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On static solutions of the Einstein - Scalar Field equations

Mart́ın Reiris∗

Max Planck Institute für Gravitationsphysik, Am Mühlenberg 1 D-14476 Golm, Germany

In this note we study the Einstein-ScalarField static equations in arbitrary dimensions. We discuss
the existence of geodesically complete solutions depending on the form of the scalar field potential
V (φ), and provide full global geometric estimates when the solutions exist. As a special case it is
shown that when V (φ) is the Klein-Gordon potential, i.e. V (φ) = m2|φ|2, geodesically complete
solutions are necessarily Ricci-flat, have constant lapse and are vacuum, (that is φ = φ0 with φ0 = 0
if m 6= 0). Hence, if the spatial dimension is three, the only such solutions are either Minkowski or
a quotient thereof. For V (φ) = m2|φ|2 + 2Λ, that is, including a vacuum energy or a cosmological
constant, it is proved that no geodesically complete solution exists when Λ > 0, whereas when Λ < 0
it is proved that no non-vacuum geodesically complete solution exists unless m2 < −2Λ/(n− 1), (n
is the spatial dimension) and the manifold is non-compact.

I. INTRODUCTION

Matter models that use scalar fields are among the
most studied in theoretical physics, and there are good
reasons for this to be. The Klein-Gordon equation, for
instance, which is given by

∇µ∇µφ = m2φ (1)

is perhaps the simplest equation for a free-relativistic
massive particle that one can think of. More generally
than this, one can consider the equations

∇µ∇µφ = m2φ+W (φ) (2)

which, depending on the form of W (φ), can incorporate
essentially any type of self interaction while keeping the
relativistic structure transparent. Simple form and high
diversity is what has characterisedmodels based on scalar
fields and has made them very appealing.
Early studies of equations like (2), or (2) coupled to

Einstein gravity, paid much attention on the existence of
solitons. These are static solutions that, because they are
localised and everywhere regular, were thought as good
candidates for a notion of ‘particle’. While this moti-
vation is by now abandoned, the search of solitons in
various field theories has found renewed theoretical in-
terests. Einstein-YangMills-Higgs, Einstein-Inflaton and
Einstein-ScalarField are examples of systems that, either
for motivations in particle physics, cosmology, or black-
hole theory, deserve still considerable attention. Reviews
on many of these topics can be found in [3] and more
recently in [9]. For solitons of the Einstein-ScalarField
system, usually called scalerons, the reader is referred to
[7].
In general terms, this article studies the existence of

geodesically complete static solutions of the Einstein-
ScalarField equations, (that one may naturally call gen-
eralised solitons), depending on the form of the potential
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V (φ) (see the next section for the setup). We do not
make any dimensional, global, or asymptotic assumption
(like asymptotic flatness) and in this sense several of the
conclusions of this paper are the most general they can
be.
In basic terms, studying the existence of geodesically

complete solutions1 is important for the following simple
reasons. First, (if they are proven to exist), geodesically
complete solutions are everywhere regular and inextensi-
ble and in this sense they should be considered, (at least
in principle), as physically acceptable. Second, and per-
haps most importantly, in many contexts nontrivial solu-
tions of this type are indeed proven not to exist (‘no-go’
theorems). If this is the case, then the rough but crucial
conclusion that one reaches is that any nontrivial static
solution, being necessarily geodesically incomplete, must
contain either a horizon or a singularity2.
The results of this article are based on techniques in

comparison-geometry á la Backry-Emery [10] that to my
knowledge were put forward, in a closely related context,
first by Case [5], 3. We opted here to introduce only a
main technical Lemma (Lemma III.2 adapted from [5])
from which all the results are deduced. As a main ap-
plication we discuss thoroughly the special case of the
Klein-Gordon field, in the presence, or not, of a cosmo-
logical constant. We will also give other less elaborated
applications to illustrate the usefulness of the technique.
Concerning the main application, what we show is the
following. When V (φ) is the Klein-Gordon potential, i.e.
V (φ) = m2|φ|2, geodesically complete solutions are nec-
essarily Ricci-flat, have constant lapse N , and are vac-
uum, that is φ = φ0 with φ0 = 0 if m 6= 0, (§ Theorem
IV.1). Therefore, if the spatial dimension is three, the
only such solutions are either Minkowski or a quotient

1 We consider only here the geodesic completeness of the spatial-
slice where the data set lives.

2 For instance, the horizon of a Schwarzschild solution of positive
mass, and the naked singularity of a Schwarzschild solution of
negative mass can be understood as necessary in this way.

3 It is noteworthy to recall that this type of technique has played
also a crucial role in the study of the Ricci flow.
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thereof (for vacuum static solutions this was proved by
Anderson in [1] by other techniques; see also [5]). When
V (φ) = m2|φ|2 + 2Λ, that is, including a vacuum energy
or a cosmological constant, we prove that no geodesi-
cally complete solution exists when Λ > 0, whereas when
Λ < 0 it is proved that no non-vacuum geodesically com-
plete solution exists unless m2 < −2Λ/(n − 1) and un-
less the manifold is non-compact, (§ Theorem IV.2 and
Theorem IV.3). Moreover, in this case, we provide the
pointwise estimate |∇φ|2 + m2|φ|2 ≤ −68Λ for the en-
ergy density (§ Theorem IV.3), the pointwise estimate
|∇N |/N ≤ 64

√
−Λ for the gradient of the lapse (§ The-

orem IV.4), and, when the spatial dimension is three,
we prove a general pointwise bound on the curvature in
terms of |Λ| (§ Theorem IV.5). When the spatial dimen-
sion is three, vacuum solutions (i.e. φ = 0) other than
AdS, were shown to exist by Anderson in [2]. Even in
the vacuum case, the pointwise estimates that we obtain
seem to be new. The estimates could be useful in theories
that study spaces asymptotic to AdS, with or without a
scalar field.
One could easily guess that, by following either the line

of argument used here for the Klein-Gordon field or by
taking other original paths, many other new applications
of Lemma III.2 could be found. A bit of this we hoped
to convey when we incorporated the Sections IVC and
IVD to the text. In Section IVC we enumerate briefly a
series of conclusions (mostly ‘no-go’ theorems) that one
can easily reach for the Einstein-RealScalarField system,
for several different types of potentials V (φ) (including
the (real)-Sine-Gordon and the (real)-Higgs potentials).
In Section IVD instead, we make a simple application
to the Klein-Gordon geons (as coined by Kaupt [6]).
These are, roughly speaking, eigenstates of the Einstein-
KleinGordon system where the spacetime metric is static
but the scalar field oscillates periodically in time. Spher-
ically symmetric solutions of this type have been stud-
ied exhaustively by many authors and are called Mini
Boson stars (see [4] and ref. therein). What we prove
in Section IVD is that the frequency of oscillation |ω|
of geodesically complete Klein-Gordon geons, must be
strictly greater than the boson mass m. For Mini Boson
stars, this property was first observed (and proved) by
Bizoń and Wasserman ([4], § Lemma 2.5).
The organisation of the article is as follows. In Section

II we recall the main static equations of the Einstein-
ScalarField system, together with the notation and the
terminology. Subsection IIA explains the type of man-
ifolds used during the paper, and that have to be read
with care to avoid confusion. The main technical esti-
mates to be used in applications are obtained in Section
III. All the applications in Section IV are deduced from
a main but simple observation that is perhaps worth to
mention here it yields light to the nature of the tech-
nical Section III. The key point is that, using the static
equations and the Böchner type of equation (27), one can
obtain expressions for the f -Laplacian (f = − lnN , see
next section) of ψ = |∇φ|2 and of ψ = |∇ lnN |2 of the

form

∆fψ ≥ bψ + cψ2, (3)

with b ≤ 0 and c > 0. What we do in Section III is
to prove that fundamental pointwise estimates can be
obtained for such a ψ if the f -Ricci tensor, or Backry-
Emery tensor, Ric1f (see next section) is bounded below.
We obtain thus fundamental ‘gradient’ estimates for φ
and lnN from which all the physical conclusions will fol-
low. The applications are discussed in Section IV which
is divided in four subsections: Subs. IVA discusses the
Klein-Gordon case (main application), Subs. IVB dis-
cusses the Klein-Gordon case in the presence of a cosmo-
logical constant, and Subs. IVC and IVD discuss, as we
mentioned earlier, applications to real scalar fields and
to Klein-Gordon geons respectively.

II. THE STATIC EQUATIONS

We give below the static equations of the Einstein-
ComplexScalarField system in spacetime-dimension n +
1, (n ≥ 2). We use the following notation: (i) φ is the
complex scalar field and φ̄ the complex conjugate (ii) φR
is the real part of φ and φI the imaginary part (iii) |φ| is
the norm of φ and |∇φ| is the norm of ∇φ (i.e. |∇φ|2 =
〈∇φ,∇φ̄〉). The potentials that we will consider are of the
form V (φR, φI). We will use the shorthand V (φ). The
spacetime metric is assumed to split as g = −N2dt2 + g,
and the metric g, as well as the lapse N > 0, live in
a n-dimensional manifold Σ. The relevant data is thus
(Σ;N, g;φ).
The static Einstein-(Complex)ScalarField equations

are,

Ric+∇∇f −∇f∇f = ∇φ ◦ ∇φ̄+
V (φ)

n− 1
g, (4)

∆f − 〈∇f,∇f〉 = V (φ)

n− 1
, (5)

∆φ− 〈∇f,∇φ〉 = ∂V (φ)

2
, (6)

where f = − lnN , ∇φ ◦ ∇φ̄ = (∇φ∇φ̄ + ∇φ̄∇φ)/2 =
∇φR∇φR +∇φI∇φI , and ∂V is

∂V =
∂V

∂φR
+ i

∂V

∂φI
(7)

These equations imply, in turn, the following expression
for the scalar curvature R (or energy density),

R = |∇φ|2 + V (φ). (8)

The system (4)-(5) arises as the static Euler-Langrange
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equations of the n+ 1-dimensional (spacetime) action4

S(g, φ) =
∫

[

Rg −∇µφ∇µφ̄− V (φ)

]

dvg (9)

or, also, as the Euler-Lagrange equations of the n-
dimensional (spatial) action

S(f, g, φ) =
∫

[

R − |∇φ|2 − V (φ)

]

e−fdv (10)

A few times below we will use, following [10], the notation

Ric1f := Ric+∇∇f −∇f∇f (11)

and

∆fψ = ∆ψ − 〈∇f,∇ψ〉 = 0 (12)

A. Manifolds

Without any explicit specification, a ‘manifold Σ’ is
allowed to have boundary or to be boundaryless, and to
be compact or non-compact. Whatever the case, (Σ, g)
is assumed metrically complete with respect to the stan-
dard metric

dist(p, q) = inf{length(γpq) : γpq ∈ Cpq} (13)

where Cpq is the set of smooth curves joining p to
q. Hence, if Σ is boundaryless then (Σ, g) is geodesi-
cally complete by Hopf-Rinow. On the other hand if Σ
has boundary then (Σ, g) is geodesically incomplete as
geodesics can terminate at the boundary. Henceforth,
when we say ‘(Σ, g) is geodesically complete’, we are say-
ing implicitly that Σ is boundaryless, no matter if Σ is
compact or not.
These conventions have to be kept in mind to prevent

confusion. For example, the de-Sitter metric

g =

(

1

1− Λr2/3

)

dr2 + r2dΩ2
n−2, N =

√

1− Λr2

3
(14)

is a solution of the static Einstein equations with a pos-
itive cosmological constant, although we will show later
that there is no such solution which is geodesically com-
plete. The point here is that the de-Sitter solution is
defined on a manifold with boundary (the cosmological
horizon), hence geodesically incomplete.
It is worth stressing once more that a non-existence

result of geodesically complete solutions is important be-
cause it says that any inextensible solution (necessarily
geodesically incomplete) has always, roughly speaking,
either a horizon or a singularity.

4 Inserting constants in front of R, or ∇µφ∇µφ does not change
the analysis of this article.

III. THE TECHNICAL LEMMAS

In this section we state and prove Lemma III.2 which
is the main technical lemma to be used in applications.
We start recalling Theorem A.1 from [10] (in Theorem
A.1 use mn+1

H from eq. (3.8) in [10]). In this Theorem
and below, dp is equal to either

dp = dist(p, ∂Σ), (15)

if ∂Σ 6= 0 or

dp = sup{dist(p, x) : x ∈ Σ} (16)

if ∂Σ 6= 0. In particular if Σ is non-compact and bound-
aryless then dp = ∞, 5

Theorem III.1. ([10]) Let (Σ, g) be an n-dimensional
Riemannian manifold. Suppose that

Ric+∇∇f −∇f∇f ≥ (nH)g (17)

for some function f and real number H. Let p be a point
in Σ \ ∂Σ and let r be the distance function to p, i.e.
r(x) = dist(x, p). Then, at any x such that r(x) < dp we
have

∆fr ≤































n
√
H

tan(
√
Hr)

if H > 0,

n
r if H = 0,

n
√

|H |
tanh(

√

|H |r)
if H < 0.

(18)

in the barrier sense6.

Of course we could have ∂Σ = ∅ in which case Σ\∂Σ =
Σ. As seen in [10], this Theorem implies the following
generalised Myers’s estimate: if H > 0, then for any
point p we have dp ≤ π/

√
H. In particular if Σ is non-

compact then ∂Σ 6= ∅. We will use this property later.
The following is the main technical Lemma to be used

and that is adapted from an estimate due to Case [5].

Lemma III.2. Let (Σ; g), f , H and p be as in Lemma
III.1. Let ψ be a real non-negative function such that

∆fψ ≥ bψ + cψ2, (19)

5 A technical remark is here necessary. For p ∈ Σ \ ∂Σ and rp <

dp the metric ball B(p, rp) := {q ∈ Σ : dist(p, q) < r} has
the following property: for every q in B(p, rp), there is at least
a length minimising segment joining p to q and entirely inside
B(p, rp). Thus, inside B(p, rp), the distance function r(q) =
dist(p, q) can be used as any geodesic distance function. These
properties may not hold if rp > dp and this explain why we need
the condition rp < dp in Theorem III.1.

6 This is an important property as it allows us to make analysis as
if r were a smooth function. The reader can consult this notion
in [8].
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with b ≤ 0 and c > 0. Then,

ψ(p) ≤















1
c

[

4n+ 24
d2p

− b

]

if H ≥ 0,

1
c

[

4n
√

|H |
dp tanh(

√

|H |dp)
+

24

d2p
− b

]

if H < 0

(20)

Proof. For any function χ the following general formula
holds

∆f (χψ) = ψ∆fχ+ 2〈∇χ,∇ψ〉+ χ∆fψ (21)

Thus, if χ ≥ 0 and if χψ has a local maximum at q, then
we have

0 ≥
[

∆f (χψ)

]∣

∣

∣

∣

q

(22)

≥
[

ψ∆fχ− 2
|∇χ|2
χ

ψ + bχψ + cχψ2

]∣

∣

∣

∣

q

(23)

where to obtain the second inequality we used (19). To
simplify notation let r = r(x) = dist(x, p). Let rp be a
positive number less than dp. On the ball B(p, rp) let
the function χ(x) be χ(x) = (r2p − r2(x))2. Let q be
a point in the closure of B(p, rp) where the maximum
of χψ is achieved. As (χψ)(q) ≥ (χψ)(p) = r4pψ(p) we
deduce that if ψ(q) = 0 then ψ(p) = 0. In this case (20)
follows. So let us assume that ψ(q) > 0 and hence that
q ∈ B(p, rp). By (22) we have

cr4pψ(p) ≤ c(χψ)(q) ≤
[

2
|∇χ|2
χ

−∆fχ− bχ

]
∣

∣

∣

∣

q

(24)

≤
[

4(r2p − r2)r∆f r + 4r2p + 20r2 − br4p

]
∣

∣

∣

∣

q

(25)

But if Ricαf ≥ nHg then ∆f r can be estimated from (18).

Use this estimation in (25), divide by cψ4(p), and take
the limit rp → dp to obtain (20) by simple bounds.

Corollary III.3. Assume the hypothesis of Lemma III.2
and that (Σ; g) is non-compact and geodesically complete.
Then,

ψ(p) ≤ −b
c

(26)

at any p ∈ Σ, regardless of the sign of H.

Proof. If (Σ; g) is non-compact and geodesically complete
then dp = ∞ and the result follows from (20).

IV. APPLICATIONS

A. Klein-Gordon

In this section we study the Klein-Gordon potential
V (|φ|) = m2|φ|2. The mass is allowed to be zero in which

case V = 0. The theorem that follows is perhaps the
simplest and most elegant application of the estimates of
the previous section.

Theorem IV.1. Let (Σ;N, g, φ) be a geodesically com-
plete solution of the n-dimensional static Einstein-
KleinGordon equations. Then, Ric = 0, N = N0 and
φ = φ0, with φ0 = 0 if m 6= 0. In particular if n = 3 then
(Σ; g) is covered by the Euclidean three-space.

The main Böchner type of formula that we are going
to use is

1

2
∆f |∇χ|2 =|∇∇χ|2 + 〈∇χ,∇(∆fχ)〉 (27)

+Ric1f(∇χ,∇χ) + |〈∇χ,∇f〉|2 (28)

which is valid for any real function χ, [10].

Proof. During the proof we make f = − lnN . To start
note that if Σ is compact and m 6= 0 then φ = 0 by
integrating (5) against N = e−f . But if φ = 0 then f
is constant by integrating (5) against N2 = e−2f . Thus
Ric = 0 by (5) as claimed. Identical conclusion is reached
if m = 0 by integrating (5) agains N2 = e−2f and (6)
against φ.
Assume then from now on that Σ is non-compact. Re-

call that we use the notation φ = φR + iφI . From (6) we
obtain

∆fχ = m2χ (29)

for χ equal to either φR or φI . Use then these two equa-
tions to evaluate (27) with χ = φR and with χ = φI .
Add up the results and get (after discarding a few posi-
tive terms)

1

2
∆f (|∇φR|2 + |∇φI |2) ≥ |∇φR|4 + |∇φI |4 (30)

Use now |∇φ|2 = |∇φR|2 + |∇φI |2 and the inequality
(x4 + y4) ≥ (x2 + y2)2/2 to arrive at

∆f |∇φ|2 ≥ |∇φ|4 (31)

It follows then from Corollary III.3 that ∇φ = 0. Hence
φ = φ0, and φ0 = 0 if m 6= 0 from (6).
We prove now that the lapse must be constant. From

what was proved before we have Ric1f = 0 and ∆ff = 0.

Use then (27) with χ = f to get

1

2
∆f |∇f |2 ≥ |∇f |4 (32)

Thus, ∇f = 0 from Corollary III.3 and hence N = N0.
If f = f0 then Ric = 0 from Ric1f = 0.
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B. Λ-Klein-Gordon

In this section we investigate geodesically complete so-
lutions of the static Einstein-ScalarField equations with
potentials of the form V (φ) = m2|φ|2 + 2Λ.
The case Λ = 0 was the one considered in the previous

section, therefore we consider below only the cases Λ > 0
and Λ < 0.
Λ > 0: In this case it is easy to see that there are

no geodesically complete solutions at all. Indeed, if
Σ is compact a contradiction is obtained by integrat-
ing (5) against N = e−f . On the other hand if Σ
is non-compact, then Σ must have boundary because
Ric1f ≥ (2Λ/(n − 1))g, as we already commented after
the statement of Theorem III.1. This thus contradicts
the assumption that (Σ, g) is geodesically complete.
Λ < 0: As explained in the introduction, there are

geodesically complete solutions in this case, therefore the
best one can do is to understand the local and global
geometry. Our first results shows that geodesically com-
plete solutions with Σ compact do not exist. Our second
result uses this information to provide complete estimates
on the scalar field φ.

Theorem IV.2. Let (Σ;N, g, φ) be a geodesically com-
plete solution of the static Einstein-ScalarField equations
with potential V (φ) = m2|φ|2 + 2Λ, where Λ < 0. Then
Σ is non-compact.

Proof. During the proof we use f = − lnN . Assume that
Σ is compact. Then observe that as (6) is equivalent to

∇(N∇φ) = m2Nφ (33)

we can multiply this equation by φ̄ an integrate over Σ
to obtain

0 =

∫

Σ

N(|∇φ|2 +m2|φ|2) dv (34)

This implies φ = φ0 with φ0 = 0 if m 6= 0. Using this
information then note that (5) is equivalent to ∆N =
(2Λ/(n−1))N . Integrating this over Σ we deduce Λ = 0,
and thus a contradiction.

Theorem IV.3. Let (Σ; g,N, φ) be a geodesically com-
plete solution of the static Einstein - Scalar Field equa-
tions with potential V (φ) = m2|φ|2 + 2Λ, where Λ < 0.
Then the following holds:

(i) if m2 ≥ −2Λ/(n−1) then φ is identically zero, and,

(ii) if m2 < −2Λ/(n− 1) then,

|∇φ|2 ≤ −4Λ

(n− 1)
, m2|φ|2 ≤ −64Λ. (35)

In particular R = |∇φ|2 +m2|φ|2 +2Λ ≤ −66Λ, by
a coarse estimation.

Proof. During the proof we use f = − lnN . Use (27)
with χ = φR and with χ = φI and add up the results to
obtain (after discarding a few positive terms)

∆|∇φ|2 ≥ 2(m2 +
2Λ

n− 1
)|∇φ|2 + |∇φ|4 (36)

Hence, if m2 ≥ −2Λ/(n− 1) then φ is constant by Corol-
lary III.3. But if φ is constant and m2 > 0 then φ must
be indeed zero by equation (6).
Let us assume then that m2 < −2Λ/(n−1). By Corol-

lary III.3 we have

|∇φ|2 ≤ −2(
2Λ

(n− 1)
+m2) ≤ −4Λ

(n− 1)
(37)

which shows the first estimate of (35). Using this esti-
mate together with m2 < −2Λ/(n− 1) we deduce

m|∇φ| ≤
√
8
√
−Λ

(n− 1)
(38)

The convenience of this estimate is the following. If two
points p0 and p are separated by a distance L then

m|φ(p0)| −m|φ(p)| ≤ |mφ(p0)−mφ(p)| (39)

=
∣

∣

∫

γ

m∇γ′φds
∣

∣ (40)

≤
√
8
√
−Λ

(n− 1)
L (41)

where γ(s) is a length minimising geodesic segment join-
ing p0 to p. Hence, if at a point p0 we have

m|φ(p0)| ≥ 8
√
−Λ (42)

then

m|φ(p)| ≥ 5
√
−Λ (43)

at every point p of the ball B(p0, (n − 1)/
√
−Λ) be-

cause using (39) we would have m|φ(p)| ≥ 8
√
−Λ −

2
√
2
√
−Λ ≥ 5

√
−Λ. Assume then that (43) holds on

B(p0, (n− 1)/
√
−Λ). Then by (4) we would have

Ric1f ≥
(−23Λ

n− 1

)

g = (nH)g (44)

where the r.h.s is the definition ofH . But then the radius
of the ball, (n − 1)/

√
−Λ, should be less or equal than

π/
√
H , in other words we should have

n− 1√
−Λ

≤ π
√

n(n− 1)√
23
√
−Λ

(45)

But his equation doesn’t hold for any n ≥ 2. Thus, (42),
(hence (43)), cannot hold and we have

m2|φ|2 ≤ −64Λ (46)
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which is the second estimate of (35).

So far, Theorem IV.3 provides complete estimates for
the scalar field φ. We occupy now ourselves with the
Lorentzian geometry, namely with N and g. As we show
below, gradient estimates for lnN can be provided in
any dimension but pointwise curvature estimate only in
spatial dimension three. We start proving estimates for
N .

Theorem IV.4. Let (Σ; g,N, φ) be a geodesically com-
plete solution of the static Einstein-ScalarField equations
with potential V (φ) = m2|φ|2 + 2Λ, where Λ < 0. Then,
the following holds,

(i) if m2 ≥ −2Λ/(n− 1), then

|∇N |
N

≤
√

−2Λ

n− 1
(47)

and,

(ii) if m2 < −2Λ/(n− 1) then

|∇N |
N

≤ 64
√
−Λ (48)

Proof. During the proof we use f = − lnN . Use (27)
with χ = f , discard a pair of terms and obtain

1

2
∆f |∇f |2 ≥ 〈∇f, m

2∇(|φ|2)
n− 1

〉+ 2Λ

n− 1
|∇f |2 + |∇f |4

(49)
If m2 ≥ −2Λ/(n− 1) then ∇φ = 0 and the first term

in the r.h.s of the previous equation is zero. We can use
Corollary III.3 to obtain |∇f |2 ≤ −2Λ/(n− 1), which is
(47).
Assume now that m2 < −2Λ/(n − 1). We need to

bound the first term in the r.h.s of the previous equations.
We do this as follows. First write

|〈∇f,m
2∇(|φ|2)
n− 1

〉| = (50)

= |2m2(φR〈∇f,∇φR〉+ φI〈∇f,∇φI〉| (51)

≤ 2m(m|φR||∇φR|+m|φI ||∇φI |)|∇f | (52)

Use now Theorem (IV.3) to bound (52) as

2m(m|φR||∇φR|+m|φI ||∇φI |)|∇f | ≤
128

n− 1
(−Λ)3/2|∇f |

(53)
Thus,

〈∇f, m
2∇(|φ|2)
n− 1

〉 ≥ − 128

n− 1
(−Λ)3/2|∇f | (54)

Hence

1

2
∆f |∇f |2 ≥ − 128

n− 1
(−Λ)3/2|∇f |+ 2Λ

n− 1
|∇f |2 + |∇f |4

(55)

Making ψ = |∇f |2 we can write

∆fψ ≥ a
√

ψ + bψ + cψ2 (56)

where a = −256(−Λ)3/2/(n − 1), b = 4Λ/(n − 1) and
c = 2. This equation is not the same as (19) and Corol-
lary III.3 cannot be directly used. However a simple mod-
ification of the arguments of Lemma III.2 shows that, if
(56) holds, then

ψ(p) ≤ max

{(

a

b

)2

,−2b

c

}

(57)

Using this with the values of a, b and c given before we
obtain (48).

The following theorem proves that, when the spatial
dimension is three, the Ricci curvature is bounded by an
expression depending only on Λ. The proof uses some
advanced elements of Riemannian geometry.

Theorem IV.5. Let (Σ; g,N, φ) be a geodesically com-
plete solution of the static Einstein-ScalarField equations
with potential V (φ) = m2|φ|2 + 2Λ, where Λ < 0 and in
spacetime dimension four (i.e. n = 3). Then,

|Ric| ≤ R(|Λ|) (58)

for some non-negative function R.

Proof. In Theorems IV.3 and IV.4 we deduced pointwise
bounds for |∇f |, |∇φ| and for m2|φ|2 depending only on
Λ. Therefore, recalling (4), the estimate (58) would fol-
low granted we can prove a pointwise estimate of |∇∇f |
depending only on Λ. We prove now that this is possible
when n = 3.
Let p be an arbitrary point in Σ. Assume that N(p) =

1. (If N(p) 6= 1 then work with the scaled lapse N/N(p).
Observe that the system (4)-(6) is invariant under scal-
ings of the lapse. Below we use therefore f = − lnN and
we assume N(p) = 1).
To start note that the estimates of Theorem IV.4 im-

ply7

|f |(q) ≤ K0(Λ) (59)

for every q in Bg(p, 1) and where K0(Λ) = 64
√
−Λ.

Hence we can write

K1(Λ)
−1 ≤ N(q) ≤ K1(Λ), (60)

for every q in Bg(p, 1) and where K1(Λ) = eK0(Λ). As we
mentioned earlier, the Theorems IV.3 and IV.4 give us
suitable bounds for |∇f |, |∇φ| and for m|φ|. From such
bounds one can write down the coarse estimate

|∇f |+ |∇φ| +m|φ| ≤ K2(Λ) (61)

7 Just integrate ∇ lnN along radial geodesics and used then the
bound |∇ lnN | ≤ 64

√
−Λ.
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for some K2(Λ). This is all what we will need later. We
will refer to it a couple of times.
From now on we will use the metric

ǧ := N2g (62)

In terms of the variables (ǧ, N, φ), the static equations
(4)-(6) are,

Řic = 2∇f∇f +∇φ ◦ ∇φ̄+
V (φ)

2
e2f ǧ, (63)

∆̌f =
1

2
V (φ)ef , (64)

∆̌φ =
1

2
∂V (φ)ef , (65)

Now, use the bounds (59) and (61) in the formula (63)
to deduce that |Řic|ǧ is pointwise bounded in Bg(p, 1),
where the bound depends only on Λ. Thus we have

|Řic|ǧ ≤ K3(Λ) (66)

As we are working in dimension three, where the Rie-
mann tensor is made out of the Ricci tensor, the bound
(66) implies a bound also for the Riemann tensor Řm on
Bg(p, 1) and thus we have,

|Řm|ǧ ≤ K4(Λ) (67)

Now, it is direct to see from (60) that one can find
ř1(Λ) such that

Bǧ(p, ř1) ⊂ Bg(p, 1/2). (68)

Moreover, it is a standard fact in Riemannian geometry
that a bound on the Riemann tensor as (67) implies that,
for some ř2(Λ) < ř1(Λ), the exponential map

exp : U(p, ř2) → Bǧ(p, ř2) (69)

is a smooth cover, where in this formula U(p, ř2) is the
ball of radius ř2 in TpΣ, (endowed with the metric ǧ(p),
namely U(p, r) := {v ∈ TpΣ : |v|ǧ(p) ≤ r}). Provide now
U(p, ř2) with the pull-back metric ǧ∗ = exp∗ǧ. The in-
jectivity radius at p of the space (U(p, ř2), ǧ

∗) is of course
equal to ř2 and the Riemann tensor of ǧ∗ is subject to
the same bound (67) as ǧ. Therefore, the harmonic ra-
dius of the space (U(p, ř2), ǧ

∗) at p is controlled from
below only by Λ, (see [8], § Chp. 10.5.2). To us, the
only important consequence of this is that one can make
standard elliptic analysis on (U(p, ř3), ǧ

∗) for a suitable
ř3(Λ) ≤ ř2(Λ). Hence, we can use the bounds (59)-(61)
to obtain Schauder interior elliptic estimates from the el-
liptic system (64)-(65), (see [8], § Chp. 10.2). Doing so
we get

|∇̌∇̌f |ǧ(p) ≤ K5(Λ) (70)

Use now the expression,

∇̌i∇̌jf = ∇i∇jf + 2∇jf∇if − |∇f |2ggij (71)

and the bounds (70), (59) and (61), to deduce directly
the bound

|∇∇f |g(p) ≤ K6(Λ) (72)

as wished.

C. Real scalar fields

General interesting results can be obtained when φ is
real. The following theorem, gives a simple condition
for V (φ) that forces φ to be a constant. It gives nice
applications that will be illustrated very briefly below.

Theorem IV.6. Let (Σ; g,N, φ) be a geodesically com-
plete solution of the static Einstein-RealScalarField sys-
tem with potential V (φ). If V is bounded below and

V ′′(x) +
V (x)

n− 1
≥ 0, (73)

for all x, then φ = φ0, (constant), and φ0 is a critical
point of V (φ).

Proof. Make f = − lnN . Then, using (27) with χ = φ
we obtain

1

2
∆f |∇φ|2 ≥

(

V ′′(φ) +
V (φ)

n− 1

)

|∇φ|2 + |∇φ|4 (74)

If (73) holds an Σ is compact then ∇φ = 0 by integrating
(74) over Σ. On the other hand if Σ is non-compact and
(73) holds then ∇φ = 0 from Corollary III.3.
Finally if φ = φ0 then equation (6) shows that φ0 is a

critical point of V (φ).

To illustrate the relevance of this Theorem let us con-
sider a set of simple and (more or less) natural potentials
and let us enumerate, without entering into further dis-
cussion, the strong conclusions that can be deduced in
each case.

1. V (φ) = λφ2n, λ > 0, n = 1, 2, 3, . . .. In this case
(73) is verified and therefore any geodesically com-
plete solution must have φ = 0.

2. V (φ) = λ coshφ, λ > 0. In this case (73) is veri-
fied and therefore any geodesically complete solu-
tion must have φ = 0.

3. V (φ) = λeφ, λ > 0. In this case (73) is verified but
there cannot be geodesically complete solutions at
all because V has no critical points.

4. V (φ) = λ sin
√

(n− 1)φ (a type of Sine-Gordon po-
tential). In this case the l.h.s of (73) is identically
zero and thus any geodesically complete solution
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must have φ = (−π/2 + 2jπ)/
√
n− 1, j ∈ Z (the

other critical points make V strictly positive). This
example is interesting because it shows that strong
conclusions can be obtained even when V is not a
non-negative potential.

5. V (φ) = λ(φ2 −φ20)2, λ > 0, (a type of Higgs poten-
tial). In this case one can show that if φ20 > 6(n−1)
then any geodesically complete solution must have
|φ| = |φ0|. To see this observe that, in this case,
(73) is equivalent to

12(φ2 − φ20) + 8φ20 +
(φ2 − φ20)

2

n− 1
≥ 0 (75)

Making z = φ2 − φ20, the previous equation is
equivalent to 12z + 8φ20 + z2/(n − 1) ≥ 0 for all
z ≥ −φ20. But if φ20 ≥ 6(n− 1) then the polynomial
12z + 8φ20 + z2/(n− 1) is non-negative.

D. The energy of Klein-Gordon geons

Following [6], a Klein-Gordon geon is a solution of
the Einstein-(Complex)ScalarField equations where the
spacetime metric is static but the scalar field oscillates
in time with frequency ω. Accordingly, we assume the
spacetime dependence φ(x, t) = eiωtφ0(x), (x ∈ Σ). If
the scalar field has a self interacting potential field V (|φ|),
then the static equations of a geon are the same as the
static Einstein-ScalarField equations (4)-(6) with the po-

tential V̂ (φ0) = −ω2|φ0|2 + V (φ0). In particular, if
V (|φ0|) = m2|φ0|2, then the geon equations are equiv-
alent to that of the static Einstein-ScalarField equations
with ‘mass’, m̂2 = −ω2 +m2 (of course if ω2 > m2 then
m̂, as defined, is imaginary). The direct conclusion from
Theorem IV.1 is that geons do not exist unless the fre-
quency |ω| is greater than the mass, i.e. ω2 > m2. As
mentioned in the introduction, if this condition holds,
then spherically symmetric solutions are known to exist
and area called Mini Boson stars [4].
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