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Abstract:

Masses and radii of degenerate stars were calculated using
a pressure function which significantly deviates from the
usual one based on the Fermi energy of free electrons.
Assuming only a central number density ranging from

1030 cm-3 to 1036 cm_B, the calculations yield masses bet-
ween those of Jupiter and the sun. The masses were found
to be a function of the composition of the elements. The
maximum masses and the cosmic abundance of the elements
are correlated. The radii come close to those of pulsars
at high central densities, while at low densities they

are equal to those of white dwarves.



I. Introduction

In a recently published paper /1/ one of the authors gave an
energy distribution function for the electrons of a proton-
-electron plasma which appreciably deviates from the accepted
function when degeneracy+) is present. According to the new
function, for T = 0° K and Zi'r'zaain >/ , where 4 = ﬁz/me‘
denotes the Bohr radius and n tﬁe number density of the
electrons or protons, the pressure of the degenerate electron

gas is not given by the usual expression P
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The requirement .Zﬁi%:f? > 4 for the validity of this equation
is satisfied at the densities of white dwarves. It is therefore
appropriate to use this equation to calculate the masses and
radii of such stars. For this purpose 1t has to be extended to
plasmas containing heavy elements in addition to protons and

electrons.

/1/ H. Wulff: "On the Electron Energy Distribution in Proton
Electron Plasmas with Densities Above the Solid-State
Density". Nuovo Cimento, 31B, 92, (1976)

+) Tt was shown in /1/ that the term "degeneracy" is super-
fluous. "Degenerate" electrons are bound electrons that
differ from those of an atom in that they are no longer
bound to an atomic nucleus only. Rather can the stroll
around in an ensemble of nuclel: they are conductlve.



II. Derivation of the pressure function of a plasma with

components of different atomic numbers z

Equation (1), which is valid exclusively for hydrogen plasmas,
was obtained in /1/ by the correspondence principle. It was
thereby shown that the virial theorem 1is satisfied with the
pressure function according to eq. (1), whereas its existence

has hitherto been ignored in deriving the relation P = PFermi

With Coulomb interaction the virial theorem reads
y . = - -_-a{ 2
2 (E, . AV fuedl (2)

where Ekin and U respectively denote in terms of Newton
mechanics the mean temporal values of the kinetic and potential
energies of the electrons in the unit volume. As is known, the
quantities in eq. (2) are expressed in terms of quantum me-

chanics by the expectation values
fE;M V(Vz*—;}-mi S“f*A'T""{f\ (3)
and
j(/‘,(y =-—j77*(¢r~vt/)d?‘
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where A'T'denotes the volume element in the configuration

(4)

space of the electrons. With the relation valid at isotropic

pressure
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and the virial theorem it then also follows that

-

U (6)
From eq. (1) it follows direct that eq. (6) is satisfied when

Wi

the potential energy per electron is

¢Ya = el(amin)V? (7)

on the average. Whereas eq. (1), which is valid exclusively
for proton plasmas, was derived on the correspondence principle,
we shall calculate its generalization for arbitrary atomic
number z by classical means, i.e. in accordance with the laws
of electrostatics. (It was pointed out in /1/ that the energy
eigenvalues of the H atom are also obtained by classical
mechanics. The quantum mechanical characteristic of the energy
values is the discretization of these values. Experimental ex-
perience shows that this discretization does not exist at the
high densities involved here.) Our point of departure is the

Poisson equation of electrostatics for spherical symmetry:

A3 =HE00F) e e

Let the plasma consist for the time being of Jjust nuclel of
atomic number z of number density n, and with the correspond-
ing electrons, whose charge is assumed to be continuous and
uniformly distributed. Let the negative charge density thus

be given by

= —-€ezn, ) (9).
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In integrating eq. (9), we determine the constants so that
the potential and field strength assume the values -eZ/R and
eZ/R2 respectively on the surface of the sphere given by
1/nz’= Egr Rj. This yields for the potential of the negative

charge
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To this potential we add the potential of the nuclear (point)

charge assumed at the centre of this charge

ff = 027 . (11)

To obtain now the potential energy of the electrons per unit

volume, we have to calculate the integrals

R
b, = [, cumrdy 2
and OR
P - %f‘f_glmr”{f (13)
0

and multiply them by the number of nuclei per unit volume.
(Equations (12) and (13) are to be found in, for example,
G. Joos: Lehrbuch der Theoretischen Physik, Frankfurt am Main
1959, 12th Edition, eq. (19) on p. 254 and eq. (31) on p. 270,

respectively.) The pressure is obtained by means of eq. (6):

—
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Obviously, we have not made allowance for any fluctuations
in deriving eq. (14'), as the virial theorem requires and

as is expressed in the mean value notation.

For z = 1 this equation becomes the equation (1) specially
derived for a proton-electron plasma, apart from a factor

F = % (%§£)1/3 = 1,86. Better agreement is not to be expected

in view of the different principles underlying the two equations
and of the assumptions involved. To obtain a fit to eq. (1), we
take as a basis for the following calculations instead of

eq. (14') the equation

A a0 5252 Yy
P,_ = 3 (21 ez n, , (14)

which is also valid for z = 1. The uncertainty involved in de-

termining the pressure will be reconsidered later.

Plasmas with nuclei of different atomic numbers present new
aspects. The potential energy on which eq. (14) 1s based might
at first glance lead one to believe that the pressures behave
additively like the potentials, e.g. when there are two com-

ponents, they behave in accordance with the equation

P prh, sty ez zin ) oo
<4 Z{ 1 Zq 2 <z ’

Here, however, the interaction of the two species, which,

taken with a pinch of salt, has its <Terrestrial analogon

in the Stark effect, is not considered. We show this in a

purely formal manner for the time being in the case of a

plasma which only contains the two (cosmically relatively

abundant) element iron and nickel with the atomic numbers



= 26 and Zyy 28. If, in addition, we assume equal den-

Zpe

gsitles Npe = Nyy = n of the two components, we obtain additively
according to eq. (15)
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(If 2Zp, Zyy 1s substituted for the sum Z;?-f,ZN; » the error
is less than one-third per cent.) On the other hand, it may be
assumed that owing to the slight difference in atomic number
this plasma consists of a single component with the atomic
number / = ZF.( Zﬁ_ and density 2 71 . The pressure is then

obtained according to eq. (14):

= L2y p2 s /3 2/3
= [ Z, N Q7
P 3 [ ) E) 2 ff F( Z/v,' ”M' ‘.
The additional pressure due to the interaction of the two compo-
nents 1s therefore, in accordance with eqgs. (16) and (17),

A
A

We can thus expect an interaction function which is pro-

(%4
portional to Z,, Zz 71;/3 'Hz >, This is shown in the case
7

of a plasma which consists of‘z.single heavy component of
atomic number z and the two cosmically most abundant elements,
hydrogen and helium. For this purpose we assume that owing to
the field strength of the heavy nucleus the light elements are
arranged in the time average around symmetrical surfaces in

alternately negative and positive layers, i.e. dipole layers. If

We also assume that these layers have uniform separations of
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~1/% =1/3
fh# and ﬂH{ respectively, we obtain in this approximation

the additional potential energy per unit volume
R

\,\/:44 gO{ (f"ﬂ ’}’1 'f'lfﬂ /%ﬂﬂp)tf"‘y:o{'f} (19)

where R,::(;f'ﬂz ) 1s again valid.The expressions P'M_4/3

and 1f'ﬂ;4/3 obviously represent dipole moments whose densities
r

are given by M, and % respectively. Withf = f+ + j’ and

P = -—\A/according to eq. (6), integration of eq. (19) yields

the pressure component due to the interaction of the heavy and

light elements:
_ 2\ 2 7% 1. S 273 ,
p, = @)z n (a2 e

As can be seen, this function is of the structure presumed
according to eq. (18). The derivation was performed similarly to
that of eq. (14'). Just as constant charge density was assumed
for this equation, constant dipole density was assumed in deriv-
ing eq. (20'). For the sake of uniformity we therefore provide
the equation with the factor F = %(%Lr)l/z’ - 1,86 and cal-
culate in the following discussions with

=Y/ 2 P2 2. 2/
PW - 53 ez N, (1N AN ). (20)

L]

The transition from eq. (20') to eq. (20) may be ascribed
to an increase of the dipole moments{'mﬁ/5 and & F??hd/j

by a factor F. Although, as already stated, precise determinat-
jon of the factor in the pressure formulae cannot be expected,

it is necessary to subject the model to a critical examination

to determine the extent to which the calculated masses and radii
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of the stars depend on the choice of model. For this purpose
we visualize the order of magnitude of the field strength
due to the heavy elements, the metals, relative to that of
the protons by taking the fleld strength, averaged over the
volume I/nFe, that 1is produced by an iron core with 1its
electrons and relating it to that exerted by a proton on the
nearest electron. The latter is given by eq. (7):

. U

H

it
and the former is calculated with egs. (10) and (11) from

- X8
Fo= M {4 (5,48 ) mr'dr .

2 2

a
For the density ratios n,_/n. of 10™2, 107° and 3 x 10~

this yields the respective fleld strength ratios
F,/Fy = 0.23, 1.05 and 2.0.

These values, or even Just the fact that the field exerted by
the heavy elements induces the dipoles, suggest that a model
other than that with constant dipoles be taken as a basii;f:>
C 1n
the general case one will have to determine a distribution for
which the total energy of the electrons assumes a minimum, and
hence the kinetic energy and pressure a maximum. Although the
model used certainly needs improvement, we will adhere to the
assumption of linear dipoles because the characteristics of the
results also appear in this way and refinement of this model can
be dispensed with for the present because the pressure function
accepted hitherto leads to results which differ in any case

from ours.
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III.Calculation of the masses and radii of white dwarves as

a function of their chemical composition

As usual, our calculations are based on the hydrostatic equation
valid for spherical symmetry:

_dP A
e G gm 'r ) (21)

where G is the gravitational constant, @ is the mass density,

which we calculate for simplicity with

gz'mp'np+ ZZ‘MP’HZ

5 (22)

and v

/V\ (v) = 47T [9("1r\)1?10{/r/l (23)
0

is the mass present in a sphere of radius r. Table 1 shows
the radii in km and the masses relative to those of the sun and
Jupiter as functions of the central density n(o) for single-
-component plasmas. They are obtained with the pressure function

(14) from eqs. (21), (22) and (23).

(igg can be seen from table 1 the radii are independent of the type of

nuclei except in the case of hydrogen. The formal Jjustification
for this correlation is that according to egs. (14) and (21)
both sides of the hydrostatic equation (21) contain z° as a
factor, so that the solution of this equation is independent
of the atomic number. Therefore, according to egs. (22) and (23)

the mass of the stars increases in proportion to the atomic

number. It is also seen from Table 1 that the masses are in-
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Table 1
Element | Central density M@=1047 wn} = 1,98 1077 g Radius
n(o) in em™ M/Mo M,/MQ{, in km
1020 409k
1022 882
H 1077 1/223% 4,70 409
1076 40,9
1007 19,0
1079 2047
1022 1
H, 107 1/450 2,34 205
1026 20,5
1007 9,5
c dito 1/150 7,02 dito
Fe dito 1/34 30,2 dito
z = 60 dito 1/15 68,5 dito

dependent of the central density. This well-known independence is

due to the fact that both sides of eq.

(21) are changed by the

same factors when there is spatial compression or dilatation. The

radius of the star is defined as the distance from the centre at

which the number density has dropped to the solid-state density

% ng =1/?2 NE Cl§v=:3.4 x 102 cm™>. Down to this density the

pressure function is exactly valid only for hydrogen, while 1t

is generally valid, i.e. for arbitrary elements down to the

limiting density ’nL = ZB’}’IB .




It will also be approximately valid at lower densities, as

long as the discrete X-ray terms existing under terrestrial
conditions are sufficiently perturbed. A more exact pressure
function would result in a stronger density drop in the outer
regions. As this decrease 1is in any case already very strong

in the stated approximation, as can be seen from Fig. 1, this
difference can be neglected. The approximation is ultimately of
no significance for calculating the masees since they no longer

vary in the third decimal place whenever the density has dropped

three powers of ten.

For the following investigations we represent the chemical
composition schematically. Besides the cosmically most abundant
elements hydrogen and helium, the relatively abundant element
iron is taken into account as representative of all heavy ele-
ments. With this assumption one then obtains according to

egs. (14) and (20) the pressure function

_ A 1/3 ,2 2, 4/ 2, Y3 2., 4/
P =5an)” e (1m0 m, B racn)

o o E U 2 3 24

~ =% 5° /% 2/4 2/
ST 2677 (M7 + M7

This was used to calculate the masses and radii on the
assumption that the elements are uniformly mixed. The influence
of sedimentation will be dealt with later. The central densities
were normalized so that the sum of the number densities of the
species of nuclei remains constant at different mixing ratios,

i.e. the mass densities are adapted accordingly. In Table 2
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—— Radius

Number density of the electrons (protons) in a pure
hydrogen star as a function of the radial distance.

4/3

according to eq. (1). The steep pressure drop towards

The pressure is assumed to be proportional to n

the surface is characteristic. The pressure drop is
essentially due to the fact that the force of gravity
- represented by the RHS of eq. (22) - becomes very
large towards the surface and, owing to the relatively
low densities again in accordance with eq. (22), the
pressure and hence the density variation have to be
very large. This is also valid mutatis mutandis when

a temperature pressure due to a temperature T # 0 is
present in addition to the degeneracy pressure.
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(Appendix) the masses and radii are given as functions of the

mixing ratio for the central densityéf; n, (0) = 10°° cm™’. From
¢=H He Fo
this table 1t can be seen that the mass increases more strongly

than is in keeping with the replacement of hydrogen nuclei by
heavy nuclei. For example, the mass of a star in which 4 % of
the protons is replaced by Fe nuclei is a factor of 11.3 as
large as that of a pure hydrogen star. On the other hand, this
replacement causes the mass density to grow a factor of only
3.2. This growth of the stellar mass is mainly due to the
"Stark effect" of the heavy elements, which is represented by
the third term of eq. (22). In our representation, which does
not make any distinction between the effect of the relatively
strong Fe field and the relatively weak He field apart from the
z dependence, the maximum of the stellar mass occurs for 4 %
and 12 % additions of Fe and He respectively. For all central

densities one obtains

Moax = o.o6oj Mg -

This mass ié a power of ten smaller than the mean mass of white
dwarves. On the other hand, these values and those in Table 2
according to S. v.Hoerner and K. Schaifers /2/ are of the same
order as those of the invisible components of visible double

stars. The radius at M_, is 6,475 km. The maximum radius is

X

/2/ Mayers Handbuch iiber das Weltall, p. 199, Mannheim (1960)
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attained for 3 % and 1 % components of He and Fe respectiv-

ely, being 7,623 km at M = 0.046 Mo+

As was discussed on p. 9 , our representation has probably
underestimated the influence of the Stark effect of the heavy
elements, in this case iron. If only the third term of eq.(2%4)
is increased by, for example, a factor of 3%, one obtains instead

of the above maximum value for the mass a value 3.3 times as large:

Mmax = 0.2 MO.

This value is also obtained with an He component of 12 % and

an Fe component of 3 %.

Finally, in comparing the data with those of directly observable
stars, the white dwarves, we have to consider that the matter of
which they are composed can no longer be regarded as degenerate

according to our theory as opposed to the accepted one since in

the case of, for example, a pure hydrogen plasma the character-

istic temperature T = = P/nk is a factor of (LJTZC{é 41)"4/5 -

= (n/3.4 x 1023)'1/3 lower than the usual Fermi temperature

T /nK . Table 3 lists the characteristic temperatures

¢ = Prermi

of a H plasma as a function of the density.

The values in parentheses give only an indication of the tem-
perature since the energy of the electrons should have been cal-
culated relativistically. The self-energy of the electron
corresponds in keeping with

mc2 = 3/2 KT

to a temperature of 3.95 X 109 °K.




Table 3
n (o) em™> Tp = PFermi/n k %K Tp = P/nk %K
10°° 2.15 x 10° 1.5 x 107
101 (1,0 x 10'9) 3,04 x 107
1077 (2.15 x 10'1) 1.5 x 10°
1020 1.5 x 107
1077 (3.24 x 107)

In /1/ the equation of state for the electrons of a hydrogen
plasma generally valid for T # O is given, which for T =2 oo

again ylelds PT~?@ — nKT. Owing to the computing difficult-

ies involved in applying a non-zero temperature function and the
necessity for extending it to plasmas of arbitrary composition,

we take it into account by multiplying our pressure function by

¢

the factor n If we choose £ = 7 x 10'3, for example, we

obtain n6 = 1030x£ = 1.62. The amount in excess of the
degeneracy pressure (1.62 - 1) = 0.62 then represents the thermal

pressure component. This yields for the centre T = 0.62 P/n =

T o

7.8 x 10 K, assuming an uniform distribution of the thermal

energy to all particles - all electrons, 3 % Fe, 12 % He and

85 % H nuclei. This same procedure yields for boundary densities

( £ of the nuclear densities) of 102! and 1018

4 o

em™) boundary
temperatures of 7.8 x 10 “K and 7.8 x 10° °k. (as already

stated, compared with the boundary density of 1024 cm'35 these
densities produce hardly any change in either the mass or the
radius.) This demonstrates that our assumption of the thermal

pressure component can be reconciled with the hitherto assumed



thermal energy content of such stars and with their surface
temperature. The white dwarf O2 Eridiani, for example, has a
surface temperature of 13,500 K (see S. v.Hoerner and

K. Schaifers /2/, pp. 182/183). White dwarves also have a high
surface density compared with "normal" stars; in the spectrum
of O2 Eridiani the wings of the Balmer lines HK and Hé merge
/%/. According to D.R. Inglis and E.Teller /4/, /3/ it can be
concluded that the electron density is n = 1018 cm™~. Other
white dwarves have a purely continuous spectrum. It may there-
fore be presumed that these stars have an even higher surface

density.

We have calculated masses and radii by including in the pressure
function the temperature factor nf = n7/1000. Now with 11 % He
and 3 % Fe one obtains for a central density of all nuclei of

n(o) = 1070 em™> a maximum mass

Mmax = 0.42 MO'

The respective radius is 12,602 km. O2 Eridiani has a radius
of 11,150 km and a mass M = 0.467 Mo (see S. v.Hoerner and

K. Schaifers /2/, pp 182/183). The masses grow with increasing

/3%/ See: A. Unsold: Physik der Sternatmosphiren, 2nd Edition,
p. 54, Berlin-Heidelberg-Gottingen 1955

/4/ Astroph. Journ. 90, 439 (1939)
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central density, which can be ascribed to the fact that the

pressure function P is no longer proportional to nu/B, but to

n4/3+ E. To demonstrate this situation and for later purposes,

we list in Table 4 the maximum masses and the respective radii
as functions of the central density for temperature factors

n with £ = + 7/1000 and £ = o.

Table 4

n(o) em™ | E& = - 7/1000 £ = 0 £ =+ 7/1000
3 % Fe

’ M/ R M/ R M/ R
11 % He, M@ Km MO km M@ km
86 % H
10-° 0.092 8195 0,196 10 130 0.420 12 558
10”1 0.090 3771 " 4 70% 0.428 5 897
1022 0.088 1733 n 2 183 0.439 2 759
1077 0.086 800 " 1 013 0.449 1 290
1036 0.08 78 i 101 0.483 1%2

For comparison we then calculated the mass and radius of a hydrogen
star in accordance with the accepted theory, i.e. with the pressure
function P = P

g (o)

n(o) = 7.4 x 10

B for a given mass density in the centre of

1:235 105 g/cmj, which corresponds toc a number density
28

1

em™>. This yields M = 1.38 My and R = 31.712 km.

S. Chandrasekhar /5/, on the other hand, obtains M = 0.88 M@ and

R = 27.900 km. The difference between these values is mainly due

/5/ An Introduction to the Study of Stellar Structure, p. 427,
Dover Publications, Inc., New York 14, N.Y. (1957)




to the fact that the pressure functions differ by the
numerical factors:

_ A (a2 U7
Punww(. - &0 (Tr) é\_ " :0‘0’13;’”‘% ’ (25)

5 2
Prrew :"‘(3‘-)2/3% W 20061, 4T (oo

142\

It is again seen how sensitively the calculated masses (more
than the radii) depend on the pressure function. (The reason
why the numerical factor mostly given in the literature is
different as used by Chandrasekhar from our one can easily be
explained. This difference 1is of no significance for the prob-
lems involved here.) To a lesser extent one therefore also ob-
tains different masses because Chandrasekhar /5 / takes into
account the relativistic degeneracy occurring according to this
theory in the central region of the stars. In the relativistic

region one accordingly obtains the pressure function (/5./ p.362)

- (3 he LA

28

At n(o) = 7.4 x 10 em™® the central density has been assumed

relatively low in order to neglect the relativistic influence.
At high densities we obtain, for example, for Q (o) = 9.67 x 108

gcm_5, which corresponds to a number density n(o) = 5.8 x 1022 cm_j,
the mass M = 5.51 Mg and the radius R = 4,130 km. For higher
central densities mass and radius values are no longer calculated

except for the limiting case Q (o)>c®; this yields almost the

the same limiting mass M = 5.75 MO for vanishing radius R_ = 0.
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(The rule given by Chandrasekhar /5/ in the footnote to Table 27
on p. 427 for converting the data calculated for a hydrogen star
into those for a star of arbitrary composition were verified by

our calculations.)

Notes

a) The accepted theory cannot explain the existence of stars
with masses smaller than those of white dwarves, not even
the masses of these stars, while our calculations also prove

the existence of such stars.

b) We have calculated stellar data, assuming sedimentary
matter. This always ylelds smaller radii and masses than
when the mixing is assumed to be uniform. During the
cooling process, i.e. £ tends to zero, it is thus possible
for stars to form with masses smaller than those calculated
here, 1.e. of planetary dimensions. A look at Table 4 shows
that the radil thereby increase if the central density de-
creases sufficiently during the mass transfer process. This

might account for the continental drift.

c) The energy needed to fuse a proton and an electron to form a
neutron (inverse B decay) 1#0.78 MeV. This is obtained by
the electrons at densities that are between the limiting
density valld for our non-relativistic theory n, = 1036 cm-3

and the density of neutron stars.
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d) As can be seen from Table 4, stars lose mass on cooling,
i.e. & tends to zero. This loss may be a continuous or
more or less periodic process. It is noteworthy in this
context that one can calculate from our data for d e n s e

stars frequencies of shock waves in the star

V'= U, /R = rdP/de/R

that are in agreement with the repitition frequencies of

the radiation emitted by pulsars.

e) The calculated stellar masses assume a maximum at an
abundance of elements which is apparently correlated with
their cosmic abundance. The dependence of masses and radii
on the composition of elements is a characteristic of our
theory. This point will now be discussed with reference to

the differing principles of our theory and the accepted one.

Theoretical consideration

According to the accepted theory the mass and radius values for

a given mass density in the centre depend only on the number of
electrons per unit atomic weight; in a pure hydrogen star it is one
electron, and in a pure helium star there is one electron to

every two units atomic weight. The same applies to a pure iron star

+) See eq. (22), according to which we set @ = 2Z‘mPﬂz \

+)
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or a star of arbitrary composition of elements whose atomic
number is z 2 2. Here the interaction of the electrons with
the particles in their vicinity does not matter; they may
even have zero electric charge. Theory Jjust prescribes that
the electrons be Fermi ions. For example, one obtains for
both a He star and a Fe star of given central density equal
masses and radil, whereas according to our theory the mass of
the Fe star is a factor of ZFe/ZHe = 13 larger than that of
the He star. We now reconsider this important fact in terms

of the accepted pressure function according to eq. (25) or (26)
Z 4
Prn™" = (9/”"/’)
and that according to eq. (14), used here,

P~ —??22742#/3-_-_ (222/3 {Q/Z'WP)#/;)
which, apart from the different power dependence, depends ex-
plicitly on the elementary charge and atomic number. This means
that the energy of an electron and hence the pressure due to the
electron 1s also a function not only of the density but also of
the forces exerted. In terms of the general theory this differ-

ence 1s represented as follows:

To arrive at the relation P = P one starts from the ex-

Fermi’
pression that gives the number of states in phase space:

| L”?'J’z;-‘[’ 4 (27)
h

and uses the Pauli principle by requiering that each quantum

cell (spin being ignored) be populated by one electron at most,

i.e.
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Z
rptap Vo> Nipap
A3
should be valid. Integration yields
i iV (o = 4T ;
- < thv £ = S
SA/(p}a([J—/V— 3 f}”/) 3 3 [ (29)
0 0 ’
Taking this relation as an equation yields the threshold energy

2
4 o2 _ 4 (314 _h V3 N
2 Pa-'_i‘( )/’Wt n {’V\:‘/ ' (30)

(28)

The foregoing equations are then used to derive the pressure
according to (25). See, for example, S. Chandrasekhar /57 p. 355
et seg.. Apart from a factor of the order 2 this pressure is

i 2 .
= PO‘ Equation (29) is

7
apparently identical with the uncertainty principle in the form

already obtained direct from eq. (30); FD=

frp3 A > 0

2 [0 M i (31)

As is known, the uncertainty principle 1is obtained direct from

the commutation relation

(P9-9P ), S P

It has to be satisfied for each coordinate in configuration
space irrespective of wether the electrons are free or bound.
The apodictic assignment of such a coordinate to the mean
inter-particle distance - %i'ﬁ waé— using the Pauli principle
leads to the relation (31). This determines the stationary
system, particularly its energy, the Fermi energy. In quantum
mechanics a stationary system is characterized solely by the

Hamilton function H(q,P), which has to be transformed to



= BF =

principal axes by means of unitary matrices S:
SHS = E.

This axiomatic requirement cannot be replaced by the given use
of the Paull principle. The exactly solvable single-electron
problem of the hydrogen atom leads to, for example, the un-

certainty principle in the form

PPagy =3°Hh°  jeqa3. ) GY

‘ 2 2
where a(j ) = an j2 = az‘ﬁ//hh e are agin the Bohr radii and
3 the principal quantum numbers. It is reédily seen that

eq. (34) yields the correct expectation values of the kinetic

eénergy
. Z
E(,?) zf:’mPl':%a@l
"\ B
and, because of the virial theorem E_Ekin =-U , the correct

energy eigenvalues as well:

Eiy = B + UG)= L

7 = Kim ¥)= £ CrBJ"Z

A relation to the ion density n is obtained by considering the
Bohr orbit with the largest radius. The proximity of the
nearest ion 1limits the orbit radii possible. Using the
correspondence principle, one of the authors has shown in L L
that the maximum available volume 1/n has to be set equal to
1]1?ch§‘j ¢ . One thus obtains from eq. (34) for this
limited orbit

”J zrj-., = (U’ a; h)q/z (35)




- o4 -

By means of the virial theorem this equation was also shown
to characterize a proton-electron system at lowest energy
and densities above solid-state density, i.e. if 2712qb3ﬁ >
holds. Obviously, eq. (35) is very different from eq. (31)
and consequently our pressure function eq.(1) also greatly

a—

differs from the usual one ’ P=P
Fermi

~——

as can be seen from eq. (1).

In terms of wave mechanics the problem can also be viewed as

follows:

The ratio of the de Broglie wavelength A = }T/P to the mean

inter-proton distance n"l/3 according to eq. (31) is constant;

/73 1/1
An"? = (4T) ,
but according to eq. (35) it is
4
An"* = (1) V> (an? orw)/‘ .
For high densities, 2AT? qa M >4 , the de Broglie wave-

length accordingly exeeds the mean inter-proton distance. That
is, at these densities there are no longer any single-particle
wave functions, i.e. sub-Bohr orbits, as we are well aware from
Schrddingers equation. In other words, at such high densities
quantum mechanics can only describe systems with more than one
electron and this cannot be done by means of single-particle
functions such as follow from eq. (31), which is based on the
Pauli principle. Doubts as to the proper application of the
Pauli principle and even its universal applicability have

already been expressed in former times. Heisenberg, for



example, concludes in his paper entitled "Mehrkdrperprobleme

= B _

und Resonanz in der Quantenmechnik" /6/:

"The choice of antisymmetric system in this very case cannot
be replaced without force by the requirement that equivalent
orbits should not be present (Pauli principle /7/)". Sommer-
feld /8/ in his "explanation" of the periodic system refers
to the Pauli principle as "rather cabalistic" and concludes

the chapter as follows:

"Here we have only applied the Pauli principle to the conditions
in a single atom. In keeping with its universal character, how-
ever, it 1is also valid for the totality of electrons in any
molecule, even for the much more extensive system of conduction
electrons in an arbitrarily expanded metal (and for that of a
degenerate star /7/). The question that could already be asked
in the case of one atom becomes even more pointed:

How do the electrons manage to communicate to one another what
quantum states are to be populated in order to avoid any violat-
ion of the Pauli principle? From the corpuscular point of view,
it is certainly not possible to answer this question. From the
wave-mechanical point of view, the paradoxical nature of the

situation is somewhat moderated, but by no means eradicated."

/6/  Zeitschr. f. Phys., 41, 239 (1927)

P Tr Authors' note

/8/  Atombau und Spektrallinien, Vol. I, gth Edition, p. 167,

Braunschweig (1944)
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