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Entropy of isolated horizons from quantum gravity condensates
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We construct condensate states encoding the continuum spherically symmetric quantum geome-
try of an isolated horizon in full quantum gravity, i.e. without any classical symmetry reduction,
in the group field theory formalism. Tracing over the bulk degrees of freedom, we show how the
resulting reduced density matrix manifestly exhibits an holographic behavior. We derive a complete
orthonormal basis of eigenstates for the reduced density matrix of the horizon and use it to compute
the horizon entanglement entropy. By imposing consistency with the isolated horizon boundary con-
ditions and semi-classical thermodynamical properties, we recover the Bekenstein—-Hawking entropy
formula for any value of the Immirzi parameter. Our analysis supports the equivalence between the
von Neumann (entanglement) entropy interpretation and the Boltzmann (statistical) one.

Introduction. — In this Letter we build and anal-
yse, for the first time, spherically symmetric continuum
states to model a quantum black hole horizon, working
in the full theory. In doing so, we make no reference to
a classical symmetry-reduced sector [1].

As quantum gravity states for continuum spherically
symmetric geometries we use spin network condensates
in the group field theory (GFT) formalism [2, 3] (see [4]
for an application to cosmology). We impose on such
states quantum conditions characterizing Isolated Hori-
zons (IH) [5], and analyze their entanglement properties.
In particular, we show that their entanglement entropy
coincides with the Boltzmann entropy of horizon degrees
of freedom and it satisfies an area law, which is a corner-
stone of holography.

The major strength of our analysis is the possibility of
keeping into account the sum over triangulations required
in the coarse graining procedure leading, from the infinite
number of microscopic degrees of freedom defining our
continuum quantum states, to an effective macroscopic
description, as well as the control over the interplay be-
tween the IH boundary condition and the calculation of
entropy. In fact, we are able to control the states with a
relatively small number of parameters, encoding the ge-
ometrical data of the continuum geometry: we are using
hydrodynamic states. This construction allows us to ex-
plicitly compute the horizon density matrix and to prove
the holographic nature of our states. Finally, the GFT
formalism provides a uniform treatment of boundary and
bulk degrees of freedom and allow us to remove some am-
biguities in the canonical LQG approach [1].

The implications of these novel features are striking.
The entanglement entropy can be computed exactly and
it matches the Bekenstein-Hawking formula [6] for any
value of the Immirzi parameter v (see [7-9] for a re-
cent discussion on its role), once consistency with semi-
classical conditions is imposed. The calculation reduces
to a state counting, with the microscopic d.o.f. encoded
in the combinatorial structure of all possible horizon
condensate graphs (for a fixed expectation value of the
macroscopic area). This supports the entanglement in-

terpretation of black hole entropy suggested in [3].

Due to difficulties in extracting effective equations
of motion for GFT condensates from the fundamental
dynamics of a given GFT model, we will omit restrictions
originating from the microscopic dynamics in this work.
However, we will show the consequence of requiring the
compatibility with the classical dynamics of isolated
horizons and their thermodynamical properties.

Construction. — Our plan consists of the follow-
ing steps. ¢) We define GFT condensate states (as con-
structed in [3]) for a spacelike, spherically symmetric ge-
ometry by acting with a class of refinement operators on
a seed state. 1) We identify an isolated horizon shell by
imposing appropriate boundary conditions and consis-
tency with semi-classical properties of horizons. #ii) We
derive the reduced density matrix, tracing away all the
remaining bulk degrees of freedom and find a complete
orthonormal basis of its eigenstates. iv) We compute the
entanglement entropy of the TH.

Spherically symmetric quantum states. — We define
a spherical symmetric quantum geometry in terms of an
appropriate gluing of homogeneous spherical shells to one
another [3]. The states of each shell are constructed start-
ing from a seed state for a given shell, upon which we act
with refinement operators, increasing the number of ver-
tices and keeping the topology fixed as the connectivity
is changed. In this way, the GF'T state for a given shell is
given by a (possibly infinite) superposition of regular 4-
valent graphs with given topology. Shells are then glued
together to form a full 3d foliation.

To keep the topological structure under control, each
4-vertex carries a color t = { B, W} and each SU(2) group
element g associated to a link of a given 4-vertex is la-
belled by a number I = {1,2,3,4} (i.e. we use coloured
4-graphs [10]). Each shell is composed of three parts:
an outer boundary, an inner boundary and a bulk in be-
tween. In order to distinguish these regions, we introduce
a further colour s = {+, 0, —}, specifying whether a given
vertex belongs to the outer boundary, to the bulk or to



the inner boundary, respectively. The initial seed state
and the refinement operators are such that all the open
radial links of each boundary have the same colour, dif-
ferent for the two boundaries. In order to glue shells
together, and still be able to distinguish different shells,
we add a label r € N to the shell wavefunction, which
effectively plays the role of a radial coordinate.

r+l

FIG. 1: Two shells, r and r + 1, glued together through their
radial links.

The idea of GFT condensation posits that the same
wavefunction o should be associated to each new GFT
excitation introduced in the state. This notion of wave-
function homogeneity for each shell captures the coarse
grained homogeneity of continuum geometric data [3].

The field ladder operators for the vertex v are then

ran () = [ dgf on(hjap) go(ah) (1)
and its adjoint, satisfying the commutation relations

a'r,t“s” (h})), 7~/ twgw (h’w)} = 57‘,r’5t”,tw5s”,SWAL( }}ahlju)
(2)

Here we have defined the left invariant Dirac delta as:
AL, hY) = [spr) v TT1=1 8(3A3(hY) 7). The choice
of the factor §,, in the commutator is crucial: it im-
plies that operators associated to different shells com-
mute with each other. The commutator (2) was intro-
duced in [3] for technical reasons, but we will show that
it encodes crucial physical properties, as the form of (2)
is at the origin of the holographic nature of our states.
A full space foliation can then be formed by glueing all
the radial links of the outer boundary of the shell r with
the (same number of) radial links of the inner boundary
of the shell r + 1. Both sets of links must have the same
colour. We are not going to explicitly define a refinement
operator for the glued shells, as it plays no role in our
entropy calculations. The general expression for the full
states that we are interested into, then, is of the type:

= H fr(./(/l\ng,ﬂr,w) |seed) 3)

where f, is a function of the refinement operators M,. of
a given shell r. The action of the refinement operators
can be represented pictorially:
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It corresponds to a dipole insertion, widely used in
coloured tensor models and GFTs [10].

Geometric operators can then be computed for our
GFT states, in a 2nd quantised language. For example,

following [3], we define the horizon area operator
AJT,S = Z / dg )\/ E3E§5ij6r,ts(gl) ’ (6)

t=B,W

where in this case s = {+,—} and J corresponds to the
colour of the radial links dual to the boundary s of the
shell r» under examination. The expectation value of the
area operator (6) on a shell boundary state gives

<AJr,s> - <h\r,s>aJ,sa (7)

where a;s is the expectation value of the first quan-
tized (LQG) area operator of a single radial link-J, in
the boundary s of the shell r, in a single-vertex state
with wave function o; 7,5 is the number operator de-
fined as n.s = Y,_,,, [ dhr &i,ts(hl)&r,ts(hl)- Due to
the definition of the states, at each stage of refinement
we always have n, g5 = nyws = —5=, where n = (n).

Notice that these expressions require regularization, as
the states are, in general, not normalizable [3]. However,
it is also easy to construct condensate states, peaked in
some spin representation, for which all these steps can
be followed rigorously, effectively reducing the analysis
to the Abelian case discussed in [3].

These results are completely general. A factorization
property similar to (7) holds for other one-body opera-
tors, like the 3-volume. The existence of a number op-
erator in the GFT formulation of LQG represents a key
difference with respect to the standard formulation, and
it has a crucial role in the entropy calculation below.

Imposition of IH conditions. — In this context, we
can model an isolated horizon with the imposition of the
quantum version of the classical boundary condition [11]
Crn = Fi(A) + 4. (1= A DI

Cow | W) =0, (8)

In the previous expression, A;; is the area of the isolated
horizon, F? the field strength of the Ashtekar-Barbero
connection A* on the IH and ¢ the 2-form densitized
triad pulled-back on the horizon. It becomes a condition
on the condensate wave function o for the outer shell.
Besides the IH condition, further restrictions on our
states come from semiclassicality conditions: the fluctu-
ations of a set of operators, e.g. the area, should be small.



They restrict the possible superposition of graphs with
different number of vertices, as it is evident from (7).
Furthermore, we have to impose that the shells are thin,
for the geometry to look smooth. This imposes a restric-
tion on the expectation value of the volume per shell, the
transverse area and the number of nodes. These condi-
tions have operator equations counterparts, but we do
not discuss them explicitly as they do not enter directly
in our entropy calculations, the focus of the present work.

Reduced density matriz. — Now we focus on the com-
putation of the entropy associated to the quantum iso-
lated horizon, defined by our states. We do this in two
steps: reduction to the density matrix associated to the
outmost shell, and explicit computation of the entropy of
the latter. The quantum state of our full IH states, de-
scribed by the pure density matrix p = |¥U)(¥|, consists
of a (thin) shell and bulk degrees of freedom. We need
only the degrees of freedom of the horizon, i.e. the ones of
the outer boundary of the horizon shell rq, described by
a reduced density matrix obtained by appropriate traces.

A simple case will clarify the general procedure. Con-
sider the graph A for the horizon outer boundary ry and
the graph B of the inner boundary of the neighboring
shell ro + 1, glued along boundaries of colour 1. In order
to be properly glued they must have the same number of
vertices, n. The wavefunction is

P(g*, ..., 9", g™

= / ﬁdh?fdhfi
i=1

O5; (h?ig?i) H 6(hv,€ht:vlf ,e) )

v,e

xoa,(hi'gr?)

where the product over ¢’s encodes the connectivity of
the total graph A U B via convolutions determined by
the h,'. We can thus write the total density matrix as

1Ap

p(n)(gA17"'7gAn7gB17"'7an;g/A17"‘7g 79/317 "'7g/Bn)

= / [T anyidnydr;dkr
=1
X <UA,-,(h?ig?i)GBi(h?"'gfi)H5(hv,eht;’,e)>

v,e
X <0Ai(k?ig’lf4¢) fgl H(5 (kv,e t_“ . > )

We can trace away the B region of the graph using the
following consequence of the commutation relations (2)

/ dgro(hrgr)okrgr) = / dyo(vhikT) . (9)

1 The notation is designed to keep track of the combinatorics in
terms of vertices v and edges e of the graph, so that t.v will be
the target vertex of the edge e departing from the vertex v.

The resulting reduced density matrix is

pE”TPLZl( 7"‘7gAn g 1;~~.7g/An):/Hdh?idk?i
i=1
L0t i D308 i Jon 07V ().

The mixed nature of the reduced density matrix is en-
coded only in the relation hy‘ = kj'.

This example shows a remarkable general property of
these states: the information about the combinatorial
and geometric structure of the graph B is irretrievably
lost, as a consequence of (9). This feature implements
naturally the holographic features of null surfaces in clas-
sical gravity, and thus indirectly confirms the geometric
interpretation of our GFT states. This happens even
with no IH condition (8), and seems to follow directly
from the hypothesis of condensation, encapsulated in the
operators (1). Thus, it suggests that GFT condensates,
as such, constitute a special class of holographic states.

Entropy. — The computation of the entanglement
entropy can be done in detail, as we are able to diag-
onalize the reduced density matrix. We work at fixed
(large) number of vertices, which is compatible with the
semiclassicality conditions that we have mentioned (semi-
classicality requires anyway good peakednesss properties
for the number operator). We comment at the end of the
Section on relaxing this restriction. Using again (2), we
see that the states

v,e
are eigenstates of the horizon density matrix piz()i.
Therefore, we can write the reduced density matrix of
the horizon for a given number n of boundary vertices as

(n) (n)
pr:d—tot N Z p?Zd

where N is the total number of horizon graphs for given
number of vertices n, obtained with the refinement op-
erators, and pﬁZZ(Fs) is the reduced density matrix for
given graph. Orthogonality of the states for different
graphs 'y, I'y/, which can be shown by direct computa-

tion, implies that the eigenvalues are:

(10)

n < ifs=4
Prey(D)UE (Dyr) = {N (11)

0 ifs#s.

The diagonal form of the density matrix allows us to
compute the von Neumann entropy of the horizon. In
particular, as a consequence of (11), the horizon entan-
glement entropy is the same as the Boltzmann entropy,



obtained by counting the graphs, whose combinatorics,
due to the condensate hypothesis, encode all the micro-
scopic degrees of freedom to be counted. For a state

./\//\le./T/l\Nw
WD) = 20 |seed 12
V() = e lseed) (12)
with N,+ N, = 2n, the total number of graphs with n+1
black and n 4+ 1 white vertices that can be constructed
by acting with the refinement operators is given by

2n
N(n,z)zZ%:@n—i—l). (13)

If we now include the degeneracy of the single vertex
Hilbert space A(a), measuring the size of the space of
wavefunctions satisfying the isolated horizon boundary
conditions (and the other semiclassicality restrictions),
the number of states to be counted is N(n,z,a) =
N (n,z)A(a)?" . The Boltzmann entropy is

S(n,a) = 2nlog(A(a)) +log(2n + 1). (14)

Furthermore, the condition Eq. (9) is restrictive enough
to allow the computation of @ for the states satisfying
it (see the Appendix of [3]). Combining this with the
condition that the expectation value of the horizon area
in Eq. (7) equals a macroscopic value A;;, we obtain:

S = KJAIH + log (AIH + 1) , (15)
a a

where xk = log(A(a)) is a constant. We thus obtain the
desired area law from first principles.

Notice that such area law for the entanglement entropy
for any smooth closed codimension two surface emerges
in various circumstances when considering quantum field
theories in generic curved spacetimes [12]. In this sense
then, as anticipated, the commutation relations (2) ac-
quire a physical meaning, ensuring consistency between
the quantum features of our GFT condensates and ex-
pected properties of classical smooth geometries, con-
firming their interpretation.

The proportionality constant k/a can be explicitly
computed from any specific choice of condensate state.
It will reflect any restriction imposed on it by the ef-
fective equations of motion and the IH conditions, that
we have not used yet. Leaving the detailed analysis to
future work, our only working assumption at this stage
is the compatibility of the classical dynamics with the
GFT microscopic dynamics in our hydrodynamical ap-
proximation. This assumption is enough to determine
(the general form of) the degeneracy A as a function of
a, once (8) has been imposed.

Generically, we expect A(a) to be finite for any rea-
sonable geometric state. Moreover, for fixed A,;, we are
considering condensate states such that n is a large pure

number and, consequently, a is small (with respect to
A;y). In this limit, the ITH boundary condition fixes the
holonomy around each radial link to be flat; this happens
only if the spin labels of the tangent links are 0. There-
fore, in the limit ¢ — 0, the wavefunction o should be a
delta peaked on j; = 0, which means A(0) ~ 1. As soon
as a > 0, then A(a) should grow. For small values of a,
therefore, we expect A(a) ~ 1+ ca with ¢ a (positive)
constant. Therefore, the imposition of the IH boundary
condition implies K ~ ca + o(ca) and

S=cA;y+log(Ax/a). (16)

Using the continuum geometric interpretation of our
states, and assuming that enough semiclassical features
have been imposed on them, one can now use the com-
patibility with the thermodynamic relation 5 = g—g, to
determine what the proportionality factor ¢ should be.
Here, 3 is the inverse Unruh temperature 1/7T,, = 27f/(?,
for a stationary observer at distance ¢ with a surface grav-
ity k = 1/¢, and E is the local energy defined in [15] for
isolated horizons, F;; = ‘g; 2. Here we use our assump-
tion of convergence between macroscopic GR dynamics
and effective equations of motion derived from the GFT

dynamics. By doing so, we get the known condition:

c=1/(463) (17)

as our thermodynamical consistency condition, which re-
produces the semiclassical Bekenstein-Hawking entropy.

Remarks. — We stress once more that the proportion-
ality factor can be computed for each specific choice of
our microscopic GFT condensate states, and the agree-
ment with the semiclassical value is to be seen as a con-
straint selecting those states, among those solving also
the dynamics of the theory, which also admit a good semi-
classical interpretation. We notice also that ¢, appearing
in ¢ (and thus in the entropy formula), is going to be a
function of the microscopic parameters of the theory, no-
tably its dynamical coupling constants. These, in turn,
are subject to renormalisation in going from the micro-
scopic definition of the theory to the effective continuum
semiclassical regime. To determine the flow of such pa-
rameters, for realistic models, is an active direction of
current developments in the GFT approach [16].

Next, let us point out that the coefficient in front of
the logarithmic correction depends directly on the form
chosen for the refinement operators in the microscopic
definition of our condensate states. Thus it can also
be computed explicitly. In our case, i.e. Eq. (13) ob-
tained from the actions (4), (5), the numerical coefficient
of the logarithmic term is equal to one. A different nu-
merical coeflicient could be obtained by modifying the
action of the refinement operators and consequently the
counting of graphs for a given n. Moreover, it is possi-
ble to work with a more general mixed density matrix,
prea =Y., w(n)p™, containing a mixture of states with



different number of vertices, coming from the trace of a
generic state as in (3). For semiclassical mixtures (thus
peaked around some value ng) the dominant area law
contribution for these states is robust and independent
from any detail of the mixture of graphs, the numerical
coeflicient of the logarithmic correction takes a different
value, still of order unit, and an additional term appears,
the Shannon entropy of the weigths w,.

Finally, it is important to notice that the leading
term in entropy result (16), (17) does not depend
explicitly on the Immirzi parameter . This is a striking
consequence of the IH boundary conditions and of the
GFT formalism. More precisely, the availability of a
number operator (a purely GFT observable), and the
possibility to construct and control condensate states
incorporating a large (possibly infinite) superposition of
graphs, rather than simple area eigenstates, represent
key improvements over similar calculations in canonical
LQG. Moreover, also the numerical coefficient in front
of the logarithmic corrections does not depend on v, due
to its purely combinatorial origin, unless one modifies
the construction by using v-dependent weights w(n) for
the mixture of states with different n.
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