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DECAY OF SOLUTIONS TO THE MAXWELL EQUATION ON THE

SCHWARZSCHILD BACKGROUND

LARS ANDERSSON, THOMAS BÄCKDAHL, AND PIETER BLUE

Abstract. A new Morawetz or integrated local energy decay estimate for Maxwell test fields
on the exterior of a Schwarzschild black hole spacetime is proved. The proof makes use of a
new superenergy tensor Hab defined in terms of the Maxwell field and its first derivatives. The
superenergy tensor, although not conserved, yields a conserved higher order energy current
Hab(∂t)b. The tensor Hab vanishes for the static Coulomb field, and the Morawetz estimate
proved here therefore yields integrated decay for the Maxwell field on the Schwarzschild exterior
to the Coulomb solution.

1. Introduction

The exterior region of the Schwarzschild spacetime is given in Schwarzschild coordinates by
(xa) = (t, r, θ, φ) ∈ R× (2M,∞)× [0, π]× [0, 2π) with metric

gabdx
adxb = (1− 2M/r)dt2 − (1− 2M/r)−1dr2 − r2(dθ2 + sin2 θdφ2).

The exterior region can be extended, but for simplicity we will not treat the extension here.
The Schwarzschild metric gab is static and spherically symmetric. In particular, the vector field
ξa = (∂t)

a is Killing, timelike in the exterior, and orthogonal to the level sets of t. With our
choice of signature,1 the timelike condition is that ξaξa > 0. In fact, as r → ∞, we find ξaξa → 1.
Recall the condition for ξa to be a Killing vector is ∇(aξb) = 0. A related condition for a 2-form
Yab to be a Killing-Yano tensor is ∇(aYb)c = 0. The Schwarzschild exterior admits a Killing-Yano
tensor given by

Yab = − 2r3 sin θdθ[adφb]. (1.1)

A Maxwell test field is a real 2-form Fab satisfying the equations ∇aFab = 0,∇[aFbc] = 0. From
now on, unless otherwise stated we shall assume that Fab is a Maxwell field.

To state our main result, we introduce the real 1-form

Ua = −r−1∇ar,

and define in terms of Ua, Fab and Yab, a real 2-form Zab, and a complex 1-form βa by

Zab = − 4
3∗F[a

cYb]c, (1.2)

βa = − 1
2U

bZab − 1
2 iU

b∗Zab − 1
2∇bZa

b − 1
2 i∇b∗Za

b. (1.3)

The superenergy tensors for βa and Zab are

Hab = β(aβ̄b) − 1
2gabβ

cβ̄c, (1.4)

Wab = − 1
2Za

cZbc +
1
8gabZcdZ

cd. (1.5)

Remark 1. The tensors Hab, Wab are quadratic in Fab and its derivatives up to first order (zeroth
order for Wab). Recall that a tensor Sab satisfies the dominant energy condition if Sabν

aζb ≥ 0
for future-directed timelike vectors νa, ζa. It follows from their definition that both Hab and Wab

satisfy the dominant energy condition, cf. [6, 22].

Given a vector field νa, the superenergy current defined by Hab with respect to νa is Habν
b.

For the static Killing field ξa we have that the current Habξ
b is conserved,

∇a
(
Habξ

b
)
= 0, (1.6)

1In this paper, we follow the conventions of [20] and assume all fields are smooth unless otherwise stated.
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see Lemma 11. In contrast to the standard symmetric energy-momentum tensor for the Maxwell
field, the tensors Hab and Wab are not conserved in general, ∇aHab 6= 0, ∇aWab 6= 0. On
spacetimes admitting a Killing spinor satisfying an aligned matter condition, we have introduced
another conserved tensor [2].

For a vector field νa, a spacelike hypersurface Σ with future-directed normal Na, and induced
volume element µΣ, we define

Eν(Σ) =

∫

Σ

Habν
bNadµΣ. (1.7)

It follows from the dominant energy condition that if νa is timelike and future-directed, then
Eν(Σ) ≥ 0. By the conservation identity (1.6), if Σ1,Σ2 are hypersurfaces bounding a spacetime
region Ω, then the superenergy with respect to ξa on Σ1 and Σ2 are equal.

Let T̂ a, X̂a, Ŷ a, Ẑa be the orthonormal frame

T̂ a = (1− 2M/r)−1/2(∂t)
a, X̂a = r−1(∂θ)

a,

Ŷ a = r−1 csc θ(∂φ)
a, Ẑa = (1− 2M/r)1/2(∂r)

a,

adapted to the foliation by level sets of t. Then if Σt is a level set of t, the superenergy with
respect to ξa on Σt is given by

Eξ(Σt) =
1

2

∫

Σt

(
|βT̂ |2 + |βX̂ |2 + |βŶ |2 + |βẐ |2

)
r2 sin θdrdθdφ, (1.8)

where for a vector νa, βν = βaν
a. Similarly,

WT̂ T̂ = 1
4

(
|ZT̂ X̂ |2 + |ZT̂ Ŷ |2 + |ZX̂Ẑ |2 + |ZŶ Ẑ |2

)
.

Hence, it controls all components of Zab, because the structure of Yab gives ZT̂ Ẑ = 0, ZX̂Ŷ = 0,
see discussion below.

We are now ready to state our main result.

Theorem 2 (Energy bound and Morawetz estimate). Let Σ1 and Σ2 be spherically symmetric
spacelike hypersurfaces in the exterior region of the Schwarzschild spacetime such that Σ2 lies in
the future of Σ1 and Σ2 ∪ −Σ1 is the oriented boundary of a spacetime region Ω.

If the real 2-form Fab = F[ab] is a solution of the Maxwell equations

∇aFab = 0, ∇[cFab] = 0, (1.9)

on the Schwarzschild exterior, and Zab and βa are defined by equations (1.2)-(1.3), then

Eξ(Σ2) = Eξ(Σ1), (1.10)
∫

Ω

|βa|21,deg +
2M

25r4
|Zab|22dµΩ ≤ 72

5
Eξ(Σ1), (1.11)

where Eξ(Σi) is the flux (1.7) associated with ξa, and

|βa|21,deg =
(r − 3M)2

r3
(
|βX̂ |2 + |βŶ |2

)
+

M(r − 2M)

r3
|βẐ |2 +

M(r − 3M)2(r − 2M)

r5
|βT̂ |2,

|Zab|22 =
(r − 2M)

r
WT̂ T̂ .

Remark 3. The approach presented here can be extended to the Maxwell field with a source. The
extra terms that appear can be estimated with Cauchy-Schwarz inequalities based on the norms
| · |1,deg and | · |2.

Estimates of the form (1.11) are called Morawetz or integrated local energy decay estimates,
since they show that local L2 norms in space are integrable in time. Since the right-hand side
of inequality (1.11) depends only on initial data, it follows from the Morawetz estimate that
the energy in stationary regions must tend sequentially to zero for large times, which expresses
the fact that the field disperses. In the present situation the energy refers to the superenergies
defined in terms of βa and Zab, and dispersion refers to the fact that these fields tend to zero
asymptotically in any stationary region. This corresponds to the fact that the radiative part of
the Maxwell field disperses while the non-radiating Coulomb solution, which is a bound state,
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remains. As will be discussed below this behaviour is made possible by the fact that the fields βa

and Zab vanish when evaluated on the Coulomb solution.
Recall that the standard Maxwell energy-momentum tensor, given up to a constant factor by

Tab = − 1
2Fa

cFbc +
1
8gabFcdF

cd,

is traceless and conserved if Fab is a Maxwell field, see [20, Chapter 5]. We remark that the
analogue of Theorem 2 cannot hold if we replace Hab by Tab, due to the fact that the energy
density defined in terms of Tab is non-zero when evaluated on the Coulomb solution. In fact, for
a radial Morawetz vector field, it is not difficult to see that the bulk term ∇a(TabA

b) = Tab∇aAb

must change sign at r = 3M , see [1, section 7].
The main motivation for this work is to develop techniques that might be useful in approaching

the Kerr stability conjecture. The Kerr family of spacetimes is a two-parameter family of solutions
of the Einstein equation describing rotating black holes. The Schwarzschild spacetimes make up
a one-parameter subfamily corresponding to zero rotation speed. The Kerr stability conjecture is
that the Kerr family of solutions is asymptotically stable under the Einstein equation, although
the Schwarzschild subfamily in isolation is not expected to be stable, except when restricting to
the axially symmetric case with zero angular momentum. A natural strategy is to understand
solutions of first the null geodesic equation, the wave equation, Maxwell equation, and then some
reasonable linearisation of the Einstein equation, before approaching the full nonlinear Einstein
equation.

To compare Theorem 2 and its proof with earlier work in the literature, one must consider the
null or spinor decomposition of a 2-form. To do so, one first introduces a complex null tetrad
(la, na,ma, m̄a) normalized so that gabl

anb = −gabm
am̄b = 1 and all other inner products are

zero. For example, in the exterior of the Schwarzschild spacetime, one can use

la =
1√
2
(T̂ a + Ẑa), na =

1√
2
(T̂ a − Ẑa), ma =

1√
2
(X̂a + iŶ a). (1.13)

This is a principal null tetrad. For a 2-form Fab, the Newman-Penrose scalars with respect to a
null tetrad la, na,ma, m̄a (not necessarily principal) are

φ0 = Fabl
amb, φ1 =

1

2
(Fabl

anb + Fabm̄
amb), φ2 = Fabm̄

anb.

The components φ0, φ2 are called the extreme components and φ1 is the middle component. The
extreme components depend on the scaling of the tetrad, while the middle component is a true
scalar. Since the vector fields ∂θ and csc θ∂φ are not continuous at θ ∈ {0, π}, the extreme
components are not smooth as functions even if Fab is smooth, but are smooth when viewed as
sections of an appropriate complex line bundle, cf. [20], see also [7].

A key tool in most previous work on this topic has been the existence of second-order, decoupled
equations for individual null components. In the exterior of the Schwarzschild spacetime, the
middle component φ1 of the Maxwell field satisfies (after rescaling by a power of r) a wave
equation with real potential, which is the Schwarzschild case of the Fackerell-Ipser equation
[15]. In the Kerr spacetime, the potential in the Fackerell-Ipser equation is complex, and the
extreme components satisfy a more complicated, complex second-order hyperbolic PDE known
as the Teukolsky equation [25]. Both the Fackerell-Ipser and Teukolsky equations have analogues
arising in certain linearisations of the Einstein equation, making them particularly interesting as
part of the strategy for approaching the Kerr stability conjecture. In fact, the potential in the
Fackerell-Ipser wave equation on the exterior of the Schwarzschild spacetime is a multiple of the
potential in the Regge-Wheeler equation governing odd parity gravitational perturbations of the
Schwarzschild metric, cf. [21, 14].

The Maxwell equation in the exterior of the Schwarzschild spacetime has stationary solutions
given by

Fab = 4
(
qE T̂[aẐb] + qBX̂[aŶb]

)
r−2.

For these, the Maxwell scalars are respectively φ0 = 0, φ1 = (qE + iqB)/r
2, and φ2 = 0. These

are called the Coulomb solutions and are the only solutions that do not decay to zero. Thus, one
commonly says the Coulomb solutions are supported in the middle component. Clearly, these
must be excluded for a decay estimate to hold.
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At each point, the middle component of the 2-form Zab is zero and its extreme components
(modulo a sign) are r times the corresponding extreme component of the complex self-dual 2-
form Fab+ i(∗F )ab. Thus, by working with Zab, we have introduced a variable that geometrically
excludes the Coulomb solutions. Since at any point the components of Fab can be freely specified
while constraining Fab to be smooth and compactly supported on any spacelike hypersurface Σ1,
the estimate in Theorem 2 is non-vacuous.

Decay for the Maxwell equation in the exterior region of a Schwarzschild spacetime or its
generalisations has been studied in [16, 7, 14, 23, 5, 19]. It has long been clear that, since ξa

is a time-like Killing vector, there is a conserved positive energy for Fab, and that this can be
used as a foundation for subsequent decay estimates. All works have used both a second-order
PDE for certain components and the fact that such solutions arise from the original first-order
Maxwell equation. The paper [16] is the only previous work we know of to prove decay using the
Teukolsky equation; the conclusion of that work is that at fixed r the extreme components go to
zero, and the method relies on an integral representation2. In contrast, the remaining work has
focused on the middle component, which satisfies the Fackerell-Ipser equation and which requires
the contribution from the Coulomb solution to be explicitly subtracted off.

Since the Fackerell-Ipser equation is a wave-like equation, we recall that the last 15 years have
seen the proof of Morawetz and related decay estimates for the wave equation in the exterior of
a Schwarzschild black hole [9, 8, 10, 11] essentially using vector-field methods and following ideas
introduced for a model problem in [18]. In the Kerr case, because of the ergoregion generated by
rotation, energy and Morawetz estimates had to be proved simultaneously instead of sequentially.
This was first done in the very slowly rotating case [12, 24, 4] and more recently the full range
of subextremal Kerr black holes [13]. Because of the complicated nature of the orbiting null
geodesics around Kerr black holes, it was necessary to extend the vector-field method. In [12, 13]
and [24], this was done by blending it with separation-of-variable and operator-theory techniques
respectively; whereas in [4], the first and third authors were able to work with purely differential
operators. This involved using hidden symmetries, second-order differential operators that take
solutions to solutions but which are not decomposable into first-order symmetries. In [3], we have
explored the analogue for the Maxwell equation.

Returning to the Maxwell problem, [7] proves a Morawetz estimate for solutions to the Fackerell-
Ipser equation on the exterior Schwarzschild spacetime and uses this to prove t−1 decay for the
components of Fab at fixed r and a hierarchy of decay rates along null infinity (where t → ∞
but t − r remains bounded), and relies upon energies arising from the vector-field method. The
paper [14] proves t−4 decay at fixed r for the middle component by summing Sigal-Soffer propa-
gation estimates for separated modes, and [23] treats inhomogeneous Maxwell equations on a very
general class of stationary, spherically symmetric black-hole spacetimes and the results extend
beyond the exterior region. The proof uses energies and vector-field methods first to prove a
Morawetz estimate for the middle component and then to extend this to a Morawetz estimate
for all components. The paper [19] proves a “black-box” result, in which a Morawetz estimate of
the strong form proved in [23] is assumed and shown to be sufficient to imply a t−3 decay rate at
fixed r without using the details of the proof of the Morawetz estimate. The paper [17] similarly
proves a decay result based on the assumption of a Morawetz estimate.

In [5], the first and third authors proved a Morawetz estimate outside a very slowly rotating
(and hence non-spherically symmetric) Kerr black hole. So far, it has not been possible to prove
decay estimates for the Maxwell equation without passing to a second-order equation. Energies
for second-order equations are naturally at the H1 level rather than the L2 level for first-order
equations. In the Schwarzschild case, the Fackerell-Ipser equation has a conserved, non-negative
energy, so there was no obstacle. However, for the Fackerell-Ipser equation on the Kerr spacetime,
the potential is complex, which destroys the conservation structure. This could be compensated
for, but only by introducing fractional derivative operators (more precisely, fractional powers of
the separation constants after separation of variables). It seems reasonable to imagine that the

2We have been unable to verify the claims in [16] concerning the spin-2 case. In particular we have been unable
to verify that the energy presented in [16, Eq. (1.4)], also discussed in appendix A of that paper, is conserved. For
the Maxwell case, the analogous claim follows from the conserved positive energy for Fab.
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original L2 type energy could equally well be combined with a fractional derivative operator to
prove a similar result.

The principal variables in this paper are Zab and βa, which are constructed from the extreme
components, which satisfy the Teukolsky equations, rather than the middle component, which
in the case we consider satisfies the Schwarzschild case of the Fackerell-Ipser wave equation. We
believe this has two major advantages. First, it provides a local way to exclude the Coulomb
solutions, without integrating over spheres. Second, we have recently found a new conservation
law for the Maxwell equation [2] which generates H1 level energies. Curiously, although Zab in
this paper and in [2] are the same, the auxiliary 1-forms βa and ηa and the associated symmetric
2-tensors Hab and Vab differ. Nonetheless, in the sense given in [2], the leading-order parts of
Hab and the conserved Vab are the same. We are currently investigating how to replace Hab by
Vab so that the argument in this paper can be extended to the rotating Kerr case.

By applying the Maxwell equations, the variable βa can be transformed from an expression in
the derivatives of the extreme components to an expression purely in terms of the middle compo-
nent. In particular, βa = ∇aΥ−UaΥ, where Υ is r times the middle component of Fab. Similarly,
one might viewHab as a type of energy-momentum tensor (albeit not conserved) for the Fackerell-
Ipser equation. Following this, one might be tempted to conclude naively that Theorem 2 follows
immediately from the Maxwell equation and the results about the middle component in [7] or
[23]. We emphasise that this naive view is false; Theorem 2 includes undifferentiated components
of Zab (and hence of Fab) that cannot be recovered from the middle component using local op-
erators. Similarly, Morawetz estimates typically require a Hardy estimate to obtain a globally
positive coefficient for the undifferentiated terms. In [7], a Hardy estimate in the radial derivative
was applied to the middle component; in Section 2.2, a Hardy estimate in angular derivatives is
applied to the extreme components.

The argument in this paper very closely follows the argument used for the wave equation.
From a vector field Aa and a scalar field q, we define the a current Pa in terms of Zab and βa by3

Pa = HabA
b + 1

4qβ
bZab +

1
4qβ̄

bZab − 1
4 iqβ

b∗Zab +
1
4 iqβ̄

b∗Zab

+ 1
16ZbcZ

bc∇aq − 1
4Za

cZbc∇bq. (1.14)

We now choose

Aa =
(r − 3M)(r − 2M)

2r2
(∂r)

a, (1.15a)

q =
9M2(r − 2M)(2r − 3M)

4r5
. (1.15b)

The motivation for this choice is explained in the proof of Theorem 18. The vector field Aa is
the same as occurs in the analysis of the wave equation. This is to be expected, since it is chosen
to have the geometric property that it changes sign at r = 3M , the unique radius at which there
are orbiting null geodesics in the Schwarzschild spacetime.

For any spacelike hypersurface Σ, we define

Eξ(Σ) =

∫

Σ

Habξ
bNadµΣ, (1.16)

Eξ+A,q(Σ) =

∫

Σ

(
Habξ

b +Pa

)
NadµΣ. (1.17)

As discussed above, Eξ(Σ) is nonnegative and conserved. In Section 4 we show that on spacelike,
spherically symmetric hypersurfaces, the energies Eξ(Σ) and Eξ+A,q(Σ) are uniformly equivalent.
In Section 5, we show that the integral over any spherically symmetric region Ω of −∇aP

a

dominates the integral on the left hand side of (1.11). The proof of this fact relies on a spherical
Hardy estimate, see Lemma 15. Finally these facts are combined in Section 6 to yield a proof of
Theorem 2.

3This can be compared with the corresponding expression for the wave equation,

Pa = T [u]abA
b + qu∇au− (∇aq)u2/2,

where T [u]ab is the energy-momentum tensor for the wave equation. Thus, we use Hab in place of the wave
equation’s energy-momentum tensor, and we use the terms involving q in (1.14) in place of qu∇au− (∇aq)u2/2.
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2. Preliminaries

For the remainder of this paper, we will make use of the 2-spinor formalism, following the
conventions of [20]. The exterior Schwarzschild spacetime is oriented and globally hyperbolic and
hence also spin.

The spin group is SL(2,C) which has the inequivalent spinor representations C2 and C̄2. Un-
primed upper case latin indices and their primed versions are used for sections of the corresponding
spinor bundles, respectively. The correspondence between spinors and tensors makes it possible
to translate all tensor expressions to spinor form. The action of SL(2,C) on C2 leaves invariant
the spin metric ǫAB = ǫ[AB], which is used to raise and lower indices on tensors. The metric
gab is related to ǫAB by gab = ǫAB ǭA′B′ . Let Sk,l denote the space of symmetric spinors with k
unprimed indices and l primed indices.

The principal null tetrad la, na,ma, m̄a corresponds to a principal spin dyad oA, ιA via la =
oAōA′ , na = ιAῑA,ma = oAῑA′ , m̄a = ιAōA′ . Given a symmetric spinor field ϕA···DA′···D′ , we de-
note the dyad components by φii′ where i, i′ denote the number of contractions with ιA, ῑA

′

,
respectively. For example, a 1-form ϕAA′ , has components ϕ00′ = ϕAA′oAōA

′

, · · · , ϕ11′ =
ϕAA′ιAῑA

′

.

2.1. Fundamental operators.

Definition 4 ([3, Definition 13]). For any ϕA1...Ak

A′

1...A
′

l ∈ Sk,l, we define the operators Dk,l :

Sk,l → Sk−1,l−1, Ck,l : Sk,l → Sk+1,l−1, C
†
k,l : Sk,l → Sk−1,l+1 and Tk,l : Sk,l → Sk+1,l+1 as

(Dk,lϕ)A1...Ak−1

A′

1...A
′

l−1 ≡ ∇BB′

ϕA1...Ak−1B
A′

1...A
′

l−1
B′ ,

(Ck,lϕ)A1...Ak+1

A′

1...A
′

l−1 ≡ ∇(A1

B′

ϕA2...Ak+1)
A′

1...A
′

l−1B′ ,

(C †
k,lϕ)A1...Ak−1

A′

1...A
′

l+1 ≡ ∇B(A′

1ϕA1...Ak−1B
A′

2...A
′

l+1),

(Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1 ≡ ∇(A1

(A′

1ϕA2...Ak+1)
A′

2...A
′

l+1).

The operator Dk,l only makes sense when k ≥ 1 and l ≥ 1. Likewise Ck,l is defined only

if l ≥ 1 and C
†
k,l only if k ≥ 1. From the definition it is clear that the complex conjugates of

(Dk,lϕ), (Ck,lϕ), (C
†
k,lϕ) and (Tk,lϕ) are (Dl,kϕ̄), (C

†
l,kϕ̄), (Cl,kϕ̄) and (Tl,kϕ̄) respectively, with

the appropriate indices. With these definitions, a Killing spinor of valence (k, l) is an element

κA···F
A′...F ′ ∈ kerTk,l.

The fundamental operators appear naturally in the irreducible decomposition of the covariant
derivative of a symmetric spinor field, see [3, Lemma 15]. In most calculations we freely make
use of such decompositions. We shall make use of the following commutator relations for the
fundamental operators.

Lemma 5 ([3, Lemma 18]). Let ϕAB ∈ S2,0, and ς a scalar. The operators D , C , C † and T

satisfies the following commutator relations

(C1,1T0,0ς)AB = 0, (2.1a)

(C †
1,1T0,0ς)A′B′ = 0, (2.1b)

(C3,1T2,0ϕ)ABCD = 2Ψ(ABC
FϕD)F , (2.1c)

(D3,1T2,0ϕ)AB = − 4
3 (C1,1C

†
2,0ϕ)AB − 8ΛϕAB + 2ΨABCDϕ

CD. (2.1d)

2.2. Hardy estimate. Recall the scalar components of spinors transform under tetrad rescalings
as sections of certain complex line bundles. The GHP operators þ, þ

′, ð, ð′ are defined on such
scalars as the appropriate covariant derivative along the null tetrad legs la, na,ma, m̄a, respec-
tively, see [20] for details.
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Lemma 6. On any sphere with constant r in the Schwarzschild spacetime, and ϕ0 and ϕ2 are
the extreme components of a smooth symmetric spinor field ϕAB we have

∫

Sr

|ϕ0|2dµSr
≤ r2

∫

Sr

| ð′ ϕ0|2dµSr
, (2.2a)

∫

Sr

|ϕ2|2dµSr
≤ r2

∫

Sr

| ðϕ2|2dµSr
. (2.2b)

Proof. Expand ϕ0 and ϕ2 in terms of spin-weighted spherical harmonics

ϕ0(θ, φ) =

∞∑

l=1

l∑

m=−l

al,m 1Yl,m(θ, φ), (2.3a)

ϕ2(θ, φ) =

∞∑

l=1

l∑

m=−l

bl,m −1Yl,m(θ, φ). (2.3b)

From [20, Eq. (4.15.106)] we have

ð
′ ϕ0(θ, φ) =

∞∑

l=1

l∑

m=−l

al,m

√
l(l + 1)√
2r

0Yl,m(θ, φ), (2.4a)

ðϕ2(θ, φ) = −
∞∑

l=1

l∑

m=−l

bl,m

√
l(l+ 1)√
2r

0Yl,m(θ, φ). (2.4b)

Through the orthogonality conditions [20, Eq. (4.15.99)] we get

∫

Sr

|ϕ0|2dµSr
= 4π

∞∑

l=1

l∑

m=−l

|al,m|2, (2.5a)

∫

Sr

|ϕ2|2dµSr
= 4π

∞∑

l=1

l∑

m=−l

|bl,m|2, (2.5b)

∫

Sr

| ð′ ϕ0|2dµSr
= 4π

∞∑

l=1

l∑

m=−l

|al,m|2 l(l + 1)

2r2
, (2.5c)

∫

Sr

| ðϕ2|2dµSr
= 4π

∞∑

l=1

l∑

m=−l

|bl,m|2 l(l+ 1)

2r2
. (2.5d)

This proves the desired inequalities. �

3. A first order superenergy for the Maxwell field

3.1. General spacetime. In this subsection we shall work in a general spacetime with a Killing
spinor κAB of valence (2, 0) satisfying (T2,0κ)ABCA′ = 0 and such that κABκ

AB 6= 0. Recall that
a Maxwell field Fab corresponds to a symmetric spinor of valence (2, 0) by

Fab = ǭA′B′φAB + ǫABφ̄A′B′ .

The source-free Maxwell equation takes the form (C †
2,0φ)AA′ = 0. Instead of constructing energy-

momentum tensors from the Maxwell field itself, we will use a first order expression. In the paper
[2] we have introduced a conserved tensor for the Maxwell field on any spacetime admitting
a valence (2, 0) Killing spinor with aligned matter. Here we shall take a different approach
and construct a superenergy tensor satisfying the dominant energy condition which is however
not conserved. This tensor is constructed from a quantity βAA′ , which can be defined for any
spacetime with an algebraically general valence (2, 0) Killing spinor. We remark that the leading
order term in the tensor constructed here agrees with the tensor constructed in [2].

As we shall discuss later, the spinor fields introduced in the following definition correspond to
the tensor fields given in the introduction.
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Definition 7. Assume that κAB is a valence (2, 0) Killing spinor, such that κCDκCD 6= 0, φAB

a solution to the source-free Maxwell equation (C †
2,0φ)AA′ = 0, and define

ξAA′ = (C †
2,0κ)AA′ , (3.1a)

UAA′ = − 1
2∇AA′ log(−κCDκ

CD), (3.1b)

Υ = κABφAB, (3.1c)

ΘAB = − 2κ(A
CφB)C , (3.1d)

βAA′ = (C †
2,0Θ)AA′ + UB

A′ΘAB. (3.1e)

Lemma 8. Definition 7 implies the relations

βAA′ = − UAA′Υ+ (T0,0Υ)AA′ , (3.2a)

(D1,1β) = − UAA′

βAA′ , (3.2b)

(C1,1β)AB = U(A
A′

βB)A′ , (3.2c)

(C †
1,1β)A′B′ = UA

(A′β|A|B′). (3.2d)

Remark 9. Observe that we have not assumed anything about the matter or the behaviour of
ξAA′ .

Proof. Expanding the definition of UAA′ yield

UAA′ =
2κABξ

B
A′

3(κCDκCD)
. (3.3)

We can write the Maxwell filed in terms of ΘAB and Υ through the relation

κCDκCDφAB = −ΘA
CκBC + κABΥ. (3.4)

Differentiating the definition of Υ, using the Killing spinor equation and the Maxwell equation
gives

κBC(T2,0φ)ABCA′ = 2
3ξ

B
A′φAB + (T0,0Υ)AA′ . (3.5)

Expanding the definition of βAA′ , using (3.5) and (3.4) we get

βAA′ = UB
A′ΘAB − 4

3ξ
B
A′φAB + κBC(T2,0φ)ABCA′

= UB
A′ΘAB − 2

3ξ
B
A′φAB + (T0,0Υ)AA′

= − UAA′Υ+ (T0,0Υ)AA′ . (3.6)

Using the commutators (2.1d), (2.1c) and the Killing spinor equation, we get

(C1,1ξ)AB = (C1,1C
†
2,0κ)AB = −6ΛκAB + 3

2ΨABCDκ
CD, (3.7)

0 = 1
2 (C3,1T2,0κ)ABCD = Ψ(ABC

FκD)F . (3.8)

Differentiating (3.5), using (3.4), the commutator (2.1d), the Maxwell equation, (3.8) and (3.7),
we get a version of the Fackerell-Ipser equation

(D1,1T0,0Υ) = − 4ΛΥ+ΨABCDκ
ABφCD =

2κAB(C1,1ξ)AB

3(κCDκCD)
Υ. (3.9)

Direct calculations using the Killing spinor equation yield

(D1,1U) = − UAA′UAA′

+
2κAB(C1,1ξ)AB

3(κCDκCD)
, (C1,1U)AB = 0, (C †

1,1U)A′B′ = 0. (3.10)

The equation (3.2b) follows from (3.2a), (3.10) and (3.9). The equations (3.2c) and (3.2d) follow
from (3.2a), (3.10) and the commutators (2.1a) and (2.1b). �

Lemma 10. The components of φAB , ΘAB and βAA′ in a principal dyad are related by

Θ0 = − 2κ1φ0, Θ1 = 0, Θ2 = 2κ1φ2, (3.11)

β00′ = ð
′ Θ0, β01′ = þ

′ Θ0, β10′ = − þΘ2, β11′ = − ðΘ2. (3.12)



DECAY OF SOLUTIONS TO THE MAXWELL EQUATION ON THE SCHWARZSCHILD BACKGROUND 9

The superenergy tensors for βAA′ and ΘAB are given by

HABA′B′ = 1
2βAB′ β̄A′B + 1

2βBA′ β̄B′A, (3.13)

WABA′B′ = ΘABΘ̄A′B′ . (3.14)

We close this section by giving the correspondence between the spinor fields κAB,ΘAB and
the tensor fields Yab, Zab. We have

Yab =
3
2 i(ǭA′B′κAB − ǫABκ̄A′B′),

Zab = ǭA′B′ΘAB + ǫABΘA′B′ .

The normalization of Yab is chosen for convenience. For the Schwarzschild spacetime with a
principal dyad (oA, ιA) we have

κAB = 2
3ro(AιB). (3.15)

In the Schwarzschild case, the above definitions with κAB given by (3.15) yield the fields Yab,
ξa, Ua, Zab, βa, Hab, Wab as in the introduction. Finally, the Morawetz current PAA′ given in
tensor form by (1.14) can be written in spinor form as

PAA′ = HABA′B′ABB′ − 1
2qβ̄A′

BΘAB − 1
2qβA

B′

ΘA′B′ + 1
2ΘA

BΘA′

B′

(T0,0q)BB′ . (3.16)

3.2. Schwarzschild spacetime.

Lemma 11. For the Schwarzschild spacetime we have

∇BB′

HABA′B′ = − UAA′βBB′

β̄B′B, (3.17a)

ξAA′∇BB′

HABA′B′ = 0. (3.17b)

In particular, ξBB′

HABA′B′ is a positive conserved current.

Proof. For the Schwarzschild spacetime with a principal dyad (oA, ιA) the Killing spinor κAB is
given by (3.15). This gives immediately

ξAA′ = (∂t)
AA′

=
(r − 2M)1/2T̂AA′

r1/2
, (3.18a)

UAA′ = − r−1∇AA′r =
(r − 2M)1/2ẐAA′

r3/2
. (3.18b)

Computing the divergence of (3.13), doing an irreducible decomposition of the derivatives,
using Lemma 8 and using the reality of UAA′ gives (3.17a). Equation (3.17b), then follows from

ξAA′

UA′A = 0. �

Remark 12. For the Kerr spacetime with non-vanishing angular momentum, the 1-form UAA′

fails to be real and the current Habξ
b is not conserved.

4. Positive energy

Before we do any integrated decay estimates, we will verify that the energy (1.17) will be
positive and uniformly equivalent to the energy (1.16).

Theorem 13. Let AAA′

and q be given by (1.15a) and (1.15b). For any constant |c1| ≤ 10/9

and any spherically symmetric slice Σ with future pointing timelike normal NAA′

such that
NAA′

NAA′ = 1 we have a positive energy∫

Σ

NAA′

(HABA′B′ξBB′

+ c1PAA′)dµΣi
≥ 0. (4.1)

Proof. As in the introduction, we define the superenergy of a vector field as

SE1[αAA′ ]ABA′B′ = 1
2αAB′ᾱA′B + 1

2αBA′ᾱB′A. (4.2)

This tensor satisfies the dominant energy condition.
Now, as the slice is spherically symmetric, the future pointing timelike vector field NAA′

is

spanned by T̂AA′

and ẐAA′

with coefficients depending only on r. We can in general write it as

NAA′

= (w(r) + 1
4w(r)

−1)T̂AA′

+ (w(r) − 1
4w(r)

−1)ẐAA′

, (4.3)
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for some radial function w(r) > 0. We can then verify the identity

±NAA′

(β̄A′

BΘAB + βA
B′

ΘA′B′) = 2ε−1HABA′B′NAA′

T̂BB′

+ 2εNAA′

T̂BB′

ΘABΘA′B′

− 2ε−1NAA′

T̂BB′

SE1[βAA′ ∓ b−1
1 εNC

A′ΘAC ]ABA′B′

− b−1
1 εT̂AA′

T̂BB′

ΘABΘA′B′ , (4.4)

where b1 = NAA′

T̂AA′ = 1
4w(r)

−1 + w(r) > 0. The dominant energy condition then gives the
Cauchy-Schwarz inequalities

±NAA′

(β̄A′

BΘAB + βA
B′

ΘA′B′) ≤ 2ε−1HABA′B′NAA′

T̂BB′

+ 2εNAA′

T̂BB′

ΘABΘA′B′ . (4.5)

Using this in the definition (3.16) and the positivity of q, we get

±NAA′

PAA′ ≥ HABA′B′NAA′

(±ABB′ − ε−1qT̂BB′

)

+NAA′

ΘABΘA′B′

(
−εqT̂BB′ ± 1

2 (T0,0q)
BB′)

. (4.6)

Expanding in the dyad gives

NAA′

T̂BB′

ΘABΘ̄A′B′ = w(r)|Θ0|2 +
|Θ2|2
4w(r)

, (4.7a)

NAA′

ẐBB′

ΘABΘ̄A′B′ = w(r)|Θ0|2 −
|Θ2|2
4w(r)

, (4.7b)

NAA′

T̂BB′

HABA′B′ = w(r)| ð′ Θ0|2 + w(r)| þ
′ Θ0|2 +

| þΘ2|2
4w(r)

+
| ðΘ2|2
4w(r)

≥ w(r)| ð′ Θ2|2 +
| ðΘ2|2
4w(r)

. (4.7c)

Hence, from (2.2a) and (2.2b) we get the Hardy estimates
∫

Sr

NAA′

T̂BB′

ΘABΘA′B′dµSr
≤ r2

2

∫

Sr

NAA′

T̂BB′

HABA′B′dµSr
, (4.8a)

∫

Sr

|NAA′

ẐBB′

ΘABΘA′B′ |dµSr
≤ r2

2

∫

Sr

NAA′

T̂BB′

HABA′B′dµSr
. (4.8b)

Hence, we can make the estimates
∫

Sr

±NAA′

PAA′dµSr
≥

∫

Sr

HABA′B′NAA′

(±ABB′ −BBB′

)dµSr
, (4.9)

where

BAA′

= ε−1qT̂AA′

+ 1
2εqr

2T̂AA′

+ 1
4 |q

′(r)|r3/2(r − 2M)1/2T̂AA′

. (4.10)

Here we have used the ansatz q = q(r), which yield (T0,0q)AA′ = −(r − 2M)1/2r−1/2q′(r)ẐAA′ .
With our choice of q(r) and

ε = r−3/2(r − 2M)1/2, (4.11)

we get

BAA′

= 9
8M

2r−4
(
6M2 − 13Mr + 6r2 + |r − 3M |(3r − 5M)

)
ξAA′

. (4.12)

In the region r ≥ 2M , we have

9
8M

2r−4
(
6M2 − 13Mr + 6r2 + |r − 3M |(3r − 5M)

)
≤ 2

5 . (4.13)

Hence ∫

Sr

±NAA′

PAA′dµSr
≥

∫

Sr

HABA′B′NAA′

(±ABB′ − 2
5ξ

BB′

)dµSr
. (4.14)

This gives
∫

Sr

NAA′

(HABA′B′ξBB′

+ c1PAA′)dµSr
≥

∫

Sr

HABA′B′NAA′

((1− 2
5 |c1|)ξ

BB′

+ c1A
BB′

)dµSr
.

(4.15)
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With our value of f(r), the vector field ξAA′

+ c2A
AA′

is future pointing and timelike if |c2| ≤ 2.
Hence, the right hand side of (4.15) is non-negative if |c1| ≤ 10/9. �

Corollary 14. For any spherically symmetric slice Σ with future pointing timelike normal NAA′

such that NAA′

NAA′ = 1 the energies Eξ(Σ) and Eξ+A,q(Σ) are uniformly equivalent,

1
10Eξ(Σ) ≤ Eξ+A,q(Σ) ≤ 19

10Eξ(Σ). (4.16)

5. Integrated decay estimate

In this section, we will prove an integrated decay estimate.

Lemma 15. On any sphere with constant r, we have
∫

Sr

WT̂ T̂dµSr
≤ r2

2

∫

Sr

|βT̂ |2 + |βẐ |2dµSr
. (5.1)

Proof. We have

|βẐ |
2 + |βẐ |

2 = | ðΘ2|2 + | ð′ Θ0|2, (5.2a)

WT̂ T̂ = T̂AA′

T̂BB′

ΘABΘA′B′ = 1
2 |Θ0|2 + 1

2 |Θ2|2. (5.2b)

The equations (5.2a), (5.2b) and Lemma 6 gives the desired inequality. �

To analyse the positivity of the bulk term, we will write it in terms of quadratic forms. We
shall use the following notation.

Definition 16. For any vector field νAA′

we define the quadratic form

E1[b0, b1, b2, νAA′ ] =
(
2b2T̂

A
A′ T̂B

B′ + (b1 − 2b2)Ẑ
A
A′ẐB

B′

)
ν(A

(B′

ν̄A
′)
B)

− (b0 +
1
4b1)νAA′ ν̄A

′A, (5.3)

where b0, b1, b2 are scalar fields.

In particular,

E1[− 1
2 , 2,

1
2 , βAA′ ] = |βT̂ |2 + |βẐ |2. (5.4)

Lemma 17. E1[b0, b1, b2, νAA′ ] ≥ 0 for all νAA′

if and only if

0 ≤ b1, (5.5a)

0 ≤ b2, (5.5b)

max(−b2,−b1 + b2) ≤ b0 ≤ b2. (5.5c)

Proof. The eigenvalues of the quadratic form E1[b0, b1, b2, νAA′ ] at a point can be calculated by
expanding in νAA′ in dyad components. One finds the eigenvalues

b0 + b1 − b2, −b0 + b2, b0 + b2, b0 + b2. (5.6)

Requiring each eigenvalue in (5.6) to be non-negative gives the result. �

Theorem 18. Let PAA′ be given by (3.16) with the choices (1.15a) and (1.15b). Then we have
the estimate ∫

Ω

−(D1,1P)dµΩ ≥
∫

Ω

1

8
|βAA′ |21,deg +

M

100r4
|ΘAB|22dµΩ, (5.7)

for any spherically symmetric spacetime region Ω of the Schwarzschild spacetime.

Proof. In order to motivate the choices (1.15a) and (1.15b), we shall start by considering general

radial AAA′

and q. From the form (3.16), the definition of βAA′ and the properties from Lemma 8
we get

−(D1,1P) = − βAA′

β̄B′B(T1,1A)ABA′B′ + βAA′

β̄A′A

(
1
4 (D1,1A) +ABB′

UBB′ − q
)

+ΘABΘA′B′

(
UAA′

(T0,0q)
BB′ − 1

2 (T1,1T0,0q)
ABA′B′)

. (5.8)
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With the ansatz

AAA′

= f(r)(∂r)
AA′

=
f(r)r1/2ZAA′

(r − 2M)1/2
, q = q(r), (5.9)

we get

(D1,1A) =
2f(r)

r
+ f ′(r), (5.10a)

(T1,1A)AB
A′B′

=
f(r)

(
−(r − 3M)T̂(A

(A′

T̂B)
B′) + (r −M)Ẑ(A

(A′

ẐB)
B′)

)

(r − 2M)r

− Ẑ(A
(A′

ẐB)
B′)f ′(r), (5.10b)

(T0,0q)AA′ = − (r − 2M)1/2ẐAA′q′(r)

r1/2
, (5.10c)

(T1,1T0,0q)AB
A′B′

=
(r − 3M)(T̂(A

(A′

T̂B)
B′) − Ẑ(A

(A′

ẐB)
B′))q′(r)

r2

+
(r − 2M)Ẑ(A

(A′

ẐB)
B′)q′′(r)

r
. (5.10d)

We can now write the divergence of JAA′ in terms of the quadratic forms E1 and WT̂ T̂ , making
use of the fact that since the middle component of ΘAB is zero, WT̂ T̂ = WẐẐ . This gives

−(D1,1P) = E1[q(r) +
f(r)(r −M)

2r(r − 2M)
− 1

2f
′(r),− 2Mf(r)

(r − 2M)r
+ f ′(r),

f(r)(r − 3M)

2(r − 2M)r
, βAA′ ]

+
(
− (r − 2M)q′(r)

r2
− (r − 2M)q′′(r)

2r

)
WT̂ T̂ . (5.11)

Later we will need the Hardy estimate in the form of Lemma 15 to handle a negative contribution
from the WT̂ T̂ term. Therefore, we make use of (5.4) and extract a term g(r)

(
|βT̂ |2 + |βẐ |2

)

from the E1 term, where g(r) is a radial function to be chosen. This gives

−(D1,1P) = E1[
1
2g(r) + q(r) +

f(r)(r −M)

2r(r − 2M)
− 1

2f
′(r),−2g(r)− 2Mf(r)

(r − 2M)r
+ f ′(r),

− 1
2g(r) +

f(r)(r − 3M)

2(r − 2M)r
, βAA′ ] +

(
|βT̂ |2 + |βẐ |2

)
g(r)

+
(
− (r − 2M)q′(r)

r2
− (r − 2M)q′′(r)

2r

)
WT̂ T̂ . (5.12)

By Lemma 17, the first terms are non-negative if and only if the inequalities

0 ≤ g(r) ≤ min
(

1
2f

′(r) − Mf(r)

(r − 2M)r
,
f(r)(r − 3M)

(r − 2M)r

)
, (5.13a)

max
(
g(r) +

Mf(r)

(r − 2M)r
− 1

2f
′(r),−f(r)

r
+ 1

2f
′(r)

)
≤ q(r) ≤ −g(r)− Mf(r)

(r − 2M)r
+ 1

2f
′(r),

(5.13b)

hold. We clearly see that f(r) must satisfy the condition f(r)(r − 3M) ≥ 0. This means that it
must change sign at r = 3M . It is also important that it is bounded and vanishes at r = 2M , so
we can dominate JAA′ with HABA′B′ξBB′

. A natural choice is therefore

f(r) =
(r − 3M)(r − 2M)

2r2
. (5.14)

Now, g(r) must be chosen such that

0 ≤ g(r) ≤ min
((r − 3M)2

2r3
,
3M(r − 2M)

4r3

)
. (5.15)

We do not want to saturate the inequalities except at r = 2M and r = 3M , and this can be
achieved by setting

g(r) = c1
3M(r − 3M)2(r − 2M)

4r5
, (5.16)
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for some constant 0 < c1 < 1. Then, the upper bound for q(r) is

q(r) ≤ 3M(r − 2M)
(
r2 − c1(r − 3M)2

)

4r5
. (5.17)

We can therefore set

q(r) =
9M2(r − 2M)(2r − 3M)

4r5
≥ 0. (5.18)

A direct calculation shows that with f(r), g(r), and q(r) given by (5.14), (5.16), and (5.18),
respectively, the inequalities (5.13) are satisfied everywhere and saturated only at r = 2M and
r = 3M . We now choose c1 = 5/6. With these definitions we get using (5.12),

−(D1,1P) = E1[
(r − 3M)2(14M2 − 7Mr + 4r2)

16r5
,
M(90M3 − 105M2r + 28Mr2 + r3)

4r5
,

(r − 3M)2(10M2 − 5Mr + 4r2)

16r5
, βAA′ ]

+
5M

(
|βT̂ |2 + |βẐ |2

)
(r − 3M)2(r − 2M)

8r5
− 27M2(r − 5M)(r − 2M)2

2r8
WT̂ T̂

=
M |βT̂ |2(r − 3M)2(r − 2M)

8r5
+

M |βẐ |2(r − 2M)(r2 + 66Mr − 99M2)

8r5

+

(
|βX̂ |2 + |βŶ |2

)
(r − 3M)2(2r2 − 3Mr + 6M2)

4r5

+
5M

(
|βT̂ |2 + |βẐ |2

)
(r − 3M)2(r − 2M)

8r5
− 27M2(r − 5M)(r − 2M)2

2r8
WT̂ T̂

≥ 1

8
|βAA′ |21,deg +

5M
(
|βT̂ |2 + |βẐ |2

)
(r − 3M)2(r − 2M)

8r5

− 27M2(r − 5M)(r − 2M)2

2r8
WT̂ T̂ . (5.19)

The last term in (5.19) is not positive everywhere and therefore must be estimated. Using the
Hardy estimate in Lemma 15 we get

∫

Sr

−(D1,1P)dµSr
≥

∫

Sr

1

8
|βAA′ |21,deg

+
M(r − 2M)(5r3 − 84Mr2 + 423M2r − 540M3)

4r8
WT̂ T̂dµSr

≥
∫

Sr

1

8
|βAA′ |21,deg +

M(r − 2M)

100r5
WT̂ T̂dµSr

=

∫

Sr

1

8
|βAA′ |21,deg +

M

100r4
|ΘAB|22dµSr

. (5.20)

�

6. Proof of the main theorem

Proof of Theorem 2. First of all Lemma 11, and the divergence theorem gives that Eξ(Σ2) =
Eξ(Σ1). Lemma 11, Theorem 18 and the divergence theorem yield

∫

Ω

1

8
|βa|21,deg +

M

100r4
|Zab|22dµΩ ≤

∫

Ω

−∇aPadµΩ = Eξ+A,q(Σ1)− Eξ+A,q(Σ2). (6.1)

Corollary 14 and the conservation of Eξ(Σ) then gives
∫

Ω

1

8
|βa|21,deg +

M

100r4
|Zab|22dµΩ ≤ 19

10
Eξ(Σ1)−

1

10
Eξ(Σ2) =

9

5
Eξ(Σ1). (6.2)

�
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