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GLOBAL REGULARITY FOR THE 2+4+1 DIMENSIONAL
EQUIVARIANT EINSTEIN-WAVE MAP SYSTEM

LARS ANDERSSON, NISHANTH GUDAPATI, AND JEREMIE SZEFTEL

ABSTRACT. In this paper we consider the equivariant 2+1 dimensional Einstein-
wave map system and show that if the target satisfies the so called Grillakis
condition, then global existence holds. In view of the fact that the 341 vacuum
Einstein equations with a spacelike translational Killing field reduce to a 241
dimensional Einstein-wave map system with target the hyperbolic plane, which
in particular satisfies the Grillakis condition, this work proves global existence
for the equivariant class of such spacetimes.
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1. INTRODUCTION

In this paper we shall prove that global existence holds for the maximal Cauchy
development of asymptotically flat initial data for the equivariant 241 dimensional
Einstein-wave map system assuming that the target (N, h) is a rotationally sym-
metric 2-manifold with metric satisfying the Grillakis condition, see (L5l below.
The Grillakis condition holds in particular if h has negative sectional curvature.
Therefore, our result applies in the important special case obtained by consider-
ing the 341 vacuum Einstein equations with a spacelike translational Killing field
which reduces to a 241 dimensional Einstein-wave map system with target the
hyperbolic plane H?, see [22] and also [I, 23] and references therein. It follows
that global existence holds for an equivariant solution of the 3+1 vacuum Einstein
equations with a spacelike translational Killing field.

Before discussing the equivariant 2+1 dimensional Einstein-wave map system,
we first provide some background on the equivariant wave map problem.

L.1. Equivariant critical wave maps. Let (M,g,,) be a Lorentzian spacetime
and (N, hap) a Riemannian manifold. The action defined for a map ® : M — N
1
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by

SWM::—%/;gW@¢A@¢Bmwo¢ (1.1)
has Euler-Lagrange equation

0g04 + W4, 0 0 9,880,0g" = 0 (1.2)

where, denoting by V the Levi-Civita covariant derivative of g, [z = V*V,, is
the d’Alembertian, and where (h)I’gC denote the Christoffel symbols of h. The
action (L)) is the Lorentzian analogue of the Dirichlet integral, or harmonic map
energy, and if M is static, time independent solutions of (2] are simply harmonic
maps. In the particular case where the target is a compact Lie group, this system
is known in the physics literature as a o-model, and in the mathematics literature
(with general target), it is known as the wave map equation.

Next, we restrict ourselves to the equivariant class. We assume M is a globally
hyperbolic 2 + 1-dimensional spacetime with Cauchy surface diffeomorphic to R?
and that N is a complete Riemannian manifold of dimension 2 with metric A of the
form

h = dp® + g*(p)d§”

for an odd function g : R — R with ¢/(0) = 1. Let €, § € S! = R/277Z denote
a semifree circle action on M and N. We assume that the S action on M is
generated by a hypersurface orthogonal Killing field dy, that it has a non-empty
fixed point setEl, and that the non-trivial orbits of this action in M are spatial.Then
we may write g in the formfl

g =g+ rdh? (1.3)
where g is a metric on the orbit space Q@ = M/S! and r is the radius function,
defined such that 277(p) is the length of the S! orbit through p. We assume
that M has Cauchy surface ¥ diffeomorphic to R?, which we may, without loss of
generality, assume to be symmetridi.

A map & : M — N is equivariant, with rotation number k € Z if

Poe?=ehod.
Let the function ¢ be defined by
p=pod

where p : N — R is the radial coordinate function on N. With the above defini-
tions, the wave maps equation takes the form

o0 - KIOTE) ”

The Cauchy problem for equivariant wave maps with base M = R?**! was studied
by Shatah and Tahvildar-Zadeh [30] who proved that for targets satisfyingﬂ

g(s) >0, fors>0

1t follows that the fixed point set is a timelike line, see [6] and references therein.
2As an example, consider R**! with the metric

g = —dt* + dr® + r’do®

In this case, the orbit space is Q = {(¢,r), r > 0} with metric § = —dt* + dr?.

3To see this, note that Q is globally hyperbolic, and hence by [5], there is a Cauchy time function
t on Q which may be lifted to a symmetric Cauchy time function ¢ on M.

4This condition is equivalent to the assumption that the target (N, h) is geodesically convex.
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global well-posedness holds for the equivariant wave map problem. It was then
shown by Grillakis in [I3] that it suffices for the target to satisfy the Grillakis
conditionf]

sg'(s) +g(s) >0, fors>0. (1.5)
Let us also mention subsequent developments by Shatah and Struwe in [29], Shatah
and Tahvildar-Zadeh in [31], and by Struwe in [33]. Finally, let us mention the
work of Christodoulou and Tahvildar-Zadeh for the case of spherically symmetric
solutions [9]. Note that in these works, the proof consists of two main steps, a proof
of energy non-concentration and a proof of global existence for small energy initial
data.

Remark 1.1. (1) In [], it was established that vacuum FEinstein’s equations for
Go-symmetric 3+1 dimensional spacetimes reduce to spherically symmetric
wave maps from U : R*TL — H2. Consequently, the aforementioned work
of Christodoulou and Tahvildar-Zadeh [9] was applied in [4] to prove global
reqularity for large data for these spacetimes. In the context of our problem,
we would like to emphasize that the nonzero homotopy degree prevents a
similar reduction to flat-space wave maps. Thus we are forced to consider
the coupling with Einstein’s equations.

(2) More recent work shows that large data global existence holds for the wave
map problem (L2) with M = R** and targeﬂ N = H? even in the absence

of equivariant symmetry, see [34], [32] and [20].
(3) It is known that for targets which are not geodesically convez, e.g. N = S2,
singularities may form, see [27, [26].

1.2. The equivariant Einstein-wave map problem. Let Ry denote the scalar
curvature of the Lorentzian metric g on M, and let k > 0 a constant. Let

1
Sgrav L= ﬂ /M Rg

denote the Einstein-Hilbert action, then the Euler-Lagrange equation for an Einstein-
wave map with action

Sgrav + SWM
consists of (L2)) coupled to the Einstein equation
G;w = /‘{S;w (16)

where G, = R, — %Rg,w is the Einstein tensor for the metric g and
1
S = 0,049,0Phap — 580,(1)085(1)Dga6hcpg“,, (1.7)
is the stress-energy tensor for the wave map.

Remark 1.2. As emphasized above, the main motivation for considering the Einstein-
wave map problem is that the 3+1 vacuum Einstein equations with a spacelike trans-
lational Killing field reduces to a 241 dimensional Einstein-wave map system with
target the hyperbolic plane H?, see [22] and also [1, 23] and references therein.

In this paper, we restrict ourselves to the equivariant class and recall some of the
notations already introduced in section [I.1]

5For example, the Grillakis condition is satisfied in the important particular case N = H?, with

9(p) = sinh(p).
6Note that more general targets are considered in [32].
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Definition 1.3 (Equivariant critical Einstein-wave map). Let (M,g) be a globally
hyperbolic spacetime with an S action by isometries €, with hypersurface orthogo-
nal generator Oy which is spacelike away from fized points. Let the metric h on N be
of the form h = dp® + g*(p)d6?. Assume that M has Cauchy surface diffeomorphic
to R2. Let ® : M — N be an equivariant map, with rotation number k € 7, i.e.
Poe? =e*od, and let p = po ®.

An equivariant critical Finstein-wave map spacetime with target N is a triple
(M, g, ®) solving

GMV = ’%S;,Ll/ (18&)
k?2
Og — g‘b) =0 (1.8b)

where G, = Ry, — %ng, is the Einstein tensor for the metric gy, , v is the radius

function, and f(¢) = g(¢)g'(4).

Remark 1.4. (1) We shall throughout the paper restrict to the case when the
generator Og of the S* action on M is hypersurface orthogonal.
(2) See section [ for the technical conditions on g(p) which will be assumed
to hold throughout the paper.
(3) In this work we shall assume k = 1, however the arguments easily extend to
the general case k € 7.

For a Cauchy surface X, let 7" be the future directed unit normal. Denote also
by R the induced scalar curvature and K, the second fundamental form of the
embedding, defined by K(X,Y) = g(VxT,Y) for vector fields X,Y tangent to X.
It is well known that the Cauchy data for the Einstein equations PD must satisfy
some compatibility conditions known as the constraint equation

R+ (K%)? — KK = 2kS,,, T'T", (1.9a)
DKy — DK = kST, (1.9b)
where D, is the intrinsic covariant derivative on X.
We shall consider metrics g of the form

g = —e2etr) g2 4 2B g2 4 2492, (1.10)

It will follow from our results that this is not a restriction, see section Il A
calculation shows that with g of the form (I0)), the second fundamental form K
of a Cauchy t-level set X is of the form

K = K, dr’
with K, = e~ 1289,8.
Definition 1.5 (Cauchy data set for the 2 + 1 equivariant Einstein-wave map

system). A Cauchy data set for the 2 + 1 equivariant Einstein-wave map system
with target (N, h) is a 5-tuple (X,q, K, ¢o, $1) consisting of

(1) a Riemannian 2-manifold (¥,q) with an isometric action by ¢ as above
and a 2-tensor K of the form K,.dr? symmetric under the same action,
(2) rotationally symmetric functions ¢p: X — Ry, ¢1: X = R,

such that the constraint equations (L9) hold.

7They correspond respectively to Grr = KSrr and Gro = KSTA.
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The proof by Choquet-Bruhat and Geroch [7] of existence and uniqueness of
maximal solutions to the Cauchy problem for the vacuum Einstein equations, to-
gether with the equivariance of the Cauchy data, is readily generalized to give the
following result.

Theorem 1.6 (Maximal Cauchy development for the 2+1 equivariant Einstein-wave
map problem). Let (X, q, K, ¢g, ¢1) be an equivariant Cauchy data set for the 2+ 1
Einstein-wave map system. Then there is a unique, mazximal Cauchy development
(M, g, ®) satisfying the equivariant Finstein-wave-map system (L8]).

1.3. Asymptotic flatness. Let H§ be the weighted L? Sobolev spaceeﬁ on R?2. A
2-dimensional rotationally symmetric Cauchy data set (X, ¢, K) is asymptotically
flat if

q = Pdr? + r2dp?
with 8 = fe+ 5 and (5, K) € HEH x H§ | for some ¢ € (—1,0). This is compatible
with the setup in [15], specialized to the rotationally symmetric case. Note that the
existence of such asymptotically flat solutions to the constraint equations without

rotational symmetry is proved in [I5] [16] (and used in [I7] to prove stability in
exponential time of the Minkowski space-time in this setting).

1.4. Global existence conjecture. A major open problem in the field of general
relativity is given by the Cosmic Censorship conjectures formulated for large data
solutions of the Einstein equations by Penrose in 1969 [24] (republished as [25],
see also the discussion in [21]), see for example [2] for a precise statement. These
fundamental conjectures are still widely open in general, but have been proved in
some cases when assuming certain symmetries, see in particular the seminal proof
of Christodoulou of the Cosmic Censorship conjectures for the Einstein equations
coupled to a scalar field in spherical symmetry (see [8] and references therein). An
intermediate goal toward the general case would be to assume the presence of only
one Killing field, and prove global regularity for the 3+1 vacuum Einstein equations
with a spacelike translational Killing field.

Conjecture 1.7 (Global existence for the 3+1 vacuum Einstein equations with a
spacelike translational Killing field). Mazimal Cauchy developments of asymptoti-
cally flat solutions to the 3+1 vacuum FEinstein equations with a spacelike transla-
tional Killing field are reqular and geodesically complete.

Recall from point ] of remark [LTkhat large data global existence holds for the
corresponding semilinear analog, namely the wave map problem with M = R?*!
and target N = H2. A proof of Conjecture [ would likely require a local existence
result at the critical level which seems currently out of reach for quasilinear wave
equations in dimensions higher than 1+1. As a first step towards Conjecture [[7],
we prove in this paper the special case of equivariant symmetry (see Remark
below).

1.5. Large data global regularity for the equivariant Einstein-wave map
problem. We are now ready to state our main result.

8We here use the same conventions as Huneau [I5]. In particular on R”, u = o(r~°~1) if u € Hj
for s > n/2.

INote for instance that in the absence of symmetry, the resolution of the bounded L?-curvature
conjecture in [19)] for the 3+1 Einstein vacuum equations provides a local existence result which is
1/2 derivative above the scaling.
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Theorem 1.8 (Global regularity of equivariant Einstein-wave maps). Let (M, g, ¢)
be the maximal Cauchy development of an asymptotically flat and regular Cauchy
data set for the 2 + 1 equivariant Einstein-wave map problem (L8]) with target
(N,h). Assume that the metric h has the form

h = dp® + g°(p)d0®

for an odd function g : R — R with ¢'(0) = 1. Assume that g satisfies
S
/ g(s)ds' — 0o when s — oo (1.11)
0

and the Grillakis condition (LH). Then, (M,g) is reqular and geodesically complete,
and global regularity holds for ¢.

Remark 1.9. As mentioned in Remark[L2, an important motivation for studying
the Einstein-wave map system arises from the fact that this system with target
N = H? arises naturally as the reduction of the 3+1 vacuum Einstein equations with
a spacelike translational Killing field. In particular, Theorem L8 proves Conjecture
[Z.7 in the special case of equivariant symmetry and should be seen as the analog of
the proof of the Cosmic Censorships in this setting.

The proof of Theorem follows, as in the semilinear analog of free wave maps
on Minkowski space, from non-concentration of energy and small energy global
existence. The proof of non-concentration of energy and the initial framework of
the global existence problem is contained in the PhD Thesis of the second author
[14]. Let us emphasize in particular the following

e The non-concentration of energy relies on the vectorfield method. Unlike
the semilinear case where one relies on vectorfields of Minkowski, the vec-
torfields we use here have to be carefully constructed and controlled. In
particular, we exhibit a vectorfieldd T, which is not Killing but leads nev-
ertheless to a conserved current.

e The small energy global existence relies in a fundamental way on the null
structure of the equations written in null coordinates. Indeed, derivatives
along outgoing null cones of ¢ as well as the metric coefficients behave
better, while the null structure allows to integrate by parts derivatives along
ingoing null cones such that the new terms generated behave better.

The structure of the paper is as follows. In section 2] we introduce null coordi-
nates (u,u) and a notion of mass. In section [8, we prove the absence of trapped
surfaces and that the first singularity, if it exists, must lie on the axis of symme-
try. In section [, we introduce (t,7) coordinates. In section Bl we prove the non-
concentration of the energy. In section [6] we state a result on small energy global
existence and use it in conjunction with non-concentration of energy to prove The-
orem [[L8 The rest of the paper is then devoted to the proof of small energy global
existence. In section [ we derive a uniform weighted upper bound for ¢. In section
B we rely on the upper bound of section [[ to derive a uniform upper bound for
0¢. Finally, we rely on the upper bound of section [§ to prove small energy global
existence in section

10¢he analog of % in Minkowski.



2. NULL COORDINATES

We assume that all objects are smooth, unless otherwise stated. In this section
we introduce a null coordinate system and a notion of mass in 24+1 dimension.
This setup will be used in the next section to prove that the first singularity for the
critical, equivariant Einstein-wave map system occurs on the axis of rotation.

2.1. Existence of null coordinates. Recall from the discussion in section [T
that the orbit space (Q, g) is a 2-dimensional globally hyperbolic Lorentzian space
and in particular conformally flat. Hence we may introduce a global null coordinate
system with respect to which g takes the form

g = —0%(u,u)dudu
and hence we have shown that (M,g) admits a coordinate system (u,u, ) such

that g takes the form
g = —Q%dudu + *(u, u)dh*

where now df? is the line element on the S' symmetry orbit. By redefining the
coordinates u,u we may without loss of generality assume that the conditions

1 1
r =0, 8@7":5, 8u7":—§ and Q =1onT. (2.1)

are valid on the axis . Also, the volume element is pug = Q?r/2 and the wave
operator on symmetric functions (i.e. dyp¢ = 0) is

Ogé = _Qi% (0u(r9us) + Bu(r0u0)). (2.2)

2.2. The stress energy tensor in null coordinates. The components of S,z
in the coordinate system (u,u,#) are

Suu = u¢au¢7 (2'33)
SM - g(ﬁa@(by (23b
QQ 2 gb
uu — Ig’l“g ), (23C)
(4 9°(¢)
Spy = E (mau(ﬁau(b + -2 > . (2.3d)

The stress energy tensor satisfies the dominant energy condition since

Suu>0, Suu>0, Sy >0. (2.4)

2.3. The Einstein equation. The components in the coordinate system (u,u,0)
of the Einstein tensor G, = R, — %ng, are

Guuw = —2r719,(Q720,1), (2.5a)
Guu = =710, (Q720,7), (2.5b)
Guu = rilauagr, (2.5¢)

)

Gog = 4r°Q™4(0,90,0 — 90,0,9). (2.5d
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We can now write the u,u components of the Einstein equations G,g = kS, in
the form

0u(Q720,1) = = 2rKS 0, (2.6a)
8@(9728gr) = —9727%5@, (2.6b)
OuOur = rKSyu, (2.6¢)
1
Q72(0,90,0 — 90,0,9) = Z?“_QQZFLSQQ. (2.6d)

Here, the equation (ZGd) is special to 2 + 1 dimensions.

2.4. The mass. Define the quantity
m =14 4Q720,r0,r. (2.7)

Remark 2.1. The quantity m defined by [Z1) has a form related to the Hawking
mass in 3+1 dimensional spherically symmetric gravity. In 3+1 dimensions and
spherical symmetry, the Hawking mass my is given by

mpy = g(l +4Q720,r0,r).

In 241 dimensions, the quantity m defined in ([2.7), when evaluated at infinity, is
a function of the mass defined by Ashetkar and Varadarajan [3].

Lemma 2.2. The quantity m admits a limit along any a space like asymptotically
flat curve, which does not depend on the particular curve. We denote this limit by
Moo. We have furthermore

Moo € [0,1).

Proof. See [15] for the proof of this lemma, where m, is called the deficit angle. O

The mass m satisfies the following equations which are analogous to the ones
satisfied by the Hawking mass in the 3 + 1 dimensional case,

Oym = 4/{9727’(51&8”7“ — Suulur) (2.8a)

Dy = 450721 (Syu0ur — SyuOur) (2.8b)

3. THE FIRST SINGULARITY OCCURS ON THE AXIS

3.1. Absence of trapped surfaces. Following Dafermos [I1], we define the re-
gions

R = {p € Q such that 9,r >0, Jyr <0},
T = {p € Q such that d,r <0, 9,r <0},
A = {p € Q such that d,r =0, 9,r <0}

Then R, 7T, A are the non-trapped (or regular), trapped and marginally trapped
regions, respectively. Due to work of Ida [I8], one expects that in a 2+1 dimensional
spacetime satisfying the dominant energy condition, trapped or marginally trapped
surfaces occur only in exceptional cases. In fact, as shown by Galloway et al.
[12] a 241 dimensional spacetime satisfying the dominant energy condition and a
mild asymptotic condition, weaker than asymptotic flatness, cannot contain any
marginally trapped surfaces. We give below a direct proof that in the case under
consideration, there are no trapped or marginally trapped surfaces.

Theorem 3.1 (Absence of trapped surfaces). We have
(1) Q=R



(2) Forq€ Q,
0 <m(q) < me < 1. (3.1)

In particular, the spacetimes under consideration contain no trapped or marginally
trapped surfaces, i.e. T =0, A= 0.

Proof. Let Y be a Cauchy curve in Q. Note that each p € Q is on such a Cauchy
curve. Let s be a coordinate on Y and let z(s) be the point in ¥ with coordinate
value s. We may without loss of generality assume 3 has one endpoint 2(0) on T
corresponding to s = 0 and an “asymptotically flat” end corresponding to s — oo
so that the coordinate s takes values in [0,00). By our normalizations, see (2.1),
we have m(z(0)) = 0.

Now V = 0y is a vectorfield tangent to ¥ and in particular is spatial. Therefore,
since V' points towards increasing values of s, V' = ad, — b0, for positive functions
a,b. It follows from the assumption of asymptotic flatness that x(s) is contained
in R for s large enough. Due to the dominant energy condition, see (24]), and
equations (2.8]), we have

Vm >0 (3.2)

in the regular region R. Now consider a point ¢ € ¥ N IR, where R denotes the
boundary of R. At such a point, one of the equations 9, = 0 or 9, = 0 holds,
and hence m(q) = 1. Due to asymptotic flatness, lims_oo m(z(s)) = ms € [0,1).
Hence due to the monotonicity of m, see ([B.2]), we get a contradiction from m(q) =
1. Therefore ¥ N IR = @. This argument also shows that ¥ C R. Also, since
m(z(0)) = 0 with 2(0) = ¥ NT, then we have 0 <m < 1 on ¥.

The properties of the mass discussed above, together with the fact that each
point of Q is on a Cauchy curve, and the maximality of Q, allow us to conclude
the proof of the theorem. O

3.2. First singularities. We now restrict our consideration to the future Q% of 3.
Due to Theorem B, QT = QN JT(X). We now introduce some notions following

Dafermos [111 [10].

Definition 3.2. Let p € QF. The indecomposable past subset J~(p)N QY is said to
be eventually compactly generated if there is a compact subset X C QT such
that

J (p)Nn QT c DY X)UJ (X). (3.3)
We will say that in this situation X generates J~ (p) N Q.
Definition 3.3. A point p € Q+\ Q7 is said to be a first singularity if J~(p) N

Ot is eventually compactly generated and if any eventually compactly generated
indecomposable subset of J~(p) N QT is of the form J~(q) N QT for some q € Q.

We will now state an extension criterion, which is a direct consequence of the
well posedness of the characteristic initial value problem, see [10, Prop. 1.1]. To
state this we need to introduce for a subset Y C Q1 \ ', the quantity N(Y),

N(Y) = sup{[Q1, 127 o, [rl2, [r~ o, 6]} (3.4)

where |f|, = max (| f|cr (), [florw))-
We can now state the extension criterion

Proposition 3.4 ([I0, Property 1.1]). Let p € QF\T be a first singularity. Then,
for any compact X C QT \ T, generating J~ (p), i.e. which satisfies (33)), we have

N(DT(X)\ {p}) = oc.
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The following theorem states that the first singularity occurs on the axis.

Theorem 3.5 (The first singularity occurs on the axis). Let p € Q+\ Ot be a first
singularity. Then p € T'\ T.

Remark 3.6. Theorem [3] should be compared to [10, Theorem 3.1], which states
that a first singularity occurs either on the axis or has a trapped surface in its past.

Proof. Let us introduce the notations

v oi= Oy, (3.5)
A =0y, (3.6)
¢ 1 =10y, (3.7)
U 1= 10y0, (3.8)
» = —iQQy*l. (3.9)

In the present, 2+1 dimensional case, m is given by (2.7)), which using the above
notation takes the form

m=1+4Q0"2v\.
Note that we have by Theorem Bl m < 1 and also, since QT C R, it holds that
v <0, X>0, > 0 everywhere in Q7. Further, note that from the definitions
r > 0in @7 \I'. We may assume without loss of generality that X c QT \T'. If
p = (us, u,) denotes first singularity, we may further assume that X" is given by

2 = ({un} % [, ] ) U (T, ] x {un})
where ug < ug, uy < ug and us < uy to ensure X C @ \ I'. Note that we have
[0, us] X [ug, uy] = DT(X) = J~(p) N DT (X).

In view of the compactness of X' the following bounds hold on X,

0<ro<r<R (3.10a)
0<A<A, O0>v>-N (3.10D)
|p| < P, 0] <O, Kl <Zz

0<x<K (3.10¢)

0.0 <H (0,0 < H
0| <H |0\ < H

2
Oy = /{l <£> v (3.11)

Equation (2.6al) yields

r \V

Due to (BI1)) and v < 0, it follows that inequality (3.I0d) holds in all of D (X)\{p}.
Since v < 0, A > 0, it follows that inequality (3I0a) holds throughout D*(X)\ {p}.

Now consider p* = (u*,u*) € DY(X) \ {p}. The past null curves starting at
p* intersect X at (u*,ug) and (ug,u*), respectively, see figure [Il Integrating (B.8])

yields
ut 9
/ —(u*,u)du

<p+¢ / 2 ¢ / % (312

(", u”)| < (", ug)| +
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FIGURE 1. DT (X)

Equation (2.8D]) gives, using the present notation

Bym = Kk (92(¢)A + 79—2> .

T Tz

In view of A > 0, this gives, integrating along the same null curve as above,

ut 92
/ —du <
u, TH

<

(m(u”, u®) —m(u”, u))

J = F

(3.13)

where we used ([B.I). We can now use the inequality ([B.I3]) together with the
previous estimates of s and r and ([BI2]) to show that ¢ is uniformly bounded in

D*(X)\ {p}.
We next estimate A\ and v. First, use the relation
x(l—m)=A

and the previous estimates for m, s, to get the inequality 0 < A < K on D*(X)\{p}.

In order to estimate v, recall that v < 0 on @ by theorem Bl Next, note that in

view of ([ZX6d) and (Z4) we have 9, > 0 and hence integrating as above gives
v(u* u,) < v(u,u*) <0.

This means that the inequalities (3.10B]) hold on DT (X) \ {p}.
From the definition of s, cf. (39), we have

0?2 = —dva
which in view of the above estimates gives
Q? <4NK on DY(X)\ {p}. (3.14)
To estimate the first derivative of ¢, we write (L8) in the form
1 1
0,9 = —r~ w9 — —r7INC + %VM (3.15)
2 2 r
1 1(9)

OuC =

1
TN — 57“711/19 + nv (3.16)

2
Integrating these relations as above yields uniform bounds for 9, ¢ in DT (X)\ {p}.

r
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Next, observe that ([2.6d]) takes the form
1
— 0,0, 10g(Q) = gr*% (40¢ + %g*(9)) (3.17)

in the current notation. The right hand side of (BI7) is uniformly bounded on
DT (X) \ {p} by the above estimates. Integrating as above along curves the null
curves {(u,u*),uc < u < u*} and {(v*,u),u, < u < u*} yields uniform bounds on
Dy log(2) and 9,92 on DT(X) \ {p}, and hence in view of ([BI4) also on 9, and
0uf2. A second integration of 0, log(€2) or d,log(€2) allows us to give a uniform
bound on |log(£2)|, and hence also on [Q271|, in DT(X) \ {p}.

Now we have uniform bounds in D¥(X) \ {p} for the quantities |r—1|,|Q7},
|Our|, |Our|, @], |Ou®], |0ud], 0.2, |0u2]. A bound on |0,0,r| follows in view of
these estimates directly from (Z6d). It remains only to estimate 9,0,r = 0, and
Dy 0ur = Oy . In order to do this, we can use equations (ZGa)) and (2.6D) since all
occuring terms are bounded by our previous estimates.

This completes the proof that if p is a first singularity in O+ \ T, we have
N(D*T(X)\ {p}) < oo which by proposition B4l gives a contradiction. This shows
that every first singularity occurs in I'\ T, i.e. on the axis, and hence concludes the
proof of Theorem O

4. (t,r) COORDINATES

4.1. Construction of (¢,7) coordinates. Let (M,g, ¢) be the maximal Cauchy
development of an asymptotically flat Cauchy data set for the Einstein-wave map
problem. Let I' = {r = 0} be the axis of rotation in M. If I" is incomplete to the
future, we let pr be the first singularity.

Lemma 4.1. Let t be the parameter on T such that I' = dT'/dt satisfies
8ol TP = —1 for t < 0 and }/i}r(l)f’(t) = pr.

Extend t to be constant on the mazimal orbit ¥; of Vr starting at T'(t) € TNR.
Then, (t,r) is a reqular coordinates system on UioX; and

g = —e2dt? + 2P dr?
for some functions o = a(t,r), B = B(t,r). Furthermore, we have
a=p=0onT.

Proof. Recall that the radius function r is well-defined and smooth on the regular
part of M and hence also on Q. Let Vr be the gradient field of r on (Q,g). We
have
Vr = —2Q72(0ur0y + 0ur9y)
and
g(Vr,Vr) = —4Q720,r0,r.
This means that
g(Vr,Vr)=1—m
where m is the mass as defined in section Z4l In view of ([BIl), we have that
m € [0,1) in Q. Thus we have g(Vr,Vr) >0 on Q.
Consider a maximal orbit ¥; of Vr starting at some point T'(t) € T N'R. Since
g(Vr,Vr) > 0 on Q, the radius function r is a parametrization of ¥. By Cauchy
stability for the ODE

dx
R v/ 4.1
dr " (4.1)
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pr

FIGURE 2. The ¥, foliation

we have that Et defines a foliation in ©. This foliation does not cover all of O,
but the domain of the foliation includes the past domain of influence of the first
singularity, cf. figure@l Let Q denote the domain of the foliation.

We can now extend the coordinate ¢ from the axis I' to the domain of the ¥,
foliation. This defines a function ¢ on Q Recall that the i)t are orbits of a vector
field Vr on Q. By uniqueness for ({.]) we have that the function ¢ has non-vanishing
gradient. Furthermore, we have by construction that g(V¢, Vr) = 0 on the domain
of the time foliation. Together with the fact that ¢ has non-vanishing gradient and
g(Vr,Vr) >0 on Q, we infer

g(Vt,Vr) =0, g(Vt,Vt) <0, g(Vr,Vr) >0 on Usg 2.

It follows that (t,7) as coordinate functions on the domain of the foliation, and in
this coordinate system, we have

g = —e2dt> + 2P ar?

where v = —log(—g(Vt,Vt))/2 and B(t,r) = —log(g(Vr,Vr))/2. Furthermore,
note that in view of our choice for ¢ in I" and the fact that g(Vt, Vr) = 0, we have
g(Vt,Vt) = —1 on I'. Also, we have g(Vr,Vr) =1 on I'. We infer that

a=pF=0onT.

This concludes the proof of the lemma. O

The above construction lifts toN(M ,g) to give a foliation ;. We denote the
domain of this foliation M. On M we have coordinates (z) = (¢,7,6), and the
metric g takes the form

g = —e2dt* + 2Pdr? + r2d6*. (4.2)
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4.2. Einstein Tensor. The components in the polar coordinates (¢,r,0) of the
Einstein tensor G\, = R, — %Rg,w are

Gy = Bz(a_ﬁ)ﬁﬂ“_l,

Gtr = 5tr_1a

Grr = arr_l,

Gop = r? (672[3(_5#17’ + 0472« + arr) - 672&(/8152 — Braw + 51515))’
Gt9 - 07

Grp = 0.

4.3. Stress-energy Tensor. Recall that the energy-momentum tensor S(®) for a
wave map ® : (M, g) — (N, h) is as follows

1
S,uy(‘l)) = <8ﬂ<1>,8,/1>>h(¢) — §gﬂy(8"<1>,80<1>>h(¢), (43)

where p,v,0 = 0,1,2. In the following we will calculate each of the components of
the energy momentum tensor in (t,7,6) coordinates. Note,

2
(07U, 05U ) (o) = —e g2 4 o282 4 #. (4.4)

Now we proceed to calculate Sy,

1 2
Sy = =e* <€2a¢? +e el + gr(2¢)> ;

2
StT’ - ¢t¢7’7
2
S, = 1625 <62a¢? + 6725% 9 (j)) ’
2 r
1 2
r
St@ = 07
Sro = 0.

Let T and R be the normalization of 0; and 0,
T :=e¢ %) and R := e 79,.

We define the energy density e : = S(7,7) and momentum density m : = S(7T, R)

2
2
= 3 (@O + (ree + 2)
m = e~ g, ¢,
— T(6) R(6).

We further define
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4.4. Einstein equivariant wave map system of equations. Using the above
expressions for G, and S, we have the system of equations

57" _ %’I“K@QB (6—2a QS? + 6—25 ¢z + @) , (45&)
Bt =1 Kot dr, (4.5b)
oy = %Tﬁ:626 <e2a ¢? + 6*25 ¢$ _ @) , (4.5C)
g6 = g (¢r)29(¢)’ (4.5d)

where

O = —e 2*(¢p + (B — ) ) + e 2 <¢rr + % + (ar — 57“)(757‘) :

We remark that the full system (L8] yields some redundant equations. The
system (L0 is a subset containing the equations which are relevant for our purposes.

5. NON-CONCENTRATION OF ENERGY

Let us define the energy on a Cauchy surface >4
E@)(0) = [ e,
P
o0

:271'/ e(t, r)reﬁ(t’r) dr,

0
the energy in a coordinate ball B,
E@)(tr) i= [ en.
T , /

:271'/ e(t,r')r'eﬁ(t’r ) d !

0

the energy inside the causal past J~(O) of O

E°(t) ::/ efly.
ZtﬂJf(O)

The goal of this section is to prove the following result.

Theorem 5.1 (Non-concentration of energy). Let (M,g,®) be a smooth, glob-
ally hyperbolic, equivariant mazximal development of smooth, compactly supported
equivariant initial data set (X, q, K, ®o, ®1) with finite initial energy and satisfy-
ing the constraint equations, and let (N,h) be a rotationally symmetric, complete,
connected Riemannian manifold satisfying the Grillakis condition (LI) as well as
(LII)). Then the energy of the Einstein-wave map system (L) cannot concentrate,
i.e., EO(t) — 0, where O is the first (hypothetical) singularity of M.

5.1. Energy conservation. We start by proving the energy is conserved.
Lemma 5.2. The energy E(¢)(t) is conserved.

Proof. Consider two Cauchy surfaces ¥ and > at ¢ = s and t = T respectively,
with —1 < 1 < s < 0. The asymptotically flat initial data ensures that each
Y is asymptotically flat and each component of S, — 0 as r — oco. We shall
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now construct a divergence free vector field Pr as follows. Consider the Einstein’s

equations (£35al) and (45D]). They can be rewritten as follows
-0 <e_6> = r rele,
—0 <676> = r ke“m.
From the smoothness of 3 we have —d? (6*5 ) =02 (6*5 ), which implies
—0; <7“eﬁe> + Op(re®“m) = 0. (5.1)
Now define a vectorfield

Pr:=—e%ed + eiﬁm&w,

then the divergence of Pr is given by

VPl = ﬁ o, (V1sl P§) (5.2)
= reﬁl+a (—(915 (reﬁ e> + Oy (re m)>

= 0

from (B.J). Now let us apply the Stokes’ theorem in the space-time region whose
boundary is ¥ U X+, then we have

0= / e Phiig — / e Phjig. (5.3)

Therefore, it follows that
E(¢)(t) = E(¢)(s) (5.4)
for any T, s such that —1 <1< s <0. O

In the following lemma we shall prove that the metric functions 3(t,r) and «(t,r)
are uniformly bounded during the evolution of the Einstein-wave map system.

Lemma 5.3. There exist constants Cgs cg, ¢ ¢k depending only on the initial data

and the universal constants such that the following uniform bounds on the metric
functions B(t,r) and a(t,r) hold

g < B(t,r) < cj,

Ca x
Proof. For simplicity of notation, we use a generic constant ¢ for the estimates on
B(t,r) and «(t,r). The Einstein equation ({5al) for £, can be rewritten as

—(e7P), = kreéle.

Integrating with respect to 7 and recalling that g, = 0, we get

1—e P = K/ er’ Pdr = ;E(gb)(t,r)
0

| e = (1- %E(gb)(t,r))*l.

Let us introduce the notation S (t) = lim,_,~ 5(r,t). Then we have

<) = (1- ZE(6)(1))
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Since E(¢)(t,r) is a nondecreasing function of r, then so is (¢, 7)

Furthermore, since the energy is conserved E(¢)(t) = E(¢)(—1), foo(t) = Boo(—1)
is also conserved during the evolution of the Einstein wave map system and hence

0< ﬁ(t,r) < Boo(_l)'
Similarly let us consider the Einstein’s equation (£5d) for «;
o =rreP(e—f).

Integrating with respect to 7 and recalling that o). = 0, we get

a(t,r) < c/ (e — f)refdr
0

T
< c/ erefdr
0

<c
and
"f
alt,r) > —c/ —refdr
0
T
> —c/ ereldr
0
> —c.
This concludes the proof of the lemma. O

Lemma 5.4. Assume that the target manifold (N, h) satisfies

¢
p(o) == /0 g(s)ds — o0 as ¢ — o0, (5.5)

then there exists a constant ¢ dependent only on the initial data and the universal
constants such that
¢ € L™ with ||¢]l < ¢

for every solution ¢ of the equivariant wave map equation.

Proof. Extending the technique used in Lemma 8.1 in [29], we consider

o((t,r) = /O "0, (plo(t, ) dr
= /T 9(¢)8r¢d7°

0
= /07’ <g(q§)(r675)*1/2> (8r¢(7"e*5)1/2) dr.

Consequently,

piote < ([[orteenta) ( [oorerar)”

009(¢)2 B 12 > —28 2.3 i
< (/0 —are dr) </0 e P (0pp)re d7“>
< C(Eo).

Arguing via contradiction, the result follows. O
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5.2. The vectorfield method. Let X be a space-time vectorfield. The corre-
sponding momentum Py is given by the contraction of S with X i.e.,

PE =St XV, (5.6)
We have,
V., Py =X* VVS”# + S’L V., X (5.7)

Since the stress energy tensor S is divergence free, the first term in the right hand
side of (B.7)) drops out, therefore

V, P4 =SV, X,

1
=3 (X)ﬂ-wguv’
where the deformation tensor (X )ﬂ'w/ is given by
X -
N7, =V, X, +V,X,
=500y X7 + 85u 0, X7 + X058 .

Construction of useful identities using suitably chosen multipliers X and Stokes’
theorem is central to our method to prove non-concentration of energy of equivariant
Einstein-wave maps. In the following let us calculate the divergence of Px for
various choices of X.

Consider T' = e~ *9;. The corresponding momentum Pr is

Pr=—e¢"d +e¢ P ma,. (5.8)

Then, we have,

1 —2x [e% 1 — [e%
V, Pt = 5€ 2 (¢ ﬁt)¢f+§e 28 (e2B,) ¢?

2
- % (e“Br) gr(j) —are e,
=e ¢ <ﬁt(e —f)— are_ﬁm>
=0 (5.9)

after the usage of Einstein’s equations (45D) and ([@5d). Also, recall from (5.2))
that

1
0=V, Pf=— (—at(reﬁe) + Br(ream)> . (5.10)
For R = e 79, and

Pr :—e_o‘mat—i—e_ﬁ(e—f) Or, (5.11)

the divergence V, Py is

1
VP = 5 W, s
1

= e Pa et —ePe Pl —e2PP2 +£) +e “Bm. (5.12)

2r
Equivalently,

V, Py =

;éE&UﬁEP@
1

= —= (~0re’m) + 0, ((e — Hre™) ) (5.13)

B r66+a
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Similarly for the choice R, :=r%9,, we have
Pr, =-— efapa mo; + (e — )0,
1
V,,Pféa =3 (r“(—ar +6)+ (1+ a)ra_l) e_zo‘qﬁ?
1
+ 3 (r“(—ar +6r)+ (a— 1)7““71) 6726¢724
1 a a—1 92(¢)
—1—5(—7” (ap + ) + (L —a)r )T
1 1
=3 (1 +a)r* ') e ?¥¢7 + 3 ((a—1)ro7t) e 2P 2
1 a—1 92(¢)
+ 5 ((1 — a)'r ) —7«2 (514)

where we used Einstein equations ([L5d) and ([LEhal) for «, and [, respectively. In
particular, we have Ry :=r 0, and

Pr, = —re’~“ma; + r(e — £)o,,
VPR =e ¢ (5.15)

Let J~(O) be the causal past of the the point O and I~ (O) the chronological
past of O. We will need the following definitions

»9 . =%,nJ(0)
K(t) = Utgt’<0 Et/ N J_(O)
C(t) : =Ucr<o Xy N (J(O)\ I (0))
K(t’ S) D= U< Xy nJo (O)
C(t, S) L= UtSt’<s Et/ N (Ji(O) \17(0))
for —1 <t < s < 0. In the following we will try to understand the behaviour of
various quantities of the wave map as one approaches O in a limiting sense. For this
we will use the Stokes’ theorem in the region K(1,s),—1 <1< s < 0 (as shown in

the figure [3]) for divergence of vector fields Py with suitable choices of the vector
field X. The volume 3-form of (M, g) is given by

O

N

N
I
|
I
I
I
|
I
I
I
I
I
I
I
I
I
I
I
I
|
T
I
I
I
I
I

FIGURE 3. Application of the Stokes’ theorem for the divergence of Px
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fig 1= re® dt Ndr Ado
and the area 2-form of (X, q) by
fbg = reldr A do.

Let us define 1-forms Z n and m as follows

Z::—eadt—i-eﬁdr,
noi=—e*dt —ePdr,
m :=rd0,

so we have,
_ Ty
,ug:§(€/\n/\m>.

Let us also define the 2-forms p; and i such that

_ 1~/\~
~i= —=nAm
Ky 5 )
ﬂﬁ :if/\ﬁl/,
so that
lag: _6/\/]277
fig = — A fig.

We now apply the Stokes’ theorem for the fig-divergence of Py in the region K(, s)
to get

u/ VJ&M:/6W§M—/6W&M+HMQQ@$ (5.16)
K(t,s) =0 20

T

where

Fth(Px)(T,S) = —A( )ﬁ(Px)ﬂﬁ

5.3. Monotonicity of energy.
Lemma 5.5. We have E9(t) > E9(s) for -1 <1< 5<0.

Proof. Let us apply the Stokes’ theorem (B5.16]) to the vector field Pp. We have

0:—/1eﬂm+/ e [ig + Flux(Pr)(T, s) (5.17)
»o »9

T

and

Flux(Pr)(t,s) = — /C( )ﬁ (Pr) iz

— [ e~ m)m.
C(t,s)

Note that we have e > |m|. Hence, we have Flux(Pr)(t,s) < 0 which implies
E°(1)—E9(s) >0V —1<1t<s<0.
This concludes the proof of the lemma. O
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F1GURE 4. Monotonicity of Energy inside the past null cone of O

Let us define

E9 = inf E91). 5.18
conc Teffll,m (1) (5.18)

As a consequence of Lemma B3] (B.I8) is equivalent to
E9 m E9(1). (5.19)

=1
conc =0

We say that the energy of equivariant Cauchy problem concentrates if ECOOnC # 0
and does not concentrate if ES . = 0.

Corollary 5.6. For a vectorfield X, let
Flux(Px)(1) := lir% Flux(Px)(t, s).
S—>
Then, we have

Flux(Pr)(t) — 0 as T — 0.
Proof. Recall the equation (5.1I7). For s — 0, we have

0=—-EQ .+ /E @ fig + Flux(Pr)(v). (5.20)

T

Now by the definition (5.18]), as T — 0 we get

. _ o
%1_{% 29 € Uq - Econc' (521)
Therefore, it follows from (5.20) that Flux(Pr)(t) — 0 as T — 0. O

5.4. L*° estimate for the Jacobian. The goal of this section is to derive uniform
bounds for the Jacobian transformation between (¢,r,6) and (u,u,6) coordinates.

Recall that we defined the 1-forms ¢ and 7. Their corresponding vectors are null,
given by

Z: e*a(?t + 676(97«

n=e 9 —ePo,.
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Lemma 5.7. There exists two scalar functions F and G such that

1 1
@ziﬁﬂzﬁziéﬁ (5.22)
with the normalization on I"
F=G=0onTl.
Furthermore, F and G satisfy
9,(G) = e rref(e + m — f), (5.23a)
Ou(F) = —e9rreP (e —m — f). (5.23b)

Proof. In view of various normalizations on I', note that we have

1
Our = =, Oyr = 1
- 2 2
Furthermore, 0, and 0, are also null, and 0,, 0,, ¢ and 71 are all future directed.

We infer that there exists two scalar functions F and G such that

,U(r)=1, a(r)=—1onT.

1 -~ 1 oo
Oy = 56}—6, Oy = iegn,
with the normalization on I’
F=G=0onT.

Next, we derive equations for F and G. We have

[0, 7] = 2¢~ B+ (—,.0, + B,0,).

We infer
eF+9) o
0w,0. = “— (L7 + 49y - a(F)P)
e(F+9)

g
= e ) (adh + Bi,) + SOuG) e 0 — e PD,)

—éau(f)(eaat +e7%0,).
Since [0y, 0,] = 0, F and G are such that
e 7 0,(G) — e 90, (F) = rre’(e — ),
e 70,(G) + e 90,(F) = rre’m,

and hence
9,(G) = e rref(e + m — f),
Ou(F) = —e9rre’ (e — m — ).
This concludes the proof of the lemma. O

Let us revisit the Stokes’ theorem for fig-divergence of Py in K(t,s). We have
du=—e77, du= —e 9.
The volume 3-form of (M, g) is
fig =7 Q*dundundd.
Let us introduce the 2-forms fi,, and fi,, as follows

Pg=duN fy, fig=du fiy,
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so that
fry = =1 (dundl), f,=rQ*(dundd).

Now,

FIUX(P)()(T, S) :/ dQ(PX)/jy7
C(1,s)

for instance,

Flux(Pr)(t, s) :/ du(Pr) fi,
C(t,s)

=— / e (e —m)jiy,.
C(t,s) B

Lemma 5.8. There exist constants c g, caf, crand c}r_- depending only on the initial
data and the universal constants such that the following uniform bounds hold

- +
Cg <g ch
- +
Cr <F < cr.

Proof. We integrate (5.23]) using the fact that 7 =G = 0 on I'. We infer

Glu,u) = /H e’ ree’ (e +m — f)(u, v )du,

Flu,u) = /_ e9rke’ (e —m — f)(u/, w)du'.

Next, note that

02 oF+G _ oF+G
= 8000 = (D) = -5
and hence
Q% =l 19 (5.26)
We infer

Glu,u) = n/_eﬁe_g(e +m — £)rQ?%du/,

F(u,u) = n/eﬁe_F(e —m — £)rQ2du’.

Using the fact that [e £ m — f| < e £ m and u < u, we infer
u
1G(u,u)| < c/ e (e +m)rQ3dy/,

u
u

|F(u, u)] < c/ e (e — m)rQ2du’.

~Fnand du = —e_gz, we infer

1G(u,u)| < c/gdu(PT)rﬁzdy’,

u

Since du = —e

| F(u, w)] < c/_dy(PT)rﬁzdu'.

u
After integration in 6, the right-hand sides are bounded by fluxes which in turn are
bounded by the energy, and hence

9 <o |Fl < e
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This concludes the proof of the lemma. O

Let us consider the Jacobian J of the transition functions between (t,r,6) and

(u,u,0)

Out Oyt Opt
J:=| Our Our Opr
Ol 040 09

1 ef—a eI

=—| B _e9-8

0 0 2

then the inverse Jacobian J~! is given by

o—Fta  F+B

J = e—9ta  _o=9+8
0 0 1
Therefore,
L _Fia L _Fip ! —Gta L _gip
Oy = ¢ , Oplt = 3¢ , Ou = 3¢ , Opu = —5¢ , (5.30)
and

du=e7t0qt + T Gr qu = eI g — I gy,

Corollary 5.9. There exist constants c ,, cj;l, and C,,, C';Z/ depending only on the
inital data and the universal constants such that all the entries of the Jacobian J
and its inverse 3= are uniformly bounded

Cpp Sdw < c;fy
— -1 +
Cuu S JMV S Cuu
for v =0,1,2.
Proof. The proof follows from Lemmas and O

Corollary 5.10. There ewist constants cg and cg depending only on the initial
energy and the universal constants such that the following uniform bounds hold on
the metric function Q in null coordinates.

g <Q<¢f. (5.31)
Proof. This follows immediately from (5.26]) and Lemma (.8 O
Corollary 5.11. Let us introduce the notation
u—+u u—u
T = = .
2 YT 2

Then, there exist constants cq,ca,c3,cq such that the pointwise bounds

T >0, t>c3m,
r<coo and t< cyT

hold for the scalar functions r,t, 0 and 7.
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Proof. We have

1 1

|8Q’r| :§|8ﬂ7” — au’l“| = Z|6}—76 + €g76| < 1, (532&)
1 L G- -g+s

’87’9’ :5‘37"@ - &»U’ - 5’6 —€ ’ < ¢, (5'32b)
1 L Fa G-«

|0-1] :5\3215 + Oyt| = Z\e + e 7Y < cs, (5.32¢)
1 L —Fta | —G+a

|8t7'| :§|8tﬂ+ atu| = §|6 +e | < cy. (532d)

The proof follows by applying the fundamental theorem of calculus to each of (5.32])
in the region J~(O) and noting that at O, ¢t =7 = 0 and r = p = 0 on the axis. O

5.5. Non-concentration away from the axis. In this section we shall use the
vector fields method introduced previously to prove that energy does not concen-
trate. We start with proving that the energy does not concentrate away from the
axis using the divergence free vector Pr.

Lemma 5.12 (Non-concentration away from the axis). We have
Eegt(’r)::/ efig—0ast—0,
BTQ(T)\BTl(T)

where r = ro(T) is the radius where the t = T slice intersects the o = |7| curve i.e
the mantel of the null cone J~(O) and r = r1(T) is the radius where the o = ||
curve intersects the t =t slice, for any real X\ € (0,1). Observe that both ri(t) and
ro(t) = 0 as T — 0.

Proof. Consider a tubular region S with triangular cross section (as shown in the
figure[) in o > A1, A € (0,1) of the spacetime i.e., the “exterior” part of the interior
of the past null cone of O. As shown in the figure [ let us use the divergence-free

)

FIGURE 5. Application of Stokes’ theorem on the ji,-divergence free
Pr to relate the fluxes through surfaces 951, 0S8, and 983
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vector field Pr and the Stokes’ theorem in the region S to relate the fluxes through
the three boundary segments 9S7, 9Ss and 9S3. We have

0= / du(Pr)fin + / du(Pr) i — / e Ph i,
881 882

1 _ B 1 _ _ _
2—5/ e g(e+m)ﬂu—§ e f(e—m)#y+/ € lq- (5.33)
981 9S82 a83

To analyze the behaviour of the flux terms |, as, and f882 in (B.33) close to O, let
us define

1= ePtop = ePo, + o,
no=elton =Py, — oy,
A% :=r(e —m),
B? :=r(e+m).
From (5.12]) and (5.13)), we have

e (AP m) 0 ((e ~ re®))
= —e¢Pa,e+ %e*ﬁ(e*%‘(ﬁf —e B2+ f) + e Bm. (5.34)
We have the following identities from (5.10) and (5.34)
dy(re’e) — ,(re®m) = 0, (5.35a)
9y (re’m) — 9,.(re“e) = L, (5.35b)
where
L= TGZO‘T ((T9)? + (R$)? — £) + ¢ Lo — rfe’m
for ,
Lo := % (—(Tu)2 + (Ru)Q + f) _ 29(¢)i(¢)¢r.
Furthermore, we can construct the following using the identities in (5.35])
Oy <7"eﬁ+o‘(e - m)Z”) = 0,(A%) = L, (5.36a)
d, <reﬁ+a(e + m)ﬁ”) = 9,(B*) = L. (5.36b)

Let us try to express L in terms of A? B? after using the Einstein equations
L = e®Lg + rrle?fte (e — f)2 — kr2e?ftom?
= e“Lg + krie?fte (e2 —2ef +f%— m2)
= ¥ Lo + re?P+e (A2 B —2r%ef +r°f?). (5.37)

We would like to set up a Gronwall estimate for A and B using the identities in
(536). However, the quantity L as shown in (537) has nonlinear terms involving
e and f. Therefore, in what follows we use Einstein equations to estimate these
terms.

Firstly note that

Z“a“ezﬂ =2 (e’ B; + €2 B,) nrd,e?? =2¢*° (P B, — ;)
=2¢¥kre?P % (m + e) =2¢% kire?P Y (m — e)

:2562B€2B+QB2, - _ 2%625626+O{A27
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and
BMZ“ =B + e a, Oun* =B, — e,
=rke??t (e + m — f) =rke?Pt (—e + m +f)
—ge2fte (82 —rf), —ge?fte (—./42 +rf).

Now consider the quantities (9“(626./42@‘) and 0, (e*’B*nr),
019,,(e2P A%) = 0,,(e*0 A20") — €28 A20), 0"
= ezﬁau(AQZ“) + AQ@(?M@QB — kPP f2B% 4 pre?P PP A% £
= —?L 4 re®Pe?PTe A2 B2 4 rre?P PO A2 £
=e¥e” (Lo +2rtef — r’f? + r Af)
= 2B (—Lo + kr2e?8 (3ef —f2 - mf)) ,

"0, (e B?) = 0, (2P B*at) — 2’ B9, n"
= e2%0,(B*1M) 4+ B*i#9),e*P + ke?P PO A2 B2 — rre?Pe?P o
= 2L — kPP A2B? — pre?P Pt s
= 2P <L0 + ke?8 (—27“2fe + r2f2 — TB2f))
= 2P <L0 + kr2e?? (—3ef +f2 — mf)) .

Let us define

Sy : =3ef —f2—mf
=(e—m)f +eof
> 0.

Note that we have e > |m|. Similarly define

Sy i =—3ef+f2—mf
=—(e+m)f —eof
<0.

Let us now introduce the quantities A and B such that
A= e’ A, B :=¢B.

In the following we will try to estimate Lg by > — m?. We will use the following
identities which are valid for any real numbers a, b, ¢

1 1
(a+b+c)* <3(a®+b*+c?), 1(—a2 +0%)? = Z(a2 +0%)2 — ab%.
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Consider,

t~
o
IN

w

(—0¢F+4Rm%2+@ﬂ¢yﬁf+ifj

I

w
TN TN N
N | =

I
ey
@

!
B
\_[:3

1
o+ (6621 + 1~ m?)

N N N

IN
w

1
eo’ + %(R@)Qf + 1 2 — m2>

IN
o
)
S

1 1
2+§e0f—|—1f2—m2>

where we have used the fact that both ||¢||z and ||B]|r~ < ¢. Consequently,

1
8@2{2 :§€B+]: (—Lo + HZ?”Q 62651>

1
> — —€ﬁ+]:L0.
2
So,
PN AB
Ay A > —c|Ly| > —c—
= r
that gives us
~ B
Oy A > —c—
- r
and similarly,
Bug <c—.
T

The rest of the proof is comparable to the case of wave maps on the Minkowski
background as in [30] and [9]. Consider the region of spacetime [u,0] X [ug,u]
where u, v < 0 and ug < 0 will be chosen later. Using the fundamental theorem of

0

r=0=0 0= AT

FIGURE 6. Application of the fundamental theorem of calculus for
A and B in the region [u, 0] X [ug, u]
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calculus,

B(u, ug +c/ Alu (5.38)

B(u, u) < Blu,up) + ¢ AOu) o+ v ° B, ) o | du
Blu,u) < Blu,uo) + ( )d /T(u u') </ (') d_> ! )

= B(u, ug) + (/“4 Z/))du’>+c<// uu/ /)dg’du’>.

5.40)
Now consider the second term in the right hand side of (5.40), firstly recall
1
r(u ') = colu,u) = c5(u—1),
[0 ([ 20y} ([ )
uQ r(ﬂau) uQ uQ (g_u)
1
1 1 2
< cFluX%(PT)(uo,u) ( - )
u—u  u—up
Flux? (P Ly 4
< 2 5.41
< cFhuxt (Pr)(un) ( (5.41)

We infer

1 ~
N . Flux2 u 0 o0
Blu,u) < B(u,ug) + ¢ M +e </ B(g—’u/),) du/ du') . (5.42)
2

w T )r(W,u

We have,
W — W B, u) < sup i — o B, W) = Hu,W)
u<u/'<u
So,

(u—u)2B(u,u) < (g_u ) (u — uo) 2 B(u, ug) + cFlux? (uo)

u 0 U —1u %
+c </u H(u,u) (- 1(/_)(2/ 1 M du' du') . (5.43)
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Now consider the function p(u) defined as follows

U—Uu

plu) = ——.
u— ug

We have u — u < wu —ug so p < 1. Also, p is increasing and hence
p(u) < p(0). (5.44)
Let us go back to the inequality (5.43]) and use (5.44]). We infer

1
(u— u)%g(y, u) < (—_u) ’ (u— uo)%g(y, ug) + Flux? (up)
)2 1 1
(u—u /
— . 4
+</ it G (=~ v=) d“) o
Consequently,
1
H(u,u) < <—_u> ’ H(u, uo) + cFlux? (ug) / H(u, ) o) du’. (5.46)

Also, we have

7:l\(u ug) sup Vu' — ug B (v, ug)

u<u’<0

< sup ' —ug sup B(u,ug)
u<u/'<0 u<u/<0

< ¢(up)v/—uo, (5.47)

where we have used the fact that u is regular away from the axis so that B\(g, ug)
is finite. So,

H(u,u) < clug)v/—u + CFIUX% / H(u,u) e du'. (5.48)

Using Gronwall’s lemma to obtain an estimate for H(g, u), we infer

H(u,u) < vV—uc(ug) + CFIUX%(U(])
+ c/ < —uc(uo) + cFluxé (u0)> <%> equ’ u//(uﬁ_u//) du' du.

0 w'(u—w
(5.49)
We have for ug < v/ < u and setting u = N'u where \ := L‘r—ﬁ <1
w u u(Nu — o
// u(u — u” )du"—l ’(()\’u—ui
u
<1 .
=8 TN

For any € > 0 we can choose an ug small enough such that
1 €
cFlux2 (ug) < 3
Furthermore, one can choose u € (up,0) small enough such that

€
c(up)v—u < 3
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So we have H(u, u) < € for ug < u < 0 small enough. Then,

7—7(@, u) €
Vi Viou

Now going back to the flux integrals in (B.33]), we have

B(u,u) <

IN

/ e 9(e+m)i, <c
951

0
1
=€ du/
"u (@, - u)
= elogT—
< ce (5.50)
and
1
3 / rQ%e 7 (e —m) du A df = Flux(Px)(ug,u) < € (5.51)
08>
for wg,u small enough. Finally, in view of (533]), (550) and (E5I), we conclude
that £, (t) — 0 as T — 0. This concludes the proof of Lemma B.12] O

5.6. Local spacetime integral estimates.

Lemma 5.13 (Non-concentration of integrated kinetic energy). Let the kinetic
energy be defined as

1
L —2a 42
€Lin = 56 a¢t

then the spacetime integral of ey, does not concentrate in the past null cone of O,
1.€.,

1

—_— €Lin lg >0 asTt—0
7”2(’[') /K.r kin Mg as

where ro(T) is the radial function defined as in Lemma [Z12.
Proof. Recall from (5.15]) the computation of the vectorfield Pg, and its divergence
Pr, = —rel™M=2m @, + re *8(e — £)9,,
VuPr, = e 20p2,
Using the Stokes theorem as in (5.16]) for Pg,
/ VPR fig = / e*Pp, Jig — / e Pp, fig + Flux(Pr, )(T, 5)
K(t,s) =0 20

that is

/ e 2¢7 iy = —/ re’mfi, +/ rePmfi, + Flux(Pg,)(t,s)  (5.52)
K(1,s) 9 9
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where,
Flux(Pgr,)(T,s) :/ du(Pr,) fiy
C(t,s)
:/ Teﬁi}—(e—m—f)ﬂu
C(r,9) -
<era() [ (e-m)p,
C(t,s) B
= — cro(T)Flux(Pr)(t, s).
We infer

/ e} fig < / refefig + / re’e fig — cra(T)Flux(Pr)(t, 5)
K(T,s) =9 D
< 07“2(8) / €jig + / refe Hq — CTQ(T)Fth(PT)(T7 S)'
»o 9

Now let s — 0. We get

1 / —2a 42 — 1 / Bar
e “Yo; g < re’e iy — cFlux(Pr)(T).
r2(T) K(7) L r2(T) »o ! (Fr)()
Therefore,

IN

1 1
/ e 2P fig / réPe fi, — ¢ Flux(Pr)(7)
K(7) r2(T) JB,, (1)

1 _ _
= r2(0) (/ reﬁeuq+/ Teﬁe,uq>
2 Bry(x) Bray(m)\Br (v
— c¢Flux(Pr)(T)
< cAEy+ cES (1) — c¢Flux(Pr) (7).

For any € > 0 we can choose A small enough so that the first term < g, then we
€

can make T small enough so that EZ, (1) < § and |Flux(Pr)(1)| < § as discussed

previously. This concludes the proof of Lemma 5131 O

In Lemma [5.I3] we proved that the spacetime integral of e 2*¢? does not con-
centrate in the past null cone of O. In the following lemma we shall prove that the
spacetime integral of rotational potential energy i.e.,

/KT gi(j)ﬂg _ /K £,

Lemma 5.14 (Non-concentration of integrated rotational potential energy). Let
(N,h) be the target manifold satisfying the Grillakis condition (LH). Then the
spacetime integral of rotational potential energy does not concentrate i.e.,

does not concentrate.

/ fag—0 as T—0. (5.53)
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Proof. Recall from (5.14]) the computation of the vectorfield Pr, and its divergence
P’R = —eﬁiaT‘a m@t + r¢ (e - f)(?r,

a

1 1
VoPr, =5 (L +a)r ™) ef + 5 ((a = D)r*™!) 6]

+ l ((1 _ a)ra—l) 92(¢) )

2 72

Let now us construct the vector PCV such that

2

PY = (80— ¢

where ¢ : = 1_7“7““_1 for a € (%, 1). Then the divergence is given by

2
VVPCV - vu(c(by(b) - vl/ <<V7>

2
= C(O9)6 + (86 + 66— (D05 — "0

/ 2
_ <g<¢>52<¢>¢ ' — (OO %

and

U¢ = 672[3 (Crr + % + (ar - /Br)gr>

= e_zﬁr“_gi(l —2a)2 (1 —a+r’ke?l f) )
Let us define a vector PY; such that
Py 1= P, + F..
We have
VPl = VP + VP

_ C9(¢)9’(¢)¢ Farole2eg2 4 cf - 6725(1 - a)QTafl (1 —u +r2/<;e25f)

r? 4
=¢ [%Bl + 32} ; (5.54)
where
B1 = g(¢)d ()p + g*(¢) — e 2P @& 1 g L kg2 (¢) (5.55a)
By = 12_aae‘2°‘¢? (5.55b)

Applying the Stokes’ theorem on K(t,s),

/ VP g = / e Pyog fig — / e Pygy fig + Flux(Piot) (T, 5). (5.56)
K(t,5) £0 £0

T

We have
/ e Py fg = / (_mraeﬁ +e*( ¢’ p) Hq
9 9

g/ ertef 4 |e® 4| C | g,
ZO

s

2

72
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and applying the Cauchy-Schwarz inequality, we get

1 1

2 2 2
/eo‘PJtu <cr§(s)/ efig+ =2 / e 2 gr? I / iy
ZSO O q — Eg) q 9 ZSO q ZSO 7,,2 q

< crg(s). (5.57)

Similarly, the second term in (5.56]) can be estimated as

1
3
—/EoeaPtétﬂqgc/zoeraﬂq+c</zoer2aﬂq> . (5.58)

T T

The flux of Py though the null surface C(t,s) can be decomposed as
Flux(Piot)(t, s) = Flux(Pgr,)(t, s) + Flux(P)(t, s). (5.59)
Let us consider the terms in the right side of (5.59)) individually. We have

Flux(Pgr,)(t,s) = / du(Pr, )iy
C(t,s)

:/ P~ Frie —m — )iy
C(t,s) B
< —erg(t) Flux(Pr)(t, s)

and

4 r
S N e R R e g I
C(t,s)
)2
< [ (e em@ R+ G e w7
C(t,s)
(5.60)
Using the Cauchy-Schwarz inequality, (5.62) can be estimated as
Flux(P,)(r, ) < or§ () ( / (e — m)@)
Cr,s)
< —erg(t)Flux(Pr)(T, s). (5.61)
Therefore,
Flux(Piot)(t, s) < —cr§(t)Flux(Pr)(T, s). (5.62)

If follows from our previous estimates that exists a real constant ¢ dependent only
on the initial energy Fj such that

"8 < P0) < o (5.63)
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(see for example [30, Eq. (2.11)]). Using this fact and proceeding as in [31], we can

use the Grillakis condition (LX) to conclude that for a sufficiently close to 1 there
is a small constant ¢, > 0 such that
B 2
—21 + By > ¢q <e25¢—2 + 620{@?)
r r
Now, if we go back to the Stokes’ theorem (.56) and use the estimates (B.57),
(BE5]) and (562), we get

2
Ca [/ e_zo‘qﬁfra_ldﬂg + / 6_26¢—2TQ_1 ,ug]
K(t,s) K(t,s) "
< crg(s) +c/ er g +c </
=9

1
3
er’ ﬂq> — cry(t)Flux(Pr)(T, s).
D
As s — 0 we get,

2
Ca [/ e G g + / e—25¢_2ra_1 M9]
K (1) K(1) r
1
gc/ er“ﬂq+c</ er? i,
%9 %¢

2
) — cry(t)Flux(Pr)(7). (5.64)
In (5:64)), we can estimate

i@ [ ertm=r@ | [ ertmr | er fi
50 By (1) Bry(0)\Bry (v)

< ry%(x) (r%) | entr | u)
By (v) Bry(t)\Bry (1)
<\ Ey+ E9. (1)
and

N

79(0) ( / e uq>é — r5(7) ( /

er’ i, + / er? ,uq>
vy (1) Bry(t)\Bry (1)

2a %
) / €fig + / e ﬂq>
B Bry (o)

AN
VY
N

33
(V) —
Al

S— | —

r1(7)

< (\*E + ES, (T))% .

ext

(5.66)
Hence, in view of (5.65)), (5.66]), Corollary and Lemma [5.12] we can choose A
and T in (5.64]) small enough so that

1 ¢2 a—1 -

T g < €
r8(1) J (o) 2 !
for any € > 0. In view of (5.G3)),

— 7’!2 .
Therefore it follows that

1
fro -t g, —0 — 0.
TS(T)/ T g as T

T



36 L. ANDERSSON, N. GUDAPATI, AND J. SZEFTEL

This concludes the proof of Lemma [(5.14] O
The remaining term in the energy is e~ 2? ¢2. We control it below.

Corollary 5.15. Under the assumptions of Lemma[5.1]), the spacetime integral of
radial potential energy in the past null cone of O does not concentrate

1
r5(T)

Proof. Let us again apply the Stokes’ theorem for the fig-divergence of Pr,

/ VPl g = / e* Pk fig — / e Pk jig + Flux(Pg, (T, s)
K(t,s) %9 x¢

therefore, as s — 0

2
/ _26¢2 a-lg fig < c/ (e_Qo‘qb% + g9 (f)> ro—1 fig +/ er? fig + r5(t)Flux(Pr) (7).
K(1) K(1) r »0

T

/ “2Bg2ra . -0 as T— 0. (5.67)

Hence,

1 / o—28 42 pa—1
GrrT g <€
Tg (T) K(T)
for T small enough. This concludes the proof of the corollary. O

5.7. Proof of non-concentration of energy. We are now in position to conclude
the proof of Theorem Bl If we collect the terms from Lemmas B3] (.14] and

Corollary 515l we get
1

er®! ftg — 0
5(T) /K(T) g

as T — 0. But then,

al / er“_luch%/ e“l’ dt
TQ(T) K(T) 702(1-) K(7)

1 /
>c efigdt
72 (T) K(1) !
—0 (5.68)

as T — 0. We claim that there exists a sequence {T;}; such that
/ e fig = 0 (5.69)
=,

as {t;}; — 0. Let us prove the claim by contradiction. Suppose there exists no
sequence such that (5.69]) holds true. Then there exists an € > 0 such that

/ €y > €
=2

ejigdt > e.

for all T € (—1,0). Consequently,

1

1Tl J k()
This implies,

),
— efigdt > € 5.70
TZ(T) K(1) ! ( )
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for all T € [-1,0). This contradicts (5.68]). Hence, there exists a {T;}; such that
E9 (1) = / efig — 0. (5.71)
5

But EY(t) is monotonic with respect to T, therefore
E°(1) =0
for all T — 0 i.e., E2 . =0. This concludes the proof of Theorem [5.11

conc

6. GLOBAL REGULARITY OF THE 2 + 1 EINSTEIN-WAVE MAP PROBLEM

We now proceed to the proof of our main theorem, i.e. Theorem[I.8 Let (M, g, ¢)
be the maximal Cauchy development of an asymptotically flat and regular Cauchy
data set for the 2 + 1 equivariant Einstein-wave map problem (L&) with target
(N, h). Assume that the metric h has the form

h = dp* + g°(p)d0®

for an odd function ¢g : R — R with ¢’(0) = 1, such that g satisfies (LII]) and the
Grillakis condition ([LH]).

Our goal is to prove that (M, g, ¢) is regular. Assume by contradiction that this
does not hold. Then, there exists a first singularity which in view of Theorem
occurs on the axis of symmetry I'. Let us denote by O this first singularity which
corresponds to u = u = 0 and ¢t = r = 0 in the (u,u) and (¢,7) coordinates systems
constructed respectively in section 2l and section @l

Let € > 0 small to be chosen later. In view of Theorem 5.1l there exists a time
to < 0 such that

E°(t) < e. (6.1)

Lemma 6.1. Recall that 7 = (u — w)/2. There exists 19 < 0 such that in the
space-time region
{0 <7 <0} N{u <0},

[ (29 s

TO—U

/0 ((5u¢)2 + M) (u, o )dd < e.

2
max(u,270—u) r

we have

and

Proof. We choose 19 < 0 small enough such that
{ro<7<0}N{u<0}C{to<t<0}nJ(O)

which is possible since on the one hand J~(O) = {u < 0}, and on the other hand ¢
and 7 are comparable in view of Corollary ETTl In particular, together with (6.1]),
Stokes theorem, and the fact that the vectorfield Pr is divergence free, we infer

U 2
[ e min
210—u J =0

0 27
/ / e 9 (e +m)jy,
max(u,279—u) J =0

<e¢

and

<e¢
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where we are relying on notations and computations introduced in section (.4l In
view of the definition of fi,, and f,,, and the rotation invariance, we infer

/ e e —m)rQdu < e,
2

TO—U

0

/ e (e +m)rQldy < e
max(u,270—u)

In view of the definition of e and m and the identity (5.26]), we deduce

/u eg <e_29(au¢)2 + @) rdu 5 g,
2

TO—U

/0 e” <e2f(8u¢)2 + g(£)2> rdu < e
)

max(u,270—u

Together with the estimates of Lemma [5.8] for F and G, we obtain

" (002 + 19 v < e
[, (owr+25)

T0—u
0 2

/ » )((3u¢)2+—g(:;) )rdg < e
max (1,279 —u

This concludes the proof of the lemma. O
We now rescale the coordinates u and u by

u u
U— — U .
|70l |70l
The Einstein-wave map problem is invariant under this scaling so that in the
rescaled (u,u) coordinates, we have in view of Lemma [6.]]

/_ z_u <(au¢)2+g(7j4;)2> ol ) < e 62
/mo N ((6u¢)2 - 9(;@)2> rlu,u)dy < e (6.3)

over the space-time region {—1 < 7 <0} N{u < 0}.

Theorem 6.2 (Small energy implies regularity). Let (M, g, ®) be a solution of the
241 equivariant Einstein-wave map problem (L)) which is reqular in the space-time
TegLONn

{-1<7<0}n{u<0}.
Assume furthermore the smallness condition ([6.2) (€3] on the energy flux. Then,
(M, g, ®) is regular on the closure of {—1 <7 <0} N{w < 0}. In particular, there
is no singularity at O.

In view of Theorem [6.2] we infer that O can not be a first singularity of (M, g, @),
hence contradicting our assumption. Thus, global regularity holds for (M,g, ®).
This concludes the proof of Theorem

The rest of the paper is devoted to the proof of Theorem In section [1 we
derive a uniform weighted upper bound for ¢. In section 8, we rely on the upper
bound of section [ to derive a uniform upper bound for d¢. Finally, we rely on the
upper bound of section [§ to conclude the proof of Theorem
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7. AN IMPROVED UNIFORM BOUND FOR ¢

From now on, we will only work in the (u,u) coordinate system. Recall from
(ZT) our choice of normalization on I' for the (u,u) coordinates system

1 1
r=0, agrzi, aur:—ianszlonF.

Also, recall that 7 and o are defined by
u+u u—u
2 1?7 2
We restrict our attention to the space-time region
{-1<7<0}n{u<0}

where our solution is regular, and we where intend to derive estimates which are
uniform up to the origin O. We assume throughout the rest of the paper the
smallness condition (6.2]) (63 on the energy flux. Finally, recall from section
and section that the 241 dimensional equivariant Einstein-wave map system is
given in the (u,u) coordinates by

T =

( 0 (Q720,r) = —Q *rk(0u9)?,
0,(Q720,r) = —Q 2rk(0,0)%
Q% g(e)?
OuOyr = 7%7 2
- 1 4 (¢)*
Q72(0,00,0 — Q0,0,90) = gﬂ% <§6u¢0u¢+gr2 >
2
pros) (—0u(rdyd) — 0u(roye)) = fi;b)

where f(¢) = g(¢)g'(¢). Since g is odd with ¢’(0) = 1, note that there exists a
smooth function ¢ such that

f(@) =6+ 6°C(e).

7.1. Preliminary estimates. We start with simple consequences of the smallness
condition (6.2)) (6.3 on the energy flux.

Lemma 7.1. We have

6] < Ve.

Proof. The proof is in the same spirit as Lemma 5.4l Let

ol
o(9) = /0 o(s) ds.

Then, since ¢ vanishes on I', we have for u < 0,
u

p(e(u,w)) = | Oulp((u',w))) du’

u

_ / " (600, u) d.

Together with ([6.2]), we infer

1

([ 2t % ([ @orrar)

(¢ (u, w))|

IN

IN
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Since p(0) =0, '(0) = 0 and E”(0) = 1, we have

¢2
o(o) = 5t 0(¢%)
and hence

8] < Ve

This concludes the proof of the lemma. [

Lemma 7.2. We have

1
oty se ol See -15e

1
8ur—§‘ <e,

Proof. Integrating from the axis of symmetry I' the following equation

2 g(¢)°
OuOur = TR

and in view of the smallness condition (6.2) (63]) on the energy flux, and the
initialization on I', we deduce

1
8@“—5 <e,

1
8u7"+§‘ ,Se’:‘.

Moreover, in view of the definition of ¢ and the initialization on I', we have
r—o0=0u(r—p)=0u(r—0)=0onT

which together with the smallness condition (6.2 (6.3]) on the energy flux and the
fact that

OuOy0 = 0,
yields
Ir—eol See.

Finally, the control of 9, together with the integration from the axis of symmetry
I" of the equation

au(Qi2auT) - _97274’%(811(?)27
the initialization on I' and the smallness condition (6.2]) on the energy flux yields

-1 Se.
This concludes the proof of the lemma. ]
7.2. Reduction to a semilinear wave equation.

Lemma 7.3. Let ¢ a function depending only on uw and w. Then, we have

1

1
Og(o) = Oz ( — 40,040 + E(amﬁ — O0u®)

—r 20,7 + 1 20,r — 1
+ ¢ (OEQS - 8u¢) - r aygb - _’I“ 8u¢> .

ro

Proof. Recall that
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We infer

1 2(%7“ 20yr
Dg(¢) = m < 40, 8u¢ ugb— 8u¢>
1 20y 1 20,r — 1
= 02 ( 40 U u¢ + u¢ au¢) - Tt 87 il au¢>

Q r r

1
20,7 + 1 20,r — 1
‘|‘ ( uﬁb 8u¢) aggb al— 8u¢> .
r0 r r
This concludes the proof of the lemma. [

We deduce the following corollary.
Corollary 7.4. We have

48,0, + - <u¢ au¢>—g%
- ) . 3
= _QT (00 — 0ud) + 20,7 +1 Duh + 20,7 1au¢+ . ¢+¢C(¢)
0 r 2

72

Proof. In view of the previous lemma, we have

1
Q( 10,0,6 + (00— 0.0)

—r 20,7 + 1 20,r — 1
127 (9y6 — D) - Dy — 222 am) _ {9
ro r r r
which we rewrite

40,00 + %(am — 9u0)

— T b 0,8 + 2T e 2 T 4 02 10))
T’Q T T T
We have
3
R e R () f(o
- ?JFQTQQ; ¢+ r2( )+(£22 1) 752).
We infer
~10,0,0+ 7 (0,0~ Du) - %
_ _ 2 3
= 0 ou) + P g4 g 04 € 4 OO
Q T 7"

72
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This concludes the proof of the corollary. O
Corollary 7.5. We have
where
Foo 2227 0 u0)+ 0*(20ur + D oo+ P20 =1, ¢ —2T2¢+ @2¢3§(¢)
r r r r r
+0%(Q% - 1)"2{?.
Proof.
By = %(aT —9,) and 9, — %(aT +9,)
and hence

_Lige g2 Lo _ay=1
0ud = (07 = ) and (0, — Bu) = 0

Thus, we have

1 1 , 1 1
In view of the previous corollary, this concludes the proof of this corollary. O
7.3. Set up of the bootstrap procedure. Let
and the space-time domain
Qu, = {—-1<u<1y, —1<u<0}.
Let
O<5<1
5
We make the following bootstrap assumption on @, :
sup 1 70|9,0| < C. (7.1)

uy,
The goal of this section will be to prove that we can improve this bootstrap
assumption.

Proposition 7.6. Assume that
1
0<d< <.
2

Then, there exists a universal constant C' and a constant Cy only depending on
initial data such that for any —1 < u, <0, we have

supr! 019,60 < C(Cy + £C).
1w
Remark 7.7. The constant C in Proposition [7.6] depends on § such that 0 < 6 <
1/2. In particular, it degenerates as 6 — 0 of § — 1/2. We will use the improved
estimate of Proposition [7.0] at two places in the proof of Theorem
o In Lemma[7.23, where we apply Proposition [7.0| with any fized 6 such that
1 1

—<H< =
6 2
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e In Proposition [813, where we apply Proposition [7.6] with any fized 6 such

that 1 1
— <y < =
3 <0< 2

Thus, we could replace 0 for instance with 5/12 in the statement of Proposition
[7-8. To make the proof easier to follow, we choose to do it with a general 8, but do
not mention the dependence of various constants on § since one should think of a
d fized once and for all, e.g. 5/12.

Remark 7.8. The constant Cy appearing in Proposition[7.6 denotes the supremum
of the (finitely many) norms of the initial data appearing in the proof of Proposition
[7-6] below. These norms are not controlled by the energy, and could be in particular
arbitrary large compared to e~1. It is thus crucial that the constant in front of C in
the statement of Proposition [7.6], i.e. Ce, does not depend on Cy. This will allow
us to improve on our bootstrap assumption (LIl) in Corollary [7.21] by choosing €
sufficiently small compared to the universal constant C.

Remark 7.9. In order to prove Proposition [7.0, we will first obtain an improved
bound for ¢ using a representation formula for the wave equation (see Lemma[7.18).
Then, we infer an improved bound for 0y,¢ using Lemma[7.19 Note that we can not
infer a improved bound for O,¢ in this way (see Remark [7.20). This explains why
we only have a bootstrap assumption for Oy¢ in Proposition [7.0, while the terms

Oy will have to be integrated by parts (see Remark[7.13).
Remark 7.10. The non-concentration of energy is used in two crucial places in
the proof of Theorem[62. One chooses € > 0 small enough

o In Corollary[721] to improve the bootstrap assumption (1)) thanks to Propo-

sition [7.6.

e In Proposition in order to exploit the estimate of Corollary [S12.
7.4. First consequences of the bootstrap assumptions.

Lemma 7.11. We have
supr’|¢| < C.
up,
and

supr’% <|7“ -0 +
Qﬁb Q

Proof. We start with ¢. We have
d(u,u) = /(Eqﬁ(u,a)da,

and hence using the bootstrap assumption (7.1])

Sluw)| < /‘ag|¢<u,o>|da

1

ay«—%‘ﬂa—u) <2

< c/_r(u,a)“da
< C/_(U—u)51da
< Clu—w)
< Cr(u,u)’,

where we used the fact that § > 0.
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Next, recall that

0% g(¢)?
0u0ur = TR
We infer
1 u
Our + 5‘ < / |0y Our|(u, o)do
U 2
< / @(u, o)do
U 42
S CZ/ ¢—(u,0)d0
w T
< C? /_T(U,O')251d0'
< C? /_(0 —u)? o
g CQ(Q o u)25
< Czr(u,g)%,

where we used the fact that 6 > 0 and the previous bound on ¢.
Similarly, we have

1
agr——‘

IN

/ 10,0, (0, w)do

< Clr(u,u)?®.

2

Next, we consider the bound for r — 9. We have

U
lr—o| < /
u

C? /u Er(u,g)%(u,a)a
C? /j(a —u)?o

CZ(U - u)26+1
CZT(U,Q)Z(H_l.

1
Oyr — =

" = 5 (u,0)do

N

N

AR ZAN

Finally, we consider 2. We have
Du(2720,r) = —Q 2rr(0u0)*.
This yields

1
O 20,r — =
‘ Our 2‘

IN

/E |0y Oy ur|(u, o)do
< /ur(3u¢)2(u, o)do

< C? /T(u,d)za_lda

< CQT(u,g)%.
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We infer
|Q_2 -1 < ‘Q_Qﬁgr - 827“‘
_ 1 1
SJ ‘Q 2627"—5 +8u7°—§‘
< Czr(u,g)%.
This concludes the proof of the lemma. ]

7.5. An improved uniform bound for ¢. Here we derive an improved uniform
bound for r~%¢ relying on an explicit representation formula for the flat wave
equation. Our approach is inspired by [9] (see also [30] for a similar approach).

Lemma 7.12. We have

1 1 F F.
2 2 1 2
<—3T+3g +Eag— ?> ¢ =0y <?> +=,

Y
where
Fl _ Q_r—i_Q(QBQT_]‘)(ﬁ’
r
and
_ _ 2 2 _
R o Cole—r+ 9;28ur + 1))6£¢ N r(o—r)+ 0°(20,r %;21) + 0% (20,1 1)6“7"(;S
*Vg(9)%0 | 0*¢*C(o I(¢
_KQ 27{]2( ) +Q TQ( )+92(92_1) 7(42)

Remark 7.13. Since we have no control over 0y¢ (see Remark[7.9), we need to
integrate the terms involving O, ¢ by parts. This results in the term 0, (F1/0) in the
statement of Lemma [7.13 The fact that this integration by parts is possible is a
consequence of the following two observations

o We are able to estimate Fy (see Lemma[7.14]), which itself is a consequence
of the null structure of the problem.

o We are able to control the u derivative of the kernel K of the representation
formula for the wave equation of Lemma[7.15 To achieve this, the crucial
estimate is the one of Lemma [7.16

Proof. Recall that

1 1
2 2

Rl =

where

2 2 _ 2 .2 2.3
P _Q(Q—T)8Q¢+Q(QauT%-l)a@(b_i_Q(23g7" 1)au¢+9 T¢+@¢C(¢)
r r r r2 r2

+92(QZ _ 1) f((ﬁ)

rZ -
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We rewrite F' as

P —M@@Jﬂ% <@(@—T)¢ _a, (Q(Qr— 7")> 5 @2(20u7°+1)32¢
5 <@2(25M -1 > _a, <92(2<9%ﬂ7“ 1)) ot 0 2T2¢+ @2¢:§(¢)
+0%(Q? — 1)f£f)
_ o, (9(9; Ny @2(201;7° - 1)¢> B @(@T— T)aw— (r— o) —52(2%7" 1,

D + Q(QOM" —1)(00ur + 1) — 2927"(%8&7" 92 —r? 92¢3C(¢)

2
0° (20, + 1
+7( ) ¢+ ¢+ 5
r r r

r2
_ 9 1 _
_ a (9(9 "+ 0(20ur ))¢> _ole—r+ 0@ +1),
r r =
2r(0 = 1) + 0*(20ur + 1) + 0(20ur = 1)(00ur + 1) K*Q%g(9)%9 | 0*9°¢(9)
+ 5 ¢ - 2 2
r 2r r
f(9)
+92(QQ - 1) r2
This yields
F F1> 5
G — 8u - BOR)
0? < 0 0?
where
—r+0(20,r — 1
po— 2T r e —1)
r
and
_ _ 2 2 B
R o= _Q(Q r -+ Q:ZOUT + 1))(%(;5 n r(o—1)+ 0°(20,r —i;21) + 0°(20yr 1)61‘7“(;S
2002 2 2.3
ko Q7g(9) ¢ 0°9°(() 2/02 f()
B 272 + r2 (-1 r2 ’
This concludes the proof of the lemma. O

Lemma 7.14. We have

supr°(|Fy| + |Fy|) < Ce.

Lp

Proof. This is an immediate consequence of Lemma [.1], Lemma [Z.2] the bootstrap
assumption (7)) and Lemma [T1T] as well as the definition of F} and F5. O
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Lemma 7.15. We have

—LA)

T—otu —T+otu
K(—1) /T+@F1< ohy ity

+oo
N d
" e el \/7% \/—/ VA u9+/\)K(M) 8
1 T+eo+1 Fi(—1,))
K(p)———=">d\
YN e R
+oo A*
Ve (1 >
+/1 o VAV + A+ QQAuK(”) 1510 A) + Fa(e, A) | dAdp
- / s ve Ay K' () Fy (o, \)dAdp,
0 VAVEE+ A2+ 20

where ¢y denotes the solution to the homogeneous equation with the same initial
conditions as ¢, | is given by
(r—0)?—e* =X\

20\ '

M:

A* is given by

N = V(1 +7)24 (u2—1)02 — po,

with an initialization at T = —1 and K is given by
1
xdx
K(u) = / 2
max(—p,—1) V1 — 22/t

Proof. We recall the representation formula derived in [30] for the solution ¢ of
1 1
~02+ 02+ -0 ——>¢:h.
( ¢ et 2

¢ is given by (see [31I] p. 960/961)
o(1,0) = do(T,0) + ; %K (1)h(o, N)d\do,

where
R={(o,\)/ —1<o<7 max(0,0—7+0)<A<p+7—0},

¢o denotes the solution to the homogeneous equation with the same initial condi-
tions as ¢, u is given by
(1—0)?— o> — N\

B= 20\ )
with an initialization at 7 = —1 and K is given by
1
xdx
K(p) = / ‘
max(—p—1) V1 —22/ptz

In our case, we have

F F
h=0, ( 1>+—§.
0 0
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Hence, we have

P(r,0) = /% u<F(AA )d)\d +/ \f F(;’)\)dAda
- / \i 1O (0. vm) /R o, (%Mu)) B o
/ VA 2 A)dAd
= ¢o(r,g)+/a —K(M)Fl(;’A)g(au,uR)—i—/R4\/1)\_QK(u)F1(;’>\)d)\da
/—a K (1 Fl(z’)\)dAda+L%K(M)FQ&%A)dAdU.

Next, we compute the boundary term. We have

fg(au’ VR)
OR

T+o 1 7@ 1 [Ttetl
_ / Flr— o, )du! + 5/ £(0,0)do — 5/ F=1, \)d),
T 0

_o —1
and
p=—-lonu=71-—p.

Hence, we have

/ \/X F (o, ) @ ) K(-1) /’T+Q Fy <T—g2+g , —r+29+y > Wy
uy V - u
OR \/_ A & f \/E T

—0 [ —1+o+u’ -
2

1 T+o+1 F _1 )\
__/ QK(,U,)MC%)\.
2 Jo Vo A
We compute
2 2 2
_ N -(1-o0)
B —2udo — 2)\?
N 20\
_ poFA
.
We decompose and perform a change of variable
Toetl /X F(=1,A
/ i[((@%d)\
0 Ve
RSV Fi(—1,\ THotl p) Fi(—1,)
= \/—K(u) LY e d/Hr/ £K(u)ydA
o Ve A po+A Vrr)Z—g2 \/0 A

B ~+oo T+o+1 1(_17 )\)
a \/—/ \/—ug+)\) \/_/(TH (k) VA “
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which yields

2 Fi(0,))
| K g0 )

K(-1) [T+ i) (7*02+H/’ *T+29+u oo B
= / , \f / \/— ——————K(p)dp
Vo Jr—o /*T+20+u AMpo + )\)
1 frrent F(-1,0)

"3 Jyere A

d.

We deduce

K(— +o F T_g-iﬂ/, —T+g+u
oo = wtro+ 5[ (= =

400
N~ ngw, \/—/ ey ,ug—k)\)K('u)d'u

1 Ttot+l K Fl(—l,)\) Fl(O', )\)

1
NN = (”)Td”/ \/_K(”) X
S(o, A
/—a K'( (A dAdo +/ N &2 ) ddo.

d\do

In the space-time integral, we perform the change of variable (o, \) — (u, A) which
yields

K(—1) [m+e P T*M',*T*““ _
o(r0) = do(re) + 2L ”/ (= :

400
N — \/—/ % ,ug—k)\)K('u)d'u

1 T+o+1

2
(=1, /+°°/ (0,\) 1
K Lo+ — —d\d
240 \/(T+1 (k) VA 1 Jo 4V 2 A oo
oo Fi(o,)\) 1 roo p AT /X Fy(o,N) 1
— —au K'() =222~ d\d +/ / ~°K '~ d\du,
/. /0 N S S W IR S S e s

where A\* is given by

N= V(1 +7)?2+ (12— 1)0* - po.
We compute

o—T
oA
V02 + N2+ 20\
_ » _
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We infer
T—otu —T+ +u
¢( ) ¢ ( )+ K(—l) /T+Q Fl ( % =, 29
T,0) = ¢o\T,0
— [ —Tt+otu
\/E 0 2@
1 T+o+1 Fi(—1
(02 gy
IENCE N sy 2
400 pA*
+f Ve
0 VA2 + A2+ 200

f/mf

+o00 A*
-/ Vo Nt K (1) Fi (0, N)dAdy,
0

VAV 02 + A2+ 20\
This concludes the proof of the lemma.
Lemma 7.16. We have
AOup| Sl — 1], V=1 < p < +oo.
Proof. We compute
Mo =1)+ ) +35((r —0)> = 0* = N?)

92

_ )\(J—T)—F);—{—%(T—O')Q—%QQ
202

B AN+o— 7')2 —0°
N 4o)?
A=V N+ 200)% —
N 4o)\?
A2 =20 02 + N2+ 20A 0+ 02 + N+ 200 —
N 4p)\?

A op — /02 + N2+ 20\

20\
We infer

M op — /0% + N2+ 200
20 ’

Ayp =

We consider two cases. If u > 0, we have
A+ 0%1® + 2hop — 0* — N — 20
200\ + opr + /0% + A2+ 20\p)
o* (1 = 1)
200\ + opt 4+ /0% + A2 + 20\p)
olp+1)(p—1)
2N+ o+ /02 + A2 + 20Mp)
Since p >0, A > 0 and ¢ > 0, we have

A+ op+ 02+ X2+ 200 > o(1 + ).

Aoy =

We infer

—1
[AOup| < !u2 |

u9+A)

K () GFI(U, A + Fo(o, A)) dAd

K(p)dp
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If -1 <p <0, we have

N — 0?12 4 201/ 0% + N2 + 2001 — 0% — A2 — 20\p
20(A — opp + /0% + X% + 20Mp)
—o(p® 4+ 1) +2u(y/ 0% + N2 + 20\ — )\)
2N — o+ /02 + A2 + 20)\p)

Ayp =

Since —1 < p < 0, this yields

|—0® +1) +2lul(A — /& + X2 = 2[ule)

RYZATIIES
20X + [plo + /02 + A2 — 2|u[oN)
< 0HAFVREHN
~ A+ o
< 1

Together with the case p > 0, we obtain for all 4 > —1

(AOup| < | —1].

This concludes the proof of the lemma. ]

Lemma 7.17. We have
‘(b(T? Q)’ g CO\/E + 8095
A3

+oo  pA*
+€C/ K ()] + 1= 1| K’ ()])dAdp.
Vel Tarrraa Kl b= MK G Ay

where the constant Cy only depend on initial data.

Proof. Recall that

¢(Ta Q) = ¢0(Ta Q) +

K(-1) [T+ (“%”’f”;*“ o0
/ , \/— / —=—— < K(p)dp

Vo i, /7T+2Q+E \/_ug+)\)
1 T+o+1 Fl(—l,)\)

"2 e T

“+o00 A* \/@ 1
+/1 /0 \/X\/QzJFAzHQMK(u) <4F1(0,A)+F2(U,A)> dAdpu

_ / i Ve ADupt K (1) Fi (0, A)dMd
0 VAV + A2+ 200 “ ’

dA

We have the following properties for K (see for example [9] p. 1061):

T
K(-1)=—, su K| <1, K € L}(-1,4).
(1= T5 s IK] (~1,+o0)

Also, we have

{(Vo+1)? - <A<t+o+1}n{o=-1} ={-1<p<0}n{o=—-1}.
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We deduce
|K(=1)| [?|Fi(T—0+ N
<
om0l 5 loofro)+ 2 [T

e <pw> / Kl

A>0 A2

L 0 su (=L T — /(7 -
7 (—fsfgom) (AZIS 7 )( tot1-V(T+1)° 2%

A

e ve K () (1FL (0 1) + | Fao, A))
—i—/ K(w)|(|Fi(o, A)| + | Fa(o, N)|)dAdp
1 Jo VAV + 22+ 200 ) ) (

4 /+°° " Vo Nt | K ()] | (0, \)|dAd
1 Joo VAR A2+ 200 “ ’

N

Fi(—1,\
60(7, 0)| + sup [Fi(r — 04+ A N)| + <upM>
0<A<p A>0 A2

MN—LAN> o+ T+1

+v/0 | sup
\/—<)\20 VA THo+1+/(T+1)?—¢?

e ve K () (1FL (0 1) + | Fao, A))
4-]f K()|(|Fy (0, M) + | Fa(o, M) dAdp
1 Jo VAV + A2+ 200 ) ) (

4 /+°° " Vo Nt | K ()] | (0, V)| A
1 Joo VAR A2+ 200 “ ’

Assuming enough regularity on the initial data, we have

Fi(—1,\ Fi(—1,)
SUPQ_%|¢0@3QN‘+SUP’ i ”‘+SUP‘ 1 3 )
0>0 A0 VA 5

< Cy
A>0 A

where the constant Cy only depend on initial data. Hence, together with the pre-
vious lemma, we deduce

[¢(,0)l S Covet sup [Fi(T—o+ AN
0<A<o

oo pA* \/E
+/ K Fi(o,N)| + |Fa(o, A)|)dAd
L IVXVQF—+A24—29AM| (W[(IFL(o, N + [Fa(o, M) )dAdp

+ - / : Ve = 1K ()| Fs (0, V) [dAd
1 Joo VAV + A + 200 ’

Finally, recall that we have

supr*‘s(\Fll + |Fy]) < Ce.

Lp

We infer
‘(b(T? 9)’ g CO\/E + 8095

+o0
+€C\/§/
—1

A* )\571
0 Vor+ A2+ 20\u
This concludes the proof of the lemma. O

N

(K (W] + [ = LK (@) )dAdp.
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Lemma 7.18. We have
o(r 0l S Coyo+eCo’.
Proof. Recall that
6(r,0)] < CovoteCo’
A3

+oo
+eC /
Ve 1 Jo VR A2+ 200

We evaluate the integral in the right-hand side. We have

(K ()] + e = LK (@) dAdp.

oo pA* N3
K(p)| + |p— 1||K'(p)])d\dp
[ ] e 0l + e 10 )

A A3
/ / (K (1) + | K" (1)) dAdpa

V% + A2+ 200
+ * o3 )
4 / (K0 + 1 — 1| K ()] )dAde
0 Vo2 + N+ 200

We estimate the two integral on the right-hand side starting with the first one.
We have

A* 5__
// Vo2 +>‘2+29>\u(’ ()| + 1K' ()] )dAdp

A* 5—1
A0 2
< sup (|K(p)| + K (1 // dX\dp
s (G0 1Ko [ e

400 —|A—o| )\6—%
<L d
VT2 oA

where we used the fact that

sup (|K ()] + [K'(n)]) < 400,
—1<0

which is a consequence of the estimates for K and K’ on p. 1061 [9],

{-1<p<0}={A-0f<7—0<Ve?+ A},

and

Vo2 + N2+ 20\
2 '

0 pA* )\57%
K ()] + |K' (1)) drdp
/] T K+ K o)

Oppt = —
We infer

+00 )\——

S /0 (VA2 + 0% — |)\—Q|)—d)\
- +oo )\5——
~ Jo A2+ 02+ A — g|

400 57—
< 95%/ A

0 \/)\2——1—\)\—1]
< o0,
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where we used in the last inequality the fact that 0 < § < 1/2.
Next, we estimate the second integral on the right-hand side. We have

400 pA* Xs-% )
(K ()| + [ = LK ()] )dAdp
/0 /0 Vo2 + A2+ 200

UOWW”)’ e 1HK’<u>r>du> /om gim

+o00 )\5*5
< d\
~ 9/0 1+

N

s5—1
NN

~

where we used the fact that 0 < § < 1/2 and

+oo
/0 (K ()] + 1 — 1IE (1) s < +o0

which is a consequence of the estimates for K and K’ on p. 1061 [9]. We deduce

+o00 A* )\57% , 51
(K@) +p = 1[K (p))drdp < 0°72 (7.2)
/ 0 VoE+ A2+ 20\

which yields

6(r,0) 5 Cove+eCo.
This concludes the proof of the lemma. O

7.6. Proof of Proposition

Lemma 7.19. Let
O =1r0y¢ and = = rdy¢.

We have
o 25 (p)
Oy | — | = ——8 B — |
(ﬁ) N A
and
RN 0225 (9)
O (W) N _ﬁauraﬂs T
Proof. From
02
0u(r0u®) + 0u(rdud) = —— f (;b) ’
we infer
2
0,0 = 10urg 1 L0 Q f(¢)’
2 4r
and
5= 10, 021(0)
0,2 = 520E - 00,0 - — 2
We rewrite the system as
o 25 (p)
— ——8 O — |
<\/_> 47’%

and

= Q
— ——8 rOu¢ — 3
(\/_> ¢ 472
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This concludes the proof of the lemma. O

We are now in position to prove Proposition Recall that

C) 1 QQf(qﬁ)
Ou| —= | = ———=0,10,0 — .
<\/F> 2\/7_" ur Gud 4r2

We integrate between (u,u) and (ug,n) where (ug, w) is on the initial hyper surface.
We deduce

M = M— u—@r@ o,u)do — “Q2f(¢)au -
r(u,u) r(ug,u)  Jup 2VT up(ou)d /uo Ar (0,u)d
Slu, - ! ro(o,u ' ' ro(o,u
(o) {2\/7"3“ # ’—ﬂ + [ 5 pteturoto.iio

- /u Y ordure(o, u)do — /u LI (5 uydo

3
0 47°2 4r2

We infer

_ B f((b)2
Vr(u,w)0up(u,u) = ~/r(ug, uw)0ud(uo, ) 6 (o, ) (o, u)do
<75

,
—/uu 47%8 Oy (0, u)do / 0 (0, u)do.

We deduce

[P(uo, w)| | |P(u, u)l “|@(o, u)|
Vr(u,w)|Oyp(u,u)| < /r(ug, )0y (ug, u ——do

and hence

r(u,u) | Oud(u,w)| S ()21 (ug, 1) ud(uo, w)| + (v, u)“SW
uo?_

- |6(0,w)]

(1) 0|, w)| + r(u,w)2 0 [ BT

/uo (o, u)2

S Coru,w) 2" + r(u, 1)~ |6, u)| + r(u, U)6/ |¢Z( ))3|
“ ooyl

S Co+r(u,u) | (u, u)| + r(u,g)é—é/

o (o, g)%

where Cj only depends on initial data.
Using the improved uniform bound for ¢ of lemma [.I8] we infer

T(u,g)1_5|6£¢(u,g)| < Co+r(u,u) CO\/ (u,u) + eCo(u,u) )

+r(u,u)%—5/ Covelo,u) +eColo,w)’
uo

r(o, y)%

S Co+eC

where we used the fact that r ~ ¢ and § < 1/2. Finally, we have obtained the
existence of a universal constant 0 < C' < 4+oc¢ such that

r(u,u)' = 10ud(u, )] < C(Co+£C).
This concludes the proof of Proposition
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Remark 7.20. Lemma [7.19 is used as follows. The equation for © is always
integrated from the initial data, while the equation for = is always integrated from
the axis of symmetry I'. We have the following three cases

o If |p| < Cro with § < 1/2, we deduce |0y¢| < Cro~1, but no estimate for
Ou¢. We used this case above for the proof of Proposition [7.6]

o If|¢| < Or® with § > 1/2, then we deduce |0,¢| < Cro~1, and only 0u¢ <
C\/r. This case will be used in the proof Lemma [8.13}

o If || < C\/r, then we have the log loss estimate |0,¢| < C|log(r)|\/r, and
no estimate for 0,¢. Due to the log loss for Oy¢, this case is never used.

7.7. A more refined bound for ¢.

Corollary 7.21. For any

1
0<d<
<0<y,

there exists a constant Cy only depending on initial data such that we have
1000wl +7°|¢l < Co

and

o
Proof. Choosing ¢ > 0 sufficiently small in Proposition yields

supr'°|9,¢| < CCy (7.3)

Lp

P20 (’T - Q‘ +

1

1
aET—§‘+|Q—1|> SCQ

which is an improvement of the bootstrap assumption (Z.I]). This implies that (Z.3])
holds for all —1 < wu;, < 0. Hence, we have

r17918,0| < Co

for a constant Cy only depending on initial data. Together with Lemma [Z.T1] we
infer

ol < Cy
and
P20 (M+ Bur + = | + aur—l‘ +\Q—1\> <Gy,
0 2 - 2
This concludes the proof of the corollary. O

In this section, we would like to prove the following refined bounds.

Lemma 7.22. There exists a constant Cy only depending on initial data such that
we have

rz|¢| < C
and

0 - 2

1 <‘7"—Q’ +

1

8ur — 1‘) S C(].

Remark 7.23. The above improvement can not be true for r0,¢ due to a log loss
when integrating the improved estimate for ¢ using the equation for © (see Remark
[7.20). In turn, this improvement can also not be true for @ — 1.
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Proof. Recall that
[p(r.0)] S Covo+ sup [Fi(T—o+ XN

0<A<e

e Vo K ()| (1Fy (0, )] + | Ba(o, W)
+/ K(W)|(|Fy (0, M) + | Fa(o, M) dAdp
1 Jo VAV A2+ 200

[ A T IXEY]
—|—/ w— 1| K" (p)||F1(o, N)|dAdp.
1 Jo VAV A2+ 200
Also, recall that we have
r (R + | B)) S Co,

where we choose from now on ¢ such that

1 1
—<H < —.
6 <°°3
We infer
6(1,0)] < Cov/e+ Coo®
+oo A* )\357% ,
+Cov/3 / (1K ()] + | — LIK () ) dAde
ve 1 Joo o2+ A2+ 200
We have
A* 35—1
A
’ A
0 Vor+ A2+ 20\
20 35—1 A* 36—1
- AT X + AT dA
0 02+ N2+ 20\ 20 02+ A2+ 20\
20 5—1 A* 36—1
< ¥ A X+ / A A
0 Vor+ A2+ 20 20 /(0= N2+ 20\(1 + p)

Since p > —1, we infer

A* )\357% p
0 02+ A2+ 20\
20 5—1 A* y30—1
< ¥ A d>\+/ AT
0 Vo2 + A2+ 200 20 A
A* 6—1 "
< 0¥ A X + [A?’é—%r
0 VoE+ A2+ 200 20
A* 5—1
< 14 ¥ A X

0 Vor+ A2+ 20\
where used the fact that we chose 6 > 1/6.
We have obtained

‘(b(T?Q)’ g CO\/E
A* )\57%

26 e
+Coo 9/
Ve 1 Jo VR A2 4200

where we used the fact that we chose § such that § > 1/6. Recall estimate (7.2)):

(K ()] + | = LK () ) dAdp,

oo A N3 s
Q/ K(p)| + |p— 1| K (w)])d dp < o°.
Vel e (KUl b= 1K )
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We infer

< Cove+Cod®

S Covo,

where we used the fact that we chose § such that § > 1/6. This concludes the
improvement for ¢.

(7, 0)]

Then, one obtains the improvement for 0yr —1/2, Oyr +1/2 and r — p as in
the proof of Lemma [ TTl This concludes the proof of the lemma. O

8. AN IMPROVED UNIFORM BOUND FOR 0¢

Here, we differentiate equation for ¢ once and we obtain a uniform bound for
0¢ and ¢/r again relying on an explicit representation formula for the flat wave
equation by adapting the approach in [30].

8.1. Upper bounds for higher order derivatives. We start by deriving an
upper bound for 9,

Lemma 8.1. There exists a constant Cy only depending on initial data such that
we have for any 0 < § < 1/2

219,90 < Co.

~

Proof. Recall that

- 1 4 9(9)”
Q7 (0u020u0 — 20,0,02) = gQQn (w&ﬂﬁ@uqﬁ + (702) > .

We deduce

Q
0u0u  0,20,9
Q Q2

_ K KO g(¢)°
= 0T T

Also, recall that

1 20, 20,1
Dg(¢) = W <_4auay¢ - r Tﬁg‘ﬁ - T_au¢>
and
)
Ogop = 2
We infer
- aur aﬂr QQf(¢)
OuOuf = =5 b= 5 O~

HNote that the proof of these improvements only relies on the equation 9,d,7 = kQ%g(¢)?/(4r).
Therefore, the proof requires the improved estimate for ¢. The important point is that it does not
require the corresponding improvement for 9,¢ which does not hold due to a log loss (see Remark

).
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Hence, we deduce

2
0.0 108() = —50u(00u0) + S00LDus — - ﬁfi)
_ K Q?f(9)\ K g(¢)?
- _58 (¢8u¢) + (b( u¢ o u(b_ Ar2 > - ] r2
K K W o n@uagr 9 KOurOur o n@ur
= —Zou(60.0) - S0, (—¢ )+ S g SO 2 Y 0,
RO%0f(8)  RO? g(0)
8r? 8 r?
K202 Our0Oy O
= —50u(60,9) = 20, ( ¢> S 9(0)28? = 6 — 60,0
R0%f(0) KD g(0)?
8r? 8 r2
We integrate between (u,u) and (ug,n) where (ug,w) is on the initial hyper surface.
We deduce
u au u U 20)2
[0ulog(Q)(0, )], = w@maww—gL{&w@imﬁdggwwﬂﬁmmw
Ouroy, Ou
_/u0 %(f(mg)do’ — /u0 r T(bau(b(d u)do
U ()2 U ()2
_AO %’M(J,@)Ch’ — AO %g(g) (0-7g)d0'-

This yields

Oy
9, log(@)(ww)| < Co+ o) (ww‘ %\)( W)
Oy Oy w02
+ [ 2 (a0 + i) (0o + [* L oyt
< Co+r¥71c
5 TQ(S_lCOa

where we used the fact that 0 < § < 1/2, the upper bounds on ¢, d,¢ of Corollary
[L2T] the uniform bounds for 9,r, d,r and €2, and the fact that o ~ r. In view of
the fact that |Q] ~ 1, we finally obtain

r1=%19,0| < Co.
This concludes the proof of the lemma. [
Next, we derive an upper bound for 357“.

Lemma 8.2. There exists a constant Cy only depending on initial data such that
we have for any 0 < § < 1/2

|(9ir(u, u)| < r20=10,.

Proof. Recall that

We deduce

0,0%r = KQ(@Q)gw)? +/€Q29(¢)9/(¢)6g¢_KQ29(¢)23M°.
“ 2r 2r 42
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We integrate between (u,u) and (ug,n) where (ug,w) is on the initial hyper surface.

We deduce

u 2 2
[air(o_,g)]go _ Ii/ Q(aﬁg)g(gb) (O',Q)dO'—FI{/ Q (Qb) (QS) ugb(o_’g)do_

2r wo 2r
u Q2g(¢)28u7“
—K ———>—(0,u)do
/uo 4r2
and hence
= w r r r
S Co+r¥7'C
< e,

where we used the fact that 0 < § < 1/2, the upper bounds on ¢, 9,¢ of Corollary
[Z.21] the uniform bounds for d,r and €2, the upper bounds on 9,2 of Lemma [8.1]
and the fact that o ~ r. This concludes the proof of the lemma. O

Next, we derive an upper bound for (95(;5

Lemma 8.3. There exists a constant Cy only depending on initial data such that
we have for any 0 < § < 1/2

02¢] < r°2Co.

~

Proof. Recall that

O =10y
satisfies
© 0*f(¢)
(\/F> 2\/_ ¢ 47"%
Differentiating with respect to u, we obtain
©) _ 1 2 Q2 f'(4)Bud
w(r) = gyptrdand — g i+ oo~ L
2Q(8,) f(9) . 307 (¢)ur
4Ars 8rs
In view of
Oyr Our O2f(o)
0uuf = =5 70ub = 5 0u0 = =4 5
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we deduce
C) B 1 uram 0, r3u¢ Q2 f( 9
Ol (W) - _277_"3“( or 12 > 3 ur Ot + Tg( Dur)”0
CPf1()0ud (5 Q)f(¢) 302 f(¢)Oyr
4r3 8rs
- 2 OurOy r3u¢
} (‘W@” > O
_QZf/(¢) o f Q2 f(¢)Our
47"% %
= Ou |:_—82 (a T) ¢:| + —a 82 ¢ - au:82'r¢ - 13 8u""a 8u"“¢
2\/r 20/r PRER 2 w
2
—3 a T’(a 7-) b+ (%rau:(%qﬁ B Q f (gzi)agqﬁ B 29(8293)]0( ) (gb{))agr
47°5 4r2 4r2 4r2 o2
Recall that
OuOyr = K Q‘ZE?S)Q,
and
9. 0%r — KQ(GEQ)Q(gb)Q + K929(¢)gl(¢)8g¢ _ I{QQQ(qb)Q@HT
vt 2r 2r 472 '
We deduce
© B R 1 )
auag <W> = 8u |: 2\/_8u7"(b+ 7(({927") (b
K2 (Oy §)g( )? bt KVg(d)g §(¢) u%_ 3rQ%g (ﬁ)zaﬂ(?
4r2 4r2 82
2
O+ 2,0y 2000 IO
4ra rz r2 Ar2
Q0.0 f(9) I f((b)@@r.
27”% 27“%

We integrate between (u,u) and (up,w) where (ug,u) is on the initial hyper surface

u

(S ew| = g+ Loursow)

YA P RV A “
2 2 2
[ { 090, | KL (6)u,  3:L9(0)ur
uo 4r2 47’2 8rz2
2 ¢/
6 282 bt 6 (O ) 6+ Our0yrOy® B Qf (gzi)agqﬁ
4rz 4rz 4r2 472

oot

00,0/(0) 9% <¢>3u7°}<a w)do
2> 2r .
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and hence
0 15T (3ur)?|9|
- < u )
8u<ﬁ> (u,u)| < Co—i-( NG + 3 (u,w)
|0y pllp| + |02r]|@] + 6] + [0ue] + |8,2|0]
+ 3 (o,u)do
uo r2
+/ |¢|(O’ u)do
ug T2
< Co+r0iC
5 7,,5*%00’

where we used the fact that 0 < § < 1/2, the upper bounds on ¢, 9,¢ of Corollary
[L.2T] the uniform bounds for d,r, d,r and Q, the upper bounds on 9, of Lemma
BIl the upper bounds on 857‘ of Lemma [B.2] and the fact that ¢ ~ r. Since

© = ro,o,
we infer
()
and hence
02¢] < r°2Co.
This concludes the proof of the lemma. O

8.2. A wave equation satisfied by v.

Lemma 8.4. Let

v=D¢= (3 + 1) o.
Y
We have
( 02+ 0% + 8>¢ = O (51; E;) +B%°’ B;,
0
where
B, - —7“—|—Q(2(9ur—1),
r
20%(0,r — 1) — 7+ 0(20yr — 1) + 20051 2(Q? — 1)f(¢)
B2 - 8u - - D) )
r r
o Q 0(20,r — 1) 0 0 0(20,r + 1)
By = - ( u ;)—{— <1+—6ru+;69r)+T<1——8 T‘)

<ar—1>( 2,r) + 2 3¢2<<¢>+¢3<<¢>>

)
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and
9 2 — 8u 28u —1
B, = <_Z_€3ur_%3magr_£aur>a 7°+<_97"_1> 0(20,r — 1)
2 r r 2r — r r r
N (_3 N g@ur> 0(0pr — 1) N <_1 N 98u7“> 0(20,r+1) N RQ?’QQg(?()zﬁ)Q@M
T T 2 2r T 2r
L 20(er +0ur)Our  P(20%¢(9) + 6 (@) 293¢2<(¢)59T] 5
2 r2 3

209
n <4+ 0(30,r +(9£7’)> 0°(0pr — 1)

r r

r

< 502(0 — 1) 03(20,7 + 1) 2@3(897" — 1)) Oyt + Oyr
+ (- + L
2r 2r r

_ﬁ@3929(f)9’(¢)¢ B 593923(@2 duo+ | - Plo=r) , E20ur+1) 24
T 2r T -
2 £/
. [ (_2gau B 1) 1(0) | FOedud] a )
T T T
o(o—1) 0% 0*(20,r — 1)Q? 0300,

F(@) + (2f(9) — vg(¢)*9)

_|_

r 4r2 4r3 r2

Remark 8.5. Again, we need to integrate by parts the terms involving derivatives
with respect to u due to a better behavior with respect to u derivatives (see for
ezample the estimates for 02r, 9,90 and 02¢ of section [81 which do not have a
corresponding u counterpart). This results in the term 0,(Biv/o + Bao?) in the
statement of Lemma [8]] As emphasized in Remark [7.13, the fact that this inte-
gration by parts is possible is a consequence on the one hand of the null structure
of the problem, and on the other hand of the nice behavior of the kernel of the
representation formula for the wave equation with respect to u derivatives.

Remark 8.6. The crucial point of the decomposition of the right-hand side of the
wave equation for v in the statement of Lemma is the fact that both Bi and
Bs include neither 0,¢ nor 0,82 in their definition, and hence will satisfy better
estimates than By and By (see Lemma[87 and Remark[8.8).

Proof. We have

Recall that

1 F
<—a$+a§+ 0y — 2) =3
where
—r 2(20,r + 1 2(20,r — 1 2_p2 23
P _Q(QT )(0g¢—6u¢)+9( . )aﬁ o ( . )au¢+9 - ¢+9¢T§(¢)
f(9)
—|—2(QQ—1) T2
We infer 5 p
(—03+8§+—89>¢_§—E.
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Next, we compute d,F. We have

0,8 = 2 0,0,0 - 0,0,0) - (LT TR g
+92(281;r + 1)(928“25 . r(20(20,r + 1) + 2@261;2897“) — 0%(20,r + 1)89r8£¢
+92(28@r — 1)3u89¢ N r(20(20,r — 1) + 29281;2(%7“) — 0%(20,r — 1)8g7"8u¢
+92 —2 r? 9,6 + 7“2(2Q — 2r0,r) —4 2(@2 - r2)r897“¢

r r
+T2(29¢3C(¢) + 0*(30%¢(9) + ¢°C'(¢))0p9) — 20°¢°¢(d)r D,
A
L r20(@ = D) (@) +20°Q0,() f(9) + 02 = 1) ['(9)9) = 20*(@ = 1) [ (8)r,r
4
2(20,r — 1 202 -1
2oy, £60-010)

2

— 20° —1
r T r

o, (@) 0,6 — B, (2792@) O —1) - 0, <M> 0,6

r

1o, <Q2f(¢)> @ —1) - Q(QT— 7“)agag(b (20 =1 —09,r) — 00 — 7")997“8Q¢

r2 r2

2(2 1 2ro(2 1) — 03(2 1
+g(8ur+ )agag(b"i_ ro(20,r + 1) TZQ(@J—F )897"82(]5

292
+r(2@(2827" -1)— 2@28i28u7°) — 0%(20,r — 1)0,r (Oud — Dy0) + 20 Taurau(b
+g ;2 r? 9,6 + 7“2(2Q — 27“8@7’)7:1 2(@2 - r2)r897“¢
%(200°C(9) + 0*(30*C(9) + ¢°C(¢))0,¢) — 20*¢*¢(p)rd,r

A
7%(20(9% = 1) f(¢) + 20%Q0u() f () + 0> (2% = 1) () 0,¢) — 20*(Q* — 1) f(@)rd,yr

rd

2

_|_

+
We rewrite the term Qzair&@/ r ad]
292 292 249 92 2\ 92
0°0;r 0°0;r 070, 05T or + 0yroe°)05r
— 8u¢ = 8u < — QS) — - — QS + ( ) — (b

r2

Recall that

oot — 20uDg@)?  Dg(@)g(@)0ud | g(#)*our
“u N 2r or 4,,n2 :
We infer
285 263 QQ uQ 2 QQQ , .,
N 5 = 0, <Q —qu) _ e (%Tz)g(@ ¢ Ko 9(@292 (0)POud

k0*Q29(9)200,r  (or + Ouro®)O5rd
+ + .
493 72

12This term needs to be integrated by parts as it would otherwise lead to a dangerous term of
the type 8;7'1).
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We obtain

0,F = (M (U _ ?) L 2P0 =) o 20— 1) (U _ f) P -1)f(9)

r 0 r2 r 0

2@2857°
200 ¢)
r

_T(_Q + %T — 00y) — 0(0 — )0y (v _ ?) _ 2T(_Qay¢ + 020,0u0) — 0*0y POy

r2 0 r2

r(—0(20,r — 1) + 20%0,0,1) — 0%(20yr — 1)0yr < QS)
— — — — f[) PR
r2 0

(Opr — 1)

ﬂ(‘aﬂ¢%+fﬂ@ﬂchi_v+%))‘foWV&”GF—l)

e 5 - 0,0,0) - RIS A0 (0
r w T o

_|_

2r0(20,1 + 1) — 0%(20,7 + 1)0,r
(8i¢_ agau¢) + ( ) r2 ( ) <

+r(2g(28gr —-1)— 292(%6“7“) — QQ(QaE’I“ —1)0,r <

r2

2(20,r + 1
+&L7;ij O

m¢—v+?)
- 0

KPQ0u)g(0)%0 ke DVg(9)g (9)00ud | K*V2g(9)*¢dur | 2or + Oure®)Dyrd
2 B 2 + 3 + 2
r r 2r r
+92 —2 r2 <v B ?) n r2(20 — 2r0,r) —4 2(0% — 7“2)7“6@7’(ZS
r 0 r
12 (200°¢(0) + (36%C(6) + 6°C'(9)) (v = £) ) — 20°6°C (@O

4

_l’_
r

r2 (20(92 = 1) (6) +20°00u(Q)f(6) + P2 = 1) (9) (v = 2) ) = 2632 = 1)f(9)rO,r

_|_

A
Recall that

02?g(9)

Ou0ur = TR
Also, recall that
1
_4auag¢ + 5(8@¢ - (%(ﬁ) - %
—r 20,r +1 20,r — 1 2_p2 3
- _Qw (0wt — Oud) + Oup + ———0ud + Qrzgz o+ 52("5)

+(0? — 1)M

which yields
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This allows us to rewrite d,F as

o,F = a(@ ( ) %> 2P0, O ( ) g) Q- 1)/(9)

+2§T765r¢> ~r(-o+ 37— 00ur) = 0(0 = 7)1 (U 925)

r2 _E

( 00 + 0 <aur (U B %) B 8ur24;8ur D — QZ{"gﬁ )> 020, $01

r2

< 0(20,7 — 1) + 202k L 90 ) 02(20,7 — 1)Dyr < ¢>

-2

_ v_ 2
7r2 0

r(er@) 4 210 (aui— vrg)) e

oo—1) (o, O ( O\, Qurtur, | Of(9)
—T<aﬁ¢_7<”_§>+ o w0t 4r2>

(20 =1 — 00,r) — 0(0 — 1)0,r <v B ?)
72 0

2 2
L0t D) (&3@5 G (v - ?> Oy aﬁrayqb 2 f(z¢)>
= 2r 4r

r 0 2r

2r0(20,r + 1) — 228ur+187“

r(20(20,r — 1) — QQIQQ g(f) (2(%7’ —1)0,r

o) e,y

KU 0 kDo) (D000 | e g(o 00w | Aer +0ure)Oirs
72 r2 213 r2

+92—7"2 < q§> +r2(29—27’8 r)—2(*—r )7“697“(;S

r2 0 rd

12 (200°C(9) + 2(36%C(6) + #°C'(9)) (v = £) ) — 20°6°C(@)rOr

4

_l’_
r

r2 (20(92 = 1) (6) +20°00u(Q)f(6) + P2 = 1) (9) (v = 2) ) = 2632 = 1)f(9)rO,r

rd

_|_

We infer

GQF = 8u(A1v+A2) + Azv + Ay,

where
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_ 1. Our) — — )0, 2 Our
Ay — _r(zetgr—odur) —ele—r)dur _ ro’; @ — 1)

r2 r2

r <—Q(2a£’l“ -1+ 2@25%2 @) — QQ(QaE’I“ — 1)0yr
B 2

,
2 2.4 _ e _ _
0’ f'(9) @ —1) + ol —7) dur (20 —1 — 00,r) — 0(0 — 1)0y7
ré r 2r r2
0%(20,r + 1) Our
r 2r
r <2g(28gr -1)— QQﬂQ;M) — 92(2827" —1)0,r

r

r2
=1 | rPPE6(0) + 6C(6) | TP = Df(9)

+
r2 rd rd ’

and

r(—o+ g7 — 0dur) — 0(0 —)dur ¢
72 0
r T +Ou 1 2
r(—00uo+ 0 (—5 L = 200,90 - LD ) — 20,00
_9 5
r <—Q(28@T -1+ 2@2%;%2 @) — 92(28gr —1)0yr
2
12 (—of(9) + 2 1'(0) (9uo + 2) ) = 262 (D)rOur
+ - (Q*—1)

_Q(Q_T) <a§¢+%?+aur+aurau¢+ QQf(¢)>

(Opr — 1)

_|_

[SERSS

r 2r o 2r 472
(20 — 1 — 00,r) — 0(0 — 1)0pr @
+ : -
r 0
+92(26ur +1) < Our ¢ N Oyr + Oyr
T 2r o 2r
+2rg(28u7" +1) ;292(28ur + 1)89T8@¢
r <29(28@r -1)— szsQ;—g(d))Q) — 92(2827" —1)0,r (

o+

Oy +

4r2

QQf(cb))

r

_|_

o+ 2)
0

RPQO9(@)%6  r*9(6)g (9)00u0 | ke Q%g(6)260ur  2er + Oure®)Ord
r2 B r2 + 2r3 * r2
B 92;2 r2 % n 7’2(2@ - 2T69T); 2(92 - r2)r89r¢
12 (200°C(9) - (36%C(6) + 6°C'(9))2 ) — 2026°C(6)r,r
rd
r2 (20002 = 1)f(9) + 20°00u(Q) f(6) — 22 = 1)['(#)2) = 263(Q% = 1) f()rDr

4

r2

_|_

_l’_
r
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We also rewrite . We have

Buqﬁ—u—l—?)
N o

P _M<U_¢>+Ma
Q T

6+ 92(28@r -1) <
r r

2 _ 2 2.3
+Q . b+ 0 ¢ §(¢) +Q2(92_1)f(<2b)
r r r
= A5’U—|—A6,
where
— 220,71 — 1
A5 — _Q(Q T) _ Q ( aﬂr )’
r T
and

r 0 r - r r
243
+Q % §(¢) +92(Qz 1)f(§5)
r r
Finally, we have obtained
6QF _E o 8U(A1U+A2)+A3?}+A4 B Asv + Ag
o* 0 0 o
Ajv + As Ajv+ Ay Asv + Ay Asv + Ag
= O 2 + 3 + 2 - 3
o 0 0 1Y
B B B B
= Oy <—11)+—22> —i——;’v—i-—;‘,
Y 0 Y Y
where
A
B = =
Y
o—r+0(20,r—1)
= . ,
By = A

_ 20 -1, Pl 0(20,r — 1) + 2920§T¢ (@ -1)f(9)
- u 2 ’

r r r
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A A

— + Az — =

0 4%

2@—7’—#9(28&7“—1)
r

Le-r + 0(20,r + 1) n o(o —1)0ur 0?0,

2r r2 r2 (Opr = 1)
_ 2092 2 2 _ 2 1
L) 0 | PR =00 26 g0
r 2r r r
_ _ _ _ 2
L ele T)(?u _o-rte=09,r)  ele=m)dr _ @*(20ur + 1)aur
2r2 & r r2 272 =
20(20,r — 1) k0*Q%g(9)?  0*(20ur — 1)1
r 272 72
2 2 2942 301 2002 _ 1)
(B PO £ ) | O 1)
r r r

r 2 2r

0(0pr — 1) ( 0 > N 0°(30°¢(9) + ¢°('(9))

1 — =0yr 5
T o T

r

)

_ 20,7 — 1 u
P (5 o+ )+ 2 (14 20,0+ Loyr) 4 22D (1 La,)
2r r T T r
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and

By = A+ 0As— Ag

e-ry. 292(037" - 1) (2= 1)f(9)

r2

20,1 — 1
8@_9( ,: )¢—

.
N (_Q—r+@(20uv°+1) N @(@—;)@m) 5
2r T

2 2 3 302 3
07040 0°0urd 07 (Our + 0ur)0ud  0°Q°f(P) | 0°0udOur
+2 ( gt o7 te st (8, — 1)

20%g 2(20,1 — 1)0,
54 0 2T2(¢)¢_@( _7;2 ) T

N ( )+ ng’ (¢) (e0ud +9) 293f(¢)8u7”> (@2 —1)

0(20 7‘—1)

r3

@(9

2
r) ( ai¢+ S+ a“T;aﬂrgaQw of2 fQ(‘b))
r 4r

+<Q—T—Q 7“—1)_9(9—?“)5@7“>¢

r2

Our
2 u
8Hq§ + —2’[“ ¢ + o0 u(b

. <2 (28u7° +1) 93(2%7“; 1)5@7“> Dut
r r
2
. <29(28£r —1)  wo*Q%g(¢)*  0*(20ur — 1)‘907"> (00u + ¢)

r 272 r2

2@+ 1) 0*(20, r+1) ( Our + Oyr @QZf(QS))

r2 r2 2r3 r2
_@2;r2¢+ 0(20 ;fragr)¢ ~ 20(0” ;3?“ 2)0pr
0°(9*C(0) + 6°C(9)d  20°¢°C($)I,r
2 3
+292(92 — 1) f(¢) +20°Q0u(Q) f(9) — *(Q* = 1) f"(¢)¢  20°(Q* — 1) f()Iyr

r2 r3

—r 2(20,r + 1
T T

_92¢3C(¢) . QQ(QQ . 1)@

r2 r2 -

20,7 — 1 —
%(gaﬁﬂ"ﬁ) - Tzr ¢

"UON(9)°P ke’ Vg(P)g (9)60ud | re*Pg(9)*¢0ur  20(er +0,10%) 031
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We rewrite By as follows

B, — Co—r 020 —1) o—r+0@20r+1) o(o—1)dur
v r r 2r r?

_0(20yr —1) k0*Q%g(9)? B 02(20,1 — 1)0y,r Le-r- 0(0pr — 1)
r 212 r2 r
o(0—1)0,r N 20(20,r — 1) K0*Q?g(0)? Q2(2ay’l“ —1)0,r
B B 2

r2 r 22 r
k03 02g(4)20,r  20(or + Oyro?)0ar
ur m
2r3 r2
_@ -t 0o2e—2r0yr) 20(0° —1*)0pr  0—1  0(20yr —1) o*—r?
2 2

r2 r r3 r r r
QQ&M(& - ole =) dur 0°(20ur +1) dur  0*(9%C(9) + ¢°C'(9))

or2 e r 2r r 2r 72
20°0%C(@)0pr 92¢2<(¢)] i

r3 r2

+2

+ _292(60T —1) + 2 <Q2 93(6u7‘ + ayr) Qsaur

& -1
r r + 212 + 7r2 >(6Qr )

_olo—r)Our + 327“@ N 0%(20,7 + 1) Oyr + Oyr ot 20%(20,r + 1) 0*(20,7 + 1)0,r

r 2r r 2r r 72
n <29(28u7” -1 k0*Q%g(¢)° _ 0*(20ur — 1)897°> 0— k0*Q%g(9)g' (¢)¢ B 0°(20ur +1)

r 272 r2

20,1 — 1 — 2(20,7 + 1
0(20y )Q o(o 7")QJFQ( r+1)

Oud +

0| 020

Pf(9) | —0°f(9) +*f(¢) (00up +¢)  20°f($)Dur

— -
2 r2 3

_l’_

20°f(¢) = °f'(9)p  20°f(9)pr QQM

r2 r3 r2

+ Q2 —1)

03Q0,0
2

3002 _ 2 2 2
QQ(ag 1)_9(9 r) o | ¢°(20ur +1) 02

9 " _
4r3 " r 4r2 r 4r2

+ F(@) + (2f(0) — rg()*9)

r
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and we finally obtain

2 _ _
B, = <_Z — G, — wagr _ ﬁ&ﬂ*) e—r <_ 00ur 1) 0(20yr — 1)
2 r r 2r — r r r
N <_3 N g@ur> 0(0pr — 1) N <_1 N 98u7“> 0(20,r + 1) N 593929(?20@?
r r 2 2r r 2r
20(er + 0ur@®)0ar 0*(26°C(¢) + ¢°C'(9))  20°¢%C(¢)0,r
+ r2 o r2 - r3 ¢
2 _
N <4+ 0(30,r —i—@ur)) 0°(0pr — 1)
r r
< 502(0— 1)  03(20,r + 1) 293(697’ — 1)> Our + Oyr
+{ - + — =
2r 2r r r
30)2 / 30)2 2 200 _ 3
Y g(;b)g (@)  ro’Q 927(¢) a4 | = 2 (e=r)  (20ur+1) 920
r 2r T =
200, 2 2f'(¢) 00,
+[<_ 0 7“_1> 0 f2(¢) L f((bgg ¢ 2 1)
r r r
_ole—r1) 0% 03(20,r — 1)0? B 5 . 0°00,0
|- gD L 16) + 21(9) - mel0)20) =
This concludes the proof of the lemma. O

Next, we derive upper bounds for By, By, B3 and Bjy.
Lemma 8.7. We have
’Bﬂ g € and ‘Bl‘ g CQ?“, ’BQ‘ g 007“35, ’Bg‘ g CQ?“, and ’B4’ g CQ?“35.

Remark 8.8. By and Bs behave betteE than Bs and By. This is due to the fact
that both By and Bs include neither 0,¢ nor 0,2 in their definition, so that we can
estimate them using Lemma[7.29 which has a 1/2—§ gain with respect to Corollary

[7.21,
Proof. In view of the definition of By and the Lemma [[2] we have

|B1| < e

~

Also, in view of Lemma [[.22] we have

lo— 7]
"

Cor.

< + |20, — 1
S

In view of the definition of By and Corollary [[.2T] we have

lo— 1]
T

[Ba| S el0pr —1][0ug| +

~

g 007“36.

|61 + [20ur — 1] 8] + 197 = 1] £()] + 0|05 ]|¢]

13The estimates for By and Bs correspond to the case 6 = 1/2, while we have § < 1/2 for Bs
and By.
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In view of the definition of B3 and Lemma [[.22] we have

—r

|Bs| < lo—r| +

,

< Cor.
Finally, in view of the definition of By, Corollary [[.2T] Lemma BI], Lemma

and Lemma R3] we have
lo—r|
By < z
Bl s (4 o - 3
(1] + 0l0ug| + 0*|059))
< Cor®.

This concludes the proof of the lemma. [

1
Our = 5| + |Our + 5| + |0l

)

Our —

1
+ |Oyr + 5' + g|8§r| + o2+ 9% — 1] + g@m)

8.3. An upper bound for v.
Lemma 8.9. We have

(T, 0)
— UO(Ta Q)
—otu —r+otu —otu —THot
o o (B o guy e B
+ v : + ;
Vo - 2 2 2

\/@
1 +°° -1L,N By(—1,)) 1
v [ (P B
S Lo Bi=LA) oy BeELY)
2@ e )< Y, SR ART )dA

+
+/ LJ(,u) (Ll(i’ A)v(a, )+ 732()\02’ A)> d\do

[ L) (P02, - B g

Bs(o, \) By(o, \)
+/Rﬁj('u)< 2 v(a,)\)—i—i)\g >d)\da,

where vy denotes the solution to the homogeneous equation with the same initial
conditions as v, p is given by

(1—0)?— 0> — N\
20\ '

M g
R is the space-time region given by
R={(o,\)/ —1<o<7 max(0,0—7+0) <A< p+7—0},

and J is given by

! dx
J () = > :
max(—p,—1) V1 —x%/pu+

Proof. We recall the representation formula derived in [9] for the solution v of

1
(—03 +02+ 589> v =h.
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v is given by (see [9] p. 1060)

v(T,0) = vo(T, 0) + /R %J (1)h(o, A)dAdo,

where
R={(o,\)/ —1<o<7 max(0,0—7+0) <A< po+7—0},
vg denotes the solution to the homogeneous equation with the same initial condi-
tions as v, u is given as before by
(r—0)?—0* =X\
20\ '
with an initialization at 7 = —1 and J is given by

M:

! dx
J(p) = > :
max(—p,—1) V1 —x*\/u+x

B, B\ Bs B
h:au<—1v+—§>+—§u+—§.
o 0 0 0

In our case, we have

Hence, we have

o(T,0) = wolr, 9)+/R\/7§J(u)8u (Bl(;’ N oo, 2) + BZ(;’ A)> dAdo

VA Bs(a,\) By(o, )
—i—/}l%%J(u)( 3)\2 U(U,)\)+ 4)\3 )d}\dO’
\/X Bl(O', )\) BQ(O-, >‘)

VA Bi(o,\) By(0, )
_/Ra“ <%J(u)> <fv(a,)\)+ 2 >d>\da

VA Bs(o, \) By(o, \)
+/R%J(,u) ( v(o, ) + 7) d\do

= UO(Ta Q)

A2 A3

— o)+ [ o (BN + 5N ) g0,

1 Bi(o,\) Bs(o, \)
gm0 (P vt + 252 ) v

_/R\/—X&“u J' (1) (Mv(a, A) + Ba(o, )\)> d\do

A A2
vV Bs(o, \) By(o, )
—i—/}%%t](ﬂ) < 3)\2 v(o, A) + 4)\3 > dAdor.

Next, we compute the boundary term. Recall that we have

fg(au’ VR)
OR

T+o T—0 T+o+1
_ /T Fr— Q,Q/)dg/—{—%/ F(0,0)do — l/0 F(—1, M)A,

Y o 2

and
p=—-lonu=71-—p.



Hence, we have

Bl BQ(U,)\)
A+ B} (OusVR)
aR \/_ < A
g’ —T+o+u’
3 ) (T—Q+U —T+g+g’> B2<
\/m 2 2
T+Q+1 \/X Bl( 1,\) Ba(—1,))

_Z Y2 2R A (=1 ’

2 ; Q 5y v(—1, ) 32 >d)\

Recall that

pot+ A

(3)\” =
0

We decompose and perform a change of variable

T+o+1 _ —
/0 5w (L( LA (o1, + 2L 1’)‘)>d>\

Ve A o
o [T (B BN e,
= f/+°<> ( iA) (_1’A)+BZ(A_3M)>/~691+ACW

THetl Bi(-1,\) By(—1,))
\/_/ T+1)2—Q ( \/X U( 17)\)+ )\% >d)\

which yields

VA Bi(o,\) Bsy(0, )
/8R ﬁ‘](u) ( U(U7 )‘) + > g(aw VR)

—otu —T+ot+u/ -
= v +
-

__f/+°° o (B2

-1,
VA

Totl 1(=1,)) Bo(—1,))

2f — J(u) <7v(—1,)\)+27> dA.
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Finally, we deduce

v(T,e)
- UO(Ta Q)
T—o+tu —T+o+u’ T—otu —T+o+u’

J&J)/”*Q Bl( 7 T 2 )U<T—Q+ﬂ! —T+Q+ﬂ!>+_32< 2 T 2
Ve Jro A/ 7_7‘@4‘“ <—T+g+g/) 2
2

——\/_/+OO ( )1\)\) (_LA)JFBQ(A—;,A)) L

2\/_ ’T+Q+1 7 (Bl(\/; )\)’U(—l,)\) n BQ(_l,)\)> X
\ (T+1)2—p?
/4\/_J( )(Bl(i’)\)v(a,)\)—kBQ(U’)\)>d)\da

_/ Y i )<Mv(a,x)+32&”2’”>dxda

/ (Bg(;, N o) + 34(;3 ) A)> d\do.

This concludes the proof of the lemma. O
Lemma 8.10. We have

(T, 0)] < Co+Cor*® t4e sup |v(T— o0+ AN
0<A<o

vlo 39
+o [ 20000+ =117 (252 4 55 ) i

where the constant Cy only depends on initial data.
Proof. Recall that
v(7, 0)

= o (Ta Q)
T—otu —T+otu

_|_

l/”ﬂ Bl( 2 T 2 ) (T—Q+QI—T+Q+Q>_+32<2_’ 2
v
— / fTJrngu %

__\f/“o ( —1,)) (_LAHBQ(—L,\)) 1 ”

VA 2\ po + A
THetl 1(—1 A)U B By(—1,))
2\f W‘”’”( TN >dA

/4\/_J( )<B1(§’>\)U(J,)\)+Bz(;’)\)>d)\da
/—a J' (i (Bl(i’A)v(a,)\)—i—Bz(}\i’A)>d)\da

Bs(o, \) By(o, \)
+/R%J(,u)< (o)) + 0 >d>\do—.
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Noticing that J(u) > 0 for all 4 > —1, this yields

v(r, 0
< ;vi( z)’)H dG 1)/ (Bl(T _\/Q;A N yir— o+ a0 + 20 _;’; )\’)\)>d)\
2
(iglg Bi-LY (—1,A)+¥>>/0 J(p)dp
(ililo) Bi(=1,}) (_1,A)+w>> ;OO VAT (1)dp
7 (:3,&# ) (s (A2 + BER ) s Vo)
/ WAL ( (: N (o, 0) + BQ(;’ M) d\do
_/ g ' (1) (MU(U, A) + BQ(;’ M) d\do
/ (B 3(; A B“(;; M) d\do.

We have the following properties for J (see for example [9] p. 1061):

T
J(—1)=—=, sup J(p) <1, JeLY0,2).
(1)=T5 s IS ©0.2)

Also, we have

sup V() S 1

2<pu<+o00
and since
N2 2 2
i = (T—0)"—p°— A Sl
20 0
we infer
400 —+o00 )\
VAT ()dp S / Zdp
2 2 2
: 1
< * __ds
<
c L
N{

Moreover, we have

{(Vo+1)? - <A<t4+o+1}n{o=-1} ={-1<p<0}n{o=—-1}.
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We deduce
lv(T, 0)]

oo, @)] + sup <|Bl<f—@+A,A>||v<T—9+A,A>|+
0<X<p

Bi(-1.) 1)
+f<sg0( 1+ 2 ))

By(~1,\ Ba(
tsup (Mw—w 1B )
1
3
2

N

| Ba(r — @+A,A)|>
A

A>0 A2
N / QM (\Bma, A)\;\ng, M (o) + 22 A>r;rB4<a, w) e
[ o (2 o+ ALY

Assuming enough regularity on the initial data, we have

By(~1,A By(—~1, A
sup uo(r. o) + sup (’1&73)‘|v<—1,x>|+7‘ 2&5 )‘)
2 2

0>0
(1) B>(1 )
(L + 2
< CO7

where the constant Cjy only depends on initial data. Hence, together with Lemma

[C16] we deduce

[v(7, 0)|
Ba(t— o0+ A\ A
< Co+ sup OBNT—Q+%ANMT—Q+%AN+‘QH . ”>
0<A<p A
VA [Bi(o,A)| + |Bs(a,A)] [B2(0,A)| + |Ba(o, A)|
+ [ L2060+ la= 117G : oo )]+ pa ) dnae
Together with Lemma B, we infer
lo(r,0)] S Co+Cor® ' +e sup |v(r — o+ AN
0< <o
)\)‘ )\35
C — 1)) [vlo, 2_) drdo.
v [ Y20+ - uon (M52 4 37 ) anae
This concludes the proof of the lemma. [

Lemma 8.11. We have for all p > —1
= 1T ()] < T (w).
Proof. For —1 < pu < 1, we have (see for example [9] p. 1087)
\/de
1+u(/ 1+2)2/ntz
We see in particular that J'(u) > 0 for —1 < p < 1, and hence
J(p)>J(=1)on —1<pu<l.

J' () =



Since we have

we deduce
Jp)Zzlon —1<pu<l.
Also, we have for all ;1 > 1 (see for example [9] p. 1061)
= 1| ()] S 1.
We infer
=1 ()] < () on =1 < p <L
Next, we consider the case y > 1, Then, we have

== | s
2/ \/1—x2(,u+x)%.
We infer
! | —1|d
p— 1ldw
=1 (W] = 5
-1V1—2%(p+x)2
1

x
< /_1 VI—22/u+x
S Jw).
This concludes the proof of the lemma.
We deduce the following corollary.
Corollary 8.12. We have

lu(r,0)] < Co+Cor® L+ sup |o(r —o+ AN |+00/
0<X<p

where the constant Cy only depends on initial data.

The following proposition is the core of this section.

Proposition 8.13. We have
|U| < CO’
where Cy is a constant only depending on initial data.

Proof. We choose ¢ such that

1 1

- <0< =

3 2
Let

w:935—1_

Then, w satisfies
1
<—a$+a§+gag> = (30 — 1)2g%73,

and hence
)\36

@ = wo(T,0) + (30 — 1) /R %J(u)ﬁd)\da,

o ("

(@M

79

where wg denotes the solution to the homogeneous wave equation with the same

initial conditions as w. This yields

/ \/_ d)\d

0"+ |wo(r, 0)| S

1,

)\36

> dXdo.
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where we used the fact that § > 1/3 and 0 < p < 1.
Recall that

|U(T,Q)| 5 CO+COT35 1—|—5 sup |/U(7—_Q_|_)\ )\ |_|_CO/ ( ag, )\)|
0<A<p \/— A
We infer
lv(r,0)] < Co+e sup ‘U(T—Q+)\)\‘+CO/ )\)|d)\d
0<A<p \/_ by

where we used again the fact that 6 > 1/3 and 0 < p < 1.
We introduce the notation

B(u) = sup |v(u,u)l|.
u<u<0

We obtain

u

w(wu)| < Co+eBlu) + Co / BBl )

Bu,u,) = [ %%J(M%d@

Next, we compute ®. We have

where @ is given by

, oo /X 11
D(u,u,w) = . ﬁﬂ#)x@d#
Since
A=(r=0) =) = 5((r =0)> = 0* = \?)
Oupp =
= 20)\2
_ M=) =N —5((r—0)? -0 = W)
202
0 —(T—0o+))
B 4o)\?
o> — (r—u)?
- 4o)\2 ’
we infer
+oo
O(u,u,u’) = G i@_ . J(p)A2dp
Also, we have
o=u+ A
and hence
(1—u' —N?2=02 =X  (1—u)?—=2\1 —u) — ¢?
o= 20\ - 20\ ’
which yields
- (7_ _ u/)2 _ 92
S 20optT )

Hence, we obtain

+o0
d(u,u, ') = V20 (1 — ) / dp.

3
2

QM+T—U)

)\36
)\3

) dMdo.
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Using the formula for J(u) and Fubini, we infer

3
Vi t+a(op+1—u)2

400 d /
= V2 @\/(T—U’)Z—@Q/ 7/ 3 :
ve avVi-a?Jo (o — ox 4 — )3
We have
“+o00 d,u’ 1 /+OO d,u”
0 Villow —er+T—w)i  Veer+tT—w)Jo e + 1)
1
S
Vo(—ox +1 —u)
We deduce

dx
D (u,u,u') V(T =) —g/ A—
We have for z >0
—ox+T1—u < or+T—u

and hence

dz B 0 dz +/1 dz
aVI=22(—oz+7—v)  JaVI—22(—ox+71—-v) Jo VI—a22(—oz+T—)

B /1 dx +/1 dz
o VI—22(ez+T— ) 0 V1—a22(—px+71—1)

/1 dx
< 2 .
0 V1—22(—ozr+71—1)

This yields

O(u,u,u’) < (r—)

A
\]
|
S
|
FQ
\

I—2(—ox+7—0)

Changing variables, we obtain

O(u,u,u') < V(T —u) /

(ww,w) Vy(oy Q+T u’)
- (1 —u)2— g2 [To° dz
S Vet VAGEAD
<1

Coming back to v, we obtain
u
lo(u,u)] < Co+eB(u) —|—Co/ B(u)du'
)
Taking the supremum in u for u < u < 0 yields

Bu) < Co+eB(u)+Cyh /z B(u)du'
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For e small enough, this implies
Bu) < Co+ Co/ Bu)du’
-2

Using Gronwall’s Lemma, we infer

Bu) < Co,
and hence
lv| < Co.
This concludes the proof of the proposition. O

8.4. Consequences of Proposition .13l
Lemma 8.14. We have

9] < rCo and |0u¢| + [0u9| < Co
where the constant Cy only depends on initial data.

Proof. We first derive a refined upper bound for ¢. Recall that

1

9p(09) = 00,0 + ¢ = ov

This yields

and hence .
o(r.0) = [ elr.ndr
0
We infer
14
dotrol S [ A(raa
0
< Co/ AdA
0
< Coo?
and hence
19| < Coo.

The above upper bound for ¢ together with the upper bound for v and the
definition of v implies

1
00| < Jv] + EW S Co.
Next, we derive an upper bound for d,¢. Recall that = = r0,¢ satisfies

E 0 f(¢)
o (=) = ——La,ra,6 — 2L
_<\/F> 2yr " i 4r2

We integrate between (u,u) and (u,u). We deduce

Swey) _ Bww)  E 1 T u,0)do — QQQJC(@UU o
T(u,g) N T(u,u) u 2\/‘8 au ( ) )d A 4T% ( s )d
=(u,u)

- 7(u, u) [2\/_8 réf U)r /uu 2\/_8 uurdle, 7)do

_ /u —5 O0urOyr(u, o)do /_ QQfggb) (u,0)do.
u 47“2 u 4r2




83

In view of the definition of Z and since (u,u) is on the axis of symmetry, we infer
o L ()
Vit = —|gturswo)] + [l
w1 u ()2
—/ —5 0yrOyr(u, 0)do —/ fgfb) (u,0)do.
w 4rz u 472
Using again the fact that (u,u) is on the axis of symmetry, we deduce
| (u, u)| /“ |¢(u, o)
ru,u 8u U, S + dO'.
Vil 5 S [T

Using the above upper bound for ¢, we infer

Vil wlo s ] S Covruum+Co [ —rdo
u T
< Covr(u,w).
Thus, we obtain
0ud(u,u)] S Co.

Together with the upper bound for 9,¢, we also obtain

|0u¢| < 10,0] + [0ug| < Co-
This concludes the proof of the lemma. O
Lemma 8.15. We have

Our + %' + |Our — %‘ + 19 — 1] < Cye?,

where the constant Cy only depends on initial data.

Proof. Integrating
0 g(¢)?

OuOur = ’I“I{I =
from the axis along u of u together with the upper bound on ¢ of Lemma R.14]

yields

2 2

1
Gur—i-—‘—i-

1
8@7' — —‘ S C()QQ.

Together with
0u(720,7) = —Q %rk(0,0)*

which we integrate from the axis along wu yields in view of Lemma [8.14
1
‘Q—Zay« — 5‘ < Coo?

and hence
1Q — 1] < Coo®.
This concludes the proof of the lemma. O

9. SMALL ENERGY IMPLIES GLOBAL EXISTENCE

In this section, we conclude the proof of Theorem
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9.1. A wave equation for ¢/p. We first derive a wave equation for ¢/p.

Lemma 9.1. We introduce

w=—.
o
Then, we have
3 1 1 2

—0%w + 831&1 + E(%w = <§22 — 14 0ur + 3~ ((927“ - 5)) % + QQ%UJ?’C(QU))-
Proof. We have

Og¢ D%Dgo Ugo | D%0Dgo
Ogw = ; —2 92“ +¢<— ;2 +2 93“

D O D%oD
reo 0 0 0 Y

2
D 0
= Y2 3¢(ow) — 2722 (Dow + LD ) 4w [ 82 42
2 2
r2 oy 0 0 0 0
2

2 o w oo
= —EDaQD w+ (1 — o0g0) ? + ﬁwgg(gw)
2 1 2
= ﬁ(—agw + Jyw) + <1 + m(@w — 8u7")> % + %w?’g(gw).

In view of Lemma [.3] we infer

3 1 1\ w 0
—48u8@w + E(agw - 8uw) = <Q2 —1+0ur+ 5 - <8u7“ - §>> ? + QQﬁwgc(gw)'
We deduce
3 1 1\ w 0
—02w + Dow + Eagw = <92 —1+0ur+g - <3u7° - 5)) 27 Qpr?’C(Qw)-
This concludes the proof of the lemma. O

Remark 9.2. In this paper, we first obtain improved uniform bounds for ¢ and
then use the wave equation for w to obtain reqularity, following the approach of [30]
and [9] for the 2+1 wave map problem. Note that we can not use a more direct
approach based on Strichartz estimates for the wave equation for w as in [28] for
the 2+1 wave map problem. Indeed, this approach does not allow to deal with the
following terms in the right-hand side of the equation for w

02 -1 Our+3 Our — %

7 W 2 2

© 0 ©
9.2. Embeddings for radial functions on R*. Note that the right-hand side
of the wave equation for w in Lemma is the 4-dimensional wave radial wave

operator. Therefore, we will control w in radial Sobolev spaces in 4 dimension.
Furthermore, we only need to control w in the causal region

w and

w.

(-1<7<0, 0< o<},

Thus, for any —1 < 7 < 0, we introduce

2 ‘T| 2 3 0
L. = {1/1/ /0 (¥(0)) 0 do < }
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Recall the Hardy estimate
I7| 2
4
| e < 1w

We will also use the following non sharp embedding.

Lemma 9.3. We have

5
sup o4 [y < 19" rz -
0<osr| ’

Proof. We have

i) = /Q( ETZJ( ))'d
1 o1p(0)) do
0 o o

e 5 | 5 (¢ .
= /OO' Q,Z)(U)da—|—4/0 c4p(o)do.

Since ¢ < |7| < 1, we infer

I7| I7|
3 5 1
Al 5 [ oot [ ool
i : i :
1 T T w 0 2
S GE </ (w’(@))za?’d@) + (/ ( (2)) 93d9>
0 0 0
< W,
where we used in the last inequality the Hardy inequality and the fact that |7| < 1.
This concludes the proof of the lemma. [

9.3. Proof of Theorem We are now ready to prove Theorem Recall
that

_ ¢
w = —
o
satisfies the following wave equation
3
— 0%w + 3311) + Eagw = h, (9.1)

where h is given by

1 1 2
h = <QQ—1—|—8UT+§—<8ur——>>%+92%w3g(gw).

- 2
For ¢ € N, we introduce the following notations

Dy(7) := max sup LS 0° <6u7“ + 1)' + [0¢ (azﬂ“ - 1)‘ +10* (@ —=1)| |(r,0) ]
lal=Co<osir| \ o1 2 o2

Ey(7) := max ||(9°‘w||Lg’T,

|a|=¢
1
min(w,27—u) 2
Fy(7) := max sup / 10%w|? 03 (v, w)du/
lor|=¢ —1<u<0 \J—2-4

min(0,27—u) %
+ sup |0%w|* 0 (u, v )du/ ,

—2<u<0 max(u,—2—u)
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and

Dey(7) = f?ngj(T)a E<y(r) = f?ngj(T% Fey(r) := I?S}F}'(T)-

Lemma 9.4. Let —1 <7 < 0 and £ € N*. Then, we have the following estimate
for h

max [0%h(7, )|z, S 9 (Co+ D<p—1(7) + E<(7)) (1 + Dy(7) + Eppa(7)) ,

where the constant Cy only depends on initial data and where the function 9 can be
chosen to be continuous and increasing.

We postpone the proof of Lemma to section Next, let
lN)g(T) = sup Dy(7'), Eg(’r) = sup Ey(7), ﬁg(T) = sup Fy(7'),

—1<7'<7 —1<7'<7r —1<7'<7
and

5§g(7) = 1s<uI/)< Dgg(T/), Egg(T) = 1s<u[/)< ESg(T,), ﬁgg(T) = 1s<uI/)< Fg(r').

Lemma immediately implies the following corollary.

Corollary 9.5. Let —1 <7 <0 and £ € N*. Then, we have the following estimate
for h

max Ssup Haﬂéh(T’7 )HL,% . g ) <CO + 5§371(T) + Egg(T)) <1 + 5@(7’) + Engl(T)) s

lo|=f —1<7/<7
where the constant Cy only depends on initial data and where the function 9 can be
chosen to be continuous and increasing.

Next, we derive an estimate for Dy.

Lemma 9.6. Let —1 <7 <0 and let £ € N. We have the following estimate
Du(r) $9 (Co+ Dera(7) + Bael(r) + Fer(n)) (14 Eepa(r) + Fraa (7))

where the constant Cy only depends on initial data and where the function ¥ can be
chosen to be continuous and increasing.

We postpone the proof of Lemma to section In view of Lemma RISl we
have

sup Dyo(7) < Co.
—1<7<0

By iteration, we infer from Lemma [0.6] that for all £ € N, we have
Du(r) 59 (Co+ Bxelr) + Fea(m)) (14 Bua(7) + Fria (7))
Together with Corollary @5 we obtain

max sup [0°h(7', )|z, S0 (Co+ Exi(r) + Fee(r)) (14 B (7) + Fea (7))
lal=¢ 1</ <7 !

Together with the energy estimate for the wave equation (@.I]) and Gronwall Lemma,
we deduce by iteration for all £ € N

sup (Dyg(7) + Epy1(7) + Friq(1)) < Cp < 400.
—1<7<0

We have thus obtained the regularity of (M, g, ¢) at the origin (7, ¢) = (0,0). This
concludes the proof of Theorem
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9.4. Proof of Lemma We have

02 —140ur+ 3 — (Our — 3
O%h = ( + T+22 ( ul” 2)) 5%
Y

Q=140 +3— (Our — 3
+ > 65< ! -2 (Our — 3) Mw
Brty=a,B£04£0 e

02— 140ur+ 35— (Our — 3 2
+0“< Hortg - 2)>w+a“<92>%w3<<gw>

v (L) w0 0@ () otwclon)

BHy+p=a,u#0

In view of Lemma B.14], w satisfies the following a priori bound
lw| < Co

where the constant Cy only depends on initial data. Together with Lemma B3]
we infer

9°h < Colotwl+ Y. o TNy (1)|07w| + Co~ I Dy(7)

B+y=a,B87#0,7#0
+CoDe(7) + Co(I(D<p-1(7)) + De(7))

+9(Co + Deypr (7) + E<e(7)) | 1+ > [0°w|
18I=¢

S o ID (e i sup (08~ HPoTw)
Bty=0,B70,7740 0<e<|r|

+0740 (Co + Dega (7) + Bee(r)) (L4 De(r) + Eppa (7))

_7
E 0 2Dy (7)Epya (1)
B+y=a,B8#0,7#0

+0729 (Co + Dep—1(7) + E<e(7)) (1 + Dy(r) + Egy1(7)) .

Note that the sum over §+ v = «, 5 # 0,7 # 0 is empty unless £ > 2. We infer

A

N

%8 < 0739 (Co+ Degr(r) + E<e(r)) (1 + Do(7) + Epya (7))
We infer
[0%h(7, )z, < 9(Co+ Dep1(7) + E<e(7)) (1 4 Dy(7) + Epga(7))

where we used the fact that

/0|T <Q*%)293d9 < /01 do = 1.

This yields

max [0%h(7, )2, S U(Co+ Dep—1(7) + E<p(7)) (L + De(7) + Ep11(7)) »

|al

which concludes the proof of Lemma
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9.5. Proof of Lemma Recall that ) satisfies

2

and hence

1 02 w)?
Oudu10g(2) = — 7 0u(ow)du(ow) — gig(fa) -

Differentiating « times, we infer

0,0,(0% 1og()] < 9 (Co + Deg1() + Bee() (gi

+ (00 + |0%w| + g|8°‘+1w|> .
We integrate once to obtain

~ _ u 1
|8H8a log(Q)| S ¥ (Co + Dsg_l(T) + Egg(T)) </ <_§ + |8aQ| + |aaw| + Q|8a+1w|> du/>
*272 94

< W (co + Deyr(7) + ESZ(T))

x ( [ el + 1+ Beao) + Featr) [ di)

—2—u —2—u QZ

< 19(00+5§Z,1(T)+Eg(7)) (/z \aamdu/+il(1+ﬁg+1(7)+E+1(7))>.
— _Q Q4

We then integrate a second time, and obtain in view of Gronwall lemma and

r

< (Co + Dey_1(7) + ESZ(T)) (1+ Err1 (1) + Fopa (7).

lw

So

Rl &

that
0% log(2)]
0i
Hence, this yields in view of the L* control for {2 — 1 obtained in Lemma

0% —1
W  l@-)
—1<7/<7, 0<p<| 7’| 0

(7',0) <V (Co+ D<p1(7) + E<e(7)) (1 + Epy1 (1) + Fpya (7).

]

Next, recall that r satisfies

02 g()?

aﬁﬁur == THZ 2

2 g(ow)’
4 2 7

Differentiating « times, we infer

1 ~
0y, 0% <8ur + 5) ‘ N (CO + Dy (7) + Byt < + 0% Q-1+ Q‘3a¢‘>

o
>J>\>—‘| =

1

1
1

S 9(Co+ Dara(r) + B<e(r)) = (1 + Eeya (7) + Fraa (7)),

s}
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where we used in particular the estimate obtained previously for 2. Integrating,
we get

~

1 - - - - v du
o (aur - 5) ('.0) 5 9 (Co+ Dera(r) + Baal)) (14 Bens(r) + Fen(r)) [ 5
u P4
< 040 (Co+ Derr(7) + Ber(r)) (L4 Bea(7) + Fean (7))
and hence
0% (Oyr + )| (7, ~ - - _
wp L rEI)9 o (Co+ Deer(r) + E<e(r)) (1 + By (7) + Foan (7).
—1<7/ <7, 0<o<| 7| 04

Finally, recall that r satisfies
0u(720,r) = —Q rk(0,0)
= —Q_Zrm(ag(rw))?

Differentiating « times, we infer

0 0™ (Q—Qaur - %)

~ ~ 1

< 9(Co+ Degr() + Belr) (—; £10°(Q )] + glo" ] + @2|aa“¢|>
94

~ ~ 1 ~ ~
S v (Co + D<e—1(7) + Egz(T)) <—;(1 + E1 (1) + Foa (7)) + Q2|3a+1¢|> ;

94

where we used in particular the estimate obtained previously for 2. Integrating,

we get

o <Q28ur ~ %)' S 9 (Co+Deea(r) + Bx(r))

- - u d / u
X <(1 B (r) + Fo(r) | &+ / Q28a+1wdg'>
u 04 u

A

9 (Co+ Derr(7) + Bxa(r))

X <9%(1 + EZ+1(T) + EH(T)) + EH(T) </u ngl> §>

N

3 ~ ~ ~ ~
019 (Co+ Der1(r) + Bea(r) ) (L4 Eeir (1) + Fea (1)
and hence
o (Q20,r — L !
sup 0 ( ,7“3 3)| (7. 0)
—1<7/ <7, 0< <7/ oz
S 9 (Co+ Deea(7) + Belm)) (1 + Eeia (7) + Foaa (7).
Together with the estimate for 2 — 1, we infer
0% (Oyr — & "
v Bl

—1<7/ <7, 0< <] 7| 0
S 9 (Co+ Derr(7) + Bxe(r)) (1 + Beya(7) + Foya (7).
This concludes the proof of Lemma

w100
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