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We construct condensate states encoding the continuum spherically symmetric quantum geometry
of an horizon in full quantum gravity, i.e. without any classical symmetry reduction, in the group
field theory formalism. Tracing over the bulk degrees of freedom, we show how the resulting reduced
density matrix manifestly exhibits an holographic behavior. We derive a complete orthonormal ba-
sis of eigenstates for the reduced density matrix of the horizon and use it to compute the horizon
entanglement entropy. By imposing consistency with the horizon boundary conditions and semi-
classical thermodynamical properties, we recover the Bekenstein–Hawking entropy formula for any
value of the Immirzi parameter. Our analysis supports the equivalence between the von Neumann
(entanglement) entropy interpretation and the Boltzmann (statistical) one.

Introduction. — In this Letter we build and anal-
yse, for the first time, spherically symmetric continuum
states to model a quantum black hole horizon, working
in the full theory. In doing so, we make no reference to
a classical symmetry-reduced sector [1].

As quantum gravity states for continuum spherically
symmetric geometries we use spin network condensates in
the group field theory (GFT) formalism [2, 3] (see [4] for
an application to cosmology). We impose on them condi-
tions characterising horizons (including isolated horizons
[5]), and analyze their entanglement properties. We show
that their entanglement entropy coincides with the Boltz-
mann entropy of horizon degrees of freedom (dof) and it
satisfies an area law, a cornerstone of holography.

The major strength of our analysis is the possibility of
keeping into account the sum over triangulations required
in the coarse graining procedure leading, from the infi-
nite number of microscopic dof defining our continuum
quantum states, to an effective macroscopic description,
as well as the control over the interplay between horizon
boundary conditions and the calculation of entropy. In
fact, we are able to control the states with a relatively
small number of parameters, encoding the geometrical
data of the continuum geometry: we are using hydrody-
namic states. This construction allows us to explicitly
compute the horizon density matrix and to prove the
holographic nature of our states. Finally, the GFT for-
malism provides a uniform treatment of boundary and
bulk dof and allow us to remove some ambiguities in the
canonical LQG approach [1].

The implications of these novel features are striking.
The entanglement entropy can be computed exactly and
it matches the Bekenstein–Hawking formula [6] for any
value of the Immirzi parameter γ (see [7–9] for a recent
discussion on its role), once consistency with semiclassi-
cal conditions is imposed. The calculation reduces to a
state counting, with the microscopic d.o.f. encoded in the
combinatorial structure of all possible horizon condensate
graphs (for a fixed expectation value of the macroscopic
area). This supports the entanglement interpretation of
black hole entropy suggested in [8].

Due to difficulties in extracting effective equations of
motion for our generalised GFT condensates from the
fundamental dynamics of a given GFT model, we will
omit restrictions originating from the microscopic dy-
namics in this work. However, we will rely on the use
a maximum entropy principle to capture a few essential
dynamical features, and as a partial characterisation of
horizon geometries, and we will show the consequence of
requiring the compatibility with the classical dynamics of
isolated horizons and their thermodynamical properties.

Construction. — Our plan consists of the follow-
ing steps. i) We define GFT condensate states (as con-
structed in [3]) for a spacelike, spherically symmetric ge-
ometry by acting with a class of refinement operators
on a seed state, and with appropriate semiclassicality
restrictions. ii) We derive the reduced density matrix,
tracing away the remaining bulk dof and find a complete
orthonormal basis of its eigenstates. iii) We compute the
entanglement entropy, coinciding with the statistical en-
tropy of the boundary dof, and show how the result is
affected by different choices of boundary conditions.

Spherically symmetric quantum states. — We define
a spherical symmetric quantum geometry in terms of a
gluing of homogeneous spherical shells to one another
[3]. The states of each shell are constructed starting
from a seed state for a given shell, upon which we act
with refinement operators, increasing the number of ver-
tices and keeping the topology fixed as the connectivity
is changed. In this way, the GFT state for a given shell is
given by a (possibly infinite) superposition of regular 4-
valent graphs with given topology. Shells are then glued
together to form a full 3d foliation.

To keep the topological structure under control, each
4-vertex carries a color t = {B,W} and each SU(2) group
element g associated to a link of a given 4-vertex is la-
belled by a number I = {1, 2, 3, 4} (i.e. we use coloured
4-graphs [10]). Each shell is composed of three parts:
an outer boundary, an inner boundary and a bulk in be-
tween. In order to distinguish these regions, we introduce
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a further colour s = {+, 0,−}, specifying whether a given
vertex belongs to the outer boundary, to the bulk or to
the inner boundary, respectively. The initial seed state
and the refinement operators are such that all the open
radial links of each boundary have the same colour, dif-
ferent for the two boundaries. In order to glue shells
together, and still be able to distinguish different shells,
we add a label r ∈ N to the shell wave-function, which
effectively plays the role of a radial coordinate. The idea

FIG. 1: Two shellsglued through their radial links.

of GFT condensation posits that the same wave-function
σ should be associated to each new GFT excitation in-
troduced in the state. This notion of wave-function ho-
mogeneity for each shell captures the coarse grained ho-
mogeneity of continuum geometric data [3].

The field ladder operators for the vertex v are then

σ̂r,tvsv (hvI ) =

∫
dgvI σr,sv (hvIg

v
I ) ϕ̂tv (gvI ) (1)

and its adjoint, satisfying the commutation relations[
σ̂r,tvsv (hvI ), σ̂†r′,twsw(hwI )

]
= δr,r′δtv,twδsv,sw∆L(hvI , h

w
I ).

(2)
Here we have defined the left invariant Dirac delta as:
∆L(hvI , h

w
I ) =

∫
SU(2)

dγ
∏4

I=1 δ(γh
v
I (hwI )−1). The choice

of the factor δr,r′ in the commutator is crucial: it im-
plies that operators associated to different shells com-
mute with each other. The commutator (2) was intro-
duced in [3] for technical reasons, but we will show that
it encodes crucial physical properties, as the form of (2)
is at the origin of the holographic nature of our states.

A full spatial foliation can then be formed by glueing
all the radial links of the outer boundary of the shell
r with the (same number of) radial links of the inner
boundary of the shell r+ 1. Both sets of links must have
the same colour. We are not going to explicitly define
a refinement operator for the glued shells, as it plays no
role in our entropy calculations (but see [3] for the tools
used in the construction). The general expression for the
full states that we are interested into, then, is of the type:

|Ψ〉 =
∏
r

fr(M̂r,B,M̂r,W ) |seed〉 , (3)

where fr is a function of the refinement operatorsMr of
a given shell r. The action of the refinement operators
can be represented pictorially:

M̂r,B :

1

4

3

2 →
1’’

3’ 3’

2’ 2’

4

3

24’4’

11’

(4)

M̂r,W :

1

2

3

4 → 2’
1’

2’

3 3’ 3’

4’ 4’ 4
2

1 1’’

.
(5)

It corresponds to a dipole insertion, widely used in
coloured tensor models and GFTs [10].

Geometric operators can then be computed for our
GFT states, in a 2nd quantised language. For example,
following [3], we define the horizon area operator

ÂJr,s ≡
∑

t=B,W

∫
(dg)4σ̂†r,ts(gI)

√
Ei

JE
j
Jδij σ̂r,ts(gI) , (6)

where in this case s = {+,−} and J corresponds to the
colour of the radial links dual to the boundary s of the
shell r under examination. The expectation value of the
area operator (6) on a shell boundary state gives

〈ÂJr,s〉 = 〈n̂r,s〉 aJ,s, (7)

where aJ,s is the expectation value of the first quan-
tized (LQG) area operator of a single radial link-J , in
the boundary s of the shell r, in a single-vertex state
with wave-function σ; n̂r,s is the number operator de-

fined as n̂r,s =
∑

t=B,W

∫
dhI σ̂

†
r,ts(hI)σ̂r,ts(hI). Due to

the definition of the states, at each stage of refinement
we always have nr,Bs = nr,Ws = nr,s/2 , where n ≡ 〈n̂〉.

Notice that, in general, these expressions require reg-
ularization, as our condensate states are not always nor-
malizable [3]. However, it is easy to construct condensate
states, peaked in some spin representation, for which all
these steps can be followed rigorously, effectively reduc-
ing the analysis to the Abelian case discussed in [3]. The
full space of solutions to the equations characterising the
condensate wave-function and the refinement move ker-
nel is not known, and we can only exhibit a few explicit
solutions. The existence of several other solutions is plau-
sible, which then leaves a certain amount of freedom in
the specification of the vertex wave-function.

These results are completely general. A factorization
property similar to (7) holds for other one-body opera-
tors, like the 3-volume. The existence of a number op-
erator in the GFT formulation of LQG represents a key
difference with respect to the standard formulation, and
it has a crucial role in the entropy calculation below.

Further restrictions. — In this context, we have two
possible ways to characterize our shell condensate as a
quantum horizon. One possibility would be to impose the
quantum version of the classical isolated horizon bound-
ary condition [11]. This can be done locally, at the level
of each single vertex, by relating the curvature around the
link dual to the boundary face to the flux associated the
it, leading to a restriction on the vertex wave-function.
A second way to define the horizon shell is through the
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condition that the reduced states maximize the entropy.
Imposition of these two constraints in general does not
commute, and will give different results for the entropy.
We will come back on the strategy we follow below, after
deriving the general result.

Further restrictions on our states come from semiclas-
sicality conditions: the fluctuations of a set of operators,
e.g. the area, should be small. They restrict the possible
superposition of graphs with different number of vertices,
as it is evident from (7). Furthermore, we have to impose
that the shells are thin, for the geometry to look smooth.
This imposes a restriction on the expectation value of the
volume per shell, the transverse area and the number of
nodes. These conditions have operator equations coun-
terparts, but we do not discuss them explicitly as they
do not enter directly in our entropy calculations.

Reduced density matrix. — Now we focus on the com-
putation of the entropy associated to the quantum hori-
zon, as defined by our states. We do this in two steps:
reduction to the density matrix associated to the out-
most shell, and explicit computation of the entropy of
the latter. Our complete quantum state, described by
the pure density matrix ρ̂ = |Ψ〉〈Ψ| , consists of a (thin)
shell and bulk dof. We need only the dof of the horizon,
i.e. the ones of the outer boundary of the horizon shell
r0, described by a reduced density matrix obtained by
appropriate traces.

A simple case will clarify the general procedure. Con-
sider the graph A for the horizon outer boundary r0 and
the graph B of the inner boundary of the neighboring
shell r0 + 1, glued along boundaries of colour 1. In order
to be properly glued they must have the same number of
vertices, n. The wave-function is

ψ(gA1 , ..., gAn , gB1 , ..., gBn) =

∫ n∏
i=1

dh
Ai

I dh
Bi

I

×σAi
(h

Ai

I g
Ai

I )σBi
(h

Bi

I g
Bi

I )
∏
v,e

δ(hv,eh
−1
tev ,e

) ,

where the product over δ’s encodes the connectivity of
the total graph A ∪B 1. The total density matrix is

ρ(n)(gA1 , ..., gAn , gB1 , ..., gBn ; g′A1 , ..., g′An , g′B1 , ..., g′Bn)

=

∫ n∏
i=1

dh
Ai

I dh
Bi

I dk
Ai

I dk
Bi

I

×

(
σAi

(h
Ai

I g
Ai

I )σBi
(h

Bi

I g
Bi

I )
∏
v,e

δ(hv,eh
−1
tev,e)

)

×

(
σAi

(k
Ai

I g
′Ai

I )σBi
(k

Bi

I g
′Bi

I )
∏
v,e

δ(kv,ek
−1
tev,e)

)
.

1 The notation is designed to keep track of the combinatorics in
terms of vertices v and edges e of the graph, so that tev will be
the target vertex of the edge e departing from the vertex v.

We can trace away the B region of the graph using the
following consequence of the commutation relations (2)∫

dgIσ(hIgI)σ(kIgI) =

∫
dγδ(γhIk

−1
I ) . (8)

The resulting reduced density matrix is

ρ
(n)
red(gA1 , . . . , gAn ; g′A1 , . . . , g′An) =

∫ n∏
i=1

dh
Ai

I dk
Ai

I

×
∏
v,e

δ(hv,eh
−1
tev,e)δ(kv,ek

−1
tev ,e

)σAi
(h

Ai

I g
Ai

I )σAi
(k

Ai

I g
′Ai

I ) .

The mixed nature of the reduced density matrix is en-
coded only in the relation h

Ai
1 = k

Ai
1 .

This example shows a remarkable general property of
these states: the information about the combinatorial and
geometric structure of the graph B is irretrievably lost,
as a consequence of (8). This feature implements natu-
rally the holographic features of null surfaces in classical
gravity, and thus indirectly confirms the geometric inter-
pretation of our GFT states. This happens even with
no characterization of our states as a quantum horizon
states, and it seems to follow directly from the hypothesis
of condensation, encapsulated in the operators (1). Thus,
it suggests that GFT condensates, as such, constitute a
special class of holographic states.

Entropy. — The computation of the entanglement
entropy can be done in detail, as we are able to diagonal-
ize the reduced density matrix. We work at fixed (large)
number of vertices, which is compatible with the semi-
classicality conditions (semiclassicality requires anyway
good peakednesss properties for the number operator, as
this translates into good peakedness of extensive geomet-
ric observables). Using again (2), we see that the states

Ψ
(n)
A =

∫ n∏
i=1

dg
′Ai

I df
Ai

I σAi
(f

Ai

I g
′Ai

I )
∏
v,e

δ(fv,ef
−1
tev ,e

)

are eigenstates of the horizon density matrix ρ
(n)
red.

Therefore, we can write the reduced density matrix of
the horizon for a given number n of boundary vertices as

ρ
(n)
red−tot =

1

N

N∑
s=1

ρ
(n)
red(Γs) , (9)

where N is the total number of horizon graphs for given
number of vertices n, obtained with the refinement op-

erators, and ρ
(n)
red(Γs) is the reduced density matrix for

given graph. Orthogonality of the states for different
graphs Γs,Γs′ , which can be shown by direct computa-
tion, implies that the eigenvalues are:

ρ
(n)
red(Γs)Ψ

(n)
r0 (Γs′) =

{
1 if s = s′

0 if s 6= s′ .
(10)
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The diagonal form of the density matrix allows us to
compute the von Neumann entropy of the horizon. In
particular, as a consequence of (10), the horizon entan-
glement entropy is the same as the Boltzmann entropy,
obtained by counting the boundary graphs, whose com-
binatorics, due to the condensate hypothesis, encode all
the relevant microscopic dof. For a state

Ψ(n)
r0 (Γs) =

M̂Nb
b M̂Nw

w

Nb!Nw!
|seed〉 (11)

with Nb+Nw = 2n, the total number of graphs with n+1
black and n + 1 white vertices that can be constructed
by acting with the refinement operators is given by

N (n) =

2n∑
m=0

(2n+ 1)!

m!(2n−m)!
= 22n(2n+ 1) . (12)

In the counting that leads to the result (12) we assumed
indistinguishability of the vertices, consistently with the
condensate hypothesis and the form of our states. If
we now include the degeneracy ∆(a) of the single ver-
tex Hilbert space, the number of states to be counted is
Ñ (n, a) = N (n)∆(a).

A point requires attention. We are implicitly assum-
ing that the only structure that is left in the state is the
horizon shell, while one would expect the computation
of the full entanglement entropy to require the compu-
tation of the reduced density matrix of the part of the
bulk up to the horizon shell. Performing the same calcu-
lation above, one would expect to obtain the number of
graphs in the bulk times the single vertex Hilbert space
degeneracy associated to all the bulk shells. However,
the construction of our states makes this extra count-
ing not necessary. In fact the refinement operators are
applied on the whole state, and act in such a way that
every new vertex on a shell is matched to a new ver-
tex in a neighboring shell. Consequently, the actions of
the refinement operators on different shells, and hence
the number of graphs to be counted, are perfectly coor-
dinated. The counting of the graphs on a single shell,
then, exhausts the number of states. Moreover, in order
for the action of the refinement operators to be correctly
defined on each part of every shell, the form of the con-
densate wave-function and its functional dependence on
the different colours have to be the same for the whole
graph (as it can be seen from the commutation relations
(2)). This implies that the degeneracy factor ∆(a) covers
the dimension of the space of allowed wave-functions also
when the whole bulk is included in the calculation.

Therefore, the weak holographic principle is not as-
sumed in our analysis, but it follows from the condensate
hypothesis and the features of our construction.

We conclude that the Boltzmann entropy is

S(n, a) = log(Ñ ) = 2n log(2) + log(2n+ 1) + log(∆(a)) .
(13)

In (13), the central result of our analysis, we recognize
an area law, as the first term is an extensive quantity
proportional to the total number of plaquettes compos-
ing the horizon, and thus, for given average area for a
single-plaquette a, to the total area A = an (and the de-
generacy factor ∆(a) only contributes a constant shift).
It should be stressed that the structure of the result
holds for any spherically symmetric state, as we have
not yet discussed the extra conditions characterising an
horizon. This also implies that there is no reason, yet, to
require matching with the Bekenstein-Hawking entropy,
i.e. requiring our states to give a specific value for a. No-
tice that area laws for the entanglement entropy for any
smooth closed codimension two surface emerge in various
situations [12]. In this sense, as anticipated, the commu-
tation relations (2) acquire a physical meaning, ensuring
consistency between the quantum features of our GFT
condensates and expected properties of classical smooth
geometries, confirming their interpretation.

To proceed beyond this point one should use the equa-
tions of motion to determine n, a,∆(a), not fixed by the
defining properties of the condensate states alone.

Even without the exact dynamics, we can make signif-
icant progress by imposing horizon boundary conditions.

As pointed out above, there are two possibilities to
do that. Using the isolated horizon boundary condition
would a priori introduce an extra dependence of the de-
generacy ∆ on the total value of the horizon area, since
this enters the resulting constraint on the vertex wave-
function σ. The area law, then, is not guaranteed and
one needs a detailed analysis of the space of constrained
wave-functions. This would be a highly non-trivial task.

We use instead a maximum entropy principle, and we
determine the values of a, n,∆(a) for the most generic
state compatible with a fixed macroscopic value of the
total horizon area AH . Further investigations are needed
to show that this is a good characterization of quantum
horizons, compatible with the quantum dynamics.

Compatibly with the semiclassicality conditions stated
above, for fixed AH , we are considering condensate states
such that n is a large pure number and, consequently, a
is small. Introducing the constraint on the area, we look
for extrema of Σ(n, a, λ) = S(n, a) +λ (AH − 2an), when
varying with respect to a, n, λ. Let us point out that, if
∆(a) was known explicitly, then the system of equations
would fully determine the free parameters a, n, λ as func-
tions ofAH and the microscopic parameters of the theory.
This not being the case, we use one of the equations to
determine ∆(a), thus leaving the final result dependent
on the Lagrange multiplier λ. More precisely, we obtain
a = log(2)/λ,∆ = c0 exp (λAH), where c0 is an irrelevant
integration constant. As a result, the entropy is:

S(AH , λ) ∼ 2λAH + log (AH/a) . (14)

We obtained the desired area law from first principles.
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From the entropy result (14) we recover the semiclassi-
cal Bekenstein–Hawking formula by setting the Lagrange
multiplier λ = 1/8`2P . Within our working assumption
about the compatibility of the classical dynamics with
our hydrodynamical approximation of GFT, this last step
can be interpreted as a thermodynamical consistency
condition. More precisely, exploiting the continuum (and
semiclassical) geometric interpretation of our states, the
value of λ above yielding the factor of 1/4 in front of
the area law is obtained from the compatibility with the
thermodynamic relation β = ∂S

∂E , where β is the hori-
zon temperature and E its energy, which implies conver-
gence between macroscopic GR dynamics and effective
equations of motion derived from the GFT dynamics.

Let us clarify an important aspect of this final result.
The value of λ yielding the correct semiclassical result
implies a = log(2)8`2P , which is also consistent with our
semiclassicality condition of a small, i.e. large n limit.
The (average) area a for a single vertex can be computed
for each specific choice of our microscopic GFT conden-
sate states. The agreement with this precise value is then
a constraint selecting those states, among those solving
also the dynamics of the theory, which admit a good semi-
classical interpretation. In this way, the (implicit) depen-
dence of a on the Immirzi parameter does not imply that
the Bekenstein–Hawking formula is recovered only for a
specific choice of γ. On the contrary, the leading term in
the semiclassical entropy result remains explicitly inde-
pendent on γ. This is a striking consequence of the GFT
formalism. More precisely, the availability of a number
operator (a purely GFT observable), and the possibility
to construct and control condensate states incorporating
a large (possibly infinite) superposition of graphs, rather
than simple area eigenstates, represent key improvements
over similar calculations in canonical LQG. The standard
LQG calculation (with its dependence on γ) would be
recovered for very special condensate states which are
eigenstates of the horizon area.

Remarks. — We notice that `P , appearing in λ (and
thus in the entropy formula), is going to be a function of
the microscopic parameters of the theory, notably its dy-
namical coupling constants. These, in turn, are subject
to renormalisation in going from the microscopic defini-
tion of the theory to the effective continuum (and semi-
classical) regime. To determine the flow of such parame-
ters, for realistic models, is an active direction of current
developments in the GFT approach [13].

Finally, let us point out that the coefficient in front
of the logarithmic correction, equal one in our case,
depends directly on the form chosen for the refinement
operators in the microscopic definition of our condensate
states, which dictates the counting of graphs. Thus it
can also be computed explicitly. Moreover, it is possible
to work with a more general mixed density matrix,
ρ̂red =

∑
n w(n)ρ̂(n), containing a mixture of states with

different number of vertices, coming from the trace of a

generic state as in (3). For semiclassical mixtures (thus
peaked around some value n0) the dominant area law
contribution for these states is robust and independent
from any detail of the mixture of graphs; on the other
hand, the numerical coefficient of the logarithmic correc-
tion takes a different value, still of order unit. It remains
independent on γ, due to its purely combinatorial
origin, unless one modifies the construction by using
γ-dependent weights w(n) for the mixture of states with
different n. Also, an additional entropy term appears,
the Shannon entropy of the weights wn.
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