + 2pνpαgµβ − 2pµpνgαβ

(p2 −m2)4

)

×

×
(

∂αAµ(x)
)(

∂βAν(x)
)

+

+

(

gραgµν
(p2 −m2)3

+
−2pρpαgµν − 2pµpαgνρ − 4pµpνgρα − 4pµpρgνα

(p2 −m2)4
+

+
16pµpνpνpα
(p2 −m2)5

)

(

∂αAµ(x)
)

A
ν(x)Aρ(x)+

+

(

gραgµν − gµαgνρ
(p2 −m2)3

+
2pµpαgνρ − 2pρpαgµν − 4pµpνgρα + 4pνpρgµα

(p2 −m2)4

)

×

× A
µ(x)

(

∂αAν(x)
)

A
ρ(x)+

+

(

−gµαgνρ
(p2 −m2)3

+
2pµpαgνρ + 2pρpαgµν + 4pµpρgνα + 4pνpρgµα

(p2 −m2)4
+

1
∫

p
=

∫

dD
p

(2π)D
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+
−16pµpνpνpα
(p2 −m2)5

)

A
µ(x)Aν(x)∂αAρ(x)+

+

(

gµνgρσ
(p2 −m2)3

+
−4(pρpσgµν + pµpσgνρ + pµpνgρσ)

(p2 −m2)4
+

+
16pµpνpρpσ
(p2 −m2)5

)

A
µ(x)Aν(x)Aρ(x)Aσ(x)

}

+

+O
(

(∂,A)5
)

+ (boundary terms) (16)

The boundary terms in this expression come from the ambiguity of redefining
momenta in the derivation of this result; were all the integrals convergent,
one could make the redefinition of integration variables like

p1 → p−
1

2
q − λq

p2 → p+
1

2
q + λq

(17)

for any value of λ, and obtain the same result. However, since some of the
integrals are not convergent, we receive several (finite number) terms of the
form

λi

∫

p

∂

∂pµ

(

e−ipa
O
µ(p, x)

)

(18)

where λi are, at this point, arbitrary constants. We will get even more bound-
ary terms in the formula for G̃φ(x, a) because the path-ordered exponentials
from (15) produce many terms that will need to be integrated by parts. For
any operator O we have

Pexp
(

∫ x

x+ a
2

A

)

OPexp
(

∫ x− a
2

x

A

)

=

= O−
1

2
aµ
{

A
µ(x),O

}

+
1

8
aµaν

(

−
[

∂µAν(x),O
]

+
{

A
µ(x),

{

A
ν(x),O

}}

)

+

+
1

48
aµaνaρ

(

−
{

∂µ∂νAρ(x),O
}

+
[

∂µAν(x),
{

A
ρ(x),O

}]

+

+ 2
{

A
µ(x),

[

∂νAρ(x),O
]}

−
{

A
µ(x),

{

A
ν(x),

{

A
ρ,O

}}}

)

+

+
1

384
aµaνaρaσ

(

−
[

∂µ∂ν∂ρAσ(x),O
]

+
{

∂µ∂νAρ(x),
{

A
σ(x),O

}}

+

+ 3
{

A
µ(x),

{

∂ν∂ρAσ(x),O
}}

+ 3
[

∂µAν(x),
[

∂ρAσ(x),O
]]

+

−
[

∂µAν(x),
{

A
ρ(x),

{

A
σ,O

}}]

− 2
{

A
µ(x),

[

∂νAρ(x),
{

A
σ,O

}]}

+

− 3
{

A
µ(x),

{

A
ν(x),

[

∂ρAσ,O
]}}

+

+
{

A
µ(x),

{

A
ν(x),

{

A
ρ,
{

A
σ,O

}}}}

)

+ . . .

(19)
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Then we use integration by parts to get rid of aµ factors:

aµ

∫

p

e−ipaf(p) =

∫

p

e−ipa

(

−i∂

∂pµ
f(p)

)

+ (a boundary term) (20)

As it turns out, with a general regularization2 these boundary terms cannot
be neglected and play a crucial role in some diagrams. They are also related
to certain counterterms that appear in the process of renormalization, an
example is presented in a section 4. below. For the list of boundary terms,
see the appendix.

Eventually, many terms in the formula for G̃φ(x, a) turn up to be vanish-
ing, and the remaining ones can be grouped together to form gauge-covariant
quantities, as expected:

G̃φ(x, a)[A] = i

∫

p

e−ipa

[

1

p2 −m2
+DµA

µν(x)
2
3
ipν

(p2 −m2)3
+

+
1

4
{Aµν(x),Aρσ(x)}

(

gµρgνσ

(p2 −m2)3
−

4gµρpνpσ

(p2 −m2)4

)

+

+ (terms of higher order in field A or its derivatives)

]

+

+ (boundary terms)

(21)

Let us behold how much simpler it has become, compared to (16). The
reason for this is that there aren’t many gauge-covariant structures that can
be written at this order, and some of them (like Aµν) cannot couple to a
scalar because of the lack of proper Lorentz-invariant structures.

3 Fermionic case

The same thing can be done for fermions. We start with

Lψ[A] = iψγµDµψ −mψψ (22)

Zψ[η, η, A] = eiWψ[η,η,A] =

∫

Dψ ei
∫
d4x

(

Lψ[A]+ηψ+ψη
)

(23)

2In regularizations that do not violate Ward-Takahashi identities, like the dimensional
regularization, these terms will vanish and can be skipped early. In general case though
they need to be remembered.
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Gψ(x1, x2)[A] = −i
δ2W [η, η, A]

δη(x1)δη(x2)

∣

∣

∣

∣

η=0

(24)

Using the same method (we shall skip the intermediate steps), we can find
that

Gψ(x+
a

2
, x−

a

2
)[A] = Pexp

(

∫ x+ a
2

x

A

)

G̃ψ(x, a)Pexp
(

∫ x

x− a
2

A

)

(25)

with

G̃ψ(x, a) =

= i

∫

p

e−ipa

{

p/+m

p2 −m2
−

1

2
Aµν(x)

γµναpα + γµνm

(p2 −m2)2
+

+
2i

3
DµAνρ(x)

[

( gµρ

(p2 −m2)2
−

pµpρ

(p2 −m2)3

)

γν −
gµρpν

(p2 −m2)3
(p/+m)

]

+

+
1

8
DµDνAρσ(x)

[(

gµν

(p2 −m2)3
−

4pµpν

(p2 −m2)4

)

(γρσαpα + γρσm)+

−
2pµpρ

(p2 −m2)4
(γνσαpα + γνσm)−

2pµpρ

(p2 −m2)4
(γνσαpα + γνσm)+

−
pµγνρσ + pνγµρσ

(p2 −m2)3

]

+

+
{

Aµν(x),Aρσ(x)
}

[

γµνρσαpα + γµνρσm

8(p2 −m2)3
+
gµρ(pνγσ + pσγν)

2(p2 −m2)3
+

−
gµρpνpσ

(p2 −m2)4
(p/+m)

]

+

+
[

Aµν(x),Aρσ(x)
]

(

−1
2
gµρ

(p2 −m2)3
+

pµpρ

(p2 −m2)4

)

(γνσαpα + γνσm)+

+ (terms of higher order in field A or its derivatives)

}

+

+ (boundary terms) (26)

where γµν = 1
2!
γ[µγν], γµνρ = 1

3!
γ[µγνγρ] etc. This formula is more complicated

than (21), because now all possible gauge-covariant structures appear, but
still much simpler than the fermionic analog of (16) is.
We would like to stress that this formula is valid in any dimension, and
it’s independent of the definition of γ5. The only relation between gamma
matrices that is necessary to derive it is their anticommutation relation,
{γµ, γν} = 2gµν1. If the dimension is given, it can be simplified because of
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the fact that sufficiently long antisymmetrized products of gamma matrices
are 0, for example, in 4 dimensions we have3 γµνρσα = 0 and γµνρσ = iǫµνρσγ5.

4 Boundary terms and counterterms

As mentioned before, the boundary terms that appear in (21) and (26) can-
not be neglected in a general case. Most of them are related to the coun-
terterms necessary to make the effective theory of gauge field finite and/or
gauge invariant. For the example, let us focus on the fermion theory in four
dimensions.

From (23), using explicit form of the lagrangian given by the (22), we can
derive the equation

δWψ[η, η, A]

δAaµ(x)

∣

∣

∣

∣

η=0

= gTr
{

γµT aG̃ψ(x, a = 0)
}

(27)

One of the boundary terms that appear in (26) from integration by parts
(20) is

G̃ψ(x, a) ⊃ Aµ(x)

∫

p

∂

∂pµ

(

e−ipa p/+m

p2 −m2

)

(28)

We can see that this term will give a contribution to (27):

δWψ[η, η, A]

δAaµ(x)

∣

∣

∣

∣

η=0

⊃ −2ig2Aaν(x)

∫

p

∂

∂pν

( pµ

p2 −m2

)

(29)

which means that

Wψ[η, η, A]
∣

∣

∣

η=0
⊃

1

2
δM2

A

∫

x

Aaµ(x)A
aµ(x) (30)

with

δM2
A = −i

g2

2

∫

p

∂

∂pµ

( pµ

p2 −m2

)

(31)

To maintain the gauge invariance of the effective theory of the gauge field,
we need to add a counterterm to the lagrangian (22):

Lψ → Lψ + Lct

Lct ⊃ −
1

2
δM2

A A
a
µA

aµ (32)

3with the convention that γ5 = iγ
0
γ
1
γ
2
γ
3, ǫ0123 = −ǫ

0123
= 1

10



It is exactly what we could get calculating the radiative correction to the
gauge field mass from 1-loop diagram (Fig. 2.). However, the method pre-
sented in this paper shows that the value of the counterterm is already con-
tained within the coefficient to a boundary term in fermion propagator cal-
culated on the tree-level.

Fig. 2. A 1-loop diagram that contains a contribution to the gauge field mass term.

The gauge symmetry will be preserved and there will be no need for such
counterterm if the boundary terms vanish in a given regularization, for ex-
ample in dimensional regularization. However, other regularizations can give
non-zero results.

5 Boundary terms and axial anomaly

In this section we are going to use the results obtained to show the origin
of the ABJ-anomaly [5, 6] in 4 dimensions. For simplicity’s sake, we shall
restrict ourselves to the case of abelian gauge group (Aµν = −ieFµν), but the
calculations can be performed in a general case. With the propagator in the
form (26) it is easy to calculate

〈J5(x)〉 = 〈ψ(x)γ5ψ(x)〉 =

= −Tr
{

γ5Gψ(x, x)
}

= −Tr
{

γ5G̃ψ(x, a = 0)
} (33)

Up to the terms of order O((∂, A)5), the only term from G̃ψ(x, a) that can
contribute to this trace is

G̃ψ(x, a) ⊃ e2mFµν(x)Fρσ(x)γ
µνρσ

∫

p

e−ipa −i

4(p2 −m2)3
(34)

Assuming that γ5 is defined4 such that

Tr{γµνρσγ5} = 4iǫµνρσ (35)

4Which is how it should be defined in dimensional regularization, according to ’t Hooft
and Veltman [7], where ǫ

µνρσ is defined in such a way that it s equal to 0 if any of its
indices is different than 0, 1, 2 or 3.
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we find the result for (33) to be

〈J5(x)〉 =

= −e2mFµν(x)Fρσ(x)Tr{γ5γ
µνρσ} ·

−1

128π2m2
+O((∂, A)5) =

=
ie2

32π2m
ǫµνρσFµν(x)Fρσ(x) +O((∂, A)5)

(36)

Independently, we can calculate

〈Jµ5 (x)〉 = 〈ψ(x)γµγ5ψ(x)〉 =

= −Tr
{

γµγ5Gψ(x, x)
}

= −Tr
{

γµγ5G̃ψ(x, a = 0)
} (37)

This time the only terms that can contribute are some of the boundary terms

G̃ψ(x, a) ⊃ e2Aµ(x)∂νAρ(x)
(

gµαγνρβ + (λ2 − λ3)g
ναγρµβ

)

×

×

∫

p

∂

∂pα

(

e−ipa pβ
(p2 −m2)2

) (38)

where λ2 and λ3 are arbitrary constants associated with the fact that shifting
the integration variable (momentum p in this case) in an integral that is not
convergent produces a boundary term, as mentioned before (17), see also the
appendix. We get

〈Jµ5 (x)〉 = (1+λ2−λ3)ie
2 ǫµνρσAν(x)∂ρAσ(x)

∫

p

∂

∂pα

( pα
(p2 −m2)2

)

+O((∂, A)5)

(39)
However 〈Jµ5 (x)〉 needs to be gauge invariant, and to ensure that we must
either put λ2 − λ3 = −1 or choose a regularization scheme in which this
boundary term is equal to 0. Either way

〈Jµ5 (x)〉 = O((∂, A)5) (40)

Let’s now check the deviation from the naive axial current conservation
equation:

〈∂µJ
µ
5 (x)〉 − 2im〈J5(x)〉 = 0 (41)

We can see it’s not satisfied; instead

〈∂µJ
µ
5 (x)〉 − 2im〈J5(x)〉 =

e2

16π2
ǫµνρσFµν(x)Fρσ(x) +O((∂, A)5) (42)

which is the well-known ABJ anomaly [5], [6]. The calculation here was made
only up to the terms of order of O((∂, A)5), but from the general theory [8] we
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know there cannot be any terms of higher order in fields. The anomaly in this
expression could be avoided but at the cost of losing the gauge invariance. It
is important to understand that in this derivation the anomaly does not come
from the divergence of the current, but from 〈J5(x)〉, which is proportional
to 1/m.

6 Examples of the application of the method in

Feynman diagrams

Expressing the propagators in this form simplifies the calculation of certain
Feynman diagrams. The most important limitation though is that we’re us-
ing an expansion of G̃(x, a) in the number of external gauge field lines and
their momenta, so this method can be used only if the momenta of the gauge
bosons are much smaller than the masses of particles they couple to.

A simple example would be the decay of a light neutral scalar coupled to
heavy charged fermions:

L =
1

2
∂µϕ∂µϕ−

1

2
m2
ϕϕ

2 + iψγµDµψ −mψψψ + Lint (43)

Lint =

{

−λϕψψ for scalar

−iλϕψγ5ψ for pseudoscalar
(44)

Normally, the calculation of the amplitude of ϕ → AA decay would require
two triangle diagrams at 1-loop level (Fig. 3.), and neither of them is gauge-
covariant (only their sum is), and the part cancelled by the counterterm is
hidden within the expression. However, with the method we present in this
work, we only need one tadpole diagram, which is gauge-covariant by itself,
with the exception of contribution cancelled by a counterterm which is clearly
visible (Fig. 4.).

ϕ

ψ

ψ

ψ

A

A

ϕ

ψ

ψ

ψ

A

A

Fig. 3. Standard 1-loop diagrams that describe ϕ→ AA decay. The propagators of ψ are the free

propagators in vacuum.
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ϕ ψ

Fig. 4. The only 1-loop diagram that describe ϕ → AA decay with the method presented in this work.

The propagator of ψ is the propagator in external gauge field.

At the 1-loop level, in the case of the coupling without γ5, we have

out〈AA|ϕ〉in =

= iλ

∫

x

〈AA|Tr
{

Gψ(x, x)
}

|0〉〈0|ϕ(x)|ϕ〉 =

= iλ

∫

x

〈AA|Tr
{

G̃ψ(x, 0)
}

|0〉〈0|ϕ(x)|ϕ〉 =

= −8iλ

∫

p

gµρpνpσmψ

(p2 −m2
ψ)

4

∫

x

〈AA|Tr
{

Aµν(x)Aρσ(x)
}

|0〉〈0|ϕ(x)|ϕ〉+ · · ·+

+ 2λ

∫

p

∂2

∂pµ∂pν

( mψ

p2 −m2
ψ

)

∫

x

〈AA|Tr
{

Aµ(x)Aν(x)
}

|0〉〈0|ϕ(x)|ϕ〉 =

= −
λ

24π2mψ

∫

x

〈AA|Tr
{

A
µν(x)Aµν(x)

}

|0〉〈0|ϕ(x)|ϕ〉+ · · ·+ (45)

+ (a part cancelled by a counterterm)

where dots denote the terms with higher number of derivatives of Aµ.
The case of the coupling with γ5 is even simpler:

out〈AA|ϕ〉in =

= −λ

∫

x

〈AA|Tr
{

γ5Gψ(x, x)
}

|0〉〈0|ϕ(x)|ϕ〉 =

= −λ

∫

x

〈AA|Tr
{

γ5G̃ψ(x, 0)
}

|0〉〈0|ϕ(x)|ϕ〉 =

=
1

4
λTr

{

γ5γ
µνρσ

}

∫

p

mψ

(p2 −m2
ψ)

3
×

×

∫

x

〈AA|Tr
{

Aµν(x)Aρσ(x)
}

|0〉〈0|ϕ(x)|ϕ〉+ · · · =

=
λ

16π2mψ

∫

x

〈AA|Tr
{

A
µν(x)Ãµν(x)

}

|0〉〈0|ϕ(x)|ϕ〉+ . . .

(46)

Another calculation in this model that becomes much simpler if we use
formulae derived in this work, is the correction to the mass of ϕ due to
background gauge field that appears in the effective action after integrating
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out the ψ field. With this method, it is all contained within a single diagram
(Fig. 5.)

ψ

ψ

ϕ ϕ

Fig. 5. A 1-loop diagram that contains the corrections to the mass term of ϕ.

The contribution to the effective action given by this diagram is (assuming
the coupling without γ5):

Seff ⊃ −
1

2
iλ2

∫

x

∫

y

ϕ(x)ϕ(y)Tr
{

Gψ(x, y)Gψ(y, x)
}

=

= −
1

2
iλ2

∫

x

∫

a

ϕ(x+ a/2)ϕ(x− a/2)Tr
{

G̃ψ(x, a)G̃ψ(x,−a)
}

=

= −
1

2
iλ2

∫

x

ϕ(x)2
∫

a

Tr
{

G̃ψ(x, a)G̃ψ(x,−a)
}

+ . . .

(47)

For a 6= 0 the boundary terms disappear because of the oscillating factor
e−ipa, so the only relevant terms that contribute to this integral are covariant
terms from (26). The first non-zero terms after the field-independent term
that we get from standard Feynman diagram are proportional to Aµν(x)Aρσ(x):

∫

a

Tr
{

G̃ψ(x, a)G̃ψ(x,−a)
}

=

=

∫

p

(

Tr
{(

i
p/+mψ

p2 −m2
ψ

)2}

+ Tr
{(−i

2
Aµν(x)

γµναpα + γµνmψ

(p2 −m2
ψ)

2

)2}

+

+ 2Tr
{

i
p/+mψ

p2 −m2
ψ

× i{Aµν(x),Aρσ(x)}
(gµρ(pνγσ + pσγν)

2(p2 −m2
ψ)

3
+

−
gµρpνpσ(p/+mψ)

(p2 −m2
ψ)

4

)}

+ . . .

)

=

= (a constant that is a subject to renormalization)+

+
i

24π2m2
ψ

Tr{Aµν(x)Aµν(x)}+ . . .

(48)

Therefore the renormalized contribution to the effective action is:

Seff ⊃

∫

x

λ2

48π2m2
ψ

ϕ(x)2Tr{Aµν(x)Aµν(x)} + . . . (49)

With the propagator already in the form (26) the computation is much sim-
pler than it would be to do from the scratch.
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7 Complex diagrams

In the diagrams in the previous section, in which there were no more than
two vertices (not counting the interaction with the gauge field), and none of
them contained the gauge group generators, the formulae drastically simpli-
fied because the path exponents cancel each other and disappear from the
expression. In more complicated diagrams they may remain but even then
there is a way to combine them to quasi-local, gauge covariant expressions if
necessary.

x1

x2 x3

Fig. 6. The simplest case in which we need to remember about Wilson lines.

If we have more than two vertices, like in the Fig. 6., the first thing that we
may notice is that their middle points do not coincide, for example one of
them can be

Pexp
(

∫ x1

x1+x2
2

A

)

G̃(
x1 + x2

2
, x1 − x2)Pexp

(

∫

x1+x2
2

x2

A

)

(50)

and the other

Pexp
(

∫ x2

x2+x3
2

A

)

G̃(
x2 + x3

2
, x2 − x3)Pexp

(

∫

x2+x3
2

x3

A

)

(51)

If x1 6= x3 then one of them is expressed in terms of the gauge field in point
x1+x2

2
, and the other in point x2+x3

2
. To solve this issue, we can use the analog

of Taylor series in the space with a gauge connection:

O(x) = Pexp
(

∫ x

x0

A

)

×

(

O(x0) + (x− x0)
µDµO(x0)+

+
1

2
(x− x0)

µ(x− x0)
νDµDνO(x0) + . . .

)

× Pexp
(

∫ x0

x

A

)

(52)

We can choose the point x0 arbitrarily, usually one of the vertices or the
diagram’s "mass center" is a choice that leads to simple expressions later.
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We can also use this formula to "shift" any vertex that contain group indices
to the point x0.
This way, if the initial formula contains expressions like

. . .O12(
x1 + x2

2
)Pexp

(

∫
x1+x2

2

x2

A

)

V2(x2)Pexp
(

∫ x2

x2+x3
2

A

)

O23(
x2 + x3

2
) . . .

(53)
they can be written in the following form:

. . .O′
12(x0)× Pexp

(

∫ x0

x1+x2
2

A

)

Pexp
(

∫

x1+x2
2

x2

A

)

Pexp
(

∫ x2

x0

A

)

×

× V ′
2(x0)× Pexp

(

∫ x0

x2

A

)

Pexp
(

∫ x2

x2+x3
2

A

)

Pexp
(

∫
x2+x3

2

x0

A

)

×O′
23(x0) . . .

(54)

with O′ and V ′ derived from O and V as eq. (52) dictates. As we can see, the
path-ordered exponentials form triangles. These triangles can be expressed
in the form of a quasi-local, gauge-covariant series at the point x0:

Pexp
(

∫ x0

x1

A

)

Pexp
(

∫ x1

x2

A

)

Pexp
(

∫ x2

x0

A

)

=

= 1−
1

4

(

(x1 − x0)
µ(x2 − x0)

ν − (x2 − x0)
µ(x1 − x0)

ν
)

Aµν(x0)+

−
1

12
(x1 + x2 − 2x0)

µ
(

(x1 − x0)
ν(x2 − x0)

ρ − (x2 − x0)
ν(x1 − x0)

ρ
)

×

×DµAνρ(x0)+ (55)

+ . . .

Another approach, that would let us avoid such triangles, would be to use
a general formula (9) with point z = x0 being the same for all propagators
in the diagram, instead of (50) and (51). Then only the vertices need to be
shifted with (52), and the necessary path-ordered exponentials are already
there. However, general formula for G̃(x0; x1, x2) is more complicated than
in the case of x0 =

x1+x2
2

and contains vectors (x0 − x1)
µ and (x0 − x2)

µ.
Either way, we obtain the formula in the form of a series in the powers

of the field Aµν(x0) and its derivatives. The formula however also contains a
number of vectors (xi − xj)

µ. If we want to get rid of them to perform the
integrations over xi and remain with a single spatial integral, we can chose
x0 to be some linear combination of x1, . . . xn. Then all these vectors can
first be decomposed into the vectors related to particular propagators, and
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then be turned into the derivatives over momenta using eq. (20).
While this procedure certainly looks complicated, it needs to be said that

it is necessary only in the case of very complicated diagrams, with at least
3 vertices other than coupling to the external gauge field. And even then, if
we are interested only in the leading contribution for weak field Aµν , or we
are working with the abelian case, there is a good chance we would be able
to perform additional simplifications and reduce the number of the triangles
of path-ordered exponentials before employing the formula (55). We should
also remember that calculating such diagrams in the standard way is usually
even more complicated, and one needs to calculate more diagrams to get
a gauge-covariant result. With this method we work with gauge-covariant
quantities all long, and we avoid computing some irrelevant contribution that
cancel between standard diagrams at the end.

8 Summary

In this work we presented an alternative method of calculating some ampli-
tudes in QFT. While it does not make it possible to calculate anything that
couldn’t be calculated before, it can make some calculations faster, and most
importantly, we can have better control on what happens in intermediate
stages of computations, since the physically relevant, gauge-invariant terms
are clearly visible and not masked by the multiple other terms cancelling in
the final result. We only calculate what is going to remain, and do not need
to consider irrelevant terms. Without the need to calculate all the diagrams
to get a gauge-covariant results, it may also be easier to focus only on some
subset of them, in situations when we are able to argue that others do not
produce the contributions that are relevant for the case in hand or that they
give contributions that are negligible.

We believe the clarity and simplifications brought by the application of
the propagators in the form presented in this work makes the effort of deriv-
ing them worthwhile.

Acknowledgements: I would like to thank Adrian Lewandowski, Krzysztof
A. Meissner and Hermann Nicolai for the discussions and the help in prepar-
ing this paper.
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A Boundary terms

For the purpose of reducing the size of the following expression, We shall
denote

E = e−ipa, D =
1

p2 −m2
, S =

p/+m

p2 −m2
, Sµν = SγµSγνS (56)

We have

G̃φ(x, a) = (gauge covariant part, see eq. (21))+

+ Aµ(x)

∫

p

∂

∂pµ

(

ED
)

+

− iλ1∂µAν(x)

∫

p

∂

∂pµ

(

E
∂D

∂pν

)

+

−
i

4

{

Aµ(x),Aν(x)
}

∫

p

∂2

∂pµ∂pν

(

ED
)

+ . . . (57)

G̃ψ(x, a) = (gauge covariant part, see eq. (26))+

+ Aµ(x)

∫

p

∂

∂pµ

(

ES
)

+

− iλ1∂µAν(x)

∫

p

∂

∂pµ

(

E
∂S

∂pν

)

+

−
i

4

{

Aµ(x),Aν(x)
}

∫

p

∂2

∂pµ∂pν

(

ES
)

+

−
1

24
∂µ∂νAρ(x)

∫

p

(

∂3E

∂pµ∂pν∂pρ
S + E

∂3S

∂pµ∂pν∂pρ

)

+

+
1

4

{

∂µAν(x),Aρ(x)
}

∫

p

∂

∂pρ

(

ES [µν]
)

+

+
[

∂µAν(x),Aρ(x)
]

∫

p

(

1

24

∂3E

∂pµ∂pν∂pρ
S +

1

8

∂2E

∂pµ∂pν

∂S

∂pρ
+

−
1

12
E

∂3S

∂pµ∂pν∂pρ

)

+

+ λ2∂µAν(x)Aρ(x)

∫

p

∂

∂pµ

(

ESνρ
)

+

+ λ3Aρ(x)∂µAν(x)

∫

p

∂

∂pµ

(

ESρν
)

+
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+ Aµ(x)Aν(x)Aρ(x)

∫

p

(

−
1

6

∂3E

∂pµ∂pν∂pρ
S −

1

8

∂2E

∂pµ∂pν

∂S

∂pρ
+

−
1

4

∂2E

∂pµ∂pρ

∂S

∂pν
−

1

8

∂2E

∂pν∂pρ

∂S

∂pµ
+

1

3
E

∂3S

∂pµ∂pν∂pρ

−
1

2

∂

∂pµ

(

E Sνρ
)

−
1

2

∂

∂pρ

(

E Sµν
)

)

+ . . . (58)

While not all of these formulae look explicitly like boundary terms, perform-
ing the integrations by parts shows that they are indeed. The boundary
terms that contain higher number of fields A and their derivatives can be
omitted in 4 dimensions, as they are either boundary terms of convergent
integrals or vanish for a = 0.
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