Self-gravitating Elastic Bodies

Lars Andersson

Abstract Extended objects in GR are often modelled using distributional solutions
of the Einstein equations with point-like sources, or as the limit of infinitesimally
small “test” objects. In this note, I will consider models of finite self-gravitating
extended objects, which make it possible to give a rigorous treatment of the initial
value problem for (finite) extended objects.

1 Introduction

Extended objects in GR are often modelled using distributional solutions of the Ein-
stein equations with point-like sources, or as the limit of infinitesimally small “test”
objects. In this context, gravitational self-force manifests itself through corrections
to geodesic motion, in analogy to radiation reaction. This is relevant for example in
the analysis of extreme mass ration inspirals, see [1]. See also the papers by Harte
[2] and Pound [3] for background on the self-force problem.

A widely studied model for objects with internal structure in general relativity
are so-called spinning particles. There are several formal approaches to deriving the
corrections to geodesic motion for such object, see [4] for a survey. These works
rely to a large extent on the study of distributional stress-energy tensors representing
the particle-like objects. On the other hand, limiting procedures have been applied
to study objects with internal structure by Wald and collaborators, cf. [5]. In this
note, I will consider models of finite self-gravitating extended objects, which make it
possible to give a rigorous treatment of the initial value problem for (finite) extended
objects. Such models could serve as a basis for the above mentioned limiting con-
siderations.

A serious difficulty in treating self-gravitating material bodies in general relativity,
is that matter distributions with finite extent are typically irregular at the surface of the
body. This phenomenon can be seen already by considering a stationary Newtonian
polytrope, with equation of state
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p=Kp’
Then the density p behaves as

px) ~ d7T (x, Q)

where d(x, 0R2) is the distance to the boundary of the body. Recall that the sound
speed c; for such a polytrope is given by

ld 2=
&= L= JKyp'T
dp

and hence c; tends to zero at 0S2. It follows that the hyperbolicity of the Euler equa-
tions degenerates at the free boundary, characterized by the vanishing of pressure,
of a typical polytrope in vacuum. In particular the particles at the boundary move as
if in free fall.

Perfect fluid bodies in vacuum with equation of state such that the density at
the free boundary is non-vanishing are sometimes referred to as liquid bodies. An
example of an equation of state of this type is

p = D(p— po)

where D, po are suitable constants. For a steady fluid body with this equation of
state, the density will be pg at the boundary of the body. In this particular case, we
also see that the sound speed does not go to zero at the boundary, and there is no
degeneration of hyperbolicity. However, for liquid bodies this is not generally the
case. See [6, Sect. 3.5] for discussion.

For elastic bodies, like liquid bodies, we may expect the density of the material
to be non-zero at the boundary, and hence there will be a jump in the density at the
surface of the body. Further, for elastic bodies, we may expect that the field equations
remain non-degenerate and hyperbolic up to boundary. For elastic bodies, the free
boundary condition, which can be formulated as saying that the normal pressure at
the boundary vanishes, is known as the zero traction boundary condition.

Following the qualitative discussion above, we shall now mention some results on
the Cauchy problem in continuum mechanics. First we consider infinitely extended
bodies. For the case of fluids, Christodoulou [7] gives a conditions for shock forma-
tion for small data, while for elastic materials John [8] gives a condition (genuine
nonlinearity) under which small data lead to formation of singularities. Sideris [9]
gives a version of the null condition for elasticity and proves global existence for
small data.

For bounded matter distributions, the situation is more complex. As mentioned
above, for liquid or fluid bodies in vacuum, the hyperbolicity of the evolution equation
degenerates at boundary. This problem can be overcome by using e.g. weighted
energy estimates. See [10—12] for recent work on this problem. The Cauchy problem
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for elastic bodies with free boundary can in Lagrange coordinates be written as
a quasi-linear hyperbolic problem with boundary condition of Neumann type and
treated using the methods of e.g. [13]. See [ 14, 15] for applications of these techniques
in elasticity.

If we on the other hand consider self-gravitating material bodies, much less is
known. In fact, apart from some limited results which we shall mention below, the
problem of constructing solutions of the initial value problem for self-gravitating
liquid or fluid bodies in vacuum (both in Newtonian gravity and GR) is largely open.

The Einstein equations imply hyperbolic equations for the components of curva-
ture. Hence the irregularity at the boundary of a self-gravitating body could in general
be expected to radiate into the the surrounding spacetime, preventing this from being
regular, cf. Fig. 1. As this clearly does not occur for realistic self-gravitating bodies,
there must be a geometric “conspiracy” at the boundary of a self-gravitating body
undergoing a regular evolution in Einstein gravity. This then has to be reflected in
compatibility conditions on the Cauchy data for such a body, see [16].

It has in recent work been possible to prove local well-posedness for the the initial
value problem for self-gravitating elastic bodies in Newtonian gravity, cf. [15], and
general relativity, cf. [17, 18], see also Sect.4 below. In both cases, one finds that
corner conditions on the initial data originating from the free boundary condition,
which from a PDE point of view is of Neumann type, as well as compatibility
conditions on the Cauchy data.

If we turn to dynamical liquid or fluid bodies in general relativity, the results
are quite limited. Choquet-Bruhat and Friedrich [19] considered the initial value
problem for a dust body in Einstein gravity, assuming a density which is regular at
the boundary. The work of Kind and Ehlers [20] on self-gravitating fluid bodies in
general relativity restricts to spherical symmetry but allows a discontinuity at the
boundary for the matter density. Rendall [21] was able to prove local well-posedness
for Einstein-fluid bodies with certain restricted class of equations of state, and with
smooth density at the boundary.

Steady states of self-gravitating bodies provide in particular solutions of the initial
value problem, and thus, apart from their intrinsic interest, a study of steady states
gives useful information for the study of the dynamics of self-gravitating bodies.

Fig.1 Itis a priori possible
that the irregularity at the
boundary of a body causes
the surrounding spacetime to
be irregular
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Steady states of fluid configurations in Newtonian gravity may be complicated,
examples are Dedekind and Jacobi ellipsoids, cf. [22, 23]. Lichtenstein [24] con-
structed static and rotating fluid Newtonian fluid bodies. His results have been
extended to elastic matter by Beig and Schmidt [25]. For general Newtonian lig-
uid or fluid bodies there are only limited results available. Lindblad and Nordgren
proved a priori estimates for incompressible Newtonian fluid bodies [26]. Further,
problems of dynamics and stability of self-gravitating fluid and liquid bodies in
Newtonian gravity have been studied by Solonnikov, see e.g. [27, 28] and references
therein.

Static self-gravitating fluid bodies are spherically symmetric, in Newtonian grav-
ity as well as in general relativity, cf. [29]. Lindblom [30] gave an argument showing
that viscous stationary fluids in GR are axi-symmetric. Heilig [31] constructed rotat-
ing fluid bodies in GR. It is an open problem whether helically symmetric rotating
states exist in GR, cf. [32-34] for related work.

Although relativistic elasticity has been studied since shortly after the introduction
of relativity, cf. [35] (special relativity), [36—39], until recently no existence or well-
posedness results except in the spherically symmetric case, cf. [40]. Work by the
author with Beig and Schmidt shows that there are examples of static self-gravitating
elastic bodies in general relativity which have no symmetries, cf. [41]. Similarly, there
are rigidly rotating self-gravitating elastic bodies in general relativity with minimal
symmetry, i.e. which are stationary and axially symmetric [42].

2 Classical Elasticity

An elastic body is described in terms of configurations with respect to a reference
body B, a domain in the extended body R3B.

R%,IA M,.I‘” = (tvxi)vg/w
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The configuration maps f from the physical spacetime to the reference body, and
the deformation maps ¢ from the reference body to spacetime are assumed to satisfy

foo|z=id

The role of the configuration map f in the Eulerian variational formulation of elas-
ticity in the context of general relativity has been stressed by Kijowski and Magli
[38]. See the books by Marsden and Hughes [43] and Truesdell and Noll [44] for
background on elasticity.

The physical body f~!(B) moves in spacetime M with coordinates x/ = (¢, x')
and metric g,,,. Coordinates as well as coordinate indices on B are denoted with
capital letters, X4. It is convenient to endow the body B with a body metric b g. For
many situations, this can be taken to be the Euclidean metric byp = dp.

We start by considering the non-relativistic case. In the non-relativistic case it is
natural to take M = R, x R?S, where R?s is the space-manifold, metric g;;, which in
the non-relativistic case can be taken to be Euclidean. The action for a hyperelastic
body in Newtonian gravity takes the form

S = / Adtd3x (2.1)

where
A = Akin _ [Agrav +Apot +Aelast] (2.2)

where

; 1
Akln — —PU2Xf*1(B)’

2
Adrav _ |VU|2
871G’
AP = pUx -1 8):
Aclast — NeEX -1y -

See [6, Sect.3]. Here n = det d f is the number density, and ¢ = e(f, 0f) is the
stored energy function, representing the internal energy of the material. We have,
for clarity included the indicator function x ;15 = xB o f of the physical body,
where x(X) = 1 for X € B, and x(X) = 0 otherwise. The physical mass density
is p = nm where m is the specific mass of the material particles. Further, U is the

Newtonian potential and N
IVU)? = 3;U9;Ug" .

The kinetic term in the action is defined in terms of the square velocity
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2 i
ve = v'v’gij,

with the 3-velocity, given by v/ = —¢' 4 f4 ,, representing the motion in space
of the material particles. It should be stressed that the terms AP%", A" A€last are
supported on f~!(B) while the term A" should be viewed having support on the
whole Rg.

Remark 2.1

1. Defining the Newtonian potential by the Poisson integral

Ux) = —G/ PE) 3y, 2.3)
f

-1y |x — x|

the term A9"%Y 4+ AP°" can be replaced by
1
FPUX 1B

2 The Lagrangian given in (2.2) is of the familiar form
L=T-V

with 7', V the kinetic and potential terms, respectively. The corresponding Hamil-
tonian (or energy) is then
H=T+V

The elastic stress tensor is

Oe
=n
of A

i
Tj

T
This is the canonical energy-momentum tensor for the elastic part of the action.
Assuming suitable asymptotic behavior for the fields, the Euler-Lagrange equation
for the action (2.1) is
pv“’@uvixf-l B) + 6] (Tinf—l B) + pal UXf—] B) = 0 (24)
Now, an important fact is that the divergence
aj(Tinffl(B))

is a function in L” only if the normal stress vanishes at the boundary of the body, i.e.

T,']nj 3.}”’1(3) = 0,
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cf. [41, Lemma 2.2]. This is due to the fact that the gradient of the indicator function

is of the form

—1
ox P = 18y

where d, -1(B) is the surface delta function. Thus,

pvh o, v + a,-rif + po;U =0, in f71(B), (2.52)
il =0 ondf (B (2.5b)

coupled to the Poisson equation
AU = 47TGPXf*1(B) (2.5¢)
which has solution given by (2.3). Here
V0, = 0 +v'0;
so that
V9,0t

gives the acceleration of the physical particles. Equation (2.5a) corresponds to New-
ton’s force law F' = ma, where now the force includes both force generated by
elastic stress as well as the gravitational force, together with the free boundary, or
zero traction, boundary condition (2.5b). The boundary condition represents the fact
that the motion of the boundary is not subject to any external forces.

We recall some facts from potential theory. We can write the Newtonian (volume)
potential given by (2.3) as

U= A""4rGpx 1)
Differentiating gives
0,uU = A '[0,:47Gp] — Sliry p-1 547G pr/' ], (2.6)

where S is the layer potential and ¢/ is the normal to 0 f ~! (). Similarly, 0,;S can
be expressed in terms of the double layer potential D. Standard estimates for S, D
and an inductive argument can be used to estimate U. Due to the jump in the matter
density px s-1(B) we have that 0?U is discontinuous at  f ~' (B). However, U has
full regularity up to 0 f ~!(B). See [6, Appendix A] for details.

In the material frame (Lagrange coordinates) the physical body is represented by
the deformation map ¢(B). The material form of the action is got by simply pulling
back the Lagrange density from the Eulerian picture (in spacetime) to get
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Smaterial =/¢*(Adtd3X).

The Euler-Lagrange equation can then be calculated purely in the material picture.
An important simplification is gained due to the fact that the domain of the body in
the material picture is the reference body B, which is time-independent. One finds
that under suitable assumptions on the stored energy function, the Cauchy problem
for the elastic body in material frame is an initial-boundary value problem on 53 with
Neumann type boundary conditions.

Since we have 7;/ = 7;/(f, 8 f), the expression d;7;/ is a quasi-linear second
order operator on f. Disregarding the gravitational self-interaction for the moment,
hyperbolicity of the system (2.5) is determined by the properties of the elasticity
tensor

02e

La'pl = ———
ofA;0f8 ;

e.g. rank-one positivity
La'g/¢*niPn; = ClePmP
or pointwise stability
La'gietieB; > Ce?:68 ibapg"

where C is some positive constant. If one of these conditions hold, the system (2.5)
forms a quasi-linear elliptic-hyperbolic system with Neumann-type boundary con-
ditions.

A formulation of elasticity compatible with general relativity requires the elastic
action to be generally covariant. This implies that the stored energy function is frame
indifferent. Define the strain tensor y42 by

NAB = fA 8 ;g7

and let )\;, i = 1,2,3 be the fundamental invariants of fyA B = PyAC(b)CB. The
material is frame indifferent if € = e( f, ¥48) and isotropic if € = €()\;).

Remark 2.2

1. In the variational problem of classical elasticity (with energy determined purely
by the elastic term), polyconvexity [45], i.e. the condition

€(F) = é(F, CofF, det F)

where F = (¢' 4)» with € convex, leads to cancellations which in certain circum-
stances allow one to show convergence of minimizing sequences.
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2. Small perturbations around a stress free state are governed by the quasi-linear
wave equation

D) — AAp — (7 — cHgrad divg = F(V, V2¢),

cf. [46].
3. The field equation of classical elasticity is analogous to membrane equation which

has action
s= [Vieg

For the vacuum Einstein equation in wave coordinates, L? bounded curva-
ture (which corresponds to H? regular data) implies local well-posedness [47].
For elasticity and the membrane equation, the analogous result would be well-
posedness for A3 regular initial data.

A static body is in equilibrium, in particular, the elastic load must balance the load
from e.g. the gravitational force. Further, in Newtonian gravity, Newtons principle
actio est reactio implies further that each component of abody must be in equilibrium.
The following equilibration condition is a consequence of the assumption that the
total load on a body from elastic stress and gravitational force does not generate a
motion. Gauss’ law and the zero traction boundary condition gives for any Euclidean
Killing field £i with §,~,‘,~ = 5[,',]']

/ o =/ grini =0,
=B ’ af~1(B)

The body is static if the stress load balances the gravitational load
8,-Tji =b; = pajU

In particular such a load must be equilibrated

/ €iby =0,
4B

for any Killing field £'. For a general load this is a non-trivial condition, but a
gravitational load is automatically equilibrated.

As mentioned above, it is convenient in applying PDE techniques to elastic bodies,
to consider the system in the material frame. This is true both in the construction of
steady states of Newtonian elasticity, see [25] and references therein, but also for the
Cauchy problem. Assuming suitable constitutive relations, the initial value problem
for a Newtonian self-gravitating body in material frame is an elliptic-hyperbolic
system with Neumann type boundary conditions. Well-posedness has been proved
for this system in [15], assuming suitable constitutive relations. This result gives the
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first construction of self-gravitating dynamical extended bodies with no symmetries.
One finds that the initial data must satisfy compatibility conditions induced by the
Neumann boundary conditions.

3 Elastic Bodies in General Relativity

The action for an general relativistic elastic body is

R _
S = —/— ng4x+/A«/—gd4x. 3.1)
167G

where A = A(f,0f,¢9) = nex p-1g) is the energy density of the material in its
own rest frame. Here we have included the indicator function x -1z, for space-time
trajectory of the body explicitely in the action. The relativistic number density is
given by n = det(vA8)1/2 with 448 = A MfB, »g"”, and € is the stored energy
function. As mentioned above, general covariance demands frame invariance, i.e.
€= €(f’ ’YAB! g)

The Euler-Lagrange equations for this action are the Einstein equations
G = 87TGT/WXf*1(B) ) (3.2a)

where

1 OA
Gu =Ry — ERgm/, Ty = ZW —Aguw

The elasticity equations, including the free boundary condition
Turt” g1 = O

where v/” is the normal to the (typically time-like) boundary of the spacetime domain
of the body are consequences of the conservation equation

VM(TMVXf*I(B) =0 (32b)

which in turn follows from the Einstein equation (3.2a), but which can also be
derived as the Euler-Lagrange equation for the action with respect to variations of
the configuration map. The field equations for a general relativistic elastic body may
thus be viewed as the Einstein equation (3.2a) or, equivalently, as the coupled system
(3.2).
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3.1 Static Body in GR

‘We next consider the case of static self-gravitating bodies in general relativity. Thus,
we assume (M, g,,,,) is static, i.e. there is a global timelike, hypersurface orthogonal,
Killing field €. Then we have that M = R x M and we may introduce coordinates
x* = (t, x') such that the Killing field ix £"0,, = 0y, with norm eV = —&H¢,,. For
a static spacetime we can write

gagdx”dxﬁ = —e?Var® + e_zuh,-jdxidxj

where U, h;; depend only on x'. Kaluza-Klein reduction applied to (3.1) gives the
action

1
S = _/ —— V(R —2|VU|,%)+/ eYnevh (3.3)
M 167G M

The Euler-Lagrange equations are

VieYoil)y = eV (ne— o )ViU inf~'(B), oi/njl 105 =0
AU = 47rGeU(ne — U[l)qu(B) ian’S
Gij =87G(0;; — eV oij xf-15) inRY

where

1 1
O == [V,UV,U - 5h,~,~|VU|2} :

This system is equivalent to the 3 4 1 dimensional Einstein equations for the static
elastic body.

Let a relaxed reference body B be given. For small G, we construct a static self-
gravitating body, i.e. a solution to the static Einstein-elastic equations, which is a
deformation of B, cf. [41]. The construction is carried out in the material frame.
Working in harmonic coordinate gauge, the reduced Einstein-elastic system can be

cast in the form
F(G,Z) =0,

where G is Newtons constant and Z denotes the fields in the material frame version
of the system, i.e. the deformation map ¢ as well as the material version of the
Newtonian potential U and the 3-metric /; ;. Assuming suitable constitutive relations,
the reduced system of Einstein-elastic equations is an elliptic boundary value problem
with Neumann type boundary condition. Given a relaxed background configuration
Zy, which can be viewed as a solution of the Einstein-elastic system with Newtons
constant G = 0, we would like to apply the implicit function theorem to construct
solutions to (3.2) for small G.
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However, an obstacle to doing so is the fact that the linearized operator Dz F (0, Zy)
necessarily fails to be an isomorphism. In fact, due to invariance properties of the the
equilibration condition, the infinitesimal Euclidean motions, i.e. the Killing vector
fields on Euclidean 3-space, are in the kernel. Further, due to the linearized operator
Dz F(0, Zp) has a non-trivial co-kernel, which also corresponds to the infinitesimal
Euclidean motions. This is due to the fact that the the linearized elasticity operator
at the reference configuration is automatically equilibrated. Thus, we have a kernel
and cokernel corresponding to the Killing fields of the Euclidean reference metric on
M and on ]R3B. Applying a projection to Dz F (0, Zp) in order to get an isomorphism
we are in a position to apply the implicit function theorem to construct a solution for
small G to the projected system

PRF(G, Z) = 0.

The proof is completed by showing that the solution to the projected system is auto-
matically equilibrated, i.e. it is a solution to the full system, including the harmonic
coordinate condition.

By choosing the reference body to be non-symmetric, we thus get the first con-
struction of self-gravitating static elastic bodies in general relativity with no symme-
tries. Outside the body, the spacetime is a solution of the vacuum Einstein equations,
which will be asymptotically flat, but with no Killing vector fields except for the
static Killing field.

In Newtonian gravity there are many examples of static self-gravitating many-
body systems, consisting of rigid bodies of the type shown schematically in Fig. 2.
The method described above in the case of static self-gravitating bodies extends to
N-body configurations [48]. In this case, one takes a Newtonian static configuration
N-body configuration consisting of rigid, self-gravitating bodies as the starting point.
Under some conditions on the Newtonian potential one can apply a deformation

Fig. 2 Examples of two-body configurations in equilibrium



Self-gravitating Elastic Bodies 555

Fig. 3 Bodies separated by
a plane cannot be in
equilibrium in Newtonian
gravity. This holds in GR if
the plane is replaced by a
totally geodesic
hypersurface. It would be
interesting to find a more
general characterization of
what static configurations are
possible

technique related to that used in the construction of static self-gravitating bodies to
construct N-body configurations. A particular case consist of placing a small body
at a stationary point of the gravitational potential of a large body.

The proof makes use of the additional degree of freedom corresponding to the
difference in the centers of mass and alignments of the bodies to achieve equilibration.
In Newtonian gravity, one proves easily that a two bodies separated by a plane cannot
be in static equilibrium, cf. Fig. 3. This relates to Newton’s principle actio est reactio,
also mentioned above, which implies that each body must be equilibrated with respect
to its own self-gravity.

In general relativity, we lack the concept of force (see however [49] for related
ideas in the static case) and the problem of characterizing “allowed” n-body configu-
rations is open. Partial results on this problem have been proved by Beig and Schoen
[50], and Beig et al. [51]. In particular, bodies separated by a totally geodesic surface
cannot be in static equilibrium.

In order to describe rotating, self-gravitating bodies, we must consider stationary
spacetimes, i.e. spacetimes with a Killing field which in the relevant situation will
be timelike, but not hypersurface orthogonal. In this case, Kaluza-Klein reduction
gives action

Vh

S=—[| —
M167TG

(Rh — 2|DU|% + e4U|w|i) +/ neeVVn,
M

In this case, one may use techniques related to those discussed above to construct
self-gravitating rotating bodies in general relativity as deformations of axi-symmetric
relaxed, non-rotating, reference states, see [42]. By choosing the reference body
appropriately we get rigidly rotating self-gravitating elastic bodies with a minimal
amount of symmetry, i.e. with no additional Killing vector fields than the stationary
and axial Killing vector fields. The asymptotically flat vacuum region surrounding the
rotating body can in that case be shown to have exactly these two Killing symmetries.
It is plausible that all stationary, asymptotically flat spacetimes which are vacuum
near infinity, are axisymmetric.
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4 Dynamics of Elastic Bodies in General Relativity

We write the Einstein-elastic system, cf. (3.2), in the form

1
R/u/ = 87TG(Tuu - ETg;u/)Xf—l(B)

VAT, =0 infN(B)

Ti"Vulg 1) = O

In order to construct solutions to the Einstein equation it is convenient to work in
wave coordinates gauge,
9Ty, =0 4.1)

A standard calculation, cf. [52, Sect. 10.2] shows that with (4.1) imposed, the Einstein
equation takes the form becomes a quasi-linear wave equation of the form

1 1
_EDgg;w + S (9, dg) = 8TG Ty — ETng)

where [J, = V*V,, is the scalar d’ Alembertian and S, is is an expression which
is quadratic in derivatives of g,,,,. Assuming suitable constitutive relations for the
elastic material, the Einstein-elastic system now becomes a quasi-linear hyperbolic
system, and one can proceed to construct solutions along standard lines.

A serious obstacle however is the fact that the matter density has a jump at the
surface of the body. This means that using standard techniques it appears difficult
to prove local well-posedness for this system, even using sophisticated harmonic
analysis techniques, as appears in the proof of the L? curvature conjecture. In a joint
paper with Oliynyk [17] we have given a proof of local existence for solutions of
quasi-linear systems with the appropriate discontinuity in the source term. There
we have also given an outline of the application of the results of that paper to the
Einstein-elastic system [17, Sect. 5]. Details will appear in a joint paper with Oliynyk
and Schmidt [18].

An important aspect of the problem can be seen by considering the following
model problem. In R™! with coordinates (x®) = (¢, x"), let O = —3? + A and
consider the Cauchy problem

Ou = F(t, x,u, Ou)xq, (4.2a)
u©) =u®, Ou) =u'. (4.2b)

Letuy = 8fu, Fe = 8fF and let s be a given, sufficiently large integer, and let
the spaces H*® be defined by
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2 = HS(R"), s=0,1,
T H®RHYNH Q) NH RN\ Q), s>2.
Suppose we are given data satisfying the compatibility conditions
ug(0) e HHIE, 4.3)

and assume that Fy (-, 1) € H*~4(Q),for0 < ¢ < s. Time differentiating the equation
yields

A standard energy estimate shows that uy, 11 are bounded in H' and L?, respec-
tively. One gets improved regularity for lower time derivatives by an induction argu-
ment. From (4.4) for j = s — 1, we have

Aug_y = Fy_1xq + 0fus_i

= Fs_1xQ + Us+1.

The potential theory results mentioned in Sect.2 imply that us_; € H>. Suppose
now we have for £ > 1 an estimate for u,_, in H¢t! in terms of the initial data and
the bound on F;_g in H¢(2). Then we have from Eq-44)forj=s—1—-1¢,

¢
Aug_1—¢ = Fy_1—¢xQ +us+1—¢ € H".

and the potential theory results we can now be used together with the assumptions on
the initial data and F, to give an estimate for us_j_; in H+2 Induction with £ = 1
as base yields an estimate for u in 1.

An argument similar to the above forms an important part in the proofs of local
well-posedness in the papers [17, 18] mentioned above. The compatibiliary condi-
tions (4.3) on initial data can be interpreted as implying that the body (or in the model
problem, the source) existed and was regular in the past of the initial Cauchy surface,
i.e. one must have the situation illustrated in Fig. 4.

Fig. 4 The solution to the
Cauchy problem is regular
provided the Cauchy data is
compatible with the source
having existed in the past
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