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We investigate the in vivo patterns of stem cell divisions in the human hematopoietic system15

throughout life. In particular, we analyze the shape of telomere length distributions underlying16

stem cell behavior within individuals. Our mathematical model shows that these distributions17

contain a fingerprint of the progressive telomere loss and the fraction of symmetric cell prolif-18

erations. Our predictions are tested against measured telomere length distributions in humans19

across all ages, collected from lymphocyte and granulocyte sorted telomere length data of 35620

healthy individuals, including 47 cord blood and 28 bone marrow samples. We find an increasing21

stem cell pool during childhood and adolescence and an approximately maintained stem cell pop-22

ulation in adults. Furthermore, our method is able to detect individual differences from a single23

tissue sample, i.e. a single snapshot. Prospectively, this allows us to compare cell proliferation24
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between individuals and identify abnormal stem cell dynamics, which affects the risk of stem cell25

related diseases.26

Introduction27

Homeostasis is in most mammalian tissues maintained by the occasional differentiation28

of infrequently dividing multi-potent stem cells [1, 2]. These cells are involved in the29

formation, maintenance, renewal, and aging of tissues [3, 4]. Their longevity imposes the30

risk of the accumulation of multiple mutations that potentially induce aberrant stem cell31

proliferation and can ultimately cause the emergence of cancer [5]. The quantification32

of aberrant stem cell properties in cancer is impeded by the lack of detailed information33

about the expected patterns of cell replication in healthy human tissues [6, 7]. Dynamic34

properties of stem cell populations in vivo are predominantly obtained from sequential35

experiments in animal models [8, 9]. Unfortunately, these methods are mostly inapplicable36

to humans and to infer in vivo properties of human stem cell populations remains a37

challenge. Indirect methods, i.e. biomarkers that reflect the proliferation history of a38

tissue, may overcome these limitations [10, 11, 12]. In the following, we combine data of39

telomere length distributions and mathematical modelling of the underlying dynamical40

processes to deduce proliferation properties of human hematopoietic stem cells in vivo.41

Telomeres are noncoding repetitive DNA sequences at the ends of all eukaryotic chromo-42

somes. In vertebrates, these sequences consist of hundreds to thousands of repeats of the43

nucleobase blocks TTAGGG [13]. Telomere repeats are progressively lost in most somatic44

cells with age, as the conventional DNA polymerase is unable to fully copy the lagging45

DNA strand of chromosomes during cell replication [14]. Short telomeres are associated46

with genetic instability [15, 16]. They trigger DNA-damage checkpoint pathways and en-47

force permanent cell cycle arrest [17]. Thus, telomere length limits the replication capacity48

of somatic cells [18] and can indirectly act as a tumor suppressor [19, 20]. This effect can49

be attenuated by the enzyme telomerase, which tags additional TTAGGG repeats to the50

end of chromosomes by utilizing single stranded RNA templates [21]. Telomerase is pri-51

marily expressed in compartments of stem and germ line cells, as well as in numerous52

tumors [22]. However, telomerase expression levels are insufficient to prevent the progres-53

sive loss of telomere repeats in most healthy human tissues with age [23, 24]. This net54

loss of telomere repeats during cell replication leads to a characteristic telomere length55

distribution that reflects the replication history of cells. Since telomere length dynamics56

is important for a number of genetic and acquired disorders [25, 26, 27], it is critical to57
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understand the underlying mechanisms of this fundamental process. We have developed58

a mathematical model that allows us to interpret data of telomere length shortening in59

hematopoietic cells obtained from 356 healthy humans. Most importantly, we can infer the60

patterns of stem cell behavior from the underlying telomere dynamics within individuals61

from a single tissue sample, i.e. a single snapshot.62

Modelling telomere length dynamics63

Our mathematical model recovers the temporal change of telomere length distributions in64

human hematopoietic cells with a minimal number of required model parameters. Since65

hematopoietic cells proliferate in a hierarchical organised tissue with slowly dividing stem66

cells at its root, such a model needs to connect properties of cell proliferation and telomere67

shortening. Telomere length can be assessed on three different levels of resolution, (i) the68

level of single telomeres, (ii) the level of single cells and (iii) the level of the tissue. Of69

course these levels are not independent, for example the knowledge of telomere length in70

all cells allows to obtain the (average) telomere length of a tissue. The processes that drive71

telomere length dynamics differ at these levels of resolution. Single telomeres are prone72

to stochastic events such as oxidative stress or recombination and thus may also shorten73

by effects independent of proliferation associated attrition [28, 29]. Healthy human cells74

contain 184 telomeres, four on each of the 46 chromosomes. Thus, the noise on the level75

of single telomeres becomes much smaller on the cell level. We capitalise on this and76

consider telomere length on the cell level in the following. Thus, the average telomere77

length of a cell shortens by a constant factor during each division. Such an approach78

might underestimate the number of senescent cells once telomeres become critically short,79

since it is the length of the shortest telomere rather then the average telomere length80

that triggers cell cycle arrest [30]. Our model is sensitive to the accumulation of cells in81

the state of cell cycle arrest and we can infer this effect experimentally from population82

wide telomere length distributions. However, this effect can likely be neglected during83

adolescence and adulthood, but might have important implications in some tumors, at84

old age or in conditions associated with abnormal telomere maintenance.85

We further need to consider properties of a hierarchical tissue organization, where few86

slowly dividing stem cells give rise to shorter lived progeny. Although some of the87

progeny, particularly primitive progenitor cells, can be long lived and are able to maintain88

homeostasis without stem cell turnover for intermediate time intervals, eventually all non89

hematopoietic stem cells will be depleted without continuous stem cell turn over [2, 31].90

Age dependent differences in telomere shortening across different lineages of hematopoiesis91
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can only persist in the hematopoietic system if they occur on the level of the maintained92

self-renewing cell population. Cells leaving the stem cell pool have an approximately93

constant number of cell divisions before they reach maturation [32, 33]. This shifts the94

distribution to shorter values of telomere length and consequently, the distribution of95

telomere lengths of mature cells is a good proxy for the distribution of telomere lengths96

in stem cells [34]. We measured telomere length distributions in lymphocytes, granulo-97

cytes and bone marrow sections separately. This allows us to investigate the myeloid and98

lymphoid lineage of hematopoiesis independently.99

In our model, we assume a population of initially N0 stem cells. In the simplest case, each100

stem cell would proliferate with the same rate r and the cell cycle time would follow an101

exponential distribution. However, tissue homeostasis requires continuous stem cell turn102

over in intermediate time intervals, therefore the proliferation rate of the population of103

stem cells is adjusted, such that a required constant output of differentiated cells per unit104

of time is maintained. In the simplest case of a constant stem cell population, the effective105

proliferation rate becomes r/N0. However, in more complex scenarios, the number of stem106

cells could differ with age and the effective proliferation rate of stem cells r/N (t) also107

becomes age dependent [35, 36]. This resembles a feedback mechanism and results in108

an approximately Log-normal distribution of cell cycles, see also Eq. (S26) in Materials109

and methods for details. In addition, each stem cell clone is characterised by a certain110

telomere length [29, 37]. This telomere length shortens with each stem cell division by a111

constant length ∆c and consequently the remaining proliferation potential is reduced in112

both daughter cells [24, 38]. If the telomeres of a cell reach a critically short length, this113

cell enters cell cycle arrest and stops proliferation, reflecting a cell’s Hayflick limit [18].114

This can be modelled by collecting cells with the same proliferation potential in states i.115

A cell enters the next downstream state i → i + 1 after a cell division, see also Figure 1,116

as well as Eq. (S1) and (S14) in Materials and methods. Since the next cell to proliferate117

is chosen at random from the reservoir, cells progressively distribute over all accessible118

states with time [39]. This corresponds to the problem of how many cells are expected in119

a state i at any given time, which we denote by N (i) (t) in the following.120
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Results121

The model predicts characteristic telomere length distributions for different122

ratios of symmetric and asymmetric stem cell divisions123

The shape of the distribution of cells across cell cycles depends on the patterns of stem124

cell proliferation, for example the ratio of symmetric versus asymmetric divisions. An125

asymmetric stem cell division produces one stem and one non-stem cell (for example126

a progenitor cell that leaves the stem cell compartment). If we restrict the stem cells127

dynamics to only asymmetric divisions, the process results in a stem cell population of128

constant size and the number of cells in each state i follows a Poisson distribution129

N (i) (t) =
N0

i!

(
rt

N0

)i

e
− rt

N0 . (1)

A typical example of this distribution is shown in Figure 1-figure supplement 1 and de-130

tails on the derivation can be found in Materials and methods, see Eq. (S1). Cells with131

maximum proliferation capacity (cells in state 0 in our model) are progressively lost and132

cells accumulate in the final state of cell cycle arrest by passing through all intermediate133

states.134

Inferring the dynamics of distribution (1) from in vivo measurements requires sequential135

sampling and complicated cell sorting, which seems challenging in realistic clinical settings.136

On the other hand, the measured (observed) telomere length distribution corresponds to137

a single sample of the underlying Poisson process. The expected shape of this observed138

distribution is depicted in Figure 1g. It becomes a traveling wave that starts narrowly139

distributed around an initial telomere length and shifts towards shorter average telomere140

length with time. We have measured this distribution, which arises from our theoretical141

model, experimentally in many samples of granulocytes, lymphocytes and bone marrow142

sections of healthy adult humans, which we discuss in detail below.143

In addition to asymmetric divisions, stem cells can undergo symmetric self renewal, which144

is a prerequisite for development, as it allows for a growing stem cell population. In145

our model, stem cells divide symmetrically with probability p and asymmetrically with146

probability 1− p respectively. In this situation, the number of stem cells is not constant,147

but increases with each symmetric stem cell self renewal. As a consequence, the expected148

distribution also changes and is now described by a generalised Poisson distribution (see149
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Eq. (S14) in Materials and methods) given by150

N (i)
p (t) =

N0

i!

(
1 + p

p

)i lni
(

rp
N0

t+ 1
)

p

√
rp
N0

t+ 1
. (2)

This distribution also leads to a traveling wave, but the maximum of the distribution151

decreases considerably slower compared to the case of purely asymmetric stem cell divi-152

sions. In the following, we refer to the model that is restricted to only asymmetric stem153

cell divisions as model 1 and denote the more general case of symmetric and asymmetric154

cell divisions as model 2.155

Ideally, we would like to follow these traveling waves in individual healthy humans over156

time and compare this sequential data to the dynamics from our model predictions. Un-157

fortunately, the time required to confirm our model across all ages would exceed the life158

expectancy of the authors. We therefore explored those properties of our analytical model159

that are directly testable in population wide data of telomere length. One such property160

is the change of the average telomere length with age, which we measure in a group of161

356 healthy individuals.162

The average telomere length decreases nonlinearly in the presence of symmetric163

stem cell self renewal164

The average telomere length decreases in most human tissues with age [23]. This is well165

known and has been confirmed numerous times. Surprisingly, less is known about the166

detailed dynamics of this decrease. We can derive the dynamics of the average telom-167

ere length from the telomere length distributions directly. The average telomere length168

corresponds to the expected value of the telomere length distribution (in the following169

denoted by E[c(t)]), see Eq. (S5) in Materials and methods for details. As the telomere170

length distribution changes with time, the average telomere length becomes time depen-171

dent naturally. In the absence of symmetric stem cell self renewal (model 1) the average172

telomere length E [c (t)] is expected to decrease linearly173

E [c (t)] ≈ c−∆c
rt

N0

, (3)

with age (denoted by t in the equation above). More specifically, the average telomere174

length of cells of a particular type, e.g. the population of granulocytes or lymphocytes,175

6



shorten by a constant fraction each year. The dynamics changes once a significant fraction176

of cells enter cell cycle arrest, see Eq. (S9). The average telomere length transitions from a177

linear into a power law decline (when the average telomere length becomes very short) and178

the stem cell pool reaches the state of complete cell cycle exhaustion asymptotically. This179

transition would enable the identification of an age where a considerable fraction of stem180

cells enter cell cycle arrest, potentially a mechanisms important in aging, carcinogenesis181

or bone marrow failure syndromes.182

Furthermore, we calculated the variance of the underlying stochastic process. This gives183

us a measure for the expected fluctuation of the average telomere length in a population184

of healthy humans. We expect the variance to increase linearly in time in the absence of185

symmetric stem cell self renewal. Consequently, the standard deviation is proportional to186

the square root of age. Yet again, similar to the average telomere length, the dynamics187

of the variance changes once a significant fraction of cells enters cell cycle arrest. The188

variance starts to decrease and would reach zero, if all cells stopped proliferation.189

The distribution of telomere length changes under the presence of symmetric stem cell self190

renewal (model 2). Accordingly, we expect a different decrease of the average telomere191

length. We find that the telomere length follows a logarithmic decay with age (see also192

Eq. (S19)), given by193

Ep [c (t)] ≈ c−∆c
1 + p

p
ln

(
rp

N0

t+ 1

)
. (4)

The average telomere length of a cell population shortens less with increasing age under194

the presence of symmetric self renewal, although the decrease of telomeric repeats per cell195

division (denoted by ∆c in equation (4)) is constant. This effect emerges naturally in our196

model due to the increasing number of stem cells with age. In a population with only197

few cells, each cell proliferation has a considerable impact on the average telomere length,198

while this impact diminishes in larger populations. If the stem cell population increases199

progressively, telomere shortening reduces on the tissue level with age.200

In vivo measurements of telomere length suggest an increasing number of201

hematopietic stem cells during human adolescence202

In order to test the predictions of our model experimentally, we have measured telomere203

length in lymphocytes and granulocytes in a cohort of 356 healthy humans with ages204

between 0 and 85 years. Our data includes 47 cord blood samples of healthy children205

and bone marrow biopsies of 28 patients with diagnosed Hodgkin lymphoma without206
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bone marrow involvement. We assessed the average telomere length in all 356 samples207

with established Flow-FISH protocols [40, 41, 42, 43]. This reveals the population wide208

dynamics of telomere length and contains a significant number of cord blood samples that209

allow us to investigate differences in cell proliferation during adolescence and homeostasis210

in adulthood.211

In addition, we have analyzed 28 blood samples of lymphocytes, 10 blood samples of212

granulocytes and 28 bone marrow biopsies with quantitative-fluorescence in situ hybridis-213

ation (Q-FISH) [44, 45, 46] (see experimental methods for details). The averages of these214

samples correspond to the open symbols in Figure 2. The full distribution is shown in215

Figure 6 for four illustrative cases. From these samples, we obtain the telomere length216

distributions of single individuals and estimate personalised cell proliferation properties,217

e.g. the ratio of symmetric to asymmetric cell divisions as well as the rate of telomere218

shortening for each sample separately. We compare these personalised estimates to popu-219

lation wide telomere length to test the consistency of our results on two independent data220

sets.221

In order to compare our model with the experimental data, we implemented standard222

maximum likelihood estimates for a regression analysis. Our experimental finding in223

adults (we only consider persons of 20 years or older) show that telomere length in gran-224

ulocytes and lymphocytes decreases approximately linearly with age on the population225

level. In both cell populations the telomere length of adults decreases with 50±5 bp/year226

(we state the maximum likelihood estimate and the 95% confidence interval). If for ex-227

ample a cell looses on average 50 bp telomeric repeats per cell division [24], this implies228

approximately 1 replication per year for the hematopoietic stem cells. This agrees with229

the observation of rare stem cell turnover under homeostasis [2, 31, 47].230

However, the assumption of strictly asymmetric cell divisions (model 1) fails to explain231

the pronounced loss of telomere repeats in infants (prediction of model 1 for the initial232

telomere length in lymphocytes: 9.8±0.15 kbp, measured average initial telomere length:233

10.67 ± 0.4 kbp, similar results for granulocytes, see also Figure 3 for a comparison of234

model 1 and model 2). This discrepancy can be resolved by introducing an interplay of235

symmetric and asymmetric stem cell divisions (model 2) that allows for an increasing236

number of stem cells. In this situation, the proliferation rate of stem cells becomes age237

dependent and our model predicts that at the youngest ages, when the number of stem238

cells is lowest, telomere loss is most pronounced. Maximum likelihood estimates of our239

general mathematical solution (Eq. (4)) to the telomere length data on the population240

level (see Figure 2) reveals for the parameter controlling average loss of telomere length241
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in lymphocytes a value of 75± 7 bp/year, an initial telomere length of 10.4± 0.2 kbp and242

a probability for symmetric stem cell self renewal of 0.35± 0.07. In granulocytes we find243

a value of telomere loss of 68 ± 5 bp/year, an initial telomere length of 10.2 ± 0.3 kbp244

and a probability for symmetric stem cell self renewal of 0.44 ± 0.2. This probability245

accounts for the increased loss of telomere repeats in infants and substantially improves the246

prediction of the initial average telomere length. In addition to our group of 356 healthy247

humans, we have tested our hypothesis in an independent data set of 835 healthy humans,248

previously published by an unrelated group in [40], see Figure 2-figure supplement 1. This249

set confirms our parameter estimations, in particular the accelerated decrease of average250

telomere length during adolescence is also observed.251

Our model suggests that the increased loss of telomere repeats in the first years of human252

life is a consequence of an expanding stem cell population. This expansion is combined253

with a reduction in proliferation rates of single stem cells. The loss of telomere repeats254

during cell replication has a more pronounced impact on the average telomere length255

within a small cell population and diminishes in large stem cell populations. This explains256

the increased loss of telomeric repeats during adolescence (see Figure 3) naturally as257

a consequence of growth by an expanding stem cell population. Similarly, a sudden258

accelerated loss of telomeric repeats in aged individuals could point towards an insufficient259

stem cell self renewal. This might provide a promising direction for further investigations260

with an extended data set of sufficiently high resolution in aged individuals.261

Proliferation properties of stem cells differ during adolescence and adulthood262

Our analytical model is consistent with population wide telomere length data. It shows263

that symmetric stem cell self renewals are more frequent in adolescence and their effect on264

the dynamics of average telomere length reduces with age. However, how robust are our265

conclusions under variation of model parameters or a change of cell proliferation properties266

with age? One possibility to address these problems is the implementation of Bayesian267

inference methods [48]. In a nutshell, such methods draw a random set of model parame-268

ters either from an uninformed (objective) or informed (subjective) prior distribution and269

produce independent realizations of the model. These realizations are compared to some270

(appropriate) data of interest and fits with a predefined statistic significance are retained271

while unsatisfactory realizations are rejected. Originally developed for phylogenetic tree272

reconstruction, such methods are increasingly used in other applications [49]. Bayesian273

inference methods allow to quantify the uncertainty in an analysis by providing posterior274

distributions of model parameters.275
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In the following we implement an Approximate Bayesian Computation (ABC) rejection276

sampling framework [50] on the data presented in Figure 2. We derive posterior distri-277

butions for our three free model parameters, the initial telomere length c, the relative278

decrease of telomere length per time ∆cr/N0 and the probability of symmetric stem cell279

divisions p. We draw these variables independently from uniform (uninformed) distribu-280

tions and test 109 independent realizations of our mathematical model 1 and model 2. We281

seek parameter regimes that maximize the coefficient of determination R2 between Eq. (3)282

(model 1) or Eq. (4) (model 2) and the average telomere length presented in Figure 2. We283

discard any parameter combination below a threshold. We perform the same analysis284

independently on the data set of granulocytes and lymphocytes.285

In both cases, we find localized posterior parameter distributions. For lymphocytes,286

parameters peak at ∆cr/N0 = 0.071 ± 0.005 kbp/year, c = 10.41 ± 0.3 kbp and p =287

0.32± 0.2, see Figure 5 c-d. Only a small parameter range explains the exact patterns of288

telomere shortening. We find approximately 70% of stem cell divisions are asymmetric289

and 30% are symmetric self renewals. This stochastic approach confirms the results290

of the non-linear model fits using a standard maximum likelihood approach that were291

discussed in the previous section, but provides further information on the distribution of292

our parameters.293

The previous analysis assumes a fixed set of parameters for the dynamics of telomere294

shortening for all ages. In principal, these parameters could also change with age. To see295

if we can identify ages with different stem cell proliferation parameters, we investigated296

a third model that allows for successive phases of stem cell dynamics with independent297

parameter sets for each phase. We consider an additional parameter tT, which corresponds298

to a transition time. We perform the above Bayesian approach independently for each299

random partition of the data set. This approach suggests at most two separate phases,300

with a transition between the 6th and 7th year of life for lymphocytes, see Figure 5 f-i,301

and a transition between the 10th and 15th years of life for granulocytes, see Figure 5 j-302

m. In infants and the first years of life, the probability of stem cell self-renewal shows a303

significant variance (Figure 5). However, the data resolution is insufficient for this short304

time window to provide reliable parameter estimates. The probability of symmetric stem305

cell self renewal in adults however is in the the range of p ∈ (0, 0.2). This is lower as306

was predicted by the regression analysis across all ages. This suggests a reduction in307

the self renewal probability of stem cells after adolescence and points towards an either308

slower growing or constant stem cell population in adults. This may reflect selection for309

an optimal stem cell population size to minimize the risk of cancer initiation as suggested310

in theoretical studies before [51].311
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Next, we aimed to test which of the three models explains the data best, considering312

the complexity of the models. We therefore utilise the likelihood estimates of the former313

subsection and perform a model selection based on the Akaike information criterion (AIC)314

[52]. Model 1 scores with an AIC of 2550, model 2 has an AIC of 2328 and a multiphase315

model with a minimum of 7 parameters yields an AIC of 2361. The AIC is minimized by316

model 2. Based on this approach, model 1 as well as a multiphase model can be rejected317

as more likely explanations for the telomere length shortening presented in Figure 2 (given318

the above numbers and according to standard procedures, the relative likelihood of model319

1 to better explain the data compared to model 2 is assumed to be p ≈ 10−48, the relative320

likelihood of the multi-phase model to better explain the data compared to model 2 is321

assumed to be p ≈ 10−8). This selection is robust under the choice of different statistical322

methods. For example, a BIC approach selects the models in the same order.323

A single sample of the telomere length distribution can inform about stem cell324

dynamics325

The actual stem cell population sizes and their dynamics do not only vary with age,326

but also between individuals. This has immediate consequences on the susceptibility of327

individuals towards certain diseases [27, 53] and could potentially be used in individualised328

treatment strategies. Our model describes the telomere length distributions in individuals329

and quantifies three parameters, i.e. initial telomere length, increase of stem cell pool330

size and stem cell replication rates of an individual from a single tissue sample. We331

therefore extended our experimental protocols to further test our theoretical results. First,332

we measured single telomere signals of peripheral blood sorted for lymphocytes in 28333

individuals and sorted for granulocytes in 10 individuals by quantitative confocal FISH334

in addition to the average telomere length that is provided by flow FISH. Second, we335

investigated the telomere length distribution in paraffin-embedded bone marrow sections336

of an additional cohort of 28 healthy individuals using quantitative confocal FISH [54],337

see Figure 4. We compare our general telomere length distribution that allows for any338

ratio of symmetric and asymmetric stem cell divisions (model 2) to the data set of all 66339

individuals. Cases of four representative individuals are shown in Figure 6. All cases can340

be found in Figure 6-figure supplements 1-3 and all individual cell proliferation properties341

as well as quality of fits are summarised in Supplementary File 1. The average telomere342

length of these 66 distributions are shown as open symbols in Figure 2.343

The fits of our calculated distribution (see Eq. (S15) for the distribution and Eq. (S29) for344

details on the fitting procedure) reveal substantial differences in initial telomere length,345
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increase of stem cell pool size and stem cell replication rates between the 66 individuals,346

but also between granulocytes, lymphocytes and bone marrow samples. We find a low347

probability of symmetric self-renewal (p between 0.005 to 0.03 per cell division) in all348

individual samples. This agrees with our results on the average telomere length short-349

ening in adults at the population level and supports our observation of a approximately350

maintained active stem cell number in individuals after adolescence. Also the average351

telomere loss per year varies between individuals and ranges from 18 bp/year to 110352

bp/year. However, the averages of all individual parameter sets agree with the estimated353

proliferation properties inferred from the population wide data of telomere length. We354

find differences between individual samples of lymphocytes and granulocytes. While the355

loss of telomeric repeats slows down with age in granulocytes, it slightly accelerates in356

lymphocytes, see Figure 7. These cells represent the myeloid and lymphoid lineage re-357

spectively. In our model, such a reduced rate of telomere loss can be explained with an358

increased reservoir of myeloid specific stem and progenitor cells and is in agreement with359

a skewed differentiation potential towards the myeloid lineage of aged hematopoietic stem360

cells [55].361

Discussion362

Our knowledge about the dynamics of tissue specific stem cells comes mostly from lineage363

tracing experiments in transgenic mouse models. They provided insights into many as-364

pects of tissue formation and maintenance, e.g. the intestinal crypt, but also the hematopoi-365

etic system [2, 31, 56]. However, there is variation between different transgenic mouse366

models and their significance for human stem cell properties remains a challenging ques-367

tion. In some cases, clonal lineages can be traced by naturally occurring somatic muta-368

tions, e.g. particular mtDNA mutations in human intestinal crypts [57]. However, the in369

vivo dynamic properties of human hematopoietic stem cells remain poorly characterized.370

Here, we have utilized telomere length distributions of hematopoietic cells as a biomarker371

that contains information about the proliferation history of cells. We developed a math-372

ematical model that allows us to infer dynamic properties of stem cell populations from373

data of telomere length distributions. These properties were analyzed in different cell374

types, e.g. lymphocytes, granulocytes and bone marrow sections of individuals of differ-375

ent ages. These calculated distributions describe the change of telomere length within the376

human population. The expected changes with age were confirmed in a representative377

group of 356 healthy individuals and the conclusions are consistent with our individualized378
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parameter estimations.379

The population wide data of average telomere length reveals different stem cell properties380

in adolescence and adulthood. Telomere length decrease is logarithmic and occurs at a381

faster rate during adolescence, suggesting a stem cell pool expansion in the first years of382

human life compatible with growth. This decrease becomes almost linear in adults and is383

in line with an approximately constant stem cell population. It is an interesting question384

why stem cells would reach a certain targeted size. This could be simply because of spatial385

constrains in the bone marrow. Yet, from an evolutionary perspective, intermediate stem386

cell pool sizes were suggested to minimize the risk of cancer initiation [34, 51]. Such an387

optimization requires feedback signals that ensures the maintenance of an intermediate388

sized stem cell population, feedback signals that might be prone to (epi)genetic change389

and potentially are involved in cancer and ageing.390

It is still a debated question if stem cells in mammals are maintained by predominantly391

asymmetric divisions, or alternatively by a population strategy of balanced symmetric self-392

renewal and symmetric differentiation. While the former strategy can be implemented393

on the single cell level, the latter strategy would require further feedback signals. From394

a modelling perspective, a population strategy of symmetric-self renewal and symmetric395

differentiation was suggested to minimize the clonal load within a stem cell population396

[58]. On the other hand, experimental findings seem to point towards predominantly397

asymmetric divisions, but this might also differ across tissues [4]. In our model, the398

stem cell pool is maintained by asymmetric cell divisions. A balance of symmetric and399

asymmetric cell divisions would on average result in the same telomere length dynamics400

and thus would be indistinguishable from asymmetric divisions on the population level,401

only the interpretation of p, the probability of symmetric self renewal would change in402

this case. Yet, the variance of the distribution would be expected to increase under the403

presence of symmetric differentiation and symmetric self renewal. However, likely this404

effect is weak compared to the measurement related noise of telomere length.405

Our method quantifies the parameters of telomere dynamics from a single blood sample406

or paraffin-embedded tissue samples of an individual. It is independent of any particular407

tissue organization and thus can be applied, in principle, to any tissue. This general408

method will be of particular interest to distinguish stem cell dynamics in healthy and sick409

individuals. We expect characteristic changes in telomere length distributions in certain410

(hematopoietic) stem cell disorders such as chronic leukemias [59] and bone marrow failure411

syndromes [27, 54]. Therefore, our model can serve as a tool to infer stem cell dynamics412

in vivo retrospectively and prospectively from a single tissue sample. Such an approach413

13



can not only increase our understanding of disease dynamics but may also contribute to414

personalized disease diagnosis and prognosis in the future.415

Materials and methods416

Patients417

Peripheral blood of 309 healthy blood donors was obtained from the blood donor bank418

in Aachen. Q-FISH of peripheral blood cytospins was performed on 28 healthy blood419

samples. 47 cord blood and blood samples from healthy children and adolescents were420

obtained from the Department of Pediatrics and Neonatology of the University Hospital421

of Aachen. Bone marrow biopsies of 28 patients with diagnosed Hodgkin lymphoma422

without bone marrow involvement were used for bone marrow analysis. All samples were423

taken with informed consent and according to the guidelines of the ethics committees at424

University Hospital Aachen.425

Flow-FISH426

The Flow-FISH technique provides the mean telomere length per nucleus. Flow-FISH427

was carried out according to previously published protocols [40, 41, 42, 43]. Briefly, after428

osmotic lysis of erythrocytes with ammonium chloride, white blood cells were mixed with429

cow thymocytes. Cells were hybridized with FITC labeled, telomere specific (CCCTAA)3-430

peptide nucleic acid (PNA) probe (Panagene) and DNA was counterstained with LDS 751431

(Sigma). FACS analysis was carried out on Navios or FC-500 (both Beckman Coulter).432

Thymocytes, lymphocytes and granulocytes subsets were identified based on LDS571433

staining and forward scatter. Mean telomere length was calculated by subtracting the434

unstained autofluorescence value of the respective lymphocyte, granulocyte or thymocyte435

subpopulation. Cow thymocytes with a determined telomere length were used as an436

internal control to convert telomere length in kilobase (kb). All measurements were carried437

out in triplicate.438
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Quantitative-Fluorescence in situ hybdridsation (Q-FISH)439

Q-FISH offers the possibility to analyze the distribution pattern of individual telomeres.440

For cytospins of peripheral blood cells, erythrocytes were lysed using ammonium chloride441

(Stem cell Technologies) and 50,000 cells were centrifuged for cytospin. Cells were fixed442

with 70% ethanol solution for 30 seconds and air dried for 15 min. Bone marrow sections443

were deparaffinized with xylol and rehydrated with ethanol following standard protocols.444

Deparaffinized bone marrow tissue sections, metaphases and peripheral blood cells were445

processed following previously published protocols [44, 45, 46]. After initial washing446

with PBS, slides were fixed in formaldehyde (Sigma) (4%) in PBS for 2 min. Slides were447

further washed (three times for 5 min) with PBS followed by dehydration with ethanol and448

air drying for 30 min. Hybridization mixture containing 70% formamide (Sigma), 0.5%449

Magnesium chloride (Sigma), 0.25% (wt/vol) blocking reagent (Boeringer) 0.3 µg/ml Cy-450

3-conjugated (C3TA2)3 peptide nucleic acid probe (Pnagene), in 10 mM Tris (pH 7.2,451

Sigma) was added to the slide. After adding a coverslip; DNA was denatured for 3min452

at 85◦C. Hybridization was carried out for 2 h at room temperature. After washing453

the slides twice with 70% formamide/10 mM Tris (pH 7.2)/0,1% bovine serum albumin454

(BSA), slides were washed again (three times for 5 min) with 0.05 M Tris/0.15 M NaCl455

(pH 7.5) containing 0.05% Tween-20. After dehydration with ethanol slides were air dried456

and stained with PBS containing 0.1 ng/ml of 4’-6-diamidino-2-phenylindole (DAPI) for457

5 min. After mounting the cells (Vectashield, Vectorlabs), a coverslip was added.458

Image analysis459

Confocal microscopy analysis was carried out at a Leica TCS-sp5 confocal microscope (Le-460

ica). Images were acquired at 63x magnification and 1.5-2.0 digital zoom. Multi-tracking461

mode was used to acquire images. Stacks of DAPI and Cy3 staining were taken with a step462

size of 1 µm. Peripheral blood cells and bone marrows were captured including five steps463

(z-range 4 µm). Maximum projection of the images was carried out and Definiens XD 1.5464

image analysis software (Definiens GmbH) was used for quantitative image analysis. Nu-465

cleus and telomere detection was carried out based on DAPI and Cy3 intensity patterns.466

A valid image analysis was assumed in case of a correct detection of 90% of all visible467

telomeres. All image analysis was carried out single-blinded. Individual telomere signals468

were calculated after subtraction of the mean background value per detected nucleus. For469

bone marrow section and peripheral blood cells, values of all detected telomeres were used470

for analysis. Paraffin embedded lymphocytes of three healthy donors and granulocytes471
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of a patient with chronic myeloid leukemia with a determined telomere length were used472

as controls for bone marrow biopsies. Linear regression of the control cells was carried473

out to convert telomere length from arbitrary units to kb. Telomere length in kb of the474

Q-FISH analysis of peripheral blood cells was calculated based on the linear regression of475

the corresponding flow-FISH values.476

Mathematical model of telomere length dynamics477

We assume a finite number of 1 + c accessible telomere states of stem cells, where each478

state i contains cells of equal average telomere length. Initially, N0 cells are in state 0479

and cells will progressively enter downstream states after cell divisions. An asymmetric480

division of a cell in state i leads to one more differentiated cell (more committed within481

a hierarchically tissue organization) and one stem cell. The committed (progenitor) cell482

leaves the pool of stem cells and does not further contribute to dynamics in the stem483

cell population. The second cell keeps the stem cell properties and enters state i + 1,484

reflecting the shortening of its telomeres by a length of ∆c. Similarly, a symmetric cell485

division results in two stem cells, both entering the next subsequent state. In our model,486

stem cells divide symmetrically with probability p and asymmetrically with probability487

1− p, respectively. A cell in state c enters cell cycle arrest and cannot reach subsequent488

states - the next proliferating cell is randomly chosen amongst all cells not yet in state c.489

Stochastic simulations490

We implement individual based stochastic simulations of our telomere model. We initialize491

our program with N0 cells in state 0. The next cell to proliferate is chosen randomly492

amongst all cells not yet in state c. If a cell is chosen, we draw a random number493

ξ ∈ [0, 1]. If ξ > p, one cell enters the next subsequent compartment (corresponding to494

an asymmetric cell division). If ξ ≤ p, two cells enter the next subsequent compartment495

(corresponding to a symmetric stem cell division). In both cases, the mother cell is496

removed. Iterating over many cell divisions leads to a distribution of cells amongst the497

accessible 1+ c cell cycle states. Recording the temporal change of the distribution allows498

us to infer further properties of interest such as the time dependence of the average and the499

variance of the distribution. All simulations are implemented in C++, and are analyzed500

and visualized in Mathematica 10.0 and R 3.2.1.501
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Asymmetric cell divisions502

We first discuss the telomere length dynamics under asymmetric cell divisions (corre-503

sponding to p = 0 and called model 1 in our further notation). We call N (i) (t) the504

number of cells in state i at time t. We further choose the initial condition N (0) (0) = N0.505

Asymmetric cell divisions strictly conserve the size of the cell pool
∑c

i=0N
(i) (t) = N0.506

We apply a deterministic, time continuous approximation of the underlying stochastic507

process and capture the average dynamics of telomere shortening by a system of coupled508

differential equations,509

Ṅ (i) (t) =


−rN(i)

N0
i = 0

−rN(i)

N0
+ rN(i−1)

N0
0 < i < c

rN(i−1)

N0
i = c.

(S1)

Here, r represents the proliferation rate of a cell. Cells move towards higher states pro-510

gressively and accumulate in state c, where they enter cell cycle arrest.511

The general solution of (S1) can be derived recursively and is given by512

N (i) (t) =


N0

i!

(
rt
N0

)i

e
− rt

N0 0 ≤ i < c

N0

(
1−

c−1∑
l=0

1
l!

(
rt
N0

)l
)
e
− rt

N0 i = c.
(S2)

The number of cells in states i < c resembles a truncated Poisson distribution with rate513

parameter r
N0

and shape parameter j. Figure 1 g shows a comparison of solution (S2) to514

exact individual based stochastic computer simulations. The number of cells in state 0515

decreases exponentially. Cells in states i = 1, . . . , c − 1 are initially absent, undergo a516

maximum and vanish in the long run again. Only cells in state c accumulate over time.517

Inferring distribution (S2) from in vivo data requires several blood samples at sequential518

time intervals. A single measurement of the telomere length distribution at time t′ corre-519

sponds to the interception points of a vertical line, drawn at time t′, and the number of520

cells in every state in the model is given by Eq. (S2). Thus, the observed distribution at521

time t′ in Figure 1 g is given by522

ft′ (c) = {N (0) (t′) , . . . , N (c) (t′)}. (S3)

This distribution becomes a traveling wave that shifts towards shorter average telomere
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length in time, see Figure 1-figurent 1. The maximum of this wave reaches state i after
time t

(i)
max = iN0

r
. Plugging this into equation (S2), we find for the maximum of this

traveling wave

N (i)
(
t(i)max

)
=

N0

i!

(
i

e

)i

≈ N0√
2πi

=
N0√
2πr
N0

t
(i)
max

, (S4)

where we applied Stirling’s formula. The most abundant telomere length declines propor-523

tional to 1√
tmax

in time if cells undergo asymmetric cell divisions only.524

Next we calculate the time dependence of the average telomere length E [c (t)]. This525

corresponds to the first moment of the distribution (S2), given by526

E [c (t)] =
1

N0

c∑
i=0

(c−∆ci)N (i) (t)

=
c∑

i=0

c−∆ci

i!

(
rt

N0

)i

e
− rt

N0

=
c∑

i=0

c

i!

(
rt

N0

)i

e
− rt

N0 −∆c
c∑

i=0

i

i!

(
rt

N0

)i

e
− rt

N0 , (S5)

where cells in state c do not contribute. To calculate this sum we first note that the527

upper incomplete gamma function is defined as Γ
[
1 + c, rt

N

]
=

∫∞
rt
N

dx xce−x, but can also528

be represented by incomplete exponential sums Γ
[
1 + c, rt

N

]
= c!e−

rt
N

∑c
i=0

1
i!

(
rt
N

)i. If we529

set x = rt
N

, we can write530

c∑
i=0

c

i!
xie−x =

c

c!
Γ [1 + c, x] (S6)

the second term is
c∑

i=0

i

i!
xie−x = x

c∑
i=0

xi

i!
e−x + x

∂

∂x

c∑
i=0

xi

i!
e−x, (S7)

18



and thus we have

e−x

c∑
i=0

i

i!
xi = x

c∑
i=0

xi

i!
e−x

︸ ︷︷ ︸
1
c!
Γ[1+c,x]

+x
∂

∂x

c∑
i=0

xi

i!
e−x

︸ ︷︷ ︸
1
c!
Γ[1+c,x]

= x
Γ [1 + c, x]

c!
− x1+c

c!
e−x. (S8)

In the last step we used the property of the upper incomplete gamma function ∂
∂x
Γ [n+ 1, x] =531

−xne−x. Collecting all terms in Eq. (S5) again gives532

E [c (t)] =
∆c

c!

(
rt

N0

)1+c

e
− rt

N0 +
cN0 −∆crt

N0

Γ
[
1 + c, rt

N0

]
c!

. (S9)

The expression for the average telomere length (S9) simplifies significantly for certain533

parameter regimes. For example for the hematopoietic system in humans we expect N0534

at least to be in the order of a few hundred of cells and c is strictly larger than zero. Thus535

the first term in Eq. (S9) is very small and negligible. The second term is dominated536

by the linearly decaying term, as the incomplete gamma function is Γ
[
1 + c, rt

N0

]
≈ c!537

for t ≪ r/N0, i.e. sufficiently small t. Thus in this situation expression (S9) is well538

approximated by539

E [c (t)] ≈ cN0 −∆crt

N0

(S10)

until only few cells have reached state c. The linear approximation Eq. (S10) is excellent,540

until most cells reach states of very short telomeres. In the situation of critically short541

telomeres, the full solution (S9) has to be used and the average telomere length reaches542

zero asymptotically.543

Our approach allows us to calculate additional properties of the system. The knowledge of544

the exact distribution enables us to derive all moments of the distribution. For example,545

we can derive analytical expressions for the time dependence of the variance σ2 (t). First546

note, that the moment generating function for the distribution (S2), Mc (z) = E [ecz] (t),547

is548

Mc (z) = 1 +
e(

e−z−1) rt
N0 Γ

[
1 + c, e

−zrt
N0

]
c!

−
Γ
[
1 + c, rt

N0

]
c!

. (S11)

We recover the average (S9) of the telomere length distribution via E [c (t)] = ∂
∂x

(Mc (0)).
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The variance can be calculated via

σ2 (t) = E
[
c (t)2

]
− E2 [c (t)] =

∂2

∂x2
Mc (0)−

(
∂

∂x
Mc (0)

)2

=

(
rt

N0

)1+c
N0c− rt

N0 c!
e
− rt

N0 +

[(
c− rt

N0

)2

+
rt

N0

]
Γ
[
1 + c, rt

N0

]
c!

− E2 [c (t)] . (S12)

Again, the first term of equation (S12) is negligible for a biological meaningful parameter549

range. The quadratic term (c− rt/N0)
2 is compensated by an identical term in E2 [c (t)]550

(see Eq. (S9)). Again, the gamma function is approximately equal to c! for sufficiently551

small times. Thus, expression (S12) is initially dominated by the linear term and conse-552

quently, the variance grows linear as σ2 = rt
N0

. The standard deviation increases in time553

as554

σ =

√
rt

N0

. (S13)

The linear approximation of the variance is excellent. Only if cells start to accumulate in555

state c (cell cycle arrest) the variance decreases.556

Symmetric cell divisions557

In the following, we modify the system of differential equations (S1) (model 1) to incorpo-558

rate symmetric stem cell divisions (model 2). We assume a cell division to be symmetric559

with probability p and asymmetric with probability 1−p respectively. Note that the num-560

ber of stem cells is not constant but increases due to symmetric cell divisions. Initially561

there are N0 cells with telomeres of length c. We assume a number of stem cell divisions562

that is constant within a fixed time interval, reflecting the necessity to produce a fixed563

number of differentiated cells during a unit of time. However, time intervals between stem564

cell divisions remain stochastic in the individual based model. As a consequence, the stem565

cell pool increases linearly in time, Np (t) = N0 + rpt. Thus, the system of differential566

equations changes to567

Ṅ (i)
p (t) =


− rN

(i)
p

rpt+N0
i = 0

− rN
(i)
p

rpt+N0
+

r(1+p)N
(i−1)
p

rpt+N0
0 < i < c

rN
(i−1)
p

rpt+N0
i = c.

(S14)
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The solution to this system of differential equations is

N (i)
p (t) =


N0

i!

(
1+p
p

)i
lni(t∗)

p√t∗
0 ≤ i < c

N0 (1 + p)i−1

(
1− Γ[i, 1p ln(t∗)]

(i−1)!

)
i = c,

(S15)

where we used t∗ = rp
N0

t+1 as an abbreviation. Using l’Hopital and ex = limn→∞
(
1 + x

n

)n
568

we recover the Eq. (S2) for p → 0 and the solution turns into a Poisson distribution again,569

lim
p→0

N (i)
p (t) =

N0

i!

(
rt

N0

)i

e
− rt

N0 = N (i) (t) . (S16)

Note that we assumed a constant number of cell divisions within a fixed time interval. Due570

to the increasing stem cell pool size, this effectively causes a reduction in the proliferation571

rate of individual stem cells with age.572

Similar to the former subsection, the time dependence of the maximum of the distribution573

can be calculated for i = 1, . . . , c−1. The time until the maximum of the telomere length574

distribution reaches length i becomes575

t(i)max,p = N0
eip − 1

rp
. (S17)

The time to reach the maximum increases exponentially in i for symmetric cell divisions,576

in contrast to the linear increase for only asymmetric cell divisions. However, Eq. (S17)577

reduces to the result we obtained in the former subsection in the limit p → 0. The cell578

count at the maximum becomes579

N (i)
(
t(i)max,p

)
≈ N0 (1 + p)i√

2πi
. (S18)

The maximum decreases considerably slower with i (given the same initial size of the stem
cell pool) compared to the case of only asymmetric cell divisions Eq. (S4), where we have
used Stirling’s formula for the approximation. Similar to the former subsection we can
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calculate the average of the telomere length distribution. This time the average becomes

Ep [c (t)] =
1

Np (t)

c∑
i=0

(c− i∆c)N (i)
p (t)

=
∆cρ1+c

c!

ln1+c (t∗)

(t∗)ρ
+

Γ [1 + c, ρ ln (t∗)]

c!
(c−∆cρ ln (t∗)) (S19)

with t∗ = rp
N0

t+1 and ρ = 1+p
p

. Similar to (S9), this expression is dominated by the second580

term of the equation. The average decreases approximately logarithmically for sufficiently581

small t,582

Ep [c (t)] ≈ c−∆c
1 + p

p
ln

(
rp

N0

t+ 1

)
. (S20)

The temporal decrease of the average telomere length speeds up with decreasing p. In583

the limit p → 0, we recover the result (S10) of a linear decreasing average. Similar to the584

former section we can derive the variance of the distribution, using the moment generating585

function Mp (x) = Ep [e
cx] (t), via586

σ2
p (t) =

∂2

∂x2
Mp (0)−

(
∂

∂x
Mp (0)

)2

. (S21)

However, the result becomes less accessible and informative. Thus we restrict ourselves587

to a numerical solution of (S21). The logarithmic decay of the average telomere length588

has consequences on the interpretation of experimental results of telomere length distri-589

butions. In infants an accelerated decrease of telomere length can be observed. This can590

be explained immediately by an expanding stem cell pool. The stem cell pool contains591

only a few N0 stem cells initially (newborns). These stem cells divide symmetrically with592

probability p and asymmetrically with probability 1− p respectively. The symmetric cell593

divisions cause an increase of the stem cell pool size and an indirect decrease in cell prolif-594

eration rates. The logarithmic decay is pronounced initially, but flattens after some time595

(as the number of stem cells increases). Thus, in adults the logarithmic decay is difficult596

to distinguish from a linear decay, see for example Figure 3 in the main text.597
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Connections to the Normal and Log-Normal distribution598

The number of cells in each state i follows a Poisson distribution599

N (i)(t) =
N0

i!

(
rt

N0

)i

e
− rt

N0 (S22)

in the case of only asymmetric stem cell divisions, see (S2) for details. We introduce600

x = rt
N0

, and upon normalisation (S22) becomes601

N (i)(x) ∝ xi

i!
e−x, (S23)

where x is a Poisson distributed variable. For x sufficiently large, this random variable is602

well described by a normal distribution and we have x ∝ Normal distribution.603

If we allow for symmetric cell divisions, cells in state i followed a generalised Poisson604

distribution605

N (i)
p (t) =

N0

i!

(
1 + p

p

)i lni
(

rpt
N0

+ 1
)

p

√
rpt
N0

+ 1
, (S24)

see (S15) for details. Choosing y = rpt
N0

+ 1 and neglecting normalisation factors we can606

write607

N (i)
p (y) ∝ 1

i!

lni (y)
p
√
y

. (S25)

If we change variables again and choose y = ex, equation (S25) becomes608

N (i)
p (y = ex) ∝ 1

i!

lni (ex)
p
√
ex

=
xi

i!
e−

x
p ∝ N (i)(x). (S26)

As x = rt
N0

is approximately normally distributed, and y = ex, y = rpt
N0

+ 1 follows a609

Log-normal distribution.610

Parameter evaluation for the average telomere length on population level by611

Bayesian inference method612

We implement Approximate Bayesian Computation (ABC) rejection samplings to derive613

posterior parameter distributions for the predicted average telomere length under asym-614
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metric (model 1, equation (S10)) and combined symmetric and asymmetric (model 2,615

equation (S20)) cell proliferations respectively. Utilizing equation (S10), we have to infer616

two parameters: (i) the average decrease of telomere length per time r/N0 and (ii) the ini-617

tial telomere length c. In the case of equation (S20) a third variable has to be determined:618

(iii) the probability of symmetric cell divisions p. We draw these variables independently619

from uniform distributions (prior) with ranges r/N0 ∈ [0, 0.2] kbp
year

, c ∈ [7, 15] kbp and620

p ∈ [0, 1] and produce 5× 108 independent realizations of equation (S10) and (S20). We621

calculate the coefficient of determination R2 between each of these realizations and the622

average telomere length from a data set of 356 healthy individuals (see for example figure623

1 in the main text) via624

R2 = 1−
∑

i (E [c] (ti)− y (ti))∑
i (ȳ − y (ti))

. (S27)

Here, y (ti) denotes, the measured telomere length of an individual with age ti, ȳ is the625

average measured telomere length of the population and E [c] (ti) the value of a single626

realization of (S10) or (S20) at time ti given the random set of parameter values. We627

seek parameter regimes that maximize R2 and discard any parameter combination below628

a certain threshold.629

Bayesian parameter evaluation for asymmetric cell divisions630

For a linear fit according to equation (S10) with 2 parameters we find R2
max = 0.5314 as631

the maximum value for the coefficient of determination. To determine the possible rate632

of parameters we discard any parameter combination with R2 < 0.53. This gives sharp633

posterior distributions for both parameter values that peak at ∆cr/N0 = 0.056 kbp
year

and634

c = 10.15 kbp, see Figure 5 a,b. This concurs with best parameter estimations from linear635

fitting cf = 9.85± 0.2 kbp and ∆crf/Nf = 0.05± 0.005 kbp
year

. This scenario underestimates636

the initial telomere length (c = 10.15, whereas the average initial telomere length in the637

data is c̄ = 10.67 kbp).638

Bayesian parameter evaluation for an interplay of symmetric and asymmetric cell639

divisions640

For a logarithmic fit according to equation (S20) with three parameters we get an im-641

proved coefficient of determination R2
max = 0.541. We discard any parameter combination642

that results in R2 < 0.54. Again we find localized posterior parameter distributions that643
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peak at ∆cr/n0 = 0.071 kbp
year

, c = 10.41 kbp and p = 0.32, see Figure 5 c-e. This approach644

improves the prediction of the initial telomere length. The average loss of telomere length645

per year is higher compared to only asymmetric proliferation and the probability of sym-646

metric cell divisions peaks in a range of p ∈ [0.25, 0.4]. This concurs with a nonlinear647

fit, where we find pf = 0.37 ± 0.2, cf = 10.4 ± 0.3 kbp and ∆crf/Nf = 0.071 ± 0.005 kbp
year

.648

However, we note this is an average over all individuals with an age distribution from 0649

to 85.650

Bayesian parameter evaluation for a phase transition extension of the model651

In the following we partition the data into two subsets and analyze an extension of the652

model. We introduce an additional parameter tT that resembles a transition time. This653

transition time is drawn from a uniform distribution with tT ∈ [0, 80]. We perform above654

Bayesian approach according to equation (S20) independently for each random partition655

of the data set. This gives in total seven posterior distributions. This approach gives656

R2
max = 0.573 as the maximum value for the coefficient of determination and we discard657

any parameter combination with R2 < 0.57. The transition occurs in children at the age658

of 6 to 7, see Figure 5 f-i, and a clear distinction of the posterior parameter distributions659

between phase 1 and phase 2 can be observed. The parameter estimations confirm with660

the interpretation of a growing stem cell pool. We find an increased rate of telomere661

shortening, compared to phase 2 as well as an increased probability of symmetric cell662

divisions.663

Non linear fitting of calculated telomere length distributions to measured664

distributions in single individuals665

In the previous subsection, the average telomere shortening at the population level was666

investigated. We found indications for an increasing stem cell pool with age in particular667

in children due to infrequent symmetric stem cell divisions. In the following, we shift668

from the population level towards the telomere length distribution in healthy individuals.669

Equation (S15) allows us to compare theoretical predictions to measured telomere length670

distributions and to infer individual proliferation parameters of stem cell populations in671

vivo from a single blood sample under an interplay of symmetric cell divisions (with672

probability p) and asymmetric cell divisions (with probability 1 − p). However, (S2) is673

contained as the special case (p = 0), according to Eq. (S15). The expected number of674
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cells that have not entered cell cycle arrest is given by675

N (i)
p (t) =

N0

i!

(
1 + p

p

)i lni
(

rp
N0

t+ 1
)

p

√
rp
N0

t+ 1
. (S28)

We set t∗ = rp
N0

t+ 1, normalize (S28) and obtain for the expected telomere length distri-676

bution677

ρp (x, t) =
1

(c− x)! (t∗)

(
1 + p

p

)c−x
ln(c−x) (t∗)

p
√
t∗

. (S29)

We perform non-linear fits of Eq. (S29) to measured telomere distributions in healthy678

individuals, leaving three free parameters t∗, p and c to be determined. Results of the679

nonlinear fits can be seen in Figure 6- figure supplements 1-3. The corresponding fitting680

parameters are denoted in Supplementary File 1.681
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Figure 1: The combination of telomere length data and mathematical mod-
eling allows to infer individualized stem cell proliferation pat-
terns. a-c Blood or bone marrow samples were taken from healthy
persons with ages between 0 and 85. Telomere length was measured with
Flow-FISH and Q-FISH techniques, resulting in individualized telomere
length distributions. d-g Mathematical framework: Stem cells divide ei-
ther symmetrically or asymmetrically. Each cell is characterized by an
average telomere length. Cells with the same state are collected in com-
partments. The average of the underlying stochastic process is captured
by a system of differential equations. The solution of this equation is
a generalised truncated Poisson distribution that gives rise to a traveling
wave, see Eq. (S15). h,i The combination of modeling and telomere length
distribution measurements allows dynamic predictions for individuals, see
Figure 6. These predictions can be tested on population wide data of
telomere length, for example see Figure 2.

Figure 2: The population wide average telomere length of (a) lymphocytes
and (b) granulocytes. The data from a cohort of 356 individuals (sym-
bols) is captured by a logarithmic decrease of the average telomere length
(solid line), which is predicted by our model 2 that allows for symmetric
stem cell divisions and thus leads to a slowly increasing stem cell pool.
Based on the fit of the average, the mathematical model predicts a stan-
dard deviation that increases with the square root of the age (dashed
lines). This approach does not take the genetic variability of telomere
length in newborns into account. The decrease of the average telomere
length slows down in children and becomes almost linear in adults, see also
Figure 3. For individuals represented by filled symbols, only information
on the average telomere length is available. For individuals represented
by open symbols, we additionally analysed the distribution of individually
detected telomeres, see Figure 6. An additional parameter estimation on
an independent data set is shown in Figure 2-figure supplement 1.
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Figure 3: Comparison of the average telomere length decrease of lympho-
cytes predicted by Model 1 and Model 2. Model 1 (red dashed line,
best fit to the data) predicts a linear decrease of the average telomere
length with age. The linear decrease underestimates the initial acceler-
ated telomere loss during adolescence (the average initial telomere length
in newborns is shown by the dark grey rectangle). In contrast, model
2 (black line) predicts a logarithmic decay of the average telomere length
with age and is able to capture the increased loss of telomere length during
adolescence, as well as the approximately linear decrease in adults.

Figure 4: Representative image of the Q-FISH analysis of a bone marrow
section. a, Maximum projection image of a paraffin-embedded bone mar-
row section of confocal Q-FISH with DAPI and Cy3. b, c, Single DAPI
and Cy3 staining respectively. d, Overlay of image analysis of nucleus
and telomere detection. e, Image analysis of the DAPI staining is shown.
Detected nuclei are shown in red. f, Image analysis of the Cy3 staining.
Detected telomeres marked in red. For details on Q-FISH analysis please
see the supporting material.

Figure 5: Posterior distributions of model parameters from Approximate
Bayesian Computation (ABC). a, b, Model fit for only asymmetric
stem cell divisions (model 1) to the data of average telomere length on
the population level. The expected telomere length decreases linearly and
two free model parameters, i.e. initial telomere length and stem cell turn
over rate are estimated. c-e, ABC with symmetric and asymmetric stem
cell divisions (model 2). In this case one additional free parameter (prob-
ability of symmetric stem cell divisions) can be estimated. f-i, ABC for
a two phase extension of the model inferred from population wide data
of lymphocytes, panels j-m, show the same analysis for granulocytes. A
likelihood based model selection favours model 2 and rejects model 1 as
well as the multiphase model as more likely explanations for the observed
data.
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Figure 6: Telomere length distributions of granulocytes for four represen-
tative individuals. Telomere length distributions within the nucleus of
individual cells are measured once in single individuals (symbols). This
data is fitted with our model 2 (black line, see Eq. (S29) for details), lead-
ing to estimates for the parameters of the theoretical distribution. These
parameters can be used to extrapolate the distribution to any other age
(gray lines). The dashed line shows the prediction for the maximum of
the distribution (Eq. (S18)). Telomere length distributions differ between
individuals and change in different patterns, depending on the exact prolif-
eration parameters in individuals. Additional cases are shown the Figure
6-figure supplements 1-3. A summary of all fitting parameters can be
found in Supplementary File 1.

Figure 7: Rate of telomere loss in 66 individuals. Shown is the rate of telomeric
shortening (bp/year) of granulocytes (circles), lymphocytes (triangle) and
bone marrow sections (rectangle), inferred from telomere length distribu-
tions of 66 different individuals (see Figure 5 and figure supplements and
Supplementary File 1 for a summary of all parameters). Differences be-
tween individuals are large, but the average telomere shortening rate con-
forms to parameter estimates of population wide data of telomere length,
see for example Figure 5. Cells in the bone marrow show a lower prolif-
eration rate and consequently the rate of telomere loss is reduced (gray
dotted line). The rate of telomere loss decreases with age in granulocytes
(-0.78 bp/year, dark red line) and in bone marrow sections (-0.36 bp/year,
grey dotted line), but increases in lymphocytes (+0.27 bp/year, dark green
dashed line). This observation agrees with a skewed differentiation poten-
tial towards the myeloid lineage of aged hematopoietic stem cells [55]. The
lines are only meant to represent a trend of increase or decrease with age.
The change with age is most probably not linear.
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Figure 1 - figure supplement 1: Results of the mathematical model on the
temporal change of individual telomere
length distributions. Compared are analytical
results (lines) and averages of stochastic computer
simulations (dots) of our mathematical model, see
Materials and methods. a, An example of a pop-
ulation of 100 cells, where each cell has 7 pro-
liferation cycles before it enters cell cycle arrest
(cells accumulating in state i = 7). b, Expected
telomere length distributions at 6 distinct time
points (time increases with decreasing remaining
number of cell divisions). The telomere length
distribution gives rise to a traveling wave that
progressively widens and shifts towards shorter
telomere length. The maximum of this distri-
bution declines proportional to 1/

√
time (black

line).

Figure 2 - figure supplement 1: Decrease of the average telomere length of
a, lymphocytes and b, granulocytes in a
population of 835 healthy humans. The data
was taken from [40] and confirms the inferred pa-
rameter range in Figure 2 independently.

Figure 3 - figure supplement 1: Representative image of the Q-FISH anal-
ysis of a peripheral blood cytospin. a, Max-
imum projection image of confocal Q-FISH with
staining of DAPI and Cy3. b,c, Single DAPI and
Cy3 staining is shown. d, Image analysis with
nucleus detection marked with red lines. e) Im-
age analysis of detected single telomeres marked
in red.
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Figure 3 - figure supplement 2: Representative FACS blot of a flow-FISH
analysis. a, Representative flow-FISH blot of
healthy individual. Based on LDS 751 staining
and forward scatter properties, cow thymocytes,
lymphocytes and granulocytes can be identified.
b, Telomere intensity of Alexa488 of unstained
and stained thymocytes is given. c, Telomere in-
tensity of Alexa488 of unstained and stained lym-
phocytes. d, Telomere intensity of Alexa488 of
unstained and stained granulocytes.

Figure 5 - figure supplement 1: Nonlinear fits of the expected telomere
length distribution to telomere length dis-
tributions of granulocytes in peripheral
blood of 10 healthy donors. For experimen-
tal details see Materials and methods, for details
on the nonlinear fitting and individual parameters
estimates as well as quality of fits, see Materials
and methods and Table S1.

Figure 5 - figure supplement 2: Nonlinear fits of the expected telomere
length distribution to telomere length dis-
tributions of lymphocytes in peripheral
blood of 28 healthy donors. For experimen-
tal details see Materials and methods, for details
on the nonlinear fitting and individual parameters
estimates as well as quality of fits, see Materials
and methods and Table S2.

Figure 5 - figure supplement 3: Nonlinear fits of the expected telomere
length distribution to telomere length dis-
tributions in bone marrow biopsies of 28
patients with diagnosed M. Hodgkin with-
out bone marrow affection. For experimental
details see Materials and methods, for details on
the nonlinear fitting and individual parameters
estimates as well as quality of fits, see Materials
and methods and Table S3.

36



Supplementary File 1A843

Best parameters from fitting the calculated distribution S19 to telomere length distribu-
tions of granulocytes from 10 adult persons (see Figure 6-figure supplement 1). Here p de-
notes the probability that a stem cell proliferation results in two additional stem cells, c is
the initial telomere length in kbp and –cr/N0correspondstothelossoftelomererepeatsinbp/year.

Supplementary File 1B844

Best parameters from fitting the calculated distribution S19 to telomere length distribu-845

tions of lymphocytes from 28 adult persons (see Figure 6-figure supplement 2).846

Supplementary File 1C847

Best parameters from fitting the calculated distribution S19 to telomere length distri-848

butions of bone marrow samples from 28 adult persons (see Figure 6-figure supplement849

3).850
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