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1 Introduction

A remarkable property of quantum gravity is that the gravitational entropy associated with

a horizon is given by its area [1–3]:

S =
Area

4GN
. (1.1)

The area law was shown by Gibbons and Hawking for the case of Killing horizons [4]. It

was later generalized by Ryu and Takayanagi to the holographic entanglement entropy [5];

the analog of the horizon in this case is a minimal surface and generally does not have a

Killing vector. This generalized gravitational entropy was shown to also satisfy the area

law (1.1) by Lewkowycz and Maldacena [6].

It is important to note that the area law strictly applies to the case of Einstein gravity.

However, higher derivative corrections to Einstein gravity naturally arise in ultraviolet

complete theories of quantum gravity such as string theory. As we may expect, these
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higher derivative interactions give corrections to the area law (1.1). Broadly speaking,

there are two types of contributions:

S = SWald + Sanomaly . (1.2)

The first is the Wald entropy [7]

SWald = −2π

∫

ddy
√
g

δL

δRµνρσ
ǫµνǫρσ. (1.3)

The second type of contributions involves the extrinsic curvature and have an anomaly-like

origin [8–10]. Both types of contributions may be derived by studying Euclidean conical

geometries and their regularized versions.

It is well-known that total derivative terms in a gravitational action do not contribute

to the equation of motion. One might wonder whether they have any physical effect on the

theory at all, and in particular, whether they contribute to the gravitational entropy. In this

paper, we use the Lewkowycz-Maldacena method [6] to investigate the contribution to the

gravitational entropy from total derivative terms in the action and find it to be zero. This is

in contrast with the result obtained in recent papers by Astaneh, Patrushev and Solodukhin

(APS) [11, 12], where they find nonzero contributions to the gravitational entropy. As we

will explain in detail, the main differences between the two methods are whether the regu-

larized cone approaches the singular cone away from the conical singularity, and whether the

on-shell action of the singular cone is properly subtracted from that of the regularized cone.

Before proceeding, let us point out that for the case of a Killing horizon, the second

term in (1.2) which involves the extrinsic curvature vanishes, and we are left with the Wald

entropy. The contribution from total derivative terms to the Wald entropy is by definition

zero, since the prescription for δL/δRµνρσ in (1.3) involves integration by parts.

The paper is organized as follows. In section 2, we review the Lewkowycz-Maldacena

method and use it to study the simplest example of a total derivative term in the grav-

itational action: �R. We calculate the gravitational entropy in this example by several

different methods. In section 3, we investigate the gravitational entropy from general total

derivative terms by using the techniques developed in [9, 13]. We compare our method

with the one used by APS in section 4, and point out other problems for their results

in section 5. In particular, their results imply that holographic entanglement entropy in

conformal field theories does not agree with field-theoretic predictions. Moreover, we show

that the second law of thermodynamics can be violated if the gravitational entropy from

total derivatives is nonzero. We give a short conclusion in section 6.

2 Simplest example: �R

In this section, we consider the simplest example of a total derivative term in the grav-

itational action: �R. We first review the Lewkowycz-Maldacena method of calculating

the generalized gravitational entropy [6], with special emphasis on the roles of singular

and regularized cones. We then apply it to the �R example, and find that such a total

derivative term does not contribute to the generalized gravitational entropy.
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2.1 Review of the Lewkowycz-Maldacena method

We start with the replica trick for calculating the generalized gravitational entropy:

S = − lim
n→1

1

n− 1
(logZn − n logZ1) , (2.1)

where Zn is the partition function of the n-fold branched cover of the original Euclidean

geometry. Using the AdS/CFT correspondence [14–16], we construct the dual bulk geome-

tries Bn and find

S = lim
n→1

1

n− 1
(I[Bn]− nI[B1]) . (2.2)

It is important to remember that Bn (which is defined only for integer n ≥ 1) is not a

singular bulk geometry — it is required by the prescription of AdS/CFT to satisfy all bulk

equations of motion and is therefore smooth.

To perform the analytic continuation to non-integer n and ultimately take the n → 1

limit, we assume that the bulk geometry Bn has a Zn replica symmetry which allows us to

take the orbifold Bn/Zn ≡ B̂n. The orbifold is a singular (i.e. not regularized) cone with

conical deficit 2π(1− 1
n
) ≡ 2πǫ on a codimension-2 surface consisting of the fixed points of

the Zn symmetry, and the generalized gravitational entropy can be calculated in terms of

the on-shell action of this cone:

S = lim
n→1

n

n− 1

(

I[B̂n]− I[B1]
)

. (2.3)

As emphasized in [6], at this stage we should not include any contribution from the conical

singularity in the on-shell action I[B̂n]; in particular, we should not include any delta-

function contribution or Gibbons-Hawking-York boundary term. The correct prescription

is to simply integrate the Lagrangian until we reach the conical singularity. The justification

for this prescription is that there are no such contributions in the on-shell action of the

parent space Bn as it is completely smooth.

The singular cone geometry B̂n can easily be analytically continued to non-integer n

by continuously tuning the conical deficit 2π(1− 1
n
). The precise prescription is to solve all

bulk equations of motion while imposing the conical deficit as a boundary condition. This

is equivalent, at least for Einstein gravity and several classes of higher derivative gravity [9],

to inserting an appropriate cosmic brane and solving all equations of motion. The cosmic

brane is an auxiliary tool for finding the conical geometry B̂n and does not contribute to

the on-shell action I[B̂n].

Until now we have only used singular cones in the formalism. Where do regularized

cones come into this story? They come because the singular cone geometry B̂n used

in (2.3) is not easy to compute for general n. Even close to n ≈ 1, solving for B̂n to linear

order in n− 1 is equivalent to solving the backreaction of a cosmic brane. It is important

to distinguish this “on-shell” method with an “off-shell” method1 which simply inserts a

conical deficit without modifying the geometry away from the conical singularity.

1Such an off-shell method is appropriate on the field theory side, e.g. in the calculation of the universal

part of entanglement entropy in even-dimensional CFTs via their Weyl anomaly.
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Fortunately, we do not have to solve for the singular cone B̂n to evaluate (2.3). This

is because the first-order variation of an on-shell action is purely a boundary term. We

may either calculate this boundary term directly, or use a regularized cone B̂n,reg which

is defined to be a smooth geometry that approaches the singular cone B̂n sufficiently fast

away from the conical singularity. The precise meaning of “sufficiently fast” will become

clear momentarily.2 Using the regularized cone, we may trivially rewrite (2.3) as

S = lim
n→1

n

n− 1

[(

I[B̂n,reg]− I[B1]
)

−
(

I[B̂n,reg]− I[B̂n]
)]

. (2.4)

Now, the first term I[B̂n,reg] − I[B1] is the variation of an on-shell action; the first-order

variation in n − 1 therefore vanishes because B1 satisfies all equations of motion and the

regularized cone B̂n,reg is by definition smooth everywhere.3 Therefore (2.4) simplifies to

S = − lim
n→1

n

n− 1

(

I[B̂n,reg]− I[B̂n]
)

. (2.5)

The advantage of (2.5) over (2.3) is that the contribution is now manifestly localized near

the conical defect, as the regularized cone by definition approaches the singular cone away

from the conical singularity. Therefore (2.5) allows us to focus on metric expansions near

the conical singularity.

2.2 Trivial entropy from �R

In this section we show that a �R term in the gravitational action does not contribute

to the generalized entropy. We use three different methods. The first involves directly

evaluating the contribution to the on-shell action of the singular cone in (2.3), and uses

the total derivative to reduce its contribution to a potential boundary term. The second

method is similar but uses the regularized cone and (2.5). The third method also uses the

regularized cone but calculates the integrals in (2.5) by brute force.

Before proceeding, let us write down the general metric of the singular or regularized

cone in a coordinate system adapted to a neighborhood of the conical singularity [9]:

ds2 = e2A
[

dzdz̄ + e2AT (z̄dz − zdz̄)2
]

+
(

gij + 2Kaijx
a +Qabijx

axb
)

dyidyj

+ 2ie2AUi (z̄dz − zdz̄) dyi + · · · . (2.6)

Here xa ∈ {z, z̄} denotes orthogonal directions to the conical singularity, and yi denotes

parallel directions. The warp factor is

A = − ǫ

2
log(zz̄) , ǫ ≡ 1− 1

n
, (2.7)

2One regularization that definitely approaches the singular cone fast enough is to use a smooth function

with compact support so that the regularized cone becomes identical to the singular cone outside some

finite radial distance away from the conical singularity.
3There are no boundary terms at the asymptotic boundary because B1 and B̂n satisfy the same boundary

conditions, and the regularized cone B̂n,reg is defined to approach the singular cone B̂n fast enough so as

to satisfy the same boundary conditions.
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for the singular cone B̂n. The form of the metric (2.6) is constrained by the regularity

and Zn replica symmetry of the parent space Bn when n is a positive integer. The most

general coefficient functions T , Qabij , and Ui allowed by regularity can be written as Taylor

expansions4 in e−2A = r2ǫ where r ≡ |z|. The first terms in such expansions are

T = T (0) +O(r2ǫ) , Ui = U
(0)
i +O(r2ǫ) , (2.8)

Qzz̄ij = e−2ǫQ
(0)
zz̄ij +O(r0) , Qzzij = Q

(1)
zzij +O(r2ǫ) , Qz̄z̄ij = Q

(1)
z̄z̄ij +O(r2ǫ) . (2.9)

We have kept the metric to sufficiently many orders in the radial expansion around the

conical singularity for the �R example. The Ricci scalar near the conical singularity is

R = RΣ + (1− ǫ)2
(

24T (0) − 8Q
(0) i

zz̄i
+ 16U

(0)
i U (0)i

)

+O(r2ǫ) , (2.10)

where RΣ is the intrinsic Ricci scalar of the conical surface.

We may also describe the regularized cone B̂n,reg by a metric of the form (2.6). A

simple choice of the regulator is to replace the warp factor by

A = − ǫ

2
log(zz̄ + b2) , (2.11)

where b is a small positive number.

2.2.1 Direct method

Let us directly use (2.3) to calculate the contribution of �R to the gravitational entropy.

For this purpose we calculate the on-shell action of the singular cone. The contribution to

the on-shell action from a total derivative term such as �R is a boundary term:

I[B̂n] =

∫

drdτddy
√
G�R = −

∫

dτddy
√
g lim
r→0

r∂rR . (2.12)

We should evaluate the r → 0 limit of the above expression for finite n − 1, and only

take the n → 1 limit in (2.3) at the end. For finite n − 1 or equivalently finite ǫ, we find

from (2.10) that r∂rR = O(r2ǫ) and therefore (2.12) vanishes.

To complete the calculation of (2.3) we also need to evaluate I[B1]. Since B1 is a

completely smooth geometry that satisfies the bulk equations of motion, its Ricci scalar

is finite and has a Taylor expansion near r = 0. Therefore I[B1], which also reduces to a

boundary term from integrating �R, vanishes. It is now clear from (2.3) that �R does not

contribute to the gravitational entropy.

Note that we did not include boundary terms at the asymptotic infinity when inte-

grating �R in (2.12). This is because such boundary terms, if nonzero, would have to be

4These expansions are ultimately determined by solving the bulk equations of motion, although we do

not need to know the detailed solution for our current purpose. Note that Kaij seems also allowed by the

regularity of Bn (when n is an integer) to have such an expansion in r2ǫ, but for 1 < n < 2 this would lead

to a singular Ricci scalar and is therefore forbidden by Einstein’s equations with a bounded stress tensor.

For higher derivative gravity such an expansion could be allowed for Kaij as shown in [17] but does not

affect our conclusion that the entropy from total derivatives vanishes.
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compensated by additional boundary terms at the asymptotic infinity in the gravitational

action,5 as required by a well-posed variational principle [18].

The reason why a total derivative term such as �R does not contribute to the gravi-

tational entropy is particularly clear if we first study Renyi entropies Sn at integer n > 1,

defined by the expression in (2.1) before taking the n → 1 limit:

Sn = − 1

n− 1
(logZn − n logZ1) . (2.13)

In terms of the on-shell action of dual bulk geometries, the Renyi entropy may be written as

Sn =
1

n− 1
(I[Bn]− nI[B1]) , (2.14)

analogous to (2.2). For any positive integer n, the bulk geometry Bn is completely smooth

and the contribution to the on-shell action I[Bn] from a total derivative term vanishes

identically. There is no boundary term from integrating a total derivative term at r = 0

because Bn is regular there, and the reason for the absence of a boundary term at the

asymptotic infinity is the same as argued above. Therefore all Renyi entropies Sn vanish

at integer n > 1, and by analytic continuation this statement holds for all n, including the

case of n = 1 which gives the gravitational entropy.

2.2.2 Boundary method

Now let us investigate the entropy from �R by using (2.5). In this approach, we need

to calculate the action difference between the regularized cone and the singular cone. We

firstly integrate the total derivative to get a boundary term and then derive the entropy from

this boundary term. For simplicity, we focus on the following regularized conical metric

ds2 =
1

(r2 + b2)1−
1
n

(dr2 + r2dτ2) + (δij + 2r sin τK1ij + 2r cos τK2ij)dy
idyj , (2.15)

with τ ∼ τ + 2π. Here we have set T = Ui = Qabij = 0 in the language of (2.6). The

approach below can easily be applied to the general metric (2.6). By dimensional analysis,

we notice that only the K2 terms contribute to the entropy. Focus on such terms, we have

∫ r0

0
dr

∫ 2π

0
dτ

√
G�R =

∫ 2π

0
dτ

√
GGrr∂rR

∣

∣

∣

∣

r=r0

r=0

=
4π(n−1)

([

3TrK2−(TrK)2
]

r6+d1b
2r4+d2b

4r2
)

n (r2 + b2)
1
n
+2

∣

∣

∣

∣

∣

r=r0

r=0

(2.16)

= 4π
[

3TrK2 − (TrK)2
]

(n− 1) +O[(n− 1)2] , (2.17)

where dn are coefficients irrelevant for the gravitational entropy. To derive (2.17)

from (2.16), we have used the fact that b ≪ r0. According to (2.5), we should subtract off

5For �R the additional boundary action required by a well-posed variational principle is Ibdy =

−
∫

∂
dd+1x

√
γnµ∂µR where γ is the determinant of the induced metric and nµ is outward-pointing unit

normal vector.
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the contribution of the singular cone (b = 0). From (2.16) and (2.17), we find

∫ r0

0
dr

∫ 2π

0
dτ

√
G�R− (b = 0) = O[(n− 1)2]. (2.18)

Note that we take n > 1 and b finite for the regularized cone B̂n,reg, while we have n > 1

and b = 0 for the singular cone B̂n. It is now clear that the entropy from �R is zero by

using this “boundary method.”

2.2.3 Bulk method

Now let us use a different method to derive the entropy from �R. Instead of considering

the boundary terms, we calculate the integrals in (2.5) by brute force.

Similar to the above section, we take the regularized conical metric (2.15) and focus

on the K2 terms in the action. We have
∫ r0

0

dr

∫ 2π

0

dτ
√
G�R− (b = 0)

=

∫ r0

0

dr
8π(n− 1)

(

[3TrK2 − (TrK)2]b6r + [14TrK2 − 6(TrK)2]b4r3 + [(TrK)2 − TrK2]b2r5
)

(r2 + b2)
1

n
+3

(2.19)

+

∫ r0

0

dr
8π(n− 1)2

(

[3TrK2 − (TrK)2]r7 + c1b
2r5 + c2b

4r3 + c3b
6r
)

(r2 + b2)
1

n
+3

+O[(n− 1)3]− (b = 0) (2.20)

= O[(n− 1)2] . (2.21)

Here cn are coefficients irrelevant for the result. Eq. (2.19) contributes to the Wald-like

entropy while eq. (2.20) contributes to the “anomaly” part of the entropy. Naively eq. (2.20)

is of order O[(n− 1)2]. However, it becomes of order O(n− 1) after the integration (with

regularization). In the above derivation, we have used the following formulae

∫ r0

0
dr

b2r5

(r2 + b2)
1
n
+3

− (b = 0) =
1

6
+O(n− 1)

∫ r0

0
dr

b4r3

(r2 + b2)
1
n
+3

− (b = 0) =
1

12
+O(n− 1)

∫ r0

0
dr

b6r

(r2 + b2)
1
n
+3

− (b = 0) =
1

6
+O(n− 1)

∫ r0

0
dr

r7

(r2 + b2)
1
n
+3

− (b = 0) = − 1

2(n− 1)
+O[(n− 1)0] (2.22)

Note again that we take n > 1 and b finite for the regularized cone, while we have n > 1

with b = 0 for the singular cone. Using the above formulae, we derive eq. (2.21) and find

that the entropy from �R is zero by using this “bulk method.”

3 Trivial entropy from total derivative action

In this section, we investigate the generalized gravitational entropy from total derivative

terms in the action by applying the method of [9]. We find that the entropy from a

– 7 –
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general covariant total derivative action vanishes. Similarly, the entropy from a topological

invariant (i.e. a total derivative locally, but not globally) such as Lovelock gravity [19,

20] in critical dimensions is another topological invariant [9, 21]. We start by reviewing

the derivation of generalized gravitational entropy for the most general higher derivative

gravity [13] and then calculate the entropy from several total derivative actions.

3.1 Entropy for the most general higher derivative gravity

In this section, we briefly review the derivation of holographic entanglement entropy (HEE)

for the most general higher derivative gravity L(g,R,∇R,∇2R, · · · ) following [9, 13].

Let us start with the regularized conical metric [9, 10]

ds2 = e2A[dzdz̄ + T (z̄dz − zdz̄)2] + 2iVi(z̄dz − zdz̄)dyi + (gij +Qij)dy
idyj , (3.1)

where gij is the metric on the transverse space and is independent of z, z̄. A = − ǫ
2 log(zz̄+

b2) is regularized warp factor. T, Vi, Qij are defined as [13, 22]6

T =
∞
∑

n=0

Pa1···an+1
∑

m=0

e2mATm a1···anx
a1 · · ·xan ,

Vi =
∞
∑

n=0

Pa1···an+1
∑

m=0

e2mAVm a1···anix
a1 · · ·xan ,

Qij =
∞
∑

n=1

Pa1···an
∑

m=0

e2mAQm a1···anijx
a1 · · ·xan . (3.2)

Here z, z̄ are denoted by xa and Pa1···an is the number of pairs of z, z̄ appearing in xa1 · · ·xan .
For example, we have Pzzz̄ = Pzz̄z = Pz̄zz = 1, Pzz̄zz̄ = 2, and Pzz···z = 0. Expanding

T, V,Q to the first few terms in the notations of [9], we have

T = T0 + e2AT1 +O(x) ,

Vi = U0 i + e2AU1 i +O(x) ,

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) . (3.3)

According to [13, 22], T0, U0 i, Q0 abij must be functions of the extrinsic curvature tensor

in order to be consistent with Wald entropy in stationary spacetime. Note that U0 ∼ K

and it is impossible to express U0 i in terms of Kaij . Thus a natural choice of U0 i would

be zero. In principle, the exact expressions of T0 and Q0 abij can be derived by using the

equation of motion. It is unnecessary to derive exact expressions of T0 and Q0 abij in the

present paper. As we shall show, the entropy of covariant total derivative terms is zero for

arbitrary T0 and Q0 abij .

6We expand the conical metric in powers of (r2, rne±inτ ) but not r2(n−1). As a result, there is a lower

bound for m in the expansions of T, V,Q in (3.2). The powers of r2(n−1) are not forbidden by regularity (of

the parent space at integer n). But they may change the entropy formula of the curvature-squared gravity,

which leads to the violation of the second law of thermodynamics [36]. For this reason, we do not include

powers of r2(n−1) in the expansions (3.2). It should be mentioned that even if we included powers of r2(n−1)

the entropy from covariant total derivatives would still vanish.
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Using the conical metric (3.1), we can calculate the regularized cone action Ireg as well

as the singular cone action Isingular in the most general higher derivative gravity and then

select the relevant terms to derive HEE:

S = −∂ǫ (Ireg − Isingular) |ǫ=0 . (3.4)

Let us list all the relevant terms of HEE below [13].

First class: generalized Wald entropy
∫

dzdz̄zmz̄n∂m+1
z ∂n+1

z̄ A = (−1)m+n+1m!n!πǫ . (3.5)

Equivalently, we have

∂m+1
z ∂n+1

z̄ A = −πǫ∂m
z ∂n

z̄ δ̄(z, z̄) . (3.6)

Here the delta function is defined as
∫

dzdz̄δ̄(z, z̄) = 1. We call the entropy relevant to this

class as the generalized Wald entropy. In addition to the usual Wald entropy, corrections

from Kz, Qzz, Tz, Vz · · · (but not Qzz̄, Tzz̄, Vzz̄, · · · ) may appear in the generalized Wald

entropy. For example, the generalized Wald entropy for action L(g,R,∇R) is [13]

SG-Wald = 2π

∫

ddy
√
g

[

δL

δRzz̄zz̄
+ 2

(

∂L

∂∇zRz̄iz̄j
Kz̄ij + c.c

) ]

= 2π

∫

ddy
√
g

[

− δL

δRµνρσ
ǫµνǫρσ + 2

∂L

∂∇αRµρνσ
Kβρσ(n

β
µnαν − ǫβµǫαν)

]

. (3.7)

It reduces to the usual Wald entropy for stationary black holes. Thus it is consistent with

Wald’s results. It should be mentioned that, due to these corrections, the generalized Wald

entropy from total derivative terms is nonzero in the general case.

Second class: anomaly-like entropy
∫

dzdz̄zmz̄n∂m+1
z A∂n+1

z̄ Ae−βA = (−1)m+n+1m!n!
πǫ

β
. (3.8)

Equivalently, we have

∂m+1
z A∂n+1

z̄ Ae−βA = −πǫ

β
∂m
z ∂n

z̄ δ̄(z, z̄) . (3.9)

These terms contribute to the anomaly-like entropy. They are the would-be logarithmic

terms which could gain a 1/ǫ enhancement after the regularized integral.

Let us briefly discuss the proof of the above key formulas eqs. (3.5)–(3.9).

Eqs. (3.5), (3.6) are derived from of the well-known identity ∂z∂z̄A = −πǫδ̄(z, z̄).

As for the proof of eqs. (3.8), (3.9), one can follow the method of [9]. Here we provide

a schematic derivation. Recall that A = − ǫ
2 log(zz̄), we have zm∂m+1

z A = − ǫ
2(−1)mm!

z
.

Thus we can derive
∫

rdrzmz̄n∂m+1
z A∂n+1

z̄ Ae−βA =

∫

dr(−1)m+nm!n!
ǫ2

4
r−1+βǫ

= (−1)m+nm!n!
ǫ

4β
rβǫ|∞0
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∼= (−1)m+n+1 ǫ

4β
m!n! . (3.10)

Here z = reiτ and ∼= denotes equivalence after regularization. Since the conical singularity

is located at r = 0, we have ignored the contributions at r = ∞ in the above derivation.

One can check that terms at r = ∞ can be removed by using suitable regularization. It

should be stressed that the coefficient of a would-be log divergence rβǫ is universal and

independent of the regularization. That is the reason why one can read off the last line of

eq. (3.10) in a straightforward way without applying any specific regularization.

Using eqs. (3.1)–(3.9), we can derive the entropy of the most general higher derivative

gravity.

3.2 Trivial entropy for total derivatives

Let us compute the entropy for the following list of total derivative terms

{�R,�R2,�(RµνR
µν),�(RµνρσR

µνρσ)} (3.11)

by applying the method of the above section. For simplicity, we set Vi = 0 for the squashed

cone (3.1).7 It should be mentioned that our metric for the regularized cone (3.1) is different

from the one used in [8], in that our regularized cone approaches the singular cone away

from the conical singularity.

Let us start with the regularized conical metric (3.1) with T, V,Q given by

T = T0 + e2AT1 +O(x) ,

Vi = 0 ,

Qij = 2Kaijx
a +Q0 abijx

axb + 2e2AQ1 zz̄ij zz̄ +O(x3) . (3.12)

Applying formulas (3.5), (3.8), we derive HEE of the total derivative terms. We list the

results below.

For �R, we get

SG-Wald = 4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SAnomaly = −4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SHEE = 0 . (3.13)

For �R2, we have

SG-Wald = 8π

∫

ddy
√
gR

[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SAnomaly = −8π

∫

ddy
√
gR

[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

,

SHEE = 0 . (3.14)

7This is also the case investigated in [11, 12].
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The calculations for �(RµνR
µν) are quite complicated. For simplicity, we work in 3d

bulk spacetime and obtain

SG-Wald = 32π

∫

dy
√
g

[

5

2

(

K2
z̄
Qzz +K2

z
Qz̄z̄

)

− 9K2
z̄
K2

z
+ 6Kz̄Kz(Q0 zz̄ + 2Q1 zz̄ − 4T0 − 2T1)

−2Qz̄z̄Qzz − 6
(

Q0 zz̄(Q1 zz̄ − 2T0) +Q2
1 zz̄

− 2Q1 zz̄(2T0 + T1) + 12T0(T0 + T1)
)

]

,

SAnomaly = −32π

∫

dy
√
g

[

5

2

(

K2
z̄
Qzz +K2

z
Qz̄z̄

)

− 9K2
z̄
K2

z
+ 6Kz̄Kz(Q0 zz̄ + 2Q1 zz̄ − 4T0 − 2T1)

−2Qz̄z̄Qzz − 6
(

Q0 zz̄(Q1 zz̄ − 2T0) +Q2
1 zz̄

− 2Q1 zz̄(2T0 + T1) + 12T0(T0 + T1)
)

]

,

SHEE = 0 . (3.15)

Similarly, for �(RµνρσR
µνρσ) in 3d spacetime we find

SG-Wald = 128π

∫

dy
√
g

[

5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 5K2
z̄K

2
z + 2Kz̄Kz(Q0 zz̄ + 2Q1 zz̄)

−2(Qz̄z̄Qzz +Q1 zz̄(Q0 zz̄ +Q1 zz̄) + 18T0(T0 + T1))

]

,

SAnomaly = −128π

∫

dy
√
g

[

5

2

(

K2
z̄Qzz +K2

zQz̄z̄

)

− 5K2
z̄K

2
z + 2Kz̄Kz(Q0 zz̄ + 2Q1 zz̄)

−2(Qz̄z̄Qzz +Q1 zz̄(Q0 zz̄ +Q1 zz̄) + 18T0(T0 + T1))

]

,

SHEE = 0 . (3.16)

Remarkably, the above results show that the generalized Wald entropy and the anomaly-like

entropy always exactly cancel for total derivative actions.

Before the end of this section, we provide some details of the calculations for HEE of

�R. Focusing on the linear terms of A which are relevant to the generalized Wald entropy,

we get

√
G�R = e−2A√g

[

4((TrK)2 − 3TrK2 + 2TrQ a
0 a − 16T0 + 64e2AT1)∂z∂z̄A

− 2((TrK)2−2TrK2+TrQ a
0 a−32T0−112e2AT1)(z∂

2
z∂z̄A+z̄∂z∂

2
z̄A)

+ (32T0 + 48e2AT1)(z
2∂3

z∂z̄A+ z̄2∂z∂
3
z̄A)

− 4((TrK)2 − 2TrK2 +TrQ a
0 a + 8T0)(zz̄∂

2
z∂

2
z̄A)

]

+ · · · . (3.17)

Applying eqs. (3.5), we obtain the first formula in eq. (3.13):

SG-Wald = 4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

. (3.18)

Note that the generalized Wald entropy is nonzero for �R.

Let us proceed to compute the anomaly-like entropy from �R. Focusing on the relevant

terms eq. (3.8), we have

√
G�R = −8

√
ge−2A[(TrK)2 − 3TrK2 + 2TrQ a

0 a − 8T0 − 8e2AT1)∂zA∂z̄A

+64(−2T0 + e2AT1)(z∂
2
zA∂z̄A+ c.c)
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−32T0(z
2∂3

zA∂z̄A+ c.c)

+64e2AT1(zz̄∂
2
zA∂

2
z̄A)] + · · · . (3.19)

Applying eq. (3.8), we derive the second formula in eq. (3.13):

SAnomaly = −4π

∫

ddy
√
g
[

(TrK)2 − 3TrK2 + 2TrQ a
0 a − 24T0

]

. (3.20)

As expected, the generalized Wald entropy (3.18) and the anomaly-like entropy (3.20)

cancel.

To summarize, by applying the methods of [9, 13] we find that the entropy from

covariant total derivative terms in the gravitational action is indeed zero.

4 Comparison with Astaneh-Patrushev-Solodukhin

In this section, we compare our results with those obtained in recent papers by Astaneh,

Patrushev and Solodukhin (APS) [11, 12]. For simplicity we will illustrate the differences

by using the �R example. The works [11, 12] use the prescription for regularization

developed in [8], which is quite different from the Lewkowycz-Maldacena prescription [6].

The main differences are that the regularized cone used in [11, 12] does not approach the

singular cone away from the conical singularity, and that they do not subtract off the

on-shell action of the singular cone. As a result, they sometimes get a nonzero entropy

from total derivative terms.

Let us briefly review the prescription used in [11, 12]. They propose to write the

regularized conical metric as8

ds2 = fn(r)dr
2 + r2dτ2 + [gij + 2Ka

ijn
arn +Ka

imKbm
j nanbr2n + · · · ]dyidyj , (4.1)

where fn = r2+b2n2

r2+b2
, n1 = cos τ , n2 = sin τ , and τ ∼ τ + 2nπ. Note that we have fn → n2

for r → 0, ensuring that there is no conical singularity when we identify τ with τ + 2πn.

Using the above regularized metric, they derive the generalized gravitational entropy as

SGGE = lim
n→1

(n∂n − 1)Ireg , (4.2)

with Ireg the gravitational action of the regularized cone.

Before proceeding, let us point out two differences between the APS prescription and

the Lewkowycz-Maldacena prescription used in the previous sections. Even though both

methods use regularized cones, an important difference is that at large r the metric (4.1)

does not approach the singular conical metric

ds2 = dr2 + r2dτ2 + [gij + 2Ka
ijn

ar + · · · ]dyidyj . (4.3)

The regularizing procedure of replacing r by rn in the extrinsic curvature term was first

proposed in [8], but it is not a local modification of the cone near the conical singularity.

8Note that the cone here has a conical excess of 2π(n− 1). For integer n it can be constructed by gluing

n copies of the B1 bulk geometry. This is different from our orbifold picture in the previous sections in

which the cone has a conical deficit of 2π(1− 1
n
).
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The second important difference is that unlike the Lewkowycz-Maldacena prescription (2.5)

or (3.4), the on-shell action of the singular cone is not subtracted off in (4.2).

Now we are ready to reproduce the calculation of the entropy from �R by using the

APS approach. By dimensional analysis, we note that the entropy is of order O(K2).

Focusing on this order, we obtain

∫ 2πn

0
dτ

∫ r0

0
dr
√
G�R =

∫ 2πn

0
dτ

√
GGrr∂rR|r=r0

r=0

= 4π(n− 1)r2(n−1) r
6TrK2 + c1b

2r4 + c2b
4r2 + ((TrK)2 − TrK2)b6

(b2 + r2)3
|r=r0
r=0 +O(n− 1)2

= 4π(n− 1)TrK2 +O(n− 1)2 (4.4)

where we have used the fact that r0 ≫ b in the above derivation. The exact expressions of

c1, c2 are irrelevant for the calculation. Remarkably, only the terms at r = r0 contribute

to the final result, while the terms at r = 0 vanish because n > 1.

Using (4.2) with this result we would be tempted to conclude that the total derivative

action �R contributes to the generalized gravitational entropy [11, 12]:

SGGE,APS = 4π

∫

ddy
√
g TrK2 . (4.5)

However, if we choose a regularization of the cone such that it approaches the singular

cone (4.3) away from the conical singularity, and subtract off the on-shell action of the

singular cone in (4.2), we would find that the entropy from �R is zero as in section 2.

5 Which prescription is correct?

As we saw in the previous section, the Lewkowycz-Maldacena prescription and the APS

prescription generally give different results for the entropy. While a lot of confidence is

usually given to the Lewkowycz-Maldacena prescription because of the underlying argu-

ment reviewed in section 2.1, in this section we would like to be more open-minded and

ask which prescription is correct. We find that the holographic and the field-theoretic uni-

versal terms of the entanglement entropy do not match if total derivative terms produce

a nonzero entropy. Furthermore, the second law of black hole thermodynamics could be

violated if the entropy of total derivative terms is nonzero. Thus it only seems reasonable

if total derivative terms in the action do not contribute to the entropy.

5.1 Entropy discrepancy

In this section, we show that there is entropy discrepancy between the holographic and the

field-theoretic results by using the APS prescription. For simplicity, we focus on the case

of a 4-dimensional field theory. A discussion for 6-dimensional field theories is in [23].

Let us start with the following bulk action in a 5-dimensional spacetime

S =
1

16π

∫

d5x
√
G[R− 2Λ + β�R] (5.1)

where Λ = − 6
l2

is the cosmological constant and β is a free parameter.
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By applying the APS prescription [11, 12], we obtain the holographic entanglement

entropy for action (5.1) as

SHEE =
1

4

∫

d3y
√
g[1− βTrK2] . (5.2)

Note that we work in the Lorentzian signature in this section, which differs from its Eu-

clidean form (4.5) by a minus sign. By applying the method of [24], it is not difficult to

derive the universal terms of the entanglement entropy as

SΣ|log = log(ℓ/δ)
1

2π

∫

Σ

[

c(Cijklhikhjk − Trk̄2)− aRΣ − π

2
βTrk̄2

]

, (5.3)

where Cijkl is the Weyl tensor and k̄ is the traceless part of the extrinsic curvature on the

entangling surface Σ. The central charges a and c are given in Planck units by

a =
πl3

8
, c =

πl3

8
. (5.4)

Note that eq. (5.3) is conformally invariant.

Following the approach of [25, 26], one can derive the holographic Weyl anomaly for

action (5.1). An advantage of the approach of [26] is that one does not need to solve the

equation of motion in 5-dimensional (or 7-dimensional) bulk theories. We obtain

〈T i
i〉 =

c

16π2
CijklC

ijkl − a

16π2
E4 . (5.5)

Remarkably, the total derivative term �R does not contribute to the holographic Weyl

anomaly. In the field-theoretic approach, we can derive the universal terms of the entan-

glement entropy as the ‘entropy’ of the Weyl anomaly [27–29]. We get

S′

Σ|log = log(ℓ/δ)
1

2π

∫

Σ

[

c(Cijklhikhjk − Trk̄2)− aRΣ

]

. (5.6)

Clearly, the holographic result eq. (5.3) and the field-theoretic result eq. (5.6) do not match,

unless the entropy from total derivative terms vanishes. In general, a total derivative term

may appear in the Weyl anomaly

〈T i
i〉 =

c

16π2
CijklC

ijkl − a

16π2
E4 +

λ

16π2
DiDiR̄ , (5.7)

where Di and R̄ are the covariant derivative and the Ricci scalar on the boundary. Here

λ is a parameter that depends on the regularization. We have λ = 0 for the holographic

Weyl anomaly (5.5). We choose the holographic Weyl anomaly in the field-theoretic calcu-

lations. This is because in deriving the holographic result (5.3) we have used a holographic

regularization with the cutoff surface z = δ where z is the radial coordinate of AdS. Thus

it is natural to use the same regularization for the Weyl anomaly. As a result, we get the

holographic Weyl anomaly with λ = 0. Note that even if we choose a different regular-

ization for the Weyl anomaly, the holographic entropy and the field-theoretic entropy still
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do not match. From the general Weyl anomaly (5.7), we can derive the universal terms of

entanglement entropy as

S′′

Σ|log = log(ℓ/δ)
1

2π

∫

Σ

[

c(Cijklhikhjk − Trk̄2)− aRΣ − λ

2
Trk2

]

. (5.8)

Note that the above equation is not conformally invariant for nonzero λ, while the

holographic universal term (5.3) is conformally invariant. Therefore, the holographic

result (5.3) and the field-theoretic result (5.6), (5.8) cannot match, unless the entropy

from total derivatives vanishes.

5.2 Violation of the universality of corner entanglement

In this section, we show that the results of APS [11, 12] do not agree with the conjecture

of [30] for the universal part of the corner contribution to entanglement entropy.9 Since

the conjecture of [30] has passed several quite general tests, it suggests that the entropy

from total derivative terms should vanish.

Let us first briefly review the works of [30, 32]. The entanglement entropy (EE) of

some region V in 3d CFTs takes the form

S = B H/δ − a(Ω) log(H/δ) +O(1) , (5.9)

where δ is a short-distance cutoff, B is a constant, and H denotes the size of the entangling

surface. The first term of eq. (5.9) is the ‘area law’ contribution to EE and the second

logarithmic term appears only if the entangling surface has a sharp corner. For pure state,

we have a(Ω) = a(2π − Ω) due to the fact S(V ) = S(V̄ ). Thus we have

a(Ω → π) ≃ σ(π − Ω)2 (5.10)

in the smooth limit. Recently, it is conjectured that

σ/CT = π2/24 (5.11)

is a universal relation for all CFTs in three dimensions [30]. Here CT is the central charge

appearing in the stress tensor correlator

〈Tµν(x)Tλρ(0)〉 =
CT

|x|2d Iµν,λρ(x) (5.12)

with Iµν,λρ a dimensionless tensor fixed by symmetry.

This conjecture was tested in [30, 32] by studying some holographic models, free scalars,

and free fermions. It was later proved for CFTs dual to general higher curvature grav-

ity [33, 34]. For simplicity, below we take Einstein gravity and curvature-squared gravity

as examples to illustrate the universality of corner entanglement.

Consider the following action

I =
1

16πG

∫

d4x
√
g

[

R+
6

l2
+ λl2R̄µνσρR̄

µνσρ

]

(5.13)

9This conjecture was recently proven in [31].
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where R̄µνσρ = Rµνσρ+
1
l2
(gµσgνρ−gµρgνσ). For simplicity, we focus on AdS4 where R̄µνσρ =

0. Following [8–10], we get the holographic entanglement entropy of the model (5.13) as

S =
1

4G

∫

d2y
√
h(1− 2λl2TrK2) . (5.14)

Using the Gauss-Codazzi equations in AdS4, we can rewrite

∫

Σ
d2y

√
hTrK2 =

∫

Σ
d2y

√
h

[

− 2

l2
−R+ (TrK)2

]

≃ − 2

l2

∫

Σ
d2y

√
h (5.15)

where in the last step we have ignored (TrK)2 and the total derivative term
√
hR as they

do not contribute to the universal part of corner entanglement.10 We can therefore rewrite

eq. (5.14) as

S = (1 + 4λ)

∫

d2y

√
h

4G
(5.16)

which is equivalent to the entropy of Einstein gravity up to an overall factor. As a result,

we have a(Ω) = (1+4λ)aE(Ω) and thus σ = (1+4λ)σE , where E denotes Einstein gravity.

Now let us discuss the central charge CT appearing in eq. (5.12). A standard holo-

graphic calculation of CT for Einstein gravity gives

CT,E =
3 l2

π3G
. (5.17)

The situation is a little more complicated for higher curvature gravity. That is because,

in addition to the usual massless spin-two graviton, massive modes and ghost modes with

M2 ∼ 1/(λl2) also appear in higher curvature gravity. To suppress these modes, it is natural

to work in the perturbative framework with λ ≪ 1. Consider the metric fluctuations in

the AdS4 background with the gauge conditions ∇̄µhµν = 0 and gµνhµν = 0, we can derive

the linearized Einstein equations as

− 1

2

[

�̄+
2

L̄2

]

hµν = 8πGTµν . (5.18)

Similarly, we can derive the linearized equation of motion for the holographic model (5.13)

as

− 1 + 4λ

2

[

�̄+
2

L̄2

]

hµν − 2λ

[

�̄+
2

L̄2

]2

hµν = 8πGTµν . (5.19)

Clearly, the second term of the above equation is suppressed near the physical pole, i.e.

[�̄+ 2
L̄2 ]hµν ∼ 0. Comparing eq. (5.19) with eq. (5.18), we notice that the effective Newton

constant of the holographic model (5.13) is Geff = G/(1+4λ). From eq. (5.17), we get CT =

(1 + 4λ)CT,E . Recall that we have σ = (1 + 4λ)σE from eq. (5.16), and we finally obtain

σ

CT
=

σE
CT,E

(5.20)

which agrees with the conjecture (5.11).

10According to [30, 32], (TrK)2 give higher order terms near the minimal surface and thus can be ig-

nored. [30, 32] also show that R does not contribute to the universal term a(Ω).
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Now let us discuss the effects of total derivative terms in the gravitational action. For

simplicity, we focus on the following action

I =
1

16πG

∫

d4x
√
g

[

R+
6

l2
+ λR̄µνσρR̄

µνσρ + β�R

]

. (5.21)

Using eqs. (4.5), (5.14), (5.15), we obtain the entropy for the holographic model (5.21) as

S =
1

4G

∫

d2y
√
h
(

1− (2λ+ β)TrK2
)

≃ (1 + 4λ+ 2β)

∫

d2y

√
h

4G
, (5.22)

which yields σ = (1 + 4λ+ 2β)σE . As for the central charge CT , since total derivatives do

not contribute to the equation of motion, using eq. (5.19) we get CT = (1+ 4λ)CT,E . Now

it is clear that the conjecture of [30] is violated

σ

CT
=

1 + 4λ+ 2β

1 + 4λ

σE
CT,E

6= σE
CT,E

, (5.23)

unless the entropy from total derivative terms vanishes.

5.3 Violation of the second law

In this section, we prove that the second law of black hole thermodynamics can be violated if

the entropy from total derivatives is nonzero. For simplicity, we focus on linearized metric

perturbations on stationary black holes with a regular bifurcation surface. It is found

that the linearized second law is obeyed by f(Lovelock) gravity [35], curvature-squared

gravity [36], and higher derivative gravity [37].11 However, if total derivatives produce

nonzero entropy, the linearized second law can be violated as we shall show below. To

obey the second law, the entropy from total derivatives must therefore vanish.

Consider the Einstein-Hilbert action plus a total derivative term and a matter action

S =
1

16π

∫

dDx
√
G[R+∇µJ

µ] + SM . (5.24)

It is well-known that total derivatives do not affect the equation of motion. Thus we have

Rµν −
R

2
Gµν = 8πTµν . (5.25)

By using the APS prescription, the entropy from the total derivative term ∇µJ
µ is nonzero.

Let us denote the entropy density of the higher derivative correction (which in the case

above is ∇µJ
µ) by 4πρ. The total entropy becomes

SGGE =
1

4

∫

d3y
√
g (1 + ρ) . (5.26)

Define the change of entropy per unit area as

Θ =
dρ

dt
+ θk(1 + ρ) (5.27)

11See also [38] for discussions beyond the linearized second law.
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where d
dt

= kµ∇µ, θk is the expansion, and kµ is the null generator on the horizon. Follow-

ing [36] and neglecting some higher order terms in the Raychaudhuri equation, we obtain

the evolution equation of Θ:

dΘ

dt
− κΘ = −8πTkk +∇k∇kρ− ρRkk +Hkk (5.28)

where κ is the surface gravity, and Hkk is the contribution to the equation of motion from

higher curvature terms (which is zero in the case of a total derivative). It turns out that

for general higher curvature gravity, (∇k∇kρ − ρRkk + Hkk) vanishes at the linearized

order [35–37]. As a result, the linearized second law is obeyed.

Let us briefly review the argument of [36]. Consider a black hole that begins and ends

in a stationary state, but at some intermediate time one perturbs it with a stress tensor Tµν

that obeys the null energy condition Tkk ≥ 0. Recall that we have (∇k∇kρ−ρRkk+Hkk) =

O(ǫ2) for general higher curvature gravity [35–37]. At the linearized order, we obtain

dΘ

dt
− κΘ = −8πTkk ≤ 0 . (5.29)

If Θ < 0 at some moment, we have dΘ
dt

< 0 due to κ > 0, and therefore Θ would never be

zero in future. Thus we must always have Θ ≥ 0 and the linearized second law is obeyed.

Now let us return to our case with total derivative terms. Recall that total derivatives

do not affect the equation of motion Hkk = 0. If they contribute to the entropy, i.e. ρ 6= 0,

(∇k∇kρ − ρRkk + Hkk) would generally be nonzero. As a result, the above argument

breaks down and the linearized second law may be violated. Below we give an example

where this indeed happens. Now let us focus on ∇µJ
µ = β�R. From eq. (4.5) we get

ρ = −βTrK2. Note that we work in Lorentzian signature in this section. Let us take the

Vaidya metric as an example

ds2 = −
(

1− 2M(v)

r

)

dv2 + 2dvdr + r2dΣ2
D−2 . (5.30)

The energy density is M ′(v)
4πr2

> 0, and the expansion is given by θk = r−2M(v)
r2

≥ 0.

After some calculations, we derive

Θ =
dρ

dt
+ θk(1 + ρ) =

(r − 2M(v))
(

−2βM(v) + r3
)

+ 4βr2M ′(v)

r5
. (5.31)

According to [36], the location of event horizon r = r(v) can be obtained by solving the

equation

r′ =
1− 2M(v)

r

2
, (5.32)

where r′ = dr(v)
dv

. Using eq. (5.32) to rewrite eq. (5.31), we obtain

Θ =
2rr′ − 4βr′′

r2
. (5.33)
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From the positivity of the expansion θk = r−2M(v)
r2

and the energy density M ′(v)
4πr2

, we get

two constraints for r(v)

r′ ≥ 0 , (5.34)

r′ − 2r′2 − 2rr′′ ≥ 0 . (5.35)

If we require M > 0, we have one additional constraint r′ < 1
2 .

For a fixed parameter β, by choosing suitable evolution of the Vaidya metric

0 <
rr′

2r′′
(v0) < β , when β > 0 (5.36)

0 >
rr′

2r′′
(v0) > β , when β < 0 (5.37)

at some moment v = v0, we can always make Θ(v0) < 0. To demonstrate this explicitly,

we study the following toy model

r(v) =

√

|β|
2

(

1 +
1

2
tanh

v

2
√

|β|

)

, (5.38)

which satisfies the constraints (5.34), (5.35) and M > 0 for −∞ < v < ∞. One can

check that the second law is violated, i.e., Θ(v) < 0, in the above toy model for v <

−2
√

|β| tanh−1
(

2
9

)

when β > 0, and for v > 2
√

|β| tanh−1
(

2
7

)

when β < 0. In conclusion,

the second law of black hole thermodynamics can be violated unless the entropy from total

derivative terms vanishes.

6 Conclusion

By applying the Lewkowycz-Maldacena method, we have investigated the generalized

gravitational entropy from total derivative terms in the gravitational action. In contrast

to [11, 12], we find that the entropy from total derivative terms vanishes. The Lewkowycz-

Maldacena prescription and the APS prescription [11, 12] generally give different results

for the entropy. We find that the APS prescription would lead to the conclusion that the

holographic entropy and the field-theoretic entropy do not match. Furthermore, the second

law of black hole thermodynamics could be violated if the entropy from total derivative

terms is nonzero. These results give us more confidence that the generalized gravitational

entropy from total derivative terms in the action vanishes.
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