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Abstract

We investigate the generalized gravitational entropy from total derivative terms in the gravi-

tational action. Following the method of Lewkowycz and Maldacena, we find that the generalized

gravitational entropy from total derivatives vanishes. We compare our results with the work of

Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero en-

tropy, the holographic and the field-theoretic universal terms of entanglement entropy would not

match. Furthermore, the second law of thermodynamics could be violated if the entropy of total

derivatives did not vanish.
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1 Introduction

A remarkable property of quantum gravity is that the gravitational entropy associated with a horizon

is given by its area [1, 2, 3]:

S =
Area

4GN
. (1)

The area law was shown by Gibbons and Hawking for the case of Killing horizons [4]. It was later

generalized by Ryu and Takayanagi to the holographic entanglement entropy [5]; the analog of the

horizon in this case is a minimal surface and generally does not have a Killing vector. This generalized

gravitational entropy was shown to also satisfy the area law (1) by Lewkowycz and Maldacena [6].

It is important to note that the area law strictly applies to the case of Einstein gravity. However,

higher derivative corrections to Einstein gravity naturally arise in ultraviolet complete theories of

quantum gravity such as string theory. As we may expect, these higher derivative interactions give

corrections to the area law (1). Broadly speaking, there are two types of contributions:

S = SWald + Sanomaly . (2)
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The first is the Wald entropy [7]

SWald = −2π

∫

ddy
√
g

δL

δRµνρσ
ǫµνǫρσ. (3)

The second type of contributions involves the extrinsic curvature and have an anomaly-like origin

[8, 9, 10]. Both types of contributions may be derived by studying Euclidean conical geometries and

their regularized versions.

It is well-known that total derivative terms in a gravitational action do not contribute to the

equation of motion. One might wonder whether they have any physical effect on the theory at

all, and in particular, whether they contribute to the gravitational entropy. In this paper, we use

the Lewkowycz-Maldacena method [6] to investigate the contribution to the gravitational entropy

from total derivative terms in the action and find it to be zero. This is in contrast with the result

obtained in recent papers by Astaneh, Patrushev and Solodukhin (APS) [11, 12], where they find

nonzero contributions to the gravitational entropy. As we will explain in detail, the main differences

between the two methods are whether the regularized cone approaches the singular cone away from

the conical singularity, and whether the on-shell action of the singular cone is properly subtracted

from that of the regularized cone.

Before proceeding, let us point out that for the case of a Killing horizon, the second term in (2)

which involves the extrinsic curvature vanishes, and we are left with the Wald entropy. The contri-

bution from total derivative terms to the Wald entropy is by definition zero, since the prescription

for δL/δRµνρσ in (3) involves integration by part.

The paper is organized as follows. In Sec. 2, we review the Lewkowycz-Maldacena method and

use it to study the simplest example of a total derivative term in the gravitational action: �R.

We calculate the gravitational entropy in this example by several different methods. In Sec. 3,

we investigate the gravitational entropy from general total derivative terms by using the techniques

developed in [9, 13]. We compare our method with the one used by APS in Sec. 4, and point out other

problems for their results in Sec. 5. In particular, their results imply that holographic entanglement

entropy in conformal field theories does not agree with field-theoretic predictions. Moreover, we

show that the second law of thermodynamics can be violated if the gravitational entropy from total

derivatives is nonzero. We give a short conclusion in Sec. 6.

2 Simplest example: �R

In this section, we consider the simplest example of a total derivative term in the gravitational action:

�R. We first review the Lewkowycz-Maldacena method of calculating the generalized gravitational

entropy [6], with special emphasis on the roles of singular and regularized cones. We then apply it
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to the �R example, and find that such a total derivative term does not contribute to the generalized

gravitational entropy.

2.1 Review of the Lewkowycz-Maldacena method

We start with the replica trick for calculating the generalized gravitational entropy:

S = − lim
n→1

1

n− 1
(logZn − n logZ1) , (4)

where Zn is the partition function of the n-fold branched cover of the original Euclidean geometry.

Using the AdS/CFT correspondence [14, 15, 16], we construct the dual bulk geometries Bn and find

S = lim
n→1

1

n− 1
(I[Bn]− nI[B1]) . (5)

It is important to remember that Bn (which is defined only for integer n ≥ 1) is not a singular bulk

geometry – it is required by the prescription of AdS/CFT to satisfy all bulk equations of motion

and is therefore smooth.

To perform the analytic continuation to non-integer n and ultimately take the n → 1 limit,

we assume that the bulk geometry Bn has a Zn replica symmetry which allows us to take the

orbifold Bn/Zn ≡ B̂n. The orbifold is a singular (i.e. not regularized) cone with conical deficit

2π(1− 1
n
) ≡ 2πǫ on a codimension-2 surface consisting of the fixed points of the Zn symmetry, and

the generalized gravitational entropy can be calculated in terms of the on-shell action of this cone:

S = lim
n→1

n

n− 1

(

I[B̂n]− I[B1]
)

. (6)

As emphasized in [6], at this stage we should not include any contribution from the conical singular-

ity in the on-shell action I[B̂n]; in particular, we should not include any delta-function contribution

or Gibbons-Hawking-York boundary term. The correct prescription is to simply integrate the La-

grangian until we reach the conical singularity. The justification for this prescription is that there

are no such contributions in the on-shell action of the parent space Bn as it is completely smooth.

The singular cone geometry B̂n can easily be analytically continued to non-integer n by contin-

uously tuning the conical deficit 2π(1 − 1
n
). The precise prescription is to solve all bulk equations

of motion while imposing the conical deficit as a boundary condition. This is equivalent, at least

for Einstein gravity and several classes of higher derivative gravity [9], to inserting an appropriate

cosmic brane and solving all equations of motion. The cosmic brane is an auxiliary tool for finding

the conical geometry B̂n and does not contribute to the on-shell action I[B̂n].

Until now we have only used singular cones in the formalism. Where do regularized cones come

into this story? They come because the singular cone geometry B̂n used in (6) is not easy to compute
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for general n. Even close to n ≈ 1, solving for B̂n to linear order in n − 1 is equivalent to solving

the backreaction of a cosmic brane. It is important to distinguish this “on-shell” method with an

“off-shell” method1 which simply inserts a conical deficit without modifying the geometry away from

the conical singularity.

Fortunately, we do not have to solve for the singular cone B̂n to evaluate (6). This is because the

first-order variation of an on-shell action is purely a boundary term. We may either calculate this

boundary term directly, or use a regularized cone B̂n,reg which is defined to be a smooth geometry

that approaches the singular cone B̂n sufficiently fast away from the conical singularity. The precise

meaning of “sufficiently fast” will become clear momentarily2. Using the regularized cone, we may

trivially rewrite (6) as

S = lim
n→1

n

n− 1

[(

I[B̂n,reg]− I[B1]
)

−
(

I[B̂n,reg]− I[B̂n]
)]

. (7)

Now, the first term I[B̂n,reg]− I[B1] is the variation of an on-shell action; the first-order variation in

n− 1 therefore vanishes because B1 satisfies all equations of motion and the regularized cone B̂n,reg

is by definition smooth everywhere3. Therefore (7) simplifies to

S = − lim
n→1

n

n− 1

(

I[B̂n,reg]− I[B̂n]
)

. (8)

The advantage of (8) over (6) is that the contribution is now manifestly localized near the conical

defect, as the regularized cone by definition approaches the singular cone away from the conical

singularity. Therefore (8) allows us to focus on metric expansions near the conical singularity.

2.2 Trivial entropy from �R

In this section we show that a �R term in the gravitational action does not contribute to the

generalized entropy. We use three different methods. The first involves directly evaluating the

contribution to the on-shell action of the singular cone in (6), and uses the total derivative to reduce

its contribution to a potential boundary term. The second method is similar but uses the regularized

cone and (8). The third method also uses the regularized cone but calculates the integrals in (8) by

brute force.

1Such an off-shell method is appropriate on the field theory side, e.g. in the calculation of the universal part of

entanglement entropy in even-dimensional CFTs via their Weyl anomaly.
2One regularization that definitely approaches the singular cone fast enough is to use a smooth function with

compact support so that the regularized cone becomes identical to the singular cone outside some finite radial distance

away from the conical singularity.
3There are no boundary terms at the asymptotic boundary because B1 and B̂n satisfy the same boundary conditions,

and the regularized cone B̂n,reg is defined to approach the singular cone B̂n fast enough so as to satisfy the same

boundary conditions.
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Before proceeding, let us write down the general metric of the singular or regularized cone in a

coordinate system adapted to a neighborhood of the conical singularity [9]:

ds2 = e2A
[

dzdz̄ + e2AT (z̄dz − zdz̄)2
]

+
(

gij + 2Kaijx
a +Qabijx

axb
)

dyidyj

+ 2ie2AUi (z̄dz − zdz̄) dyi + · · · . (9)

Here xa ∈ {z, z̄} denotes orthogonal directions to the conical singularity, and yi denotes parallel

directions. The warp factor is

A = − ǫ

2
log(zz̄) , ǫ ≡ 1− 1

n
, (10)

for the singular cone B̂n. The form of the metric (9) is constrained by the regularity and Zn replica

symmetry of the parent space Bn when n is a positive integer. The most general coefficient functions

T , Qabij , and Ui allowed by regularity can be written as Taylor expansions4 in e−2A = r2ǫ where

r ≡ |z|. The first terms in such expansions are

T = T (0) +O(r2ǫ) , Ui = U
(0)
i +O(r2ǫ) , (11)

Qzz̄ij = e−2ǫQ
(0)
zz̄ij +O(r0) , Qzzij = Q

(1)
zzij +O(r2ǫ) , Qz̄z̄ij = Q

(1)
z̄z̄ij +O(r2ǫ) . (12)

We have kept the metric to sufficiently many orders in the radial expansion around the conical

singularity for the �R example. The Ricci scalar near the conical singularity is

R = RΣ + (1− ǫ)2
(

24T (0) − 8Q
(0) i

zz̄i
+ 16U

(0)
i U (0)i

)

+O(r2ǫ) , (13)

where RΣ is the intrinsic Ricci scalar of the conical surface.

We may also describe the regularized cone B̂n,reg by a metric of the form (9). A simple choice

of the regulator is to replace the warp factor by

A = − ǫ

2
log(zz̄ + b2) , (14)

where b is a small positive number.

2.2.1 Direct method

Let us directly use (6) to calculate the contribution of �R to the gravitational entropy. For this

purpose we calculate the on-shell action of the singular cone. The contribution to the on-shell action

4These expansions are ultimately determined by solving the bulk equations of motion, although we do not need to

know the detailed solution for our current purpose. Note that Kaij seems also allowed by the regularity of Bn (when

n is an integer) to have such an expansion in r2ǫ, but for 1 < n < 2 this would lead to a singular Ricci scalar and is

therefore forbidden by a reasonable equation of motion with a bounded stress tensor.
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from a total derivative term such as �R is a boundary term:

I[B̂n] =

∫

drdτddy
√
G�R = −

∫

dτddy
√
g lim
r→0

r∂rR . (15)

We should evaluate the r → 0 limit of the above expression for finite n− 1, and only take the n → 1

limit in (6) at the end. For finite n−1 or equivalently finite ǫ, we find from (13) that r∂rR = O(r2ǫ)

and therefore (15) vanishes.

To complete the calculation of (6) we also need to evaluate I[B1]. Since B1 is a completely

smooth geometry that satisfies the bulk equations of motion, its Ricci scalar is finite and has a Taylor

expansion near r = 0. Therefore I[B1], which also reduces to a boundary term from integrating �R,

vanishes. It is now clear from (6) that �R does not contribute to the gravitational entropy.

Note that we did not include boundary terms at the asymptotic infinity when integrating �R in

(15). This is because such boundary terms, if nonzero, would have to be compensated by additional

boundary terms at the asymptotic infinity in the gravitational action5, as required by a well-posed

variational principle [17].

The reason why a total derivative term such as �R does not contribute to the gravitational

entropy is particularly clear if we first study Renyi entropies Sn at integer n > 1, defined by the

expression in (4) before taking the n → 1 limit:

Sn = − 1

n− 1
(logZn − n logZ1) . (16)

In terms of the on-shell action of dual bulk geometries, the Renyi entropy may be written as

Sn =
1

n− 1
(I[Bn]− nI[B1]) , (17)

analogous to (5). For any positive integer n, the bulk geometry Bn is completely smooth and the

contribution to the on-shell action I[Bn] from a total derivative term vanishes identically. There is

no boundary term from integrating a total derivative term at r = 0 because Bn is regular there,

and the reason for the absence of a boundary term at the asymptotic infinity is the same as argued

above. Therefore all Renyi entropies Sn vanish at integer n > 1, and by analytic continuation this

statement holds for all n, including the case of n = 1 which gives the gravitational entropy.

2.2.2 Boundary method

Now let us investigate the entropy from �R by using (8). In this approach, we need to calculate

the action difference between the regularized cone and the singular cone. We firstly integrate the

5For �R the additional boundary action required by a well-posed variational principle is Ibdy = −

∫
∂
dd+1x

√
γnµ∂µR

where γ is the determinant of the induced metric and nµ is outward-pointing unit normal vector.
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total derivative to get a boundary term and then derive the entropy from this boundary term. For

simplicity, we focus on the following regularized conical metric

ds2 =
1

(r2 + b2)1−
1
n

(dr2 + r2dτ2) + (δij + 2r sin τK1ij + 2r cos τK2ij)dy
idyj , (18)

with τ ∼ τ + 2π. Here we have set T = Ui = Qabij = 0 in the language of (9). The approach below

can easily be applied to the general metric (9). By dimensional analysis, we notice that only the K2

terms contribute to the entropy. Focus on such terms, we have

∫ r0

0
dr

∫ 2π

0
dτ

√
G�R =

∫ 2π

0
dτ

√
GGrr∂rR

∣

∣

∣

∣

r=r0

r=0

=
4π(n− 1)

([

3trK2 − (trK)2
]

r6 + d1b
2r4 + d2b

4r2
)

n (r2 + b2)
1
n
+2

∣

∣

∣

∣

∣

r=r0

r=0

(19)

= 4π
[

3trK2 − (trK)2
]

(n− 1) +O[(n − 1)2] , (20)

where dn are coefficients irrelevant for the gravitational entropy. To derive (20) from (19), we have

used the fact that b ≪ r0. According to (8), we should subtract off the contribution of the singular

cone (b = 0). From (19) and (20), we find

∫ r0

0
dr

∫ 2π

0
dτ

√
G�R− (b = 0) = O[(n− 1)2]. (21)

Note that we take n > 1 and b finite for the regularized cone B̂n,reg, while we have n > 1 and b = 0

for the singular cone B̂n. It is now clear that the entropy from �R is zero by using this “boundary

method.”

2.2.3 Bulk method

Now let us use a different method to derive the entropy from �R. Instead of considering the

boundary terms, we calculate the integrals in (8) by brute force.

Similar to the above section, we take the regularized conical metric (18) and focus on the K2

terms in the action. We have

∫ r0

0
dr

∫ 2π

0
dτ

√
G�R− (b = 0)

=

∫ r0

0
dr

8π(n − 1)
(

[3trK2 − (trK)2]b6r + [14trK2 − 6(trK)2]b4r3 + [(trK)2 − trK2]b2r5
)

(r2 + b2)
1
n
+3

(22)

+

∫ r0

0
dr

8π(n − 1)2
(

[3trK2 − (trK)2]r7 + c1b
2r5 + c2b

4r3 + c3b
6r
)

(r2 + b2)
1
n
+3

+O[(n− 1)3]− (b = 0) (23)

=O[(n− 1)2] . (24)
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Here cn are coefficients irrelevant for the result. Eq. (22) contributes to the Wald-like entropy while

eq. (23) contributes to the “anomaly” part of the entropy. Naively eq. (23) is of order O[(n − 1)2].

However, it becomes of order O(n − 1) after the integration (with regularization). In the above

derivation, we have used the following formulae

∫ r0

0
dr

b2r5

(r2 + b2)
1
n
+3

− (b = 0) =
1

6
+O(n− 1)

∫ r0

0
dr

b4r3

(r2 + b2)
1
n
+3

− (b = 0) =
1

12
+O(n− 1)

∫ r0

0
dr

b6r

(r2 + b2)
1
n
+3

− (b = 0) =
1

6
+O(n− 1)

∫ r0

0
dr

r7

(r2 + b2)
1
n
+3

− (b = 0) = − 1

2(n− 1)
+O[(n− 1)0] (25)

Note again that we take n > 1 and b finite for the regularized cone, while we have n > 1 with b = 0

for the singular cone. Using the above formulae, we derive eq. (24) and find that the entropy from

�R is zero by using this “bulk method.”

3 Trivial entropy from total derivative action

In this section, we investigate the generalized gravitational entropy from total derivative terms in

the action by applying the method of [9]. We find that the entropy from a general covariant total

derivative action vanishes. Similarly, the entropy from a topological invariant (i.e. a total derivative

locally, but not globally) such as Lovelock gravity [18, 19] in critical dimensions is another topological

invariant [20, 9]. We start by reviewing the derivation of generalized gravitational entropy for the

most general higher derivative gravity [13] and then calculate the entropy from several total derivative

actions.

3.1 Entropy for the most general higher derivative gravity

In this section, we briefly review the derivation of holographic entanglement entropy (HEE) for the

most general higher derivative gravity L(g,R,∇R,∇2R, · · · ) following [9, 13].

Let us start with the regularized conical metric [9, 10]

ds2 = e2A[dzdz̄ + T (z̄dz − zdz̄)2] + 2iVi(z̄dz − zdz̄)dyi + (gij +Qij)dy
idyj , (26)

where gij is the metric on the transverse space and is independent of z, z̄. A = − ǫ
2 log(zz̄ + b2) is

8



regularized warp factor. T, Vi, Qij are defined as [13, 21]6

T =

∞
∑

n=0

Pa1···an+1
∑

m=0

e2mATm a1···anx
a1 · · · xan ,

Vi =

∞
∑

n=0

Pa1···an+1
∑

m=0

e2mAVm a1···anix
a1 · · · xan ,

Qij =

∞
∑

n=1

Pa1···an
∑

m=0

e2mAQm a1···anijx
a1 · · · xan . (27)

Here z, z̄ are denoted by xa and Pa1···an is the number of pairs of z, z̄ appearing in xa1 · · · xan . For

example, we have Pzzz̄ = Pzz̄z = Pz̄zz = 1, Pzz̄zz̄ = 2, and Pzz···z = 0. Expanding T, V,Q to the first

few terms in the notations of [9], we have

T = T0 + e2AT1 +O(x) ,

Vi = U0 i + e2AU1 i +O(x) ,

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) . (28)

According to [13, 21], T0, U0 i, Q0 abij must be functions of the extrinsic curvature tensor in order to

be consistent with Wald entropy in stationary spacetime. Note that U0 ∼ K and it is impossible to

express U0 i in terms of Kaij . Thus a natural choice of U0 i would be zero. In principle, the exact

expressions of T0 and Q0 abij can be derived by using the equation of motion. It is unnecessary to

derive exact expressions of T0 and Q0 abij in the present paper. As we shall show, the entropy of

covariant total derivative terms is zero for arbitrary T0 and Q0 abij .

Using the conical metric (26), we can calculate the regularized cone action Ireg as well as the

singular cone action Isingular in the most general higher derivative gravity and then select the relevant

terms to derive HEE:

S = −∂ǫ (Ireg − Isingular) |ǫ=0 . (29)

Let us list all the relevant terms of HEE below [13].

First class: generalized Wald entropy
∫

dzdz̄zmz̄n∂m+1
z ∂n+1

z̄ A = (−1)m+n+1m!n!πǫ . (30)

6We expand the conical metric in powers of (r2, rne±inτ ) but not r2(n−1). As a result, there is a low bound for

m in the expansions of T, V,Q in (27). The powers of r2(n−1) are not forbidden by regularity (of the parent space at

integer n). However, it would lead to singular equations of motion if we allow such powers for the extrinsic curvature

and the transverse metric. Furthermore, it would change the entropy formula of the curvature-squared gravity, which

leads to the violation of the second law of thermodynamics [30]. For the above reasons, we do not include powers of

r2(n−1) in the expansions (27). It should be mentioned that even if we included powers of r2(n−1) the entropy from

covariant total derivatives would still vanish.
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Equivalently, we have

∂m+1
z ∂n+1

z̄ A = −πǫ∂m
z ∂n

z̄ δ̄(z, z̄) . (31)

Here the delta function is defined as
∫

dzdz̄δ̄(z, z̄) = 1. We call the entropy relevant to this class as the

generalized Wald entropy. In addition to the usual Wald entropy, corrections from Kz, Qzz, Tz, Vz · · ·
(but not Qzz̄, Tzz̄, Vzz̄, · · · ) may appear in the generalized Wald entropy. For example, the generalized

Wald entropy for action L(g,R,∇R) is [13]

SG-Wald = 2π

∫

ddy
√
g
[ δL

δRzz̄zz̄
+ 2(

∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c)

]

= 2π

∫

ddy
√
g
[

− δL

δRµνρσ
ǫµνǫρσ + 2

∂L

∂∇αRµρνσ
Kβρσ(n

β
µnαν − ǫβµǫαν)

]

. (32)

It reduces to the usual Wald entropy for stationary black holes. Thus it is consistent with Wald’s

results. It should be mentioned that, due to these corrections, the generalized Wald entropy from

total derivative terms is nonzero in the general case.

Second class: anomaly-like entropy

∫

dzdz̄zmz̄n∂m+1
z A∂n+1

z̄ Ae−βA = (−1)m+n+1m!n!
πǫ

β
. (33)

Equivalently, we have

∂m+1
z A∂n+1

z̄ Ae−βA = −πǫ

β
∂m
z ∂n

z̄ δ̄(z, z̄) . (34)

These terms contribute to the anomaly-like entropy. They are the would-be logarithmic terms which

could gain a 1/ǫ enhancement after the regularized integral.

Let us briefly discuss the proof of the above key formulas eqs. (30-34). Eqs. (30, 31) are derived

from of the well-known identity ∂z∂z̄A = −πǫδ̄(z, z̄). As for the proof of eqs. (33, 34), one can follow

the method of [9]. Here we provide a schematic derivation. Recall that A = − ǫ
2 log(zz̄), we have

zm∂m+1
z A = − ǫ

2(−1)mm!
z
. Thus we can derive

∫

rdrzmz̄n∂m+1
z A∂n+1

z̄ Ae−βA =

∫

dr(−1)m+nm!n!
ǫ2

4
r−1+βǫ

= (−1)m+nm!n!
ǫ

4β
rβǫ|∞0

∼= (−1)m+n+1 ǫ

4β
m!n! . (35)

Here z = reiτ and ∼= denotes equivalence after regularization. Since the conical singularity is located

at r = 0, we have ignored the contributions at r = ∞ in the above derivation. One can check that

terms at r = ∞ can be removed by using suitable regularization. It should be stressed that the

coefficient of a would-be log divergence rβǫ is universal and independent of the regularization. That
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is the reason why one can read off the last line of eq. (35) in a straightforward way without applying

any specific regularization.

Using eqs. (26-34), we can derive the entropy of the most general higher derivative gravity.

3.2 Trivial entropy for total derivatives

Let us compute the entropy for the following list of total derivative terms

{�R,�R2,�(RµνR
µν),�(RµνρσR

µνρσ)} (36)

by applying the method of the above section. For simplicity, we set Vi = 0 for the squashed cone

(26)7. It should be mentioned that our metric for the regularized cone (26) is different from the

one used in [8], in that our regularized cone approaches the singular cone away from the conical

singularity.

Let us start with the regularized conical metric (26) with T, V,Q given by

T = T0 + e2AT1 +O(x) ,

Vi = 0 ,

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) . (37)

Applying formulas (30, 33), we derive HEE of the total derivative terms. We list the results below.

For �R, we get

SG-Wald = 4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SAnomaly = −4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SHEE = 0 . (38)

For �R2, we have

SG-Wald = 8π

∫

ddy
√
gR

[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SAnomaly = −8π

∫

ddy
√
gR

[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SHEE = 0 . (39)

The calculations for �(RµνR
µν) are quite complicated. For simplicity, we work in 3d bulk

spacetime and obtain

SG-Wald = 32π

∫

dy
√
g[
5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 9K2
z̄K

2
z + 6Kz̄Kz(Q0 zz̄ + 2Q1 zz̄ − 4T0 − 2T1)

7This is also the case investigated in [11, 12].
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−2Qz̄z̄Qzz − 6
(

Q0 zz̄(Q1 zz̄ − 2T0) +Q2
1 zz̄ − 2Q1 zz̄(2T0 + T1) + 12T0(T0 + T1)

)

] ,

SAnomaly = −32π

∫

dy
√
g[
5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 9K2
z̄K

2
z + 6Kz̄Kz(Q0 zz̄ + 2Q1 zz̄ − 4T0 − 2T1)

−2Qz̄z̄Qzz − 6
(

Q0 zz̄(Q1 zz̄ − 2T0) +Q2
1 zz̄ − 2Q1 zz̄(2T0 + T1) + 12T0(T0 + T1)

)

] ,

SHEE = 0 . (40)

Similarly, for �(RµνρσR
µνρσ) in 3d spacetime we find

SG-Wald = 128π

∫

dy
√
g[
5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 5K2
z̄K

2
z + 2Kz̄Kz(Q0 zz̄ + 2Q1 zz̄)

−2(Qz̄z̄Qzz +Q1 zz̄(Q0 zz̄ +Q1 zz̄) + 18T0(T0 + T1))] ,

SAnomaly = −128π

∫

dy
√
g[
5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 5K2
z̄K

2
z + 2Kz̄Kz(Q0 zz̄ + 2Q1 zz̄)

−2(Qz̄z̄Qzz +Q1 zz̄(Q0 zz̄ +Q1 zz̄) + 18T0(T0 + T1))] ,

SHEE = 0 . (41)

Remarkably, the above results show that the generalized Wald entropy and the anomaly-like entropy

always exactly cancel for total derivative actions.

Before the end of this section, we provide some details of the calculations for HEE of �R.

Focusing on the linear terms of A which are relevant to the generalized Wald entropy, we get

√
G�R = e−2A√g

[

4((TrK)2 − 3TrK2 + 2TrQ a
0 a − 16T0 + 64e2AT1)∂z∂z̄A

− 2((TrK)2 − 2TrK2 +TrQ a
0 a − 32T0 − 112e2AT1)(z∂

2
z∂z̄A+ z̄∂z∂

2
z̄A)

+ (32T0 + 48e2AT1)(z
2∂3

z∂z̄A+ z̄2∂z∂
3
z̄A)

− 4((TrK)2 − 2TrK2 +TrQ a
0 a + 8T0)(zz̄∂

2
z∂

2
z̄A)

]

+ · · · . (42)

Applying eqs. (30), we obtain the first formula in eq. (38):

SG-Wald = 4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

. (43)

Note that the generalized Wald entropy is nonzero for �R.

Let us proceed to compute the anomaly-like entropy from �R. Focusing on the relevant terms

eq. (33), we have

√
G�R = − 8

√
ge−2A[(TrK)2 − 3TrK2 + 2TrQ a

0 a − 8T0 − 8e2AT1)∂zA∂z̄A

+ 64(−2T0 + e2AT1)(z∂
2
zA∂z̄A+ c.c)

− 32T0(z
2∂3

zA∂z̄A+ c.c)

+ 64e2AT1(zz̄∂
2
zA∂

2
z̄A)] + · · · .

(44)
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Applying eq. (33), we derive the second formula in eq. (38):

SAnomaly = −4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

. (45)

As expected, the generalized Wald entropy (43) and the anomaly-like entropy (45) cancel.

To summarize, by applying the methods of [9, 13] we find that the entropy from covariant total

derivative terms in the gravitational action is indeed zero.

4 Comparison with Astaneh-Patrushev-Solodukhin

In this section, we compare our results with those obtained in recent papers by Astaneh, Patrushev

and Solodukhin (APS) [11, 12]. For simplicity we will illustrate the differences by using the �R

example. The works [11, 12] use the prescription for regularization developed in [8], which is quite

different from the Lewkowycz-Maldacena prescription [6]. The main differences are that the regular-

ized cone used in [11, 12] does not approach the singular cone away from the conical singularity, and

that they do not subtract off the on-shell action of the singular cone. As a result, they sometimes

get a nonzero entropy from total derivative terms.

Let us briefly review the prescription used in [11, 12]. They propose to write the regularized

conical metric as8

ds2 = fn(r)dr
2 + r2dτ2 + [gij + 2Ka

ijn
arn +Ka

imKbm
j nanbr2n + · · · ]dyidyj , (46)

where fn = r2+b2n2

r2+b2
, n1 = cos τ , n2 = sin τ , and τ ∼ τ + 2nπ. Note that we have fn → n2 for

r → 0, ensuring that there is no conical singularity when we identify τ with τ + 2πn. Using the

above regularized metric, they derive the generalized gravitational entropy as

SGGE = lim
n→1

(n∂n − 1)Ireg , (47)

with Ireg the gravitational action of the regularized cone.

Before proceeding, let us point out two differences between the APS prescription and the

Lewkowycz-Maldacena prescription used in the previous sections. Even though both methods use

regularized cones, an important difference is that at large r the metric (46) does not approach the

singular conical metric

ds2 = dr2 + r2dτ2 + [gij + 2Ka
ijn

ar + · · · ]dyidyj . (48)

8Note that the cone here has a conical excess of 2π(n− 1). For integer n it can be constructed by gluing n copies

of the B1 bulk geometry. This is different from our orbifold picture in the previous sections in which the cone has a

conical deficit of 2π(1− 1
n
).
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The regularizing procedure of replacing r by rn in the extrinsic curvature term was first proposed in

[8], but it is not a local modification of the cone near the conical singularity. The second important

difference is that unlike the Lewkowycz-Maldacena prescription (8) or (29), the on-shell action of

the singular cone is not subtracted off in (47).

Now we are ready to reproduce the calculation of the entropy from �R by using the APS

approach. By dimensional analysis, we note that the entropy is of order O(K2). Focusing on this

order, we obtain

∫ 2πn

0
dτ

∫ r0

0
dr

√
G�R =

∫ 2πn

0
dτ

√
GGrr∂rR|r=r0

r=0

= 4π(n − 1)r2(n−1) r
6trK2 + c1b

2r4 + c2b
4r2 + ((trK)2 − trK2)b6

(b2 + r2)3
|r=r0
r=0 +O(n− 1)2

= 4π(n − 1)trK2 +O(n− 1)2 (49)

where we have used the fact that r0 ≫ b in the above derivation. The exact expressions of c1, c2 are

irrelevant for the calculation. Remarkably, only the terms at r = r0 contribute to the final result,

while the terms at r = 0 vanish because n > 1.

Using (47) with this result we would be tempted to conclude that the total derivative action �R

contributes to the generalized gravitational entropy [11, 12]:

SGGE,APS = 4π

∫

ddy
√
g TrK2 . (50)

However, if we choose a regularization of the cone such that it approaches the singular cone (48)

away from the conical singularity, and subtract off the on-shell action of the singular cone in (47),

we would find that the entropy from �R is zero as in Sec. 2.

5 Which prescription is correct?

As we saw in the previous section, the Lewkowycz-Maldacena prescription and the APS prescription

generally give different results for the entropy. While a lot of confidence is usually given to the

Lewkowycz-Maldacena prescription because of the underlying argument reviewed in Sec. 2.1, in this

section we would like to be more open-minded and ask which prescription is correct. We find that

the holographic and the field-theoretic universal terms of the entanglement entropy do not match

if total derivative terms produce a nonzero entropy. Furthermore, the second law of black hole

thermodynamics could be violated if the entropy of total derivative terms is nonzero. Thus it only

seems reasonable if total derivative terms in the action do not contribute to the entropy.
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5.1 Entropy discrepancy

In this section, we show that there is entropy discrepancy between the holographic and the field-

theoretic results by using the APS prescription. For simplicity, we focus on the case of a 4-

dimensional field theory. A discussion for 6-dimensional field theories is in [22].

Let us start with the following bulk action in a 5-dimensional spacetime

S =
1

16π

∫

d5x
√
G[R− 2Λ + β�R] (51)

where Λ = − 6
l2

is the cosmological constant and β is a free parameter.

By applying the APS prescription [11, 12], we obtain the holographic entanglement entropy for

action (51) as

SHEE =
1

4

∫

d3y
√
g[1− βtrK2] . (52)

Note that we work in the Lorentzian signature in this section, which differs from its Euclidean form

(50) by a minus sign. By applying the method of [23], it is not difficult to derive the universal terms

of the entanglement entropy as

SΣ|log = log(ℓ/δ)
1

2π

∫

Σ

[

c(Cijklhikhjk − trk̄2)− aRΣ − π

2
βtrk̄2

]

, (53)

where Cijkl is the Weyl tensor and k̄ is the traceless part of the extrinsic curvature on the entangling

surface Σ. The central charges a and c are given in Planck units by

a =
πl3

8
, c =

πl3

8
. (54)

Note that eq. (53) is conformally invariant.

Following the approach of [24, 25], one can derive the holographic Weyl anomaly for action (51).

An advantage of the approach of [25] is that one does not need to solve the equation of motion in

5-dimensional (or 7-dimensional) bulk theories. We obtain

〈T i
i〉 =

c

16π2
CijklC

ijkl − a

16π2
E4 . (55)

Remarkably, the total derivative term �R does not contribute to the holographic Weyl anomaly. In

the field-theoretic approach, we can derive the universal terms of the entanglement entropy as the

‘entropy’ of the Weyl anomaly [26, 27, 28]. We get

S′
Σ|log = log(ℓ/δ)

1

2π

∫

Σ

[

c(Cijklhikhjk − trk̄2)− aRΣ

]

. (56)

Clearly, the holographic result eq. (53) and the field-theoretic result eq. (56) do not match, unless

the entropy from total derivative terms vanishes. In general, a total derivative term may appear in

the Weyl anomaly

〈T i
i〉 =

c

16π2
CijklC

ijkl − a

16π2
E4 +

λ

16π2
DiDiR̄ , (57)
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where Di and R̄ are the covariant derivative and the Ricci scalar on the boundary. Here λ is a

parameter that depends on the regularization. We have λ = 0 for the holographic Weyl anomaly

(55). We choose the holographic Weyl anomaly in the field-theoretic calculations. This is because in

deriving the holographic result (53) we have used a holographic regularization with the cutoff surface

z = δ where z is the radial coordinate of AdS. Thus it is natural to use the same regularization

for the Weyl anomaly. As a result, we get the holographic Weyl anomaly with λ = 0. Note that

even if we choose a different regularization for the Weyl anomaly, the holographic entropy and the

field-theoretic entropy still do not match. From the general Weyl anomaly (57), we can derive the

universal terms of entanglement entropy as

S′′
Σ|log = log(ℓ/δ)

1

2π

∫

Σ

[

c(Cijklhikhjk − trk̄2)− aRΣ − λ

2
trk2

]

. (58)

Note that the above equation is not conformally invariant for nonzero λ, while the holographic

universal term (53) is conformally invariant. Therefore, the holographic result (53) and the field-

theoretic result (56, 58) cannot match, unless the entropy from total derivatives vanishes.

5.2 Violation of the second law

In this section, we prove that the second law of black hole thermodynamics can be violated if the

entropy from total derivatives is nonzero. For simplicity, we focus on linearized metric perturbations

on stationary black holes with a regular bifurcation surface. It is found that the linearized second law

is obeyed by f(Lovelock) gravity [29], curvature-squared gravity [30], and higher derivative gravity

[31]. However, if total derivatives produce nonzero entropy, the linearized second law can be violated

as we shall show below. To obey the second law, the entropy from total derivatives must therefore

vanish.

Consider the Einstein-Hilbert action plus a total derivative term and a matter action

S =
1

16π

∫

dDx
√
G[R+∇µJ

µ] + SM . (59)

It is well-known that total derivatives do not affect the equation of motion. Thus we have

Rµν −
R

2
Gµν = 8πTµν . (60)

By using the APS prescription, the entropy from the total derivative term ∇µJ
µ is nonzero. Let us

denote the entropy density of the higher derivative correction (which in the case above is ∇µJ
µ) by

4πρ. The total entropy becomes

SGGE =
1

4

∫

d3y
√
g (1 + ρ) . (61)
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Define the change of entropy per unit area as

Θ =
dρ

dt
+ θk(1 + ρ) (62)

where d
dt

= kµ∇µ, θk is the expansion, and kµ is the null generator on the horizon. Following [30] and

neglecting some higher order terms in the Raychaudhuri equation, we obtain the evolution equation

of Θ:

dΘ

dt
− κΘ = −8πTkk +∇k∇kρ− ρRkk +Hkk (63)

where κ is the surface gravity, and Hkk is the contribution to the equation of motion from higher

curvature terms (which is zero in the case of a total derivative). It turns out that for general higher

curvature gravity, (∇k∇kρ− ρRkk +Hkk) vanishes at the linearized order [29, 30, 31]. As a result,

the linearized second law is obeyed.

Let us briefly review the argument of [30]. Consider a black hole that begins and ends in a

stationary state, but at some intermediate time one perturbs it with a stress tensor Tµν that obeys

the null energy condition Tkk ≥ 0. Recall that we have (∇k∇kρ− ρRkk +Hkk) = O(ǫ2) for general

higher curvature gravity [29, 30, 31]. At the linearized order, we obtain

dΘ

dt
− κΘ = −8πTkk ≤ 0 . (64)

If Θ < 0 at some moment, we have dΘ
dt

< 0 due to κ > 0, and therefore Θ would never be zero in

future. Thus we must always have Θ ≥ 0 and the linearized second law is obeyed.

Now let us return to our case with total derivative terms. Recall that total derivatives do not

affect the equation of motion Hkk = 0. If they contribute to the entropy, i.e. ρ 6= 0, (∇k∇kρ−ρRkk+

Hkk) would generally be nonzero. As a result, the above argument breaks down and the linearized

second law may be violated. Below we give an example where this indeed happens. Without loss of

generality, let us focus on ∇µJ
µ = β�R. From eq. (50) we get ρ = −βtrK2. Note that we work in

Lorentzian signature in this section. Let us take the Vaidya metric as an example

ds2 = −
(

1− 2M(v)

r

)

dv2 + 2dvdr + r2dΣ2
D−2 . (65)

The energy density is M ′(v)
4πr2

> 0, and the expansion is given by θk = r−2M(v)
r2

≥ 0.

After some calculations, we derive

Θ =
dρ

dt
+ θk(1 + ρ) =

(r − 2M(v))
(

−2βM(v) + r3
)

+ 4βr2M ′(v)

r5
. (66)

Note that the total derivative β�R does not affect the evolution of the Vaidya metric. Therefore, we

can freely choose the parameter β to make Θ < 0 at some moment. For example, near the stationary
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state, we have

Θ ≈ 4β
M ′(v)

r3
< 0 (67)

for negative β. Thus the second law of black hole thermodynamics can always be violated unless

the entropy from total derivatives vanishes.

6 Conclusion

By applying the Lewkowycz-Maldacena method, we have investigated the generalized gravitational

entropy from total derivative terms in the gravitational action. In contrast to [11, 12], we find

that the entropy from total derivative terms vanishes. The Lewkowycz-Maldacena prescription and

the APS prescription [11, 12] generally give different results for the entropy. We find that the

APS prescription would lead to the conclusion that the holographic entropy and the field-theoretic

entropy do not match. Furthermore, the second law of black hole thermodynamics could be violated

if the entropy from total derivative terms is nonzero. These results give us more confidence that the

generalized gravitational entropy from total derivative terms in the action vanishes.
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