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A NEW TENSORIAL CONSERVATION LAW FOR MAXWELL

FIELDS ON THE KERR BACKGROUND

LARS ANDERSSON, THOMAS BÄCKDAHL, AND PIETER BLUE

Abstract. A new, conserved, symmetric tensor field for a source-free Maxwell
test field on a four-dimensional spacetime with a conformal Killing-Yano ten-
sor, satisfying a certain compatibility condition, is introduced. In particular,
this construction works for the Kerr spacetime.

1. Introduction

In this paper, we consider the Maxwell equation for a real 2-form Fab = F[ab],

∇aFab = 0, ∇a∗Fab = 0, (1.1)

on a four-dimensional Lorentzian manifold (M, gab). Recall that a conformal Killing-
Yano tensor is real a 2-form Yab = Y[ab] satisfying

∇(aYb)c = − 1
3gab∇dYc

d + 1
3g(a|c|∇

dYb)d. (1.2)

Associated with Yab is the complex 1-form

ξa = 1
3 i∇bYa

b − 1
3∇b∗Ya

b. (1.3)

We say that Yab satisfies the aligned matter condition if the Ricci curvature and
Yab satisfy

R(a
cYb)c = 0, R(a

c∗Yb)c = 0. (1.4)

Theorem 1.1. Let Yab and Fab be real 2-forms. Define the real 2-form Zab and

the complex 1-form ηa by

Zab = − 4
3 (∗F )[a

cYb]c, (1.5)

ηa = − 1
2∇bZa

b − 1
2 i∇b∗Za

b, (1.6)

and the real symmetric 2-tensor Vab by

Vab = η(aη̄b) −
1
2gabη

cη̄c −
1
3 (LReξF )(a

cZb)c +
1
12gab(LReξF )cdZcd

+ 1
3 (LImξ∗F )(a

cZb)c −
1
12gab(LImξ∗F )cdZcd, (1.7)

where ξa is given by equation (1.3) and η̄a denotes the complex conjugate of ηa.

If Yab is a conformal Killing-Yano tensor satisfying the aligned matter condi-

tion (1.4) and Fab satisfies the Maxwell equations (1.1), then Vab has vanishing

divergence, ∇aVab = 0.

Remark 1.2. 1. The vector field ξa is Killing, ∇(aξb) = 0, if the aligned matter

condition (1.4) holds, cf. equation (2.9) below. If ∇aYab = 0 then Yab is a

Killing-Yano tensor, in which case ξa is real, and the last two terms of (1.7)
vanish.

2. The Kerr family of stationary, rotating vacuum black hole metrics admit a

Killing-Yano tensor. More generally, the Kerr-Newman family of station-

ary, rotating electro-vacuum black hole metrics admit a Killing-Yano tensor

satisfying the aligned matter condition. See section 3 for further discussion.
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Let

Tab = −Fa
cFbc +

1
4gabFcdF

cd

be the symmetric energy-momentum tensor for the Maxwell field. It is traceless
and satisfies the dominant energy condition, i.e. Tabµ

aνb ≥ 0 for any future causal
vectors µa, νb. Further, if Fab satisfies the Maxwell equations, Tab is conserved,
∇aTab = 0. Hence, the current

Ja = Tabν
b (1.8)

is conserved, ∇aJa = 0, if νa is a conformal Killing field, ∇(aνb) −
1
4∇cν

cgab = 0.
For the Maxwell field on Minkowski space, and more generally on spacetimes

admitting conformal Killing-Yano tensors satisfying the aligned matter condition,
there are non-classical conserved currents not equivalent1 to any of the classical con-
served energy-momentum currents of the form (1.8), see [1] and references therein.
For the Maxwell field on Minkowski space, these include chiral currents constructed
using the 20-dimensional family of conformal Killing-Yano tensors of Minkowski
space. As shown by the authors [2], analogous conserved currents exist also on
spacetimes with conformal Killing-Yano tensors satisfying the aligned matter con-
dition.

In spite of the large literature on conformal Killing-Yano tensors, and the related
conservation laws, the tensorial conservation law exhibited in Theorem 1.1 appears
to be new, even in the Minkowski case. The fact that the new higher order tensor
concomitant Vab is conserved also in the case of the Kerr and Kerr-Newman space-
times makes it interesting from the point of view of the black hole stability problem,
which in fact served as an important motivation for the investigation which led to
its discovery. See section 3 below for further remarks.

At this point, we should mention that the symmetric tensor

Bab = ∇dFbc∇
dFa

c − 1
4gab∇fFcd∇

fF cd

which arises as a trace of the 4-index Chevreton tensor, was shown by Bergqvist et
al. [6] to be traceless and conserved for a Maxwell field on a Ricci flat spacetime.
Like the conserved tensor Vab introduced in this paper, the tensor Bab introduced
by Bergqvist et al. depends on the Fab and its first derivatives. However, while
Bab is traceless and fails to satisfy any positivity condition, the new tensor Vab has
trace V a

a = −ηaη̄a and satisfies a weak form of the dominant energy condition
in the sense the its leading order term, η(aη̄b) −

1
2gabη

cη̄c which is quadratic in
first derivatives of Fab, is a superenergy tensor for ηa and hence does satisfy the
dominant energy condition. Hence, energies can be constructed in terms of Vab

which are non-negative up to terms of lower order.
The proof of Theorem 1.1, which will be given in the next section, makes use

of computations in the 2-spinor formalism. In the investigations leading to the
main result, the SymManipulator package [5], developed by one of the authors
(T.B.) for the Mathematica based symbolic differential geometry suite xAct [7],
has played an essential role. SymManipulator makes it possible to systematically
exploit decompositions in terms of irreducible representations of the spin group
SL(2,C), and allows one to carry out investigations that are not feasible by hand.

In section 3, we show how the main result applies for the Kerr-Newman fam-
ily of electro-vacuum spacetimes, and indicate its relation to the Teukolsky and
Teukolsky-Starobinsky equations.

1A conserved current Ja is a 1-form concomitant of the Maxwell field, satisfying ∇aJa = 0.
We say that Ja is equivalent to J̃a if Ja − J̃a = ∇bCab for some 2-form Cab = C[ab].
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2. Proof of theorem 1.1

For the remainder of this paper, we will make use of the 2-spinor formalism,
following the conventions of [8]. Since our considerations are local, we can assume
without loss of generality that (M, gab) is oriented and globally hyperbolic. This
also implies that M is spin.

The spin group is SL(2,C) which has the inequivalent spinor representations C2

and C̄2. Unprimed upper case latin indices and their primed versions are used
for sections of the corresponding spinor bundles, respectively. The correspondence
between spinors and tensors makes it possible to translate all tensor expressions
to spinor form. The action of SL(2,C) on C2 leaves invariant the spin metric
ǫAB = ǫ[AB], which is used to raise and lower indices on tensors. The metric gab is
related to ǫAB by gab = ǫAB ǭA′B′ . Let Sk,l denote the space of symmetric spinors
with k unprimed indices and l primed indices.

There are symmetric spinors κAB, φAB, and ΘAB such that

Yab =
3
2 i(ǭA′B′κAB − ǫABκ̄A′B′),

Fab = ǭA′B′φAB + ǫABφ̄A′B′ ,

Zab = ǭA′B′ΘAB + ǫABΘA′B′ .

The normalization of Yab is chosen for convenience. Equations (1.1)-(1.7) become
respectively

∇A
A′φAB = 0, (2.1)

∇(A|A′|κBC) = 0, (2.2)

ξAA′ = ∇B
A′κAB, (2.3)

Φ(A
C
|A′B′|κB)C = 0. (2.4)

ΘAB = −2κ(A
CφB)C , (2.5)

ηAA′ = ∇B
A′ΘAB. (2.6)

and

VABA′B′ = 1
2ηAB′ η̄A′B + 1

2ηBA′ η̄B′A + 1
3ΘAB(L̂ξ̄φ̄)A′B′ + 1

3 Θ̄A′B′(L̂ξφ)AB , (2.7)

where L̂ξ is a conformally weighted Lie derivative on spinors, see equation (2.10)
below.

The projection of the spinor covariant derivative ∇AA′ on symmetric spinors
(which form the irreducible representations of the spin group SL(2,C)) gives the
following fundamental operators.

Definition 2.1 ([4, Definition 13]). Let the differential operators Dk,l : Sk,l →

Sk−1,l−1, Ck,l : Sk,l → Sk+1,l−1, C
†
k,l : Sk,l → Sk−1,l+1, and Tk,l : Sk,l → Sk+1,l+1

be defined by

(Dk,lϕ)A1...Ak−1

A′

1...A
′

l−1 = ∇BB′

ϕA1...Ak−1B
A′

1...A
′

l−1
B′ ,

(Ck,lϕ)A1...Ak+1

A′

1...A
′

l−1 = ∇(A1

B′

ϕA2...Ak+1)
A′

1...A
′

l−1B′ ,

(C †
k,lϕ)A1...Ak−1

A′

1...A
′

l+1 = ∇B(A′

1ϕA1...Ak−1B
A′

2...A
′

l+1),

(Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1 = ∇(A1

(A′

1ϕA2...Ak+1)
A′

2...A
′

l+1).

The operators are called respectively the divergence, curl, curl-dagger, and twistor

operators.

With respect to complex conjugation, the operators D ,T satisfy Dk,l = Dl,k,

Tk,l = Tl,k, while Ck,l = C
†
l,k, C

†
k,l = Cl,k. In the following, we shall use the
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fundamental operators and their properties freely. Any covariant expression in
spinors and their covariant derivatives can be written in terms of the fundamental
operators using the following Lemma.

Lemma 2.2 ([4, Lemma 15]). For any ϕA1...Ak

A′

1...A
′

l ∈ Sk,l, we have the irreducible

decomposition

∇A1

A′

1ϕA2...Ak+1

A′

2...A
′

l+1 = (Tk,lϕ)A1...Ak+1

A′

1...A
′

l+1

− l
l+1 ǭ

A′

1(A
′

2(Ck,lϕ)A1...Ak+1

A′

3...A
′

l+1)

− k
k+1 ǫA1(A2

(C †
k,lϕ)A3...Ak+1)

A′

1...A
′

l+1

+ kl
(k+1)(l+1) ǫA1(A2

ǭA
′

1(A
′

2(Dk,lϕ)A3...Ak+1)
A′

3...A
′

l+1).

For example, the Maxwell equation and the Killing spinor equations take the
form

(C †
2,0φ)AA′ = 0,

and
(T2,0κ)ABCA′ = 0

respectively, in terms of the fundamental operators.
In the computations below we shall need some commutator relations satisfied

by the fundamental operators, see [4, Lemma 18]. The following lemma gives the
commutators which are relevant here.

Lemma 2.3. Let ϕAB ∈ S2,0. The operators D , C , C † and T satisfies the follow-

ing commutator relations

(D1,1C
†
2,0ϕ) = 0, (2.8a)

(C3,1T2,0ϕ)ABCD = 2Ψ(ABC
FϕD)F , (2.8b)

(C †
3,1T2,0ϕ)ABA′B′ = 2

3 (T1,1C
†
2,0ϕ)ABA′B′ + 2Φ(A

C
|A′B′|ϕB)C , (2.8c)

(D3,1T2,0ϕ)AB = − 4
3 (C1,1C

†
2,0ϕ)AB − 8ΛϕAB + 2ΨABCDϕ

CD. (2.8d)

Directly from the Killing spinor equation and the commutators (2.8a) and (2.8d)
we get

(D1,1ξ) = 0, (2.9a)

(T1,1ξ)ABA′B′ = − 3Φ(A
C
|A′B′|κB)C . (2.9b)

Hence, if the aligned matter condition is satisfied, ξAA′

is a Killing vector.
Given a conformal Killing vector ξAA′

, we define a conformally weighted Lie
derivative acting on a symmetric valence (2s, 0) spinor field by [4, Definition 17]

L̂ξϕA1...A2s
= ξBB′

∇BB′ϕA1...A2s
+ sϕB(A2...A2s

∇A1)B′ξBB′

+ 1−s
4 ϕA1...A2s

∇CC′

ξCC′ . (2.10)

We shall now prove an auxiliary result on the derivatives of ηAA′ , which will
allow us to prove our main result.

Lemma 2.4. Let κAB ∈ S2,0 satisfy the Killing spinor equation (2.2) and the

aligned matter condition (2.4), and let ξAA′ be given by (2.3). If φAB ∈ S2,0

satisfies the Maxwell equation (2.1) and ηAA′ is given by (2.6), then

(D1,1η) = 0, (2.11a)

(C1,1η)AB = 2
3 (L̂ξφ)AB , (2.11b)

(C †
1,1η)A′B′ = 0, (2.11c)

ηAA′ξAA′

= κAB(L̂ξφ)AB . (2.11d)
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Proof. Using the definition of the Lie derivative, the Maxwell equation and that
ξAA′

is a Killing vector we get

(L̂ξφ)AB = φ(A
C(C1,1ξ)B)C + ξCA′

(T2,0φ)ABCA′ . (2.12)

The equation (2.11a) follows directly from the commutator relation (2.8a). Also
using the commutators (2.8d), (2.8b) and the Killing spinor equation, we get

(C1,1ξ)AB = (C1,1C
†
2,0κ)AB = −6ΛκAB + 3

2ΨABCDκCD, (2.13)

0 = 1
2 (C3,1T2,0κ)ABCD = Ψ(ABC

FκD)F . (2.14)

Performing an irreducible decomposition of the contraction ΨABCFκD
F , and using

(2.13) and (2.14) we get

ΨABCFκD
F = 3Λǫ(A|D|κBC) +

1
2ǫ(A|D|(C1,1ξ)BC). (2.15)

By using the definition of ΘAB, the Leibniz rule, applying irreducible decomposi-
tions, and making use of the Killing spinor equation, the fact that ξAA′ is Killing,
and the Maxwell equation, we find

(C1,1η)AB = (C1,1C
†
2,0Θ)AB

= κCD(C3,1T2,0φ)ABCD + 1
2κ(A

C(D3,1T2,0φ)B)C

+ 4
3φ(A

C(C1,1ξ)B)C + 2
3ξ

CA′

(T2,0φ)ABCA′ .

Applying the commutator relations (2.8d) and (2.8b) and making use of (2.15) now
gives

(C1,1η)AB = 2
3φ(A

C(C1,1ξ)B)C + 2
3ξ

CA′

(T2,0φ)ABCA′

= 2
3 (L̂ξφ)AB,

where (2.12) was used in the last step.
Proceeding in a fashion similar to the above, using the definitions of ηAA′ and

ΘAB, the Leibniz rule, applying irreducible decompositions, and making use of the
Killing spinor equation, the fact that ξAA′ is Killing, and the Maxwell equation, we
find

(C †
1,1η)A′B′ = κAB(C †

3,1T2,0φ)ABA′B′ .

The commutator relation (2.8c) then gives

(C †
1,1η)A′B′ = − 2ΦBCA′B′κABφA

C ,

and the aligned matter condition gives (2.11c).
Finally, expanding the definition of ηAA′ , and using the Killing spinor equation

and the Maxwell equation yields

κBC(T2,0φ)ABCA′ = ηAA′ + 4
3ξ

B
A′φAB. (2.16)

Contracting (2.12) with κAB and using (2.16), (2.13), and (2.14) gives (2.11d). �

The proof of the main theorem is now a matter of straightforward verification.

Proof of Theorem 1.1. From the Leibniz rule, we first find

∇BB′

VABA′B′ = 1
2 η̄A′B∇

BB′

ηAB′ + 1
2 η̄B′A∇

BB′

ηBA′

+ 1
2ηAB′∇BB′

η̄A′B + 1
2ηBA′∇BB′

η̄B′A

+ 1
3ΘAB∇

BB′

(L̂ξ̄φ̄)A′B′ + 1
3ΘA′B′∇BB′

(L̂ξφ)AB

+ 1
3∇

BB′

ΘAB(L̂ξ̄φ̄)A′B′ + 1
3∇

BB′

ΘA′B′(L̂ξφ)AB.

This can be simplified by first observing that L̂ξ is a symmetry operator tak-
ing solutions of the Maxwell equation to solutions of the Maxwell equation, so
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(C †
2,0L̂ξφ)AB = 0 and similarly for the complex conjugate. It can be further sim-

plified by substituting the definition ∇B
A′ΘAB = ηAA′ , cf. (2.6), to eliminate the

derivative of ΘAB terms. This yields

∇BB′

VABA′B′ = − 1
2 η̄A′

B(C1,1η)AB − 1
2η

B
A′(C1,1η̄)AB − 1

2 η̄
B′

A(C
†
1,1η)A′B′

− 1
2ηA

B′

(C †
1,1η̄)A′B′ + 1

2 η̄A′A(D1,1η) +
1
2ηAA′(D1,1η̄)

+ 1
3ηA

B′

(L̂ξ̄φ̄)A′B′ + 1
3 η̄A′

B(L̂ξφ)AB .

The terms involving (C †
1,1η)A′B′ and (C1,1η̄)AB are zero by equation (2.11c). Those

involving (D1,1η) and (D1,1η̄) are zero by equation (2.11a). Finally by equation

(2.11b), the terms involving (C1,1η)AB and (C †
1,1η̄)A′B′ cancel with those involving

(L̂ξφ)AB and (L̂ξ̄φ̄)A′B′ respectively. This completes the result. �

3. Further remarks on the Kerr spacetime

The stationary, asymptotically flat, vacuum Kerr spacetimes, and more generally
the electro-vacuum Kerr-Newman spacetimes, have algebraic type {2, 2}, i.e. the
Weyl spinor ΨABCD has two distinct, repeated, principal spinors oA, ιA which are
unique up to a rescaling. The dyad oA, ιA is normalized by oAι

A = 1. For the
following discussion, recall that given a spin dyad oA, ιA, one defines for a symmetric
spinor ̟A1···Ak

scalars ̟i by contracting i times with ιA and k − i times with
oA. This yields Weyl scalars Ψi, i = 0, · · · 4 and Maxwell scalars φi, i = 0, 1, 2.
In a spacetime of type {2, 2} with principal dyad oA, ιA, it holds that ΨABCD =
6Ψ2o(AoBιCιD), and in this case it follows from (2.14) that any valence (2, 0) Killing
spinor must be of the form

κAB = ζo(AιB), (3.1)

for some scalar ζ.
If (t, r, θ, φ) are Boyer-Lindquist coordinates, then the Coulomb field, i.e. the

unique static, regular Maxwell test field, on the Kerr-Newman spacetime takes the
form

φAB =
1

(r − ia cos θ)2
o(AιB)

up to a rescaling by a constant. In particular the extreme components φ0, φ2 are
zero. The background Maxwell field in the electro-vacuum Kerr-Newman spacetime
is a constant multiple of this Coulomb field.

The Killing spinor κAB is

κAB = 2
3 (r − ia cos θ)o(AιB) (3.2)

which is therefore proportional to the backgroundMaxwell field in the Kerr-Newman
spacetime. Hence, by the Einstein equation, ΦABA′B′ is proportional to κABκ̄A′B′ .
It follows that the aligned matter condition holds in the Kerr-Newman spacetime.

The normalisation in equation (3.2) is chosen so that ξa = (∂t)
a, where ξa is

given by (2.3). In particular ξa is real, which exhibits the fact that the Kerr-
Newman family admits a Killing-Yano tensor, as remarked above. In particular,
we see that the tensor Vab given by (2.7) is conserved. More generally, any vacuum
type {2, 2} spacetime admits a Killing spinor of valence (2, 0), of the form (3.1)

with ζ proportional to Ψ
−1/3
2 . This shows that Theorem 1.1 applies in the class of

vacuum type {2, 2} metrics.
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3.1. The Teukolsky equations and Vab. The Maxwell equations on a Kerr black
hole imply the s = 1 Teukolsky equations for the extreme scalars, φ0 and φ2. This
system has many properties in common with the s = 2 Teukolsky equations which
arise from linearising the Einstein equations. Despite the fact that the Teukolsky
equations have been known for more than 40 years, and have been the subject of
much study, no boundedness or decay estimates are known for the s 6= 0 Teukolsky
equations, other than the mode stability result of Whiting [9].

In terms of the Maxwell scalars φi, the Newman-Penrose scalars for ΘAB satisfy

Θ0 = −2κ1φ0, Θ1 = 0, Θ2 = 2κ1φ2.

Thus, only the extreme components of φAB appear in ΘAB, and hence in ηAA′ .

Equation (2.11d) can be used to express (L̂ξφ)AB in terms of ηAA′ and (L̂ξΘ)AB,
from which it follows that Vab can be written solely in terms of the extreme compo-
nents of φAB . This has two important consequences. Firstly, in the Kerr-Newman
spacetime the extreme components of the Coulomb solutions vanish, and hence
the conserved tensor Vab naturally excludes non-radiating solutions of the Maxwell
equation. Secondly, since it is defined in terms of the extreme Maxwell scalars
alone, Vab can be thought of as an “energy-momentum tensor” for the s = 1 com-
bined Teukolsky/Teukolsky-Starobinsky system, which corresponds to equations
(2.11b)-(2.11c), see [3] for more details.
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