
Cosmological Models and Stability

Lars Andersson

I would already have concluded my researches about world
harmony, had not Tycho’s astronomy so shackled me that I
nearly went out of my mind.

Johannes Kepler
Letter to Herwart, quoted in [1, p. 127]

Abstract Principles in the form of heuristic guidelines or generally accepted dogma
play an important role in the development of physical theories. In particular, philo-
sophical considerations and principles figure prominently in the work of Albert
Einstein. As mentioned in the talk by Jiří Bičák at this conference, Einstein for-
mulated the equivalence principle, an essential step on the road to general relativity,
during his time in Prague 1911–1912. In this talk, I would like to discuss some aspects
of cosmological models. As cosmology is an area of physics where “principles” such
as the “cosmological principle” or the “Copernican principle” play a prominent role
in motivating the class of models which form part of the current standard model, I
will start by comparing the role of the equivalence principle to that of the principles
used in cosmology. I will then briefly describe the standard model of cosmology to
give a perspective on some mathematical problems and conjectures on cosmological
models, which are discussed in the later part of this paper.

1 Introduction

As stated by Einstein in his paper from 1912 [2], submitted just before his departure
from Prague, the equivalence principle is “eine Natürliche Extrapolation einer der
allgemeinsten Erfahrungssätze der Physik”,1 and can consequently be claimed to

1 “A natural extrapolation of one of the most general empirical propositions of physics”
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be exactly valid on all scales. Since the equivalence principle is compatible with
Einstein’s relativity principle of 1905 only in the limit of constant gravitational
potential, accepting the principle of equivalence meant that a new foundation for the
theory of gravitation must be sought. The challenge of doing so, which Einstein in
his 1912 paper poses to his colleagues: “Ich möchte alle Fachgenossen bitten, sich
an diesem wichtigen Problem zu versuchen!”, is one that he himself devoted the
coming years to, finally arriving at the 1915 theory of general relativity.

General Relativity describes the universe as a 4-manifold M with a metric gαβ of
Lorentzian signature. The Einstein equations,

Rαβ − 1

2
Rgαβ + Λgαβ = 8πGTαβ , (1)

originally given in [3], relate the geometry of spacetime (M, gαβ) to matter fields with
energy-momentum tensor Tαβ . By the correspondence principle, the stress energy
tensor Tαβ should correspond to the stress energy tensor of a special relativistic
matter model, and in particular be divergence free. For “ordinary matter” one expects
Tαβ to satisfy energy conditions such as the dominant energy conditon. Here I have
included the “cosmological constant term” Λgαβ in (1), which was not present in the
equations given in [3]. The left hand side of (1), where Rαβ is the Ricci tensor, R is
the Ricci scalar and Λ is a constant, is the most general covariant tensor expression
of vanishing divergence, depending on gαβ and its derivatives up to second order, and
linear in second derivatives. Further, its left hand side is the most general second order
Euler-Lagrange equation, derived by varying a covariant Lagrange density defined
in gαβ and its first two derivatives, see [4, 5] and references therein. The covariance
of the equations of general relativity under spacetime diffeomorphisms, makes the
theory compatible with the strong version of the equivalence principle.

Since it can be claimed to be exactly valid, the equivalence principle is subject to
empirical tests and there is a long history of experiments testing various versions of
the (weak or strong) equivalence principles, see e.g. [6], see also [7] in this volume.
Until the present, the equivalence principle has survived all experimental tests, and
an experiment clearly demonstrating a deviation from the predictions based on the
equivalence principle would necessitate a revision of the foundations of modern
physics.

The arguments of the physicist and philosopher Ernst Mach played an important
role in the development of Einstein’s ideas leading up to general relativity, including
the formulation of the equivalence principle. The fact that in general relativity, matter
influences the motion of test particles via its effect on spacetime curvature means
that in contrast to Newtonian gravity, the “action at a distance” which was criticized
by Mach is not present in general relativity, which hence agrees with the guiding idea
which Einstein referred to as “Mach’s principle”, i.e. loosely speaking the idea that
the distribution of matter in the universe determines local frames of inertia, see [8], see
also [9]. The role of Mach’s principle in the context of cosmology is discussed in [10].
This played a central role in Einstein’s development of general relativity, and also in
his discussion of general relativistic cosmology, but it appears difficult to formulate
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Fig. 1 Kepler’s model of the solar system based on platonic solids, from Mysterium Cosmograph-
icum (1596)

experimentally testable consequences, cf. [11], although Mach’s principle has of
course been brought up in connection with “Newton’s bucket” and frame dragging.
The book [12] gives an excellent overview of issues related to Mach’s principle.
However, the principles which are most relevant for the present discussion are the
hierarchy of “cosmological principles”, for example the cosmological principle of
Einstein and the perfect cosmological principle of Bondi, Gold and Hoyle. See [13,
Sect. 2.1] for an overview of the cosmological principles. These principles play a
role which is fundamentally different from that of the equivalence principle, in the
sense that they do not make predictions which are expected to be exactly true at all
scales. At best, they can be viewed as simplifying assumptions that enable one to
construct testable physical models.

The work of Kepler, who is perhaps more intimately connected with Prague than
Einstein, provides an interesting illustration of the relationship between theoretical
principle and observation. In the time of Kepler, the world-model of Copernicus had
placed the sun at the center of the universe and described the planets as moving on
circular orbits around it. Not long before his move to Prague in 1600, Kepler believed
himself to have completed the Copernican world-model based on the mathematical
perfection of circles, by adding to it an element of equal perfection and beauty, namely
the geometry of the Platonic solids, which according to Kepler’s expectations would
determine the sizes of the planetary orbits (Fig. 1).
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Fortunately, it was possible for Kepler to use Tycho Brahe’s observational data
to test the predictions of his model. To his deep consternation Kepler realized that
the planets do not, after all, move on circular orbits. The beautiful principles which
had inspired Kepler to laboriously analyze the observational data of Tycho had to
be discarded. In analyzing the data, Kepler not only discovered his three laws of
planetary motion but also came close to introducing the notion of force which became
fully clear only through the work of Newton. One could say that through the work
of Kepler and later Newton, one set of “a priori” principles (those of Copernicus
and Kepler) were replaced by a model based on the dynamical laws of Newtonian
gravity.

1.1 The Cosmological Principle

Although Newtonian ideas continued to dominate physics throughout the 19th cen-
tury, there were well known anomalies of a theoretical as well as observational
nature, and these served as a guide for the developments of the early 20th century.
The conflict between the covariance of Maxwell theory under the Lorentz group and
the more restricted invariance properties of the Newtonian laws led to the introduc-
tion of special relativity. Similarly, as discussed above, the incompatibility of special
relativity and gravitation led to the development of general relativity. The expla-
nation of the anomalous precession of the perihelion of Mercury [14]2 by general
relativity was, together with its new prediction for the deflection of light by the sun,
confirmed by subsequent observations [17], were among the factors which led to its
rapid acceptance.

Among the main paradoxes of Newtonian physics and world view in applications
to cosmology were Olbers’ paradox and the incompatibility of Newtonian gravity
with infinitely extended homogenous matter distributions, which had prevented the
construction of a cosmological model consistent with Newtonian ideas. This latter
fact, which had been elucidated by von Seeliger and others, see [18] for discussion
and references, played an important role in Einstein’s reasoning about cosmological
models in his 1917 paper [19], in particular in motivating the introduction of the
cosmological constant in that paper.

As has already been mentioned, the philosophy of Mach, albeit firmly based in
Newtonian physics, was an important source of inspiration for Einstein. However,
incorporating Machian ideas in a general relativistic cosmology presented serious
difficulties. After some early attempts had been discarded, Einstein in [19] adopted
a spatially homogenous model of the universe as a means of making a general rel-
ativistic cosmology compatible with Machian ideas. Introducing a “cosmological
constant” term Λgαβ in the field equation of general relativity, which Einstein first

2 From the perspective of the current situation in physics, it is amusing to recall that attempts had
been made in the 19th century to explain the observed precession of Mercury both by dark matter
[15] (the planet Vulcan hypothesis) as well as modifications of gravity [16].
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Fig. 2 Hubble’s original 1929 graph [21]

motivated through a discussion of homogenous matter distributions in Newtonian
gravity, and assuming that there is a family of observers who see the same matter
density everywhere, led to a static universe filled with a homogenous and isotropic
matter distribution. The spacetime of the Einstein model is a Lorentzian cylinder.
The line element takes, up to a rescaling, the form

ds2 = gαβdxαdxβ = −dt2 + gS3 .

This give a solution to (1) with positive Λ, and with matter consisting of a pressureless
fluid with everywhere constant energy density.

Shortly after Einstein’s initial work on a static general relativistic cosmology,
Friedmann [20] proposed a model of an expanding universe

ds2 = −dt2 + a2(t)gκ (2)

where a(t) is a scale factor, gκ for κ = +1, 0,−1 is the sperical, flat or hyperbolic
metric. Line elements of the form (2) are also called Robertson-Walker line elements,
see below. During the 1920s, Lemaître and Hubble showed, based on observational
work of Slipher, Humason and others, that redshift increases with distance leading
to the Hubble law, see Fig. 2, which fits with the expanding Friedmann models. In
the context of the expanding Friedmann models, Olbers’ paradox can be resolved.
Expanding Friedmann models containing ordinary matter have a ↘ 0 at some time
in the past, where spacetime curvature and matter densities diverge. These models
led, via the work of Lemaître, Gamow, Hoyle and others, to the hot big bang model
which is the basis for the cosmological models in use today.

Milne criticized the big bang models on the basis that they introduced an extra-
neous “cosmic time” and also that they lacked explanatory power (e.g. the sign of
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the spatial curvature is a priori undetermined). Instead, he proposed an extension of
what he termed “Einstein’s cosmological principle”, to the effect that “The universe
must appear the same to all observers” [22]. Milne added to this the postulate that
observations are interpreted by each observer according to the principles of special
relativity and argued that this “extended relativity principle” led to an essentially
unique cosmological model.

The derivation of the general form of the line element compatible with the isotropy
of the universe, and also with Einstein’s cosmological principle in the sense discussed
by Milne was given by Robertson [23] and Walker [24] around the same time, and
found to be of the same form as that used by Friedmann and Lemaître in their
cosmological models. As pointed out by Robertson [25], the general relativistic line
element compatible with Milne’s cosmology is a special case of (2), namely the
empty κ = −1 universe, which is locally isometric to Minkowski space. This is
therefore known as the Milne model.

It was a similar dissatisfaction with the lack of predictivity of general relativistic
cosmology that led Bondi and Gold [26] and Hoyle [27] to introduce the “perfect
cosmological principle”, which is essentially a version of the postulate of Milne, but
viewed from the perspective of general relativity. By allowing for creation of matter,
they showed that it is possible to construct an expanding cosmological model satisfy-
ing this principle. However, the perfect cosmological principle tightly constrains the
possible models of the universe and the resulting steady state model is considered to
be incompatible with observations. The book of Kragh [28] contains an interesting
discussion of the conflict between the steady state model and the now-standard “big
bang” cosmology.

From the current perspective, it may be said that the introduction of what Milne
called Einstein’s cosmological principle led to a class of general relativistic cos-
mological models. By introducing a collection of perfect fluids, a much simplified
version of the problem of cosmological modelling reduces to the problem of fitting a
relatively small number of parameters to observational data, which could be said to
put cosmology on a similar footing as high energy particle physics. Indeed, as men-
tioned by Peebles [29, Chap. 1], it was Weinberg [30] who introduced the notion,
borrowed from high energy particle physics, of a “standard model” into cosmology.

At present, with the tremendous influx of data from observations of many differ-
ent types and at many different wavelengths, including observations of the cosmic
microwave background and galaxy surveys, it is often stated that we are entering an
era of precision cosmology. However, the widening range of observational methods
makes the process from observations to parameter estimation increasingly complex.
In particular, the prominent role of simplifying assumptions or principles in the
formulation of cosmological models and the model dependence in the analysis of
astronomical data, makes it important to keep in mind the difference between a model
which fits data to a high degree of precision and a model which accurately describes
the actual universe [31].
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2 Cosmological Models

For a Friedmann model, with line element of the form (2), the stress energy tensor
has the form

Tαβ = ρuαuβ + p(gαβ + uαuβ) ,

which is compatible with perfect fluid matter. Here uα is the unit timelike normal to
the t level sets, which in the special case of the Friedmann model coincides with the
normalized 4-velocity of the fluid particles, ρ is the energy density of the matter and
p is the pressure. We consider matter and radiation as described by a collection of
fluids, indexed by i , with linear equations of state,

pi = ωiρi .

The Hubble constant (i.e. up to a constant factor the mean curvature of the t level
sets) is

H = ȧ/a

In the special case of a Friedmann model, the contribution of the curvature of the t
level sets in the Einstein equations can be described in terms of a fluid with equation
of state p = −ρ/3, while the effect of the cosmological constant can be described
by a fluid satisfying p = −ρ. Thus if we consider a simple model containing a fluid
with pressure zero (dust), and with a cosmological constant Λ, this can be described
by introducing the dimensionless density parameters

Ωm = 8π

3H2 ρm, “Matter”: ω = 0,

Ωκ = − κ

a2 H2 , “Curvature”: ω = −1/3,

ΩΛ = 8π

3H2 ρΛ, “Vacuum”: ω = −1.

The model can be parametrized by the present values

Ωm0,Ωκ0,ΩΛ0,

of the density parameters. The conservation of matter and equation of state implies
that the fluid densities ρi depend only on the scale factor

ρi ∝ a−3(1+ωi ). (3)

The Hamiltonian constraint (i.e. the projection of the Einstein equations (1) on uα)
takes the form

Ωm + Ωκ + ΩΛ = 1, (4)
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Ωm = 0 Ωm = 1

M Bb

κ = −1 κ = 0 κ = 1

Fig. 3 The dynamics of Friedmann dust models for Λ = 0

which, using (3), can be written as

H2

H2
0

= Ω0m

(a0

a

)3 + Ω0Λ + Ω0κ

(a0

a

)2
. (5)

Here H0, a0 are the present value of the Hubble constant and of the scale factor
respectively. Due to the uncertainty in the value of H0, it is usually given in terms of
a dimensionless parameter h as

H0 = 100 hkm s−1Mpc−1.

Equation (5) can be integrated to relate observable quantities, e.g. redshift and lumi-
nosity distance, for given values of the parameters H0,Ωm0,Ωκ0,ΩΛ0.

It is convenient to study the global behavior of Friedmann models in terms of the
dimensionless density parameters. This analysis is explained in [32, Chap. 2], see
also [33, 34]. Due to the Hamiltonian constraint (4), we have Ωκ = 1 − Ωm − ΩΛ.

The fixed points of the dynamical system in the (Ωm,ΩΛ) plane are the Einstein-
de Sitter big-bang model Bb = (1, 0) and the spatially flat de Sitter model dS =
(0, 1), as well as the empty κ = −1 Milne model M = (0, 0). One finds that Bb
is a source and dS is a sink, while M is a saddle point. The static Einstein universe
has H = 0, so the dimensionless parameters Ωm and ΩΛ are ill-defined, but this
point may be represented in an extended phase space as E = (∞,∞). This point
is unstable, but is connected to the source Bb by an exceptional trajectory, which
separates the models which recollapse from those which expand forever.

Restricting to Λ = 0, the only fixed points are Bb and M, with Bb a source and
M a sink, see Fig. 3. The unstable Einstein-de Sitter universe Bb has slow volume
growth a ∼ t2/3, while the stable Milne universe M has volume growth a ∼ t . In
fact, this growth rate is maximal among Λ = 0 models. This indicates that rapid
volume growth goes together with stability.

Now we can give an extremely simplified description of the current situation in
cosmology by saying that the laws of general relativity together with the cosmological
principle and observations leads to the “standard model” with the cosmological
parameters

Ωκ0 ∼ 0, Ωm0 ∼ 0.3, ΩΛ0 ∼ 0.7, h ∼ 0.7.

The standard model is a big bang model. There is an initial singularity, a ↘ 0 as
t ↘ 0 and the universe expands indefinitely to the future, a ↗ ∞ as t ↗ ∞. The
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Fig. 4 This figure shows some orbits for Friedmann cosmologies with dust and dark energy (Λ)
in the (Ωm ,ΩΛ) plane. The Einstein-de Sitter point Bb = (1, 0) is a source, the Milne point
M = (0, 0) is a saddle node, and the de Sitter point dS = (0, 1) is a sink. See [33] for background

model predicts a hot big bang, which leads to the prediction of cosmic background
radiation [35, 36]. The observation of a highly homogenous cosmic background
radiation with a spectrum close to that of a black body is a major success of the big
bang models of cosmology.

Most of the energy density in the standard model consists at present of as yet
unknown “dark matter” (accounting for approximately 85 % of the matter density)
and “dark energy” in the form of the cosmological constant. Dark matter, which
for a long time has been broadly accepted in astronomy and cosmology, cf. [37], is
distinguished from dark energy by the fact that its existence is motivated by studies of
the dynamics of galaxy clusters and galactic rotation curves, which are independent of
the Friedmann model which forms the basis of the standard model in cosmology. On
the other hand, the cosmological constant was deemed unacceptable on philosophical
grounds and entered the standard model fairly recently, shortly before the year 2000;
the effects of dark energy being seen only indirectly via cosmological models and
eg. studies of structure formation in the universe (Fig. 4).

The acceptance of Λ came about only after the observation of the dimming of type
Ia supernovae. The observations are interpreted as saying that the rate of expansion
is accelerated, i.e. ä > 0, which is incompatible with a Friedmann model filled
with ordinary matter and Λ = 0. Figure 5 shows the supernova data compared to
the standard model and Einstein-de Sitter. The horizontal axis is the Milne model
(Ωm = ΩΛ = 0).
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Fig. 5 Magnitude residual for SNe Ia Gold data [38] (dots) relative to the Milne model, plotted
against redshift z. The black, solid curve is the standard model, while the green, dashed curve is
the Einstein-de Sitter model. The horizontal axis is the Milne model

2.1 Cosmological Problems

One of the important arguments against introducing the cosmological constant (apart
from the difficulty of explaining the value Λ which appears motivated by cosmology
from the point of view of particle physics) has been the coincidence problem, which
might also be termed the “why now” problem. Figure 6 shows the time evolution of
the dark energy density ΩΛ. We see that it is only close to the present epoch that ΩΛ

becomes significant, and in the later universe it will dominate the dynamics. Due to
the different scaling behavior of the matter and Λ densities in view of (3), the fact
that these are both of order unity at the present epoch is a coincidence that could be
argued to be contrary to the idea that we are not “special observers”. In contrast, in
the Einstein-de Sitter model the matter density is time independent.

A related problem is the flatness problem. Roughly speaking, this is the question
why Ωκ ∼ 0 at present. In case Λ = 0 this can be seen to be problematic simply
from Fig. 6. Since Bb is unstable, fine tuning of the initial conditions is required in
order to have Ωκ ∼ 0 at present. Lake [33] argues, using the presence of a conserved
quantity for the dynamics in the (Ωm,ΩΛ)-plane, that fine tuning is not needed to
have Ωκ ∼ 0 throughout the history of the universe.

The universe is not exactly homogenous or isotropic; this holds at best in an
approximate sense on sufficiently large scales. This raises the problem of whether
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Fig. 6 The time evolution of the dark energy density, see [39] for discussion

it is possible to determine from observations, which are necessarily restricted to our
past light cone, to what extent, and at what scales, the assumption of homogeneity
and isotropy is valid. A problem here is that local isotropy (i.e. isotropy around the
world line of one observer) does not imply global homogeneity (Fig. 7).

The Ehlers-Gehren-Sachs theorem gives conditions under which it is possible to
conclude from exact isotropy of the cosmic microwave background that the universe
is exactly isotropic. However, this result can fail in several ways. For example, there
are homogenous but non-isotropic models where the CMB is exactly isotropic at one
instant in time. Extensions of the EGS theorem to situations where only approximate
isotropy of the CMB holds are problematic, see [40–42] and references therein.
This raises the problem of determining to what degree observations of the actual
universe can be modelled and analyzed in the framework of Friedmann models (and
perturbations thereof). One aspect of this problem is the question whether there is
a scale at which (statistical) homogeneity and isotropy can be said to hold. Current
estimates place this scale at approximately 150 h−1 Mpc, see e.g. [43], see also [44].
However, recent observations indicate the existence of inhomogenous structures of
a dimension which may be in conflict with isotropy at this scale, see [45]. It is
conceivable that observations which extend to ever higher redshifts continue to yield
evidence of structures in the universe of a size comparable to the homogeneity scale.
Some aspects of inhomogeneity in cosmology were recently surveyed in a focus
issue of CQG, see [46] and references therein.
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Fig. 7 Sloan digital sky survey galaxy map, from www.sdss.org

The question of how the potential effects of large scale inhomogeneities on obser-
vations should be analyzed raises several important issues. Ellis has formulated the
“fitting problem”, see [47] and references therein, which asks about the effect of ana-
lyzing observations from an inhomogenous universe via a Friedmann model which
is in some sense the “best fit” to the actual universe. The effect on observations of
the fact that the model universe used to analyze data is only an approximation of the
actual universe is sometimes referred to as “backreaction”. An important question
here is whether perturbation theory can be applied to take into account the deviation
of the model from the actual universe. Kolb et al. have argued [48] that this analysis
should take into account the peculiar velocities due to the different expansion rate
in the model and the actual universe. Another effect of inhomogeneities which also
sometimes is referred to as backreaction, is the dynamical effect of the inhomo-
geneities on the expansion of the universe. A possible approach is to use averaging
[49] or coarse-graining [50] to derive a set of effective equations modelling the uni-
verse. In order to carry out such a scheme, one must introduce closure relations which
allow one to extract an autonomous system. It is here worth mentioning the ideas on
multi scale averaging, see e.g. [51, 52]. In particular, Wiltshire [53] argues that one
should consider modifying the Copernican principle to take into account the idea that
we reside in a gravitationally bound structure in a universe which has both bound
systems and voids.

It is apparent that the matter distribution in the universe is “lumpy” due to the
matter concentrations in stars, galaxies and other structures, and inhomogenous due
to the presence of large scale voids and bound structures, and the effect of these

file:www.sdss.org
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must be taken into account when analyzing observations, see Clarkson et al. [54] for
discussion. The optical properties of the universe are, in the Friedmann models which
form the basis for the standard model of cosmology, calculated using the properties
of a fluid which is used to approximate the actual matter distribution. Thus it is
necessary to analyze whether the optical properties of a lumpy matter distribution
differ in a significant way from the optical properties of a fluid. Light from distant
stars passes through the gravitational wells of bound objects as well as voids on the
way to the observer, and the effect of this process must be analyzed and compared
to light passing through the fluid in a Friedmann model. This problem has been
studied by among others Clifton et al. [55], see also [56]. In this context, we also
mention the so-called swiss cheese models, in which one attempts to analyze the
optical effect of voids and structure in the universe by introducing under-densities
in a background Friedmann model, see e.g. [57] and references therein. The swiss
cheese models generally suffer from the limitation that the over-all expansion of the
model is determined by the chosen background Friedmann geometry.

In this situation one may contemplate introducing weaker cosmological principles,
incorporating ideas of statistical homogeneity, or weakening the Copernican principle
by restricting to matter bound observers as suggested by Wiltshire.

As we have seen, the standard cosmological model is not located at a fixed point
for the dynamical system governing the evolution of the dimensionless parameters
Ωm,ΩΛ, rather it is close to the spatially flat orbit connecting the source Bb to the
sink dS. Further, in that orbit, Ωm/ΩΛ takes on all positive real values. Thus, we
as observers are not in an asymptotic regime, but rather, as mentioned above, at a
special moment where Ωm and ΩΛ are both of order unity. Thus, from this point
of view, we are neither in the “early universe” or the “late universe” and we cannot
argue that our current universe is singled out as the asymptotic state of the evolution
of the universe.

This makes the situation in cosmology rather different from the situation in many
branches of physics where asymptotically stable objects are those which one expects
to find in nature. As an example, the Kerr black hole solution is expected to be the
unique stationary, asymptotically flat black hole spacetime. In order to establish the
astrophysical significance of this solution, it is essential to prove that it is stable. This
leads to the black hole stability problem, one of the central open problems in general
relativity. The problem of determining from observations whether or not for example
the supermassive black holes expected to be found at the center of most galaxies are
Kerr black holes or not is being actively studied.

As was just mentioned, from the point of view of the current standard model in
cosmology, questions about the asymptotics of cosmological models do not appear
to be the right ones to ask. Nevertheless, such questions give rise to interesting
mathematical problems which we shall discuss in the rest of this paper. The questions
about the asymptotic behavior of cosmological models include the structure of the
big-bang singularity and questions about the behavior in the expanding direction. In
particular we can ask: What does an observer in the late universe see?
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3 Asymptotics of Cosmological Models

In this section we will describe a scenario for the asymptotic future behavior of
cosmological models with vanishing cosmological constant. Recall that the Milne
model with line element

ds2 = −dt2 + t2gH3

where gH3 is the hyperbolic 3-metric with sectional curvature −1, is isometric to the
flat interior of the lightcone in Minkowski space. The Milne universe may be viewed
as the future of O , the origin in Minkowski space. This point represents the big bang
singularity in the Milne universe and is in the past of all spacetime points (i.e. all
observers). The cosmological time at a point P is the proper time elapsed from the
origin to P . The level surfaces of cosmological time are simply the hyperboloids. We
next consider a flat, but non-isotropic model, which may be viewed as a deformation
of Milne. Let I be a spacelike interval in Minkowski space and consider the future
of I . The resulting spacetime can be constructed by cutting the Milne spacetime by
a timelike hyperplane through O and gluing in a spacetime of the form R

2+1 × I
with line element

−dt2 + t2gH2 + dz2 .

The deformed Milne spacetime has a big-bang singularity given by the interval I ,
and defining the cosmological time at P as the maximal proper time of any past
inextendible geodesic starting at P the level sets of cosmological time are as in
Fig. 8; it is flat and empty, but not homogenous and isotropic. Measuring the volume
of co-moving regions in the deformed Milne universe we see that in the deformed
regions, the volume of the cosmic time levels grows asymptotically as t2/3, i.e. the
growth rate of the Einstein-de Sitter universe, while in the undeformed regions,
the growth rate is asymptotically as t . The behavior is similar for the level sets of
the Hubble (mean curvature) time. On the other hand, asymptotically as t ↗ ∞, the
volume fraction in the undeformed region tends to 1, while in the asymptotic past
(near the big bang) these regions have a negligible volume fraction.

More general flat spacetimes may be constructed as the future of sets (e.g. frac-
tals) in Minkowski space, and quotients of these by the action of discrete groups
of isometries. Flat, or more generally, constant curvature spacetimes are examples
of G-structures and such spacetimes admitting compact Cauchy surfaces have been
completely analyzed, starting with the work of Mess [58], see also [59], who analyzed
the class of constant curvature 2 + 1 dimensional spacetimes admitting a compact
Cauchy surface. For example, one may show that the space of flat 2 + 1 dimensional
spacetimes with Cauchy surface of genus g > 1 is isomorphic to ∂M × M , where
M is Teichmuller space of surfaces of genus g and ∂M is the Thurston boundary.
The particular case of constant curvature spacetimes with compact Cauchy surface
has been analyzed in [60]. In particular, it was shown there that such flat spacetimes
can be globally foliated by Cauchy surfaces of constant mean curvature (i.e. constant
Hubble time).
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a(t) ∼ t2/3 a(t) ∼ t

Fig. 8 A flat cosmological spacetime not isometric to Milne. A level set of cosmological time t is
shown. The vertical lines indicate the flat wedge which has been glued in

Neck region – slow volume growth

Hyperbolic regions

Fig. 9 Qualitative shape of Hubble level set

The level sets of Hubble time can be related to the level sets of the cosmological
time by an application of a maximum principle, and one may show that the volume
growth of these level sets is comparable to that of the level sets of the cosmological
time. This leads to a generalization of the statements made above for the simple
deformed Milne universe, see [61].

In view of the above mentioned work, these generalized Milne spacetimes may
have a very complex (e.g. fractal) big bang type initial singularity. In some cases their
future asymptotics can be analyzed, see [62]. One finds that the level sets of Hubble
time decompose into “neck regions” with slow volume growth, and “hyperbolic
regions” with fast volume growth. The scale free geometry of these level sets may
may be depicted as in Fig. 9.

In particular, one finds that in the asymptotically expanding direction, the volume
fraction of asymptotically, hyperbolic (thick) regions dominate while the neck regions
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M

T = −∞

T = ∞

Fig. 10 The Einstein flow in the 2 + 1 dimensional case

(thin) become insignificant. Therefore, a “typical” (volume averaged) observer at late
time lives in a thick region.

It is interesting to compare the relation between the thin and thick regions to
the overdense and void regions in an inhomogenous universe containing matter, in
particular in view of the fact that the thin regions have volume growth approximating
that of Einstein-de Sitter universe which has critical matter density.

We now consider the generalization of the above picture to the case of general,
inhomogenous universes. We start by noting that the Lorentzian Einstein equations
define a flow on the space of (scale free) geometries. By analogy with the Ricci flow
of Riemannian geometries, this may be termed the Einstein flow.

For simplicity, we consider spacetimes (M, gab) of dimension D = d + 1 which
are vacuum, i.e. with

Rαβ = 0 .

Suppose M admits a foliation by Cauchy surfaces of constant mean curvature H .
Introduce the dimensionless logarithmic constant mean curvature (Hubble) time T =
− ln(H/H0), and consider the evolution of the scale free geometry [g] = H2g. The
Lorentzian Einstein equations define a flow T �→ [g](T ), on the space of scale
free geometries. In particular, in the 2 + 1 dimensional case, the Einstein equations
correspond to a time dependent Hamiltonian system on Teichmüller space [63],
and each universe corresponds to a curve connecting a point on the boundary of
Teichmuller space to an interior point, see Fig. 10.

One arrives at the following heuristic scenario [64, 65]. Consider spacetimes with
Cauchy surface M . The non-collapsing case corresponds to the case where M has
negative Yamabe type. For T ↗ ∞, (M, [g]) decomposes into hyperbolic pieces and
Seyfert fibered pieces, and this decomposition corresponds to a (weak) geometriza-
tion, cf. [65]. The Einstein flow in CMC time results in a thick/thin decomposition of
M , where the thick (hyperbolic) pieces have full volume growth. As a consequence
we have that in the far future, the hyperbolic pieces represent most of the volume
of M , cf. Fig. 11. Proving statements along the lines described above appears to be
very difficult, and one must therefore start by considering sub-problems.
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Fig. 11 The collapse of necks in the Einstein flow

4 Results on Nonlinear Stability

To give some perspective on the nonlinear stability problems introduced above, we
discuss some results on other stability problems in general relativity. These are orga-
nized according to the asymptotic model spacetime. The black hole stability problem,
cf. [66] for discussion and references, is not mentioned here. In the following, we
mention only the cases with conformally flat background spacetimes.

4.1 Minkowski

First we consider the nonlinear stability of Minkowski space, i.e.R4 with line element

ds2 = −dt2 + dx2 + dy2 + dz2.

The conformal type of Minkowski space is that of the Minkowski diamond, see
Fig. 12. In this causal diagram, each interior point represents a 2-sphere.

Nonlinear stability holds, in the sense that for Cauchy data near Minkowski data,
the maximal development is geodesically complete and asymptotically Minkowskian.
A key fact is that radiation carries energy through the conformal boundary I . Due
to the fact that the nonlinearity in the Einstein equations is quadratic, it is necessary
to exploit a cancellation in the equations in order to prove stability.

The first result in this direction is due to Friedrich [67], who proved that for data
close to the data induced on a hyperboloid in Minkowski space, one has nonlin-
ear stability to the future, and with suitable asymptotic regularity for the data, the
maximal development has a regular I + to the future of the initial slice. The full
nonlinear stability result was proved by Christodoulou and Klainerman [68]. This
work was extended to include the full peeling at I by Klainerman and Nicolo [69].
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I+

i0

I−

Fig. 12 Conformal diagram of Minkowski space

A simpler proof of nonlinear stability, using wave coordinates (spacetime harmonic
coordinates) gauge was given by Lindblad and Rodnianski [70]. Using both of these
methods, the proof of nonlinear stability can be readily adapted to the Einstein-matter
system, provided that the matter fields do not destroy the conformal properties of the
Einstein equations. Examples include a massless scalar field, which was included in
the work of Lindblad and Rodnianski, and a Maxwell field, see [71].

4.2 de Sitter

Next we consider cosmological models with positive Λ. The canonical example is
de Sitter space with line element

ds2 = −dt2 + cosh2(t)gS3 .

This is conformal to a finite cylinder with spacelike conformal boundary, and hence
one has future horizons and “locality” atI + (Fig. 13). Due to this fact, topology does
not matter for the future dynamics (but cf. [72]). Due to the locality at I +, we have
that a suitable notion for smallness in the stability argument can be defined locally
in space. We mention some results in this setting. Friedrich proved global nonlinear
stability of de Sitter space for the Einstein-Yang-Mills system with positive cosmo-
logical constant [73]. Ringström proved a “local in space” small data global existence
results for the Einstein-Λ-scalar field system [74, 75]. The case of fluid matter was
considered in this situation by Rodnianski and Speck [76] for the irrotational case,
see Speck [77] for the Einstein-Euler system. Finally, the Einstein-Λ-Vlasov system
has been studied by Ringström [78] (Fig. 13).
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I+

de Sitter spacetime: conformal to a Milne spacetime: conformal to an
finite cylinder. infinite cylinder.

Fig. 13 Conformal diagrams of de Sitter and Milne spacetimes

4.3 Milne

Finally we consider the stability problem for a cosmological models with Λ = 0.
Here, the only general results are for the vacuum case. By passing to a quotient of
the Milne spacetime, we may consider a flat spacetime which has a Cauchy surface
isometric to a compact hyperbolic 3-manifold. The line element is

ds2 = −dt2 + t2gH3

(κ = −1 empty Friedmann) and the spacetime is conformal to an infinite cylinder

−dτ 2 + gH3

In this case topology does matter, in the sense that an observer is able to see the
whole past of his spacetime. Since there is no future conformal boundary, it is not
possible to localize the future evolution problem.

Future stability for Milne with compact Cauchy surface as described above was
proven by the author in collaboration with Moncrief for spacetime dimension d + 1,
d ≥ 3, cf. [79, 80], see also [81, 82]. For the 2 + 1 dimensional case, see [63].
Concerning the stability problem for the Einstein-matter systems in this setting,
much less is known than in the case with positive Λ. Some sub-problems have been
considered for the Einstein-Vlasov system in Bianchi symmetry (spacetimes with
a 3-dimensional Lie group acting by isometries on Cauchy surfaces), see [83–85].
Finally, we mention the work concerning test fluids on Friedmann backgrounds by
Speck [86].

The case of vacuum spacetimes with U (1) symmetry leads after a Kaluza-Klein
reduction to 2+1 dimesional gravity with wave maps matter. The nonlinear stability
of the flat cones over surfaces of genus g > 1 in this setting has been studied by
studied by Choquet-Bruhat and Moncrief, see [87, 88].
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5 Generalized Kasner Spacetimes

In Sect. 4.3 we discussed a stability theorem for the future of a Cauchy surface in a
class of spacetimes. The background spacetime in that case is a Lorentz cone over
a compact Einstein space with negative scalar curvature, i.e. a generalized Milne
space. In particular these are warped products of the line with an Einstein space. In
this section we shall discuss a class of double warped product spacetimes, with two
scale factors. These spacetimes which were considered in [89] may be viewed as
generalized Kasner spacetimes. They have the form

M ∼= R × M × N ,

with (M, g), (N , h), compact negative Einstein spaces of dimensions m, n, respec-
tively. The dimension of M is D = d + 1 = m + n + 1. We assume Ricg =
−(m + n − 1)g, Rich = −(m + n − 1)h. and consider a line element on M of the
form

ds2 = −dt2 + a2(t)g + b2(t)h .

Let p = −ȧ/a, q = −ḃ/b, and introduce the scale invariant variables

P = p/H, Q = q/H, A = 1

aH
, B = 1

bH
.

The Einstein equations imply an autonomous system for (P, Q, A, B) with 2 con-
straints. A dynamical systems analysis shows that the generic orbit has generalized
Kasner behavior, i.e. a ∼ t p, b ∼ tq at singularity, and is asymptotically Friedmann
(in fact asymptotic to a Lorentz cone spacetime) in the expanding direction

a, b = t + O(t1−λ∗
), λ∗ > 0 .

Friedmann is a stable node only in spacetime dimension D ≥ 11 (Fig. 14).

5.1 From α to ω

Belinskiı̆ et al. [90] argued that a generic cosmological singularities in 3 + 1 dimen-
sions in spacetimes with ordinary matter is oscillatory. The picture developed by
Belinskiı̆ et al. is often referred to as the BKL proposal. BKL type behavior has been
proved rigorously so far only for the Bianchi VIII and IX models, see [91], where
also strong cosmic censorship for this class of models was shown. On the other hand,
Belinskiı̆ and Khalatnikov [92] pointed out that cosmological singularities in space-
times containing stiff fluid or scalar field can be non-oscillatory, or quiescent. The
heuristic analysis of Belinskiı̆ and Khalatnikov was extended to the higher dimen-
sional case by Demaret et al. [93] who showed that quiescent behavior at singularity
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Fig. 14 The dynamics of the generalized Kasner models [89]. The arrows point in the past direction.
There are five fixed points, one of which is the Friedmann point in the interior of the phase space.
The Friedmann point is a past unstable node for D > 10 and a unstable spiral point for D < 10.
The past stable fixed points F1,2 satisfy condition (6) for D > 10. This implies quiescent behavior
at the singularity for inhomogenous deformations of the generalized Kasner models in D > 10

in D = d + 1 dimensions holds if the condition

1 + p1 − pd − pd−1 > 0 (6)

holds, where pa are the generalized Kasner exponents at the singularity. This heuristic
analysis shows that (6) holds in vacuum only if D ≥ 11, and hence one expects that
generic vacuum, D < 11 spacetimes have oscillatory singularity, while generic
vacuum, D ≥ 11 spacetime have quiescent singularity. It was shown in [89, Sect. 4]
that (6) holds for generalized Kasner spacetimes if D ≥ 11, in agreement with the
result of Demarat et al. [93].

As a step towards making this heuristic scenario rigorous, the author showed
with Rendall [94] that generic D = 4 spacetime with scalar field has quiescent
singularity. In that paper we constructed a full parameter family of Einstein-scalar
field and Einstein-stiff fluid spacetimes with quiescent singularity using Fuchsian
analysis. This work was extended to the case of D ≥ 11 vacuum spacetimes by
Damour et al. [95], again using a Fuchsian analysis.

One may use the techniques discussed above to prove that a type of global non-
linear stability holds for a class of generalized Kasner spacetimes. It was shown in
[96] that for generalized Kasner spacetimes as above, with D ≥ 11, satisfying the
additional condition that the moduli space of negative Einstein metrics on M, N is
integrable (which is expected to hold in general), there is a full-parameter family
of Cω Cauchy data on M × N , such that the maximal Cauchy development (M, g)

has a global CMC time function, and has quiescent, crushing singularity. Further
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(M, g) is future causally complete and is asymptotically Friedmann to the future,
with g(T ) → γ M∞ + γ N∞ , as T → ∞, where γ M∞ and γ N∞ are negative Einstein
metrics on M, N , respectively. This applies to a large variety of factors M, N , and
can easily be generalized to multiple factors.

6 Concluding Remarks

In this paper we have given brief overview of some of the ideas underlying the
general relativistic cosmological models which form the core of the standard model of
cosmology, and pointed out the need for an improved analysis, both from the physical
and mathematical point of view, of the effect of deviations from homogeneity and
isotropy in the dynamics of cosmological models, and consequently in the analysis
of cosmological data. Motivated by this, we have discussed some results on nonlinear
stability for cosmological models. We end by listing some open problems.

The exponential expansion caused by the presence of the cosmological constant
in the case Λ > 0 and also in the presence of certain self-gravitating scalar field
models for inflation makes the large data future behavior of these models tractable
and here there are several results which do not require any symmetry assumptions,
see Sect. 4.2.

For the case Λ = 0 and ordinary matter, the situation is more delicate. The global
behavior of cosmological models is well understood in highly symmetric cases,
including the 3+1 dimensional Friedmann, Bianchi, Gowdy (spatial T 2 symmetric,
with symmetry action generated by hypersurface orthogonal Killing fields) and so-
called surface symmetric cases, see [97] and references therein. For the Bianchi
case, see the remarks in Sect. 5.1 and [98, 99], and for the Gowdy case see [100] and
references therein. However, for large data, the asymptotic behavior of the general
T 2, U (1) (circle symmetric) and the full 3+1 case are mostly open. Similarly, future
stability is open in the 3 + 1 dimensional case for Einstein-matter models without
symmetry assumptions in the case Λ = 0. As an example, one would like to prove
nonlinear stability of Milne for Einstein-Vlasov. This is work in progress by the
author with Fajman.

Our understanding of the behavior of cosmological models in the direction of
the initial singularity is also limited. The BKL proposal provides a heuristic scenario
which has been verified only in the Bianchi case, where also strong cosmic censorship
has been shown to hold, see above. However, in spite of some recent progress [101–
103], even the question whether the singularity in generic Bianchi models is local,
is open. See [99, 104] for references and discussion. For Gowdy models with T 3

Cauchy surface, Ringström has proved that strong cosmic censorship holds, see [100]
for an overview, while for Gowdy with Cauchy surfaces diffeomorphic to S3 or
S2 × S1, and the general T 2 symmetric case (dropping the condition on hypersurface
orthogonality) the situation is much more complicated and cosmic censorship is open.
In particular, in the T 2 symmetric case, one has the new phenomenon of dynamical
spikes, see [105, 106].
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The work by the author and Rendall, and by Damour et al. on quiescent
singularities, see Sect. 5.1 opens up the problem of proving quiescent behavior at the
singularity as well as global nonlinear stability for an open set of Cauchy data (in a
suitable topology). This is work in progress by the author and Ringström. Work on
this type of stability problem for the Friedmann case was mentioned in a recent talk
by Speck [107]. For the case D < 11 one may consider suitable Einstein-scalar field
models and for D ≥ 11 one may formulate the global nonlinear stability problem for
the generalized Kasner backgrounds as discussed in Sect. 5. Here it should be pointed
out that the global stability result mentioned there relies on Fuchsian methods and
therefore suffers from the same weakness as the work by the author and Rendall,
and Damour et al. on quiescent singularities. It would be interesting to prove a true
nonlinear stability result, stating that for an open set of Cauchy data close to the gen-
eralized Kasner background data, the maximal development is geodesically complete
to the future, asymptotically Friedmann, and with crushing singularity with geometry
close to, in a suitable sense, the singularity in the generalized Kasner spacetime.

For the near future, I expect that numerical studies of cosmological models in GR,
with less symmetry than the 2 Killing field models including LTB, T 2 and spherically
symmetric models studied in detail so far, will play an important role in exploring
the future behavior of cosmological models. One can expect that such investigations
will have an impact on both physical cosmology and the mathematical analysis of
cosmological models.
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early version of the paper.
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