arXiv:1510.04273v1 [hep-th] 14 Oct 2015

SU-ITP-15/15

Generalized Gravitational Entropy from Total Derivative Action

Xi Dong*, Rong-Xin Miaof

*Stanford Institute for Theoretical Physics, Department of Physics, Stanford University,
Stanford, CA 94305, USA

*School of Natural Sciences, Institute for Advanced Study,
Princeton, NJ 08540, USA

Y Max Planck Institute for Gravitational Physics (Albert Einstein Institute)
Am Mihlenberg 1, 14476 Golm, Germany

Abstract

We investigate the generalized gravitational entropy from total derivative terms in the gravi-
tational action. Following the method of Lewkowycz and Maldacena, we find that the generalized
gravitational entropy from total derivatives vanishes. We compare our results with the work of
Astaneh, Patrushev, and Solodukhin. We find that if total derivatives produced nonzero en-
tropy, the holographic and the field-theoretic universal terms of entanglement entropy would not
match. Furthermore, the second law of thermodynamics could be violated if the entropy of total

derivatives did not vanish.

*Email: xidong@ias.edu
tEmail: rong-xin.miaoQ@aei.mpg.de


http://arxiv.org/abs/1510.04273v1

Contents

1 Introduction 1

2 Simplest example: [OR 2
2.1 Review of the Lewkowycz-Maldacena method . . . . . . .. .. .. ... ... .... 3
2.2 Trivial entropy from OOR . . . . . . . . . . e 4

2.2.1 Direct method . . . . . . . . . . ... 5
2.2.2 Boundary method . . . . .. ... ... 6
2.2.3 Bulkmethod . . ... .. ... .. ... 7

3 Trivial entropy from total derivative action 8
3.1 Entropy for the most general higher derivative gravity . . . . ... . ... ... ...

3.2 Trivial entropy for total derivatives . . . . . . . . . . . . ... ... ... .. ... 11

4 Comparison with Astaneh-Patrushev-Solodukhin 13

5 Which prescription is correct? 14
5.1 Entropy discrepancy . . . . . . . . . ... 15
5.2 Violation of the second law . . . . . . . . . . . .. ... 16

6 Conclusion 18

1 Introduction

A remarkable property of quantum gravity is that the gravitational entropy associated with a horizon

is given by its area [1, 2, 3]:
~ Area (1)
4GNS

The area law was shown by Gibbons and Hawking for the case of Killing horizons [4]. It was later

S

generalized by Ryu and Takayanagi to the holographic entanglement entropy [5]; the analog of the
horizon in this case is a minimal surface and generally does not have a Killing vector. This generalized
gravitational entropy was shown to also satisfy the area law (1) by Lewkowycz and Maldacena [6].
It is important to note that the area law strictly applies to the case of Einstein gravity. However,
higher derivative corrections to Einstein gravity naturally arise in ultraviolet complete theories of
quantum gravity such as string theory. As we may expect, these higher derivative interactions give

corrections to the area law (1). Broadly speaking, there are two types of contributions:

S = SWald + Sanomaly . (2)



The first is the Wald entropy [7]

SWald = —ZW/ddy\/ﬁ(SRiiimewem. (3)
The second type of contributions involves the extrinsic curvature and have an anomaly-like origin
[8, 9, 10]. Both types of contributions may be derived by studying Euclidean conical geometries and
their regularized versions.

It is well-known that total derivative terms in a gravitational action do not contribute to the
equation of motion. One might wonder whether they have any physical effect on the theory at
all, and in particular, whether they contribute to the gravitational entropy. In this paper, we use
the Lewkowycz-Maldacena method [6] to investigate the contribution to the gravitational entropy
from total derivative terms in the action and find it to be zero. This is in contrast with the result
obtained in recent papers by Astaneh, Patrushev and Solodukhin (APS) [11, 12|, where they find
nonzero contributions to the gravitational entropy. As we will explain in detail, the main differences
between the two methods are whether the regularized cone approaches the singular cone away from
the conical singularity, and whether the on-shell action of the singular cone is properly subtracted
from that of the regularized cone.

Before proceeding, let us point out that for the case of a Killing horizon, the second term in (2)
which involves the extrinsic curvature vanishes, and we are left with the Wald entropy. The contri-
bution from total derivative terms to the Wald entropy is by definition zero, since the prescription
for L/0R,p0 in (3) involves integration by part.

The paper is organized as follows. In Sec. 2, we review the Lewkowycz-Maldacena method and
use it to study the simplest example of a total derivative term in the gravitational action: CIR.
We calculate the gravitational entropy in this example by several different methods. In Sec. 3,
we investigate the gravitational entropy from general total derivative terms by using the techniques
developed in [9, 13]. We compare our method with the one used by APS in Sec. 4, and point out other
problems for their results in Sec. 5. In particular, their results imply that holographic entanglement
entropy in conformal field theories does not agree with field-theoretic predictions. Moreover, we
show that the second law of thermodynamics can be violated if the gravitational entropy from total

derivatives is nonzero. We give a short conclusion in Sec. 6.

2 Simplest example: [1R

In this section, we consider the simplest example of a total derivative term in the gravitational action:
OR. We first review the Lewkowycz-Maldacena method of calculating the generalized gravitational

entropy [6], with special emphasis on the roles of singular and regularized cones. We then apply it



to the OOR example, and find that such a total derivative term does not contribute to the generalized
gravitational entropy.
2.1 Review of the Lewkowycz-Maldacena method

We start with the replica trick for calculating the generalized gravitational entropy:

S = —lim

n—1ln—1

(log Zo —nlog Z1) , (4)

where Z,, is the partition function of the n-fold branched cover of the original Euclidean geometry.

Using the AdS/CFT correspondence [14, 15, 16], we construct the dual bulk geometries B,, and find

1
S = lim

n—1n —

(I[Bn] = nI[B1]) - ()

It is important to remember that B,, (which is defined only for integer n > 1) is not a singular bulk
geometry — it is required by the prescription of AdS/CFT to satisfy all bulk equations of motion
and is therefore smooth.

To perform the analytic continuation to non-integer n and ultimately take the n — 1 limit,
we assume that the bulk geometry B, has a Z, replica symmetry which allows us to take the
orbifold B, /Z, = B,. The orbifold is a singular (i.e. not regularized) cone with conical deficit
2m(1 — %) = 2me on a codimension-2 surface consisting of the fixed points of the Z,, symmetry, and

the generalized gravitational entropy can be calculated in terms of the on-shell action of this cone:

n

S = lim

n—1n —

(11B.] - 11B1]) - (6)

As emphasized in [6], at this stage we should not include any contribution from the conical singular-
ity in the on-shell action I [Bn], in particular, we should not include any delta-function contribution
or Gibbons-Hawking-York boundary term. The correct prescription is to simply integrate the La-
grangian until we reach the conical singularity. The justification for this prescription is that there
are no such contributions in the on-shell action of the parent space B, as it is completely smooth.

The singular cone geometry B,, can easily be analytically continued to non-integer n by contin-
uously tuning the conical deficit 27 (1 — %) The precise prescription is to solve all bulk equations
of motion while imposing the conical deficit as a boundary condition. This is equivalent, at least
for Einstein gravity and several classes of higher derivative gravity [9], to inserting an appropriate
cosmic brane and solving all equations of motion. The cosmic brane is an auxiliary tool for finding
the conical geometry B, and does not contribute to the on-shell action I[B,,].

Until now we have only used singular cones in the formalism. Where do regularized cones come

into this story? They come because the singular cone geometry B,, used in (6) is not easy to compute



for general n. Even close to n & 1, solving for B, to linear order in n — 1 is equivalent to solving
the backreaction of a cosmic brane. It is important to distinguish this “on-shell” method with an
“off-shell” method! which simply inserts a conical deficit without modifying the geometry away from
the conical singularity.

Fortunately, we do not have to solve for the singular cone B, to evaluate (6). This is because the
first-order variation of an on-shell action is purely a boundary term. We may either calculate this
boundary term directly, or use a regularized cone Bn,reg which is defined to be a smooth geometry
that approaches the singular cone B, sufficiently fast away from the conical singularity. The precise
meaning of “sufficiently fast” will become clear momentarily?. Using the regularized cone, we may

trivially rewrite (6) as

S = lim — [(1[1%,%?65,] - I[Bl]) - <J[Bn,Teg] - I[Bn])] . (7)

n—1n —

Now, the first term I[B,, y¢g] — I[B1] is the variation of an on-shell action; the first-order variation in
n — 1 therefore vanishes because B satisfies all equations of motion and the regularized cone En,reg

is by definition smooth everywhere3. Therefore (7) simplifies to

n

S = —lim

tim —— (1 Bureg] = 1Ba]) - (8)
The advantage of (8) over (6) is that the contribution is now manifestly localized near the conical
defect, as the regularized cone by definition approaches the singular cone away from the conical

singularity. Therefore (8) allows us to focus on metric expansions near the conical singularity.

2.2 Trivial entropy from LR

In this section we show that a [(JR term in the gravitational action does not contribute to the
generalized entropy. We use three different methods. The first involves directly evaluating the
contribution to the on-shell action of the singular cone in (6), and uses the total derivative to reduce
its contribution to a potential boundary term. The second method is similar but uses the regularized
cone and (8). The third method also uses the regularized cone but calculates the integrals in (8) by

brute force.

1Such an off-shell method is appropriate on the field theory side, e.g. in the calculation of the universal part of

entanglement entropy in even-dimensional CFTs via their Weyl anomaly.
20ne regularization that definitely approaches the singular cone fast enough is to use a smooth function with

compact support so that the regularized cone becomes identical to the singular cone outside some finite radial distance

away from the conical singularity.

3There are no boundary terms at the asymptotic boundary because By and B, satisfy the same boundary conditions,
and the regularized cone En,reg is defined to approach the singular cone B, fast enough so as to satisfy the same

boundary conditions.



Before proceeding, let us write down the general metric of the singular or regularized cone in a

coordinate system adapted to a neighborhood of the conical singularity [9]:

ds? = 4 [dde + 24T (zdz — zd2)2] + (gij + 2K 57" + Qabijxaznb) dy'dy’
+ 2ie?AU; (Zdz — zdZ) dy' +--- . (9)

Here 1% € {z,z} denotes orthogonal directions to the conical singularity, and y* denotes parallel

directions. The warp factor is

A:—glog(zé), EEl—l, (10)

n

for the singular cone B,,. The form of the metric (9) is constrained by the regularity and Z,, replica

symmetry of the parent space B,, when n is a positive integer. The most general coefficient functions

T, Qapij, and U; allowed by regularity can be written as Taylor expansions? in e=24 = r2¢ where
r = |z|. The first terms in such expansions are
T=TO 106>, U =U0"+0u%), (11)
—9¢ (0 1 1
Qusij = € 2QU 4+ 00°),  Quj=QU+00™), Qe =QU,+00™).  (12)

We have kept the metric to sufficiently many orders in the radial expansion around the conical

singularity for the OJR example. The Ricci scalar near the conical singularity is
R=Rs+ (1 —¢)? (24T<0> -8QY '+ 16U§°>U<0>i) +O(r%), (13)

where Ry is the intrinsic Ricci scalar of the conical surface.
We may also describe the regularized cone Bmﬂeg by a metric of the form (9). A simple choice

of the regulator is to replace the warp factor by
€ 5 2
A= —§log(zz+b ), (14)
where b is a small positive number.

2.2.1 Direct method

Let us directly use (6) to calculate the contribution of R to the gravitational entropy. For this

purpose we calculate the on-shell action of the singular cone. The contribution to the on-shell action

4These expansions are ultimately determined by solving the bulk equations of motion, although we do not need to
know the detailed solution for our current purpose. Note that Kq;; seems also allowed by the regularity of B, (when
n is an integer) to have such an expansion in r2¢, but for 1 < n < 2 this would lead to a singular Ricci scalar and is

therefore forbidden by a reasonable equation of motion with a bounded stress tensor.



from a total derivative term such as [JR is a boundary term:
I[B,] = / drdrd*yvGOR = — / dedy\/glin% rO.R. (15)
r—

We should evaluate the » — 0 limit of the above expression for finite n — 1, and only take the n — 1
limit in (6) at the end. For finite n — 1 or equivalently finite ¢, we find from (13) that rd,R = O(r?)
and therefore (15) vanishes.

To complete the calculation of (6) we also need to evaluate I[Bj]. Since B is a completely
smooth geometry that satisfies the bulk equations of motion, its Ricci scalar is finite and has a Taylor
expansion near = 0. Therefore I[B;], which also reduces to a boundary term from integrating OR,
vanishes. It is now clear from (6) that OR does not contribute to the gravitational entropy.

Note that we did not include boundary terms at the asymptotic infinity when integrating R in
(15). This is because such boundary terms, if nonzero, would have to be compensated by additional
boundary terms at the asymptotic infinity in the gravitational action®, as required by a well-posed
variational principle [17].

The reason why a total derivative term such as [JR does not contribute to the gravitational
entropy is particularly clear if we first study Renyi entropies S, at integer n > 1, defined by the

expression in (4) before taking the n — 1 limit:

1
Sp = — 1 (log Z,, —nlog Z7) . (16)

In terms of the on-shell action of dual bulk geometries, the Renyi entropy may be written as

Sn = — (I1B,] ~ nl[B1) (1)

analogous to (5). For any positive integer n, the bulk geometry B,, is completely smooth and the
contribution to the on-shell action I[B,] from a total derivative term vanishes identically. There is
no boundary term from integrating a total derivative term at r = 0 because B,, is regular there,
and the reason for the absence of a boundary term at the asymptotic infinity is the same as argued
above. Therefore all Renyi entropies .S,, vanish at integer n > 1, and by analytic continuation this

statement holds for all n, including the case of n = 1 which gives the gravitational entropy.

2.2.2 Boundary method

Now let us investigate the entropy from OR by using (8). In this approach, we need to calculate

the action difference between the regularized cone and the singular cone. We firstly integrate the

5For (IR the additional boundary action required by a well-posed variational principle is I bdy = — f o dd“xﬁn“ OuR

where 7 is the determinant of the induced metric and n" is outward-pointing unit normal vector.



total derivative to get a boundary term and then derive the entropy from this boundary term. For

simplicity, we focus on the following regularized conical metric

1

ds? = ————
(r2 4+ b2)1~

(dr + r2dr? )+ (035 + 2rsin TKy;5 + 2r cos TKg,-j)dyidyj ) (18)

with 7 ~ 7 + 27. Here we have set T' = U; = Qqi; = 0 in the language of (9). The approach below
can easily be applied to the general metric (9). By dimensional analysis, we notice that only the K2

terms contribute to the entropy. Focus on such terms, we have

r=rQ

o 21 21
/ dr / drvVGOR = / drvVGG O, R
0 0 0

r=0

_ dn(n = 1) (BerK? - (K] o 4 dibrt 4 dgd'?) [ (19)
— n(r2 + b2)%+2 .
— 47 [3trK? — (trK)?] (n — 1) + O[(n — 1)?], (20)

where d,, are coefficients irrelevant for the gravitational entropy. To derive (20) from (19), we have
used the fact that b < rg. According to (8), we should subtract off the contribution of the singular
cone (b =0). From (19) and (20), we find

/m dr /% drVGOR — (b= 0) = O[(n — 1Y2]. (21)
0 0

Note that we take n > 1 and b finite for the regularized cone Bn,reg, while we have n > 1 and b =0
for the singular cone B,,. It is now clear that the entropy from LR is zero by using this “boundary

method.”

2.2.3 Bulk method

Now let us use a different method to derive the entropy from [JR. Instead of considering the
boundary terms, we calculate the integrals in (8) by brute force.
Similar to the above section, we take the regularized conical metric (18) and focus on the K?

terms in the action. We have

/dr/%dm/—DR (b=0)

- / 87 = D) ([3trK® — (¢rK)?J°r + [14tr K2 — 6(trK)?b'r® + [(trK)? — trK?]br)
0 (7‘2 + b2)%+3
N /TO dr87r(n - 1)2([3157"1(2 — (trK)?r" + 10?15 4 cob*r® + 03b6r)
0 (r? + 52) 7t
=0[(n — 1)?]. (24)

(22)

+O[(n —1)3] — (b=0) (23)




Here ¢, are coefficients irrelevant for the result. Eq. (22) contributes to the Wald-like entropy while
eq. (23) contributes to the “anomaly” part of the entropy. Naively eq. (23) is of order O[(n — 1)2].
However, it becomes of order O(n — 1) after the integration (with regularization). In the above

derivation, we have used the following formulae

) 2.5 1
/ r— T =0y =Ltom-1)
0 (r24p2)n TP 6
0 b47’3 1
/ dr——— —(b=0)=—+O0(n—1)
0 (r2 4+ p2)n T3 12

T0 b6 1
/ dr%—(b:0)2—+0(n—1)
0 (r24p2)nt? 6
/TO drri7 —(b=0) = o + O[(n —1)°] (25)
0 (r2 + bz)%+3 2(n—1)
Note again that we take n > 1 and b finite for the regularized cone, while we have n > 1 with 6 =0
for the singular cone. Using the above formulae, we derive eq. (24) and find that the entropy from

UR is zero by using this “bulk method.”

3 'Trivial entropy from total derivative action

In this section, we investigate the generalized gravitational entropy from total derivative terms in
the action by applying the method of [9]. We find that the entropy from a general covariant total
derivative action vanishes. Similarly, the entropy from a topological invariant (i.e. a total derivative
locally, but not globally) such as Lovelock gravity [18, 19] in critical dimensions is another topological
invariant [20, 9]. We start by reviewing the derivation of generalized gravitational entropy for the
most general higher derivative gravity [13] and then calculate the entropy from several total derivative

actions.

3.1 Entropy for the most general higher derivative gravity

In this section, we briefly review the derivation of holographic entanglement entropy (HEE) for the
most general higher derivative gravity L(g, R, VR, V2R, ---) following [9, 13].

Let us start with the regularized conical metric [9, 10]
ds* = *Mdzdz + T(2dz — 2d%)?] + 2iVi(2dz — 2dZ)dy’ + (gi; + Qij)dy'dy’ (26)

where g;; is the metric on the transverse space and is independent of z,2. A = —§log(2Z + b?) is



regularized warp factor. T, V;, Q;; are defined as [13, 21]°
00 Pajantl
T = Z Z €2mATm al"‘an‘ral e xa”l i
n=0 m=0

oo Payan+l
V _ 2mAV .al an
P = e m ai---anil e T s
n=0 m=0

oo Paq-an

Qij = Z Z ™ AQm ayoanijt™ T (27)

n=1 m=0
Here z,z are denoted by z% and P, ...,, is the number of pairs of 2,z appearing in %' ---z . For
example, we have P,,; = P,5, = P5,, = 1, P,z,5 = 2, and P,,.., = 0. Expanding T, V, Q) to the first

few terms in the notations of [9], we have

T="1Ty+ €2AT1 + O(m) ,
Vi=U i+ Uy ; + O(x),
Qij = 2Km~jx“ + QO abijx“xb + 262AQ1 zzij 22+ O(l’3) . (28)

According to [13, 21], Tp, Uy i, Qo apij must be functions of the extrinsic curvature tensor in order to
be consistent with Wald entropy in stationary spacetime. Note that Uy ~ K and it is impossible to
express Up ; in terms of K,;;. Thus a natural choice of Uy ; would be zero. In principle, the exact
expressions of Ty and Qy q;; can be derived by using the equation of motion. It is unnecessary to
derive exact expressions of Ty and (g 4p; in the present paper. As we shall show, the entropy of
covariant total derivative terms is zero for arbitrary Ty and Qo apij-

Using the conical metric (26), we can calculate the regularized cone action I,.; as well as the
singular cone action Igygular in the most general higher derivative gravity and then select the relevant

terms to derive HEE:

S = _as ([reg - [singular) ’5:0 . (29)

Let us list all the relevant terms of HEE below [13].

First class: generalized Wald entropy

/dzdizm,?”@;”H@?HA = (=)™ mlnlre. (30)

SWe expand the conical metric in powers of (r?, r”eii’”) but not r2™ Y. As a result, there is a low bound for

m in the expansions of T, V, @ in (27). The powers of p2n=1)

are not forbidden by regularity (of the parent space at
integer n). However, it would lead to singular equations of motion if we allow such powers for the extrinsic curvature
and the transverse metric. Furthermore, it would change the entropy formula of the curvature-squared gravity, which
leads to the violation of the second law of thermodynamics [30]. For the above reasons, we do not include powers of
2= in the expansions (27). It should be mentioned that even if we included powers of r2("=1) the entropy from

covariant total derivatives would still vanish.



Equivalently, we have
OOt A = —7ed™0%6(2, Z) . (31)

Here the delta function is defined as [ dzdzd(z,z) = 1. We call the entropy relevant to this class as the
generalized Wald entropy. In addition to the usual Wald entropy, corrections from K,,Q,,,1,,V, - --
(but not Q.z, 7.z, V.z,- -+ ) may appear in the generalized Wald entropy. For example, the generalized
Wald entropy for action L(g, R, VR) is [13]

oL oL
_ d .
SG-Wald = 27r/d vl SR + 2(8 zRZiEjKZZ] + c.c) |

L oL
= o / d'yg| — —— o
[ 5R/Jl/p0’ avaR,upuo

€pv€po + 2 Kgpa(nﬁuna,, — eﬁuea,,) ] . (32)

It reduces to the usual Wald entropy for stationary black holes. Thus it is consistent with Wald’s
results. It should be mentioned that, due to these corrections, the generalized Wald entropy from
total derivative terms is nonzero in the general case.

Second class: anomaly-like entropy
/dzdzzmz"(‘);”HA(‘)?HAe_ﬁA = (—1)m+”+1m!n!%. (33)

Equivalently, we have

e

B

These terms contribute to the anomaly-like entropy. They are the would-be logarithmic terms which

OMTLAGTL Ae™PA = — 9916 (2, 7). (34)

could gain a 1/e enhancement after the regularized integral.

Let us briefly discuss the proof of the above key formulas eqgs. (30-34). Eqgs. (30, 31) are derived
from of the well-known identity 8,0;A = —med(z, z). As for the proof of eqgs. (33, 34), one can follow
the method of [9]. Here we provide a schematic derivation. Recall that A = —§log(2%), we have

SMIHLA = —5(—1)””””7’, Thus we can derive

2
/Tdrzmz"(‘);”HA(‘)?HAe_ﬁA = /dr(—l)er"m!n!EZT_HB6

= (—1)m+”m!n!£r56]8°

2
0
—_
~—
3
+
S
+
=

465m!n! . (35)

Here z = 7¢'™ and = denotes equivalence after regularization. Since the conical singularity is located
at r = 0, we have ignored the contributions at » = co in the above derivation. One can check that
terms at r = oo can be removed by using suitable regularization. It should be stressed that the

coefficient of a would-be log divergence ¢ is universal and independent of the regularization. That

10



is the reason why one can read off the last line of eq. (35) in a straightforward way without applying
any specific regularization.
Using eqgs. (26-34), we can derive the entropy of the most general higher derivative gravity.

3.2 Trivial entropy for total derivatives

Let us compute the entropy for the following list of total derivative terms
{OR,0R? 0(R, R*™), DRy po R**7)} (36)

by applying the method of the above section. For simplicity, we set V; = 0 for the squashed cone
(26)7. Tt should be mentioned that our metric for the regularized cone (26) is different from the
one used in [8], in that our regularized cone approaches the singular cone away from the conical
singularity.
Let us start with the regularized conical metric (26) with T, V, @ given by
T =Ty + e* Ty + O(x),
Vi=0,
Qij = 2Kaija" + Qo abijz 2’ + 2e*1Q1 .z 22 + O(a?). (37)
Applying formulas (30, 33), we derive HEE of the total derivative terms. We list the results below.
For IR, we get

Scwad = 4w / d%y/g[(TrK)? — 3TrK? + 2TrQy", — 24Tp] ,

Sanomaly = —4m / d*y/g[(TrK)? — 3TrK? + 2TrQy", — 24Tp) ,
SHEE = 0. (38)

For OR?, we have
Scwald = 87 / d"y/gR[(TrK)? — 3TrK? + 2TrQy", — 24Ty

Sanomaly = —8m / d'y/gR[(TtK)? — 3TrK? + 2TrQy", — 24Tp] ,
Suge = 0. (39)

The calculations for (R, R"") are quite complicated. For simplicity, we work in 3d bulk

spacetime and obtain

N | Ot

Scwald = 327 / dy/gl= (K2Q.. + K2Qzz) — 9K2K2 + 6K-K,(Qo 2z + 2Q1 .= — 4Ty — 2T1)

"This is also the case investigated in [11, 12].

11



—2Q2:Q:. — 6 (Qo »2(Q1 2z — 2Tp) + Q7 . —2Q1 2Ty + Th) + 12To(To + Th))]

)
SAnomaly = —327T/dy\/§[§ (Kngzz + Kz2 22) - 9K§Kz2 + 6K2KZ(QO 2z + 2Q1 2z 4TO - 2T1)
_ZQEEQZZ -6 (QO zi(Ql 2z — 2TO) + Q% 2z 2@1 22(2T0 + Tl) + 12TO(TO + Tl))] B

Similarly, for O(R,,, e R*P7) in 3d spacetime we find

SG-wald = 1287T/dy\/§[g (K2Q.. + K2Qsz) — 5KZK? 4+ 2K:K.(Qo -5 + 2Q1 »z)
—2(Qz:Qz2: + Q1 22(Qo 2z + Q1 22) + 18To(To + T1))]
Stwamts = 1257 [ Ayl (K2Qus + K2Qs2) — SK2KE + 2KK(Qu oz +2Q1 -2)
—2(Qz:Qz + Q1 22(Qo 2z + Q1 2z) + 18T (To +T1))],
Sups = 0. (41)

Remarkably, the above results show that the generalized Wald entropy and the anomaly-like entropy
always exactly cancel for total derivative actions.
Before the end of this section, we provide some details of the calculations for HEE of OR.

Focusing on the linear terms of A which are relevant to the generalized Wald entropy, we get

VGOR = e 24, /g] A((TrK)? — 3Tr K2 + 2TrQ%, — 16Ty + 64e2471)8.0: A
— 2((TrK)? — 2Tr K% 4 TrQy%, — 32Ty — 112¢*AT)) (2070 A + 20,092 A)
4+ (32Tp + 48€*AT)(22020: A + 20,03 A)
— A(TrK)? = 2TrK? + TrQy", + 8Tp) (220202 A)] + - - - . (42)

Applying eqgs. (30), we obtain the first formula in eq. (38):
SG-Wald = 4w / d*y/g[(TrK)? — 3TrK? + 2TrQy", — 24Tp] - (43)

Note that the generalized Wald entropy is nonzero for LR.
Let us proceed to compute the anomaly-like entropy from [JR. Focusing on the relevant terms

eq. (33), we have

VGOR= — 8/ge [(TrK)? — 3TrK? 4 2TrQ ", — 8Ty — 8¢*4T1)0, A9- A
+ 64(—2T0 + €*ATy) (202 A0:A + c.c)
—  32Tp(2202A0:A + c.c)
+ 64e2AT (2207 AD2A) + - - - .

(44)
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Applying eq. (33), we derive the second formula in eq. (38):
Shnomaly = —4m / A%y /g[(TrK)? — 3TrK? + 2TrQy’, — 24Tp] - (45)

As expected, the generalized Wald entropy (43) and the anomaly-like entropy (45) cancel.
To summarize, by applying the methods of [9, 13] we find that the entropy from covariant total

derivative terms in the gravitational action is indeed zero.

4 Comparison with Astaneh-Patrushev-Solodukhin

In this section, we compare our results with those obtained in recent papers by Astaneh, Patrushev
and Solodukhin (APS) [11, 12]. For simplicity we will illustrate the differences by using the OR
example. The works [11, 12] use the prescription for regularization developed in [8], which is quite
different from the Lewkowycz-Maldacena prescription [6]. The main differences are that the regular-
ized cone used in [11, 12] does not approach the singular cone away from the conical singularity, and
that they do not subtract off the on-shell action of the singular cone. As a result, they sometimes
get a nonzero entropy from total derivative terms.

Let us briefly review the prescription used in [11, 12]. They propose to write the regularized

conical metric as®

ds® = fn(r)dr2 +r2dr? + [9i5 + 2K 5mr™ + Kﬁme?n“anQ" 4 - Jdy'dy’ (46)
where f, = %, n' = cosT, n?> = sin7, and 7 ~ 7 + 2n7w. Note that we have f,, — n? for

r — 0, ensuring that there is no conical singularity when we identify 7 with 7 + 27mn. Using the

above regularized metric, they derive the generalized gravitational entropy as
SGGE = lim (nan - 1)Ireg 5 (47)
n—1

with I,es the gravitational action of the regularized cone.

Before proceeding, let us point out two differences between the APS prescription and the
Lewkowycz-Maldacena prescription used in the previous sections. Even though both methods use
regularized cones, an important difference is that at large r the metric (46) does not approach the

singular conical metric

ds® = dr® +r°dr® + [gij + 2K{n®r + -+ |dy'dy’ . (48)

8Note that the cone here has a conical excess of 2m(n — 1). For integer n it can be constructed by gluing n copies
of the B; bulk geometry. This is different from our orbifold picture in the previous sections in which the cone has a

conical deficit of 27 (1 — 1).
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The regularizing procedure of replacing r by r” in the extrinsic curvature term was first proposed in
[8], but it is not a local modification of the cone near the conical singularity. The second important
difference is that unlike the Lewkowycz-Maldacena prescription (8) or (29), the on-shell action of
the singular cone is not subtracted off in (47).

Now we are ready to reproduce the calculation of the entropy from OOR by using the APS
approach. By dimensional analysis, we note that the entropy is of order O(K?). Focusing on this

order, we obtain

2mn 0 2mn
/ dr / drvVGOR = / drvVGG™ 8, R\
0 0 0
S(n—1) rOtr K2 + c1b?rt + cob*r? + ((tr K)? — tr K2)b°
(b2 +r2)3
= 4r(n — 1)trK? + O(n — 1) (49)

— 4n(n—1)r 1=+ O(n — 1)

where we have used the fact that ro > b in the above derivation. The exact expressions of c1, ¢y are
irrelevant for the calculation. Remarkably, only the terms at r = rg contribute to the final result,
while the terms at r = 0 vanish because n > 1.

Using (47) with this result we would be tempted to conclude that the total derivative action R

contributes to the generalized gravitational entropy [11, 12]:

SGGE,APS = 47T/ddy\/§ TI“K2. (50)

However, if we choose a regularization of the cone such that it approaches the singular cone (48)
away from the conical singularity, and subtract off the on-shell action of the singular cone in (47),

we would find that the entropy from [JR is zero as in Sec. 2.

5 Which prescription is correct?

As we saw in the previous section, the Lewkowycz-Maldacena prescription and the APS prescription
generally give different results for the entropy. While a lot of confidence is usually given to the
Lewkowycz-Maldacena prescription because of the underlying argument reviewed in Sec. 2.1, in this
section we would like to be more open-minded and ask which prescription is correct. We find that
the holographic and the field-theoretic universal terms of the entanglement entropy do not match
if total derivative terms produce a nonzero entropy. Furthermore, the second law of black hole
thermodynamics could be violated if the entropy of total derivative terms is nonzero. Thus it only

seems reasonable if total derivative terms in the action do not contribute to the entropy.
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5.1 Entropy discrepancy

In this section, we show that there is entropy discrepancy between the holographic and the field-
theoretic results by using the APS prescription. For simplicity, we focus on the case of a 4-
dimensional field theory. A discussion for 6-dimensional field theories is in [22].

Let us start with the following bulk action in a 5-dimensional spacetime

1
S = 1o &zVG[R — 2A 4+ BOR] (51)
where A = —l% is the cosmological constant and 3 is a free parameter.

By applying the APS prescription [11, 12], we obtain the holographic entanglement entropy for

action (51) as
1
Supe = / Pyl - BuK?). (52)
Note that we work in the Lorentzian signature in this section, which differs from its Euclidean form
(50) by a minus sign. By applying the method of [23], it is not difficult to derive the universal terms
of the entanglement entropy as

1 g _ _
Sxlhog = log(€/8) 5 / [c(C* by, — trk?) — aRy, — gﬁtrkﬂ , (53)
T Jx
where Cjj1; is the Weyl tensor and k is the traceless part of the extrinsic curvature on the entangling

surface X. The central charges a and c are given in Planck units by
73 73
=—, =—. 54
a=-o, =2 (54)
Note that eq. (53) is conformally invariant.

Following the approach of [24, 25], one can derive the holographic Weyl anomaly for action (51).
An advantage of the approach of [25] is that one does not need to solve the equation of motion in
5-dimensional (or 7-dimensional) bulk theories. We obtain

. c ..
(T7%) = 1672 Oz'jklc”kl -

Remarkably, the total derivative term LJR does not contribute to the holographic Weyl anomaly. In

a

—F,.
16724 (55)

the field-theoretic approach, we can derive the universal terms of the entanglement entropy as the

‘entropy’ of the Weyl anomaly [26, 27, 28]. We get
1 g _
Stlhog = 108(¢/9) 5= [ [o(CT hishy — tr#?) - afs]. (56)
b
Clearly, the holographic result eq. (53) and the field-theoretic result eq. (56) do not match, unless

the entropy from total derivative terms vanishes. In general, a total derivative term may appear in

the Weyl anomaly

a A ) _

c i
162 Eq+ 167T2D DR, (57)

(T%) = Toq2 Ciikl CUM
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where D; and R are the covariant derivative and the Ricci scalar on the boundary. Here \ is a
parameter that depends on the regularization. We have A = 0 for the holographic Weyl anomaly
(55). We choose the holographic Weyl anomaly in the field-theoretic calculations. This is because in
deriving the holographic result (53) we have used a holographic regularization with the cutoff surface
z = 6 where z is the radial coordinate of AdS. Thus it is natural to use the same regularization
for the Weyl anomaly. As a result, we get the holographic Weyl anomaly with A = 0. Note that
even if we choose a different regularization for the Weyl anomaly, the holographic entropy and the
field-theoretic entropy still do not match. From the general Weyl anomaly (57), we can derive the
universal terms of entanglement entropy as

1 .. _
S 10g = log(/0) /E [c(C* ¥ hyhjy, — trk?) — aRy, — %trk‘z] . (58)

Note that the above equation is not conformally invariant for nonzero A, while the holographic
universal term (53) is conformally invariant. Therefore, the holographic result (53) and the field-

theoretic result (56, 58) cannot match, unless the entropy from total derivatives vanishes.

5.2 Violation of the second law

In this section, we prove that the second law of black hole thermodynamics can be violated if the
entropy from total derivatives is nonzero. For simplicity, we focus on linearized metric perturbations
on stationary black holes with a regular bifurcation surface. It is found that the linearized second law
is obeyed by f(Lovelock) gravity [29], curvature-squared gravity [30], and higher derivative gravity
[31]. However, if total derivatives produce nonzero entropy, the linearized second law can be violated
as we shall show below. To obey the second law, the entropy from total derivatives must therefore
vanish.

Consider the Einstein-Hilbert action plus a total derivative term and a matter action
1
S = K/de\/G[RJrV“J“] + Sy - (59)
T

It is well-known that total derivatives do not affect the equation of motion. Thus we have

R~ 2 Gy = 87T (60)

By using the APS prescription, the entropy from the total derivative term V,J# is nonzero. Let us
denote the entropy density of the higher derivative correction (which in the case above is V,J#") by

4mp. The total entropy becomes

SaGE = i/d?’y\/g (14p). (61)
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Define the change of entropy per unit area as
d
0= 10,1+ (62)
dt
where % = kMV,,, 0}, is the expansion, and k* is the null generator on the horizon. Following [30] and

neglecting some higher order terms in the Raychaudhuri equation, we obtain the evolution equation

of ©:

doO
% — kO = 87T}, + Vka,O - PRkk + Hyp (63)

where k is the surface gravity, and Hyj is the contribution to the equation of motion from higher
curvature terms (which is zero in the case of a total derivative). It turns out that for general higher
curvature gravity, (VyVip — pRir + Hyi) vanishes at the linearized order [29, 30, 31]. As a result,
the linearized second law is obeyed.

Let us briefly review the argument of [30]. Consider a black hole that begins and ends in a
stationary state, but at some intermediate time one perturbs it with a stress tensor 7}, that obeys
the null energy condition Tx, > 0. Recall that we have (VpVip — pRir + Hgr) = 0(62) for general
higher curvature gravity [29, 30, 31]. At the linearized order, we obtain

(2—? — kO = —81T, < 0. (64)

If ® < 0 at some moment, we have % < 0 due to k > 0, and therefore © would never be zero in
future. Thus we must always have ® > 0 and the linearized second law is obeyed.

Now let us return to our case with total derivative terms. Recall that total derivatives do not
affect the equation of motion Hyy = 0. If they contribute to the entropy, i.e. p # 0, (Vi Vip—pRir+
Hyy.) would generally be nonzero. As a result, the above argument breaks down and the linearized
second law may be violated. Below we give an example where this indeed happens. Without loss of
generality, let us focus on V,J* = BOR. From eq. (50) we get p = —StrK?. Note that we work in

Lorentzian signature in this section. Let us take the Vaidya metric as an example

2M
ds? = — <1 - #) dv? + 2dvdr + r?dS}_, . (65)
The energy density is 1‘4{;@ > 0, and the expansion is given by 8, = %ﬂf(v) > 0.

After some calculations, we derive

(r —2M(v)) (=2BM (v) + r3) +48r* M’ (v) ‘

d
0=210,(1+p = -

o dt

(66)

Note that the total derivative SL1R does not affect the evolution of the Vaidya metric. Therefore, we

can freely choose the parameter 5 to make © < 0 at some moment. For example, near the stationary

17



state, we have

M'(v)

O~ 48 3

<0 (67)

for negative 5. Thus the second law of black hole thermodynamics can always be violated unless

the entropy from total derivatives vanishes.

6 Conclusion

By applying the Lewkowycz-Maldacena method, we have investigated the generalized gravitational
entropy from total derivative terms in the gravitational action. In contrast to [11, 12], we find
that the entropy from total derivative terms vanishes. The Lewkowycz-Maldacena prescription and
the APS prescription [11, 12] generally give different results for the entropy. We find that the
APS prescription would lead to the conclusion that the holographic entropy and the field-theoretic
entropy do not match. Furthermore, the second law of black hole thermodynamics could be violated
if the entropy from total derivative terms is nonzero. These results give us more confidence that the

generalized gravitational entropy from total derivative terms in the action vanishes.
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