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Assimilation of satellite observations of long-lived chemical 
species in global chemistry transport models 
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Menard,: Pieternel Levelt, 3 Xuexi Tie, • Guy P. Brasseur, 4 and John C. Gille • 

Abstract. Use of data assimilation techniques such as optimal interpolation or the Kalman filter 
in global chemistry transport models (CTM) is becoming more common. However, owing to 
high computational requirements, it is often difficult to apply these techniques to 
multidimensional models containing extensive photochemical schemes. We present a sequential 
assimilation approach developed for use with general global chemistry transport models. It 
allows fast assimilation and mapping of satellite observations and provides estimates of analysis 
errors. The suggested data assimilation scheme evolved from the one described by Levelt et al. 
[ 1998]. It is a variant of the suboptimal Kalman filter and is based on ideas described by Menard 
et al. [2000] and Me•mrd and Chang [2000]. One of the most important features of the 
developed scheme is its ability to routinely estimate variance of the analysis and to predict 
variance evolution in the model. The developed technique (or its variants) has been successfully 
interfaced with a number of different global models and used for assimilation of several types of 
measurements, including aerosol extinction ratios. Some of these experiments are described by 
Lamarqt•e et al. [1999] and W. D. Collins et al. (Forecasting aerosols using a chemical transport 
model with assimilation of satellite aerosol retrievals: Methodology for INDOEX, submitted to 
Journal of Geophysical Research, 2000, hereinafter referred to as Collins et al., submitted 
manuscript, 2000). We illustrate the method using assimilation of ozone observations made by 
the Upper Atmosphere Research Satellite/Microwave Limb Sounder in the three-dimensional 
chemistry transport model ROSE [Research for Ozone in the Stratosphere and its Evolution; 
Rose and Brasscur, 1989]. 

1. Introduction 

Several research groups have recently demonstrated that data 
assimilation techniques can be very successfully used for analysis 
of atmospheric chemical observations. To a large degree, this 
success is due to bnnging together traditional atmospheric 
photochemical modeling and sophisticated mathematical methods 
of estimation theory. Rigorous error analysis methods, such as 
the Kalman filter, developed in estimation theory are likely to 
yield significant benefits when applied to challenging problems 
in atmospheric chemistry. 

Lyster e[ al. [1997] for the first time applied the Kalman filter 
to assimilation of satellite observations in a global atmospheric 
transport model. Upper Atmosphere Research Satellite (UARS) 
observations of a single inert tracer (CH4) were assimilated in a 
two-dimensional (in longitude and latitude) transport model at a 
single potential temperature level. The model contained no 
chemical processes. Because of the relative simplicity of the 
employed model, it was possible to use the full Kalman filter for 
estimation of global error covariances and tracking error 
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covariances evolution in the model. The work of Lvster et al. 

[1997] highlighted the significant computational difficulties 
arising when applying the full Kalman filter to global multi- 
dimensional atmospheric models. 

Me•ard el al. [2000] and Me•ard and Chang [2000] studied 
several approaches to implementing the Kalman filter for 
assimilating UARS data in the two-dimensional transport model. 
In particular, they found that the standard Kalman filter 
covariance propagation is highly inaccurate for this problem. 
They suggested an alternative implementation based on the 
continuum error covariance. Second, Menard et al. [2000] and 
Menard a•d Cha•g [2000] suggested a rather extensive 
diagnostic process based on the chi-square method for adjusting 
free parameters in the assimilation scheme. Finally, they 
proposed a Kalman filter formulation based on the relative errors. 

In this work we extend the methodology proposed by Menard 
et al. [2000] and Menard and Chang [2000] for use with general 
three-dimensional chemistry transport models and multiple types 
and sources of satellite observations. The multidimensional 

nature of the problem leads to rather extensive computational 
requirements in terms of both CPU power and memory. Thus 
particular attention has been paid to the efficient design of the 
associated computer code, and certain simplifications were made 
to facilitate the practical implementation. Furthermore, since 
satellite observations are taken sequentially in time, it is possible 
to somewhat decrease the size of the problem (in the space of 
observations) by decreasing the length of the assimilation 
window. This is because fewer observations will have to be 

assimilated at once and the computing time required per 
assimilation procedure growths faster than linear with number of 
observations. Additionally, smaller assimilation window 
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decreases the difference between the time observations were 

taken and the time they were assimilated. 
At the time of this writing, the technique described in this 

manuscript (or its variants) has been successfully used with a 
number of different global models (ROSE, MOZART2 (Model 
for OZone And Related chemical Tracers), MATCH (Model of 
Atmospheric Transport and CHemistry), TM3 (Tracer Model 3)) 
for assimilation of several different types of measurements: 
UARS MLS ozone, MAPS CO, IMG CO, MOPITT CO, GOME 
ozone, SBUV ozone, and aerosol extinction from AVHRR and 

PATHFINDER. Some of these experiments are described by 
Lamarque et al. [1999] and Collins et al. (submitted manuscript, 
2000). 

A characteristic feature of the Kalman filter is computation of 
the time evolution of the forecast error covariance. While this 

feature is certainly extremely desirable, it is not necessary for 
developing and implementing data assimilation methodologies. 
For instance, Riishojgaard et al. [2000] have designed a very 
successful data assimilation technique that does not include 
explicit calculations of variance evolution. 

In this work we concentrate on the sequential approach to data 
assimilation. It should be noted that there exist numerous and 

successful implementations of the variational method to 
multidimensional atmospheric models [e.g., Eskes et al., 2000; 
Elbern et al., 1997]. Discussion of these methods is beyond the 
scope of this manuscript. 

2. Model 

In this work we applied the developed data assimilation 
technique to the three-dimensional chemistry transport model 
Research for Ozone in the Stratosphere and its Evolution (ROSE) 
[Rose and Brasseur, 1989] for assimilation of UARS MLS ozone 
measurements in the stratosphere. The model contains an 
extensive set of photochemical reactions as well as heterogeneous 
processes. The photochemical scheme contains approximately 50 
species and includes oxygen, nitrogen, carbon, chlorine, 
hydrogen, and bromine species. The rate constants as well as the 
absorption cross sections are taken from DeMote et al. [1994]. 
While there exist newer revisions of this publication, previous 
studies with the model demonstrated that the chemical scheme is 

adequate for our purposes. Previously, the model has been used 
for studies of ozone and other trace gases [Granier and Brasseur, 
1991]. The off-line version of ROSE used in this study is driven 
by the daily United Kingdom Meterological Office (UKMO) 
stratospheric analysis data calculated for the UARS mission 
[Swinbank and O'Neill, 1994]. The horizontal resolution of the 
model is 5 ø latitude and 11.25 ø longitude. The model contains 19 
layers in the vertical from 316 mbar up to 0.316 mbar. These 
pressure levels coincide with the standard UARS levels and the 
UKMO stratospheric analysis levels. The transport scheme is 
semi-Lagrangian, described by Smolarkiewicz and Rasch [ 1991 ]. 
The model chemical time step is 30 rain, and the dynamical time 
step is 2 hours. 

3. UARS MLS Observations 

The MLS instrument on board UARS [Reber et al., 1993] 
observes the microwave atmospheric limb emissions on a global 
scale during both day and night. On a given day, MLS normally 
collects approximately 1500 profiles. The instrument measures 
profiles of several trace gases including 03 with vertical 
resolution of about 6 km. Throughout this manuscript, we use 
UARS MLS level 3 AT data. 

In version 4 the retrievals are made on alternate standard 

UARS pressure levels. The retrieved mixing ratios are 
subsequently interpolated to the standard UARS pressure levels, 
which coincide with the model vertical levels. 

It is believed that the MLS version 4 ozone data used in this 

study are reliable from about 46 to 0.46 hPa [Froidevaux et al., 
1996]. In most cases the accuracy and approximate precision are 
0.3-0.4 ppmv and 0.2-0.3 ppmv, respectively, as estimated from 
the UARS/MLS Data Quality Document 
(http:flmls.jpl.nasa. gov/lucien/daac\document\v4). Only data at 
the retrieved levels that are considered to be reliable, 46.4, 21.5, 
10.0, 4.6, 2.1, 1.0, and 0.464 mbar, were used for the 
assimilation. 

Observational error was computed from the MLS level 3AT 
precision and accuracy information given in the UARS/MLS 
Data Quality Document. For each pressure level the relative error 
was computed as 

O'•-- 2 2 a +p 

where a and p represent relative accuracy and precision obtained 
from the UARS/MLS Data Quality Document. Hence the 
absolute error crof measurement y is 

rr = rrry 

For the seven pressure levels used in the assimilation the 
computed relative errors o;. are 0.23, 0.06, 0.05, 0.05, 0.06, 0.14, 
and 0.25, respectively. 

4. Assimilation Scheme 

Global chemistry transport models produce time series of 
estimates of concentrations of atmospheric chemicals at nodes of 
a three-dimensional grid. Let us arrange model estimates of 
concentration of a particular chemical at time t in vector x with 
dimension N,- Formally, integration of the model M can be 
written as 

Xt+At = M(t, xt)- (1) 

Let vector y contain observations of a quantity somehow 
related to concentrations of that chemical at approximately the 
same time. Examples of such observations include measurements 
of total column amount, partial (e.g., tropospheric) column 
amount, or constituent concentrations at a few selected pressure 
levels, as in the case of MLS observations. 

Geographical locations of observations usually differ from 
locations of the model grid. We will assume that the relationship 
between the observed quantity y and estimates of concentrations 
at the geographical location of the observation is linear. Thus the 
connection between x and y can be established through 
combination of two linear operators, I and A. The horizontal 
linear interpolation operator I represents interpolation of the state 
variables (constituent concentrations) from the horizontal 
locations of the model grid points to the locations of the 
observations. In this work we use a simple bi-linear interpolation. 
Operator A denotes the relationship between the observed 
quantities and estimated constituent concentrations at the 

geographical locations of observations. It can be as simple as a 
single row containing all zeros and a single "1," in which case it 
corresponds to measuring a concentration of a chemical at a 
single pressure level. It can also be a row containing all ones, in 
the case when total column content is observed. In certain cases 
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(e.g., MAPS observations as described by Lamarque et al. 
[1999]) it can be of complicated shape. In the case of MLS 
observations and the ROSE model, operator A is a matrix 
containing 7 rows (number of observed pressure levels) and 19 
columns (number of model pressure levels). Since the observed 
MLS pressure levels are a subset of the model pressure levels 
(standard UARS levels), each row of the matrix contains "1" in 
the position corresponding to the observed level and zeros 
elsewhere. 

The connection between x and y is therefore as follows: 

y = A(I(x)). 

To simplify notation, we define observational operator H as 

so that 

H(x) - A(I(x)) 

y: H(x) . (2) 

The analysis problem is then to find the "best" value of x, 
which inverts (2) for a given y allowing for observation errors 
and other prior information [Lorenc, 1986]. The solution is 
usually called the analysis, x". Prior information is given by 
independent estimates of vector x, or background and error 
covariance matrices of the background and observatio•. In i•o•t 
cases, dimensions of vectors x and y will be different, and this 
problem will be either overdetermined or underdetenmned. 
Therefore inversion of (2) should be done in the statistical sense. 

Inversion of (2) is performed at fixed time intervals using all 
observations collected during this period. Such a time interval is 
commonly called the assimilation window. The model forecast at 
the beginning of the assimilation window, x•, is considered to be 
the a priori background estimate. 

It can be shown [e.g., Lorenc, 1986] that at each time 
subsequent step the solution of (2) is given by 

x• -x t +K(y-Hx t) (3) 

K = BtH •r (HBtH •r + O + R) -• . (4) 

Here Bt is the forecast error covariance at time t. O is the error 
covariance matrix of the observations and R is the 

representativeness error covariance associated with errors of 
interpolation and discretization. Matrix K is called the Kalman 
gain matrix. 

The analysis error covariance is expressed as [Loteric, I986]: 

B• = B t-Bt HT (HBt HT + O+R)-IHBt . (5) 

Once inversion of (2) is performed, the obtained 
concentrations, x/', can be used as the initial condition for the 
chemistry transport model M to predict constituent 
concentrations at a later time (beginning of the next assimilation 
window) according to (1): 

xt+zx t = M(t, x•) . (6) 

In the extended Kalman filter method, evolution of the error 

covariance is obtained using linearization L of the original model 
M [e.g., Lyster et al. 1997]' 

Bt+/x t =LB• L T +Q (7) 

where matrix L is defined as follows: 

L = dxt+At 
dx t 

(8) 

Matrix Q is the error covariance matrix representing errors added 
to vector x during model integration resulting from the model 
being imperfect. 

The dimension of vector x as well as matrices B and L can be 

rather large. The version of ROSE model used in this work 
contains 19 vertical levels and 1152 (36x32) grid points at each 
level. This results in a total of N•,=21,888 grid points. Significant 
computational difficulties arise when dealing with vectors and 
matrices of such high dimensions. Approximately 3.5 GB (N, x 
N, x 8 bytes) is required to store either B or L matrix and 
implementation of direct full matrix multiplication (as in 
equation (7)) is clearly impossible on most present-day 
computers. 

Certain simplifications are required in order to make the 
analysis feasible. Following Menard et al. [2000] and Menard 
and Cha,g [2000], we compute the diagonal elements of B using 
(5) and parameterize the off-diagonal elements as follows: 

b•/ !/bt•b• e xp(- Ar•, A 4 - ' )exp(- (9) 

where Ar• and At_ represent horizontal and vertical distances 
between locations i and j, and L• and L_ are adjustable 
parameters. Thus only N, real numbers representing the diagonal 
elements of B have to be stored, and the off-diagonal elements 
can be computed as needed using (9). 

Several different forms of the off-diagonal element 
parameterization were suggested [e.g., Menard et al. 2000] and 
Menard and Chang [2000]. We found that our results depend 
mostly on the values of the correlation length L,• and L: rather 
then on the functional form of the parameterization. 

When parameterization (9) is introduced, expression (7) 
describing time evolution of the error covariance is replaced, 
following Menard el al. [2000] and Menard and Chang [2000J, 
by the following equations for evolution of diagonal elements of 
B, or variances bit: 

b,(t+&t)=t•,(t+N)+q•,(t) (10) 
[•t,(t + A•): M(b•,(t)) (11) 

qu(t) : [œ. xi(t + At). At] 2 (12) 

The off-diagonal elements then are computed from the updated 
diagonal elements using (9). 

Term b,,(t+At) in (10) represents the updated variance. To 
compute the updated variance, we assume that variance b of x is 
modified during the model integration in the same way as x itself. 
This assumption is justified provided that the model is only 
weakly nonlinear. Thus, to compute the updated variance at time 
t+At, we simply integrate the model forward using previously 
obtained variances bii(t) as initial conditions. Equation (11) thus 
symbolically represents transformation of variances by the model. 
The assumption of weak nonlinearity is discussed further in 
Summary and Discussion. 

Term q,,(t) represents additional error introduced to account 
for imperfections of the model. As seen from (12), it is 
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proportional to the modeled field itself and the length of the 
integration period At. The proportionality coefficient œ is a 
tunable parameter and is discussed further in the next section. 
Observational error covariance O is assumed to be diagonal, with 
its diagonal elements set to the observational error variance, as 
described in section 3. Finally, the represen-tativeness error 
covariance matrix R is also assumed to be diagonal, with its 
elements computed as 

rti = (ryi) 2 

where r, the relative representativeness error, is an adjustable 
parameter discussed in more detail in the next section. One 
should keep in mind that the assumption of diagonal covariance 
matrices is, in general, incorrect and can lead to additional errors. 

The length of the assimilation window is 1 hour, which is 
twice the value of the model time step. During this time, MLS 
observes approximately 55 ozone profiles. Since, as described in 
section 3, seven pressure levels are used per profile, the size of 
vector y is approximately 385, and the matrix inversion required 
in (5) can be performed in a reasonable time. 

5. Adjustable Parameters 

Parameters L•.> Lz, •, and r need to be tuned to achieve best 
agreement with observations. The adjustment is performed using 
two criteria, the 22 (chi-square) diagnostics described by Menard 
et al. [2000] and Menard and Chang [2000] and analysis of 
differences between forecast and observations (the so-called OmF 
analysis). 

For each assimilation analysis the scalar quantity 22 is 
computed as 

2,2 = (y_H(x))T (HBH v + O+R)-•(y_H(x)). (13) 
Note that, as explained by Menard et al. [2000], and Menard 

and Chang [2000] 

( (y _ H(x))(y _ H(x))T } (14) 
is the error covariance of the OmF residuals, or y-H(x), 
computed from the actual observations and the forecast, while 

(HBH T +O+ R) (15) 

is the OmF error covariance estimated in the course of the 

assimilation analysis. Angular brackets denote arithmetic means. 
Therefore we expect that 

2,2 / --- N. (16) 
where N is the number of observations used in the analysis. Thus 
22 diagnostics allows one to examine consistency of the error 
covariance parameterization. If the average value of z2/N is less 
than 1, than either estimated background error or estimated 
representativeness error is larger than their actual values 
computed according to (14). Note that if the assimilation is 
performed long enough and sufficient amount of observations are 
introduced into the system, the estimated background error 
covariance B does not depend anymore on its initial value. 
Instead, its value is completely determined by the tunable 
parameters. We followed these rules for determining optimal 
values of œ and r: (1) Run assimilation system and examine 22. If 

the average value of 22 increases (decreases) with time, increase 
(decrease) œ. (2) Repeat until the average value of 22 does not 
show a trend. (3) If the average value of z2/N is larger (smaller) 
than 1, increase (decrease) r. 

By following these rules we, in effect, systematically compare 
forecasted concentrations with observations that were not yet 
used in the assimilation. On the basis of results of such 

comparisons we tune the error growth parameter œ and the 
representativeness error. Assuming that observations are only 
weakly correlated in time, the validity of the assimilation system 
is thus systematically validated through comparisons with 
independent data. 

It is difficult to perform rigorous optimization following these 
rules due to rather high computational requirements involved in 
running the assimilation system for prolonged periods of time. 
Nevertheless, as shown in Figure 1, values of œ= 0.0135 per hour 
and r = 0.1 give rise to rather satisfactory 22. 

It turned out that value of 22 is relatively insensitive to 
variations of parameters L,0, and L:. To tune these parameters, we 
performed several assimilation runs and examined the OmF 
residuals, y- H(x). We varied L.o, from 500 to 5000 km and Lz 
from 0.2 to 1.5 of the standard atmospheric scale height. Best 
results were achieved for L•0, = 1000 km and L?0.4 of the 
standard atmospheric scale height. Cross sections of the resulting 
monthly and zonally averaged OmF residuals corresponding to 
these parameter values are discussed further in the next section. 

6. Results 

The assimilation scheme described above was used to 

assimilate UARS MLS ozone observations for all of 1993. To 

spin-up the system and prepare appropriate initial conditions, we 
first run the system for November and December of 1992 and 
assimilated all MLS observations available for that period. As 
observed by Levelt et al. [1998], assimilation changes model 
results dramatically. Differences between "pure" model 
simulations and the assimilation analysis that we observed are of 
the same order as those shown by Levelt et al. [1998]. After the 
initialization period, the system was run for the 12 months of 
1993 with assimilation of all available MLS data. In this section 

we will analyze results of assimilation for January 1993. Results 
of the assimilation for all months can be found at 

h ttp://acd. ucar. ed u/-b ori s/research. htm. 
An example of analyzed instantaneous global stratospheric 

ozone distribution constrained by MLS ozone data and the 
estimated analysis errors are shown in Plate 1 for January 13, 
1993. Owing to specifics of the UARS observational pattern, 
there were no measurements north of approximately 35øN for 
several weeks prior to this date. As a result, one can see rather 
large variances around the North Pole and fairly small variances 
south of 35øN. Note a tongue of tropical, ozone-rich air 
extending into the Northern Hemisphere. The density of 
observations in the tropical region is fairly high, and the 
associated variance is therefore low. As seen in Plate 1, this 

intrusion significantly lowers variance at higher latitudes. The 
model thus helps to constrain analysis in the nonobserved regions 
by retaining and "advecting" information in the system. 

Plate 2 shows time evolution of the analyzed ozone and its 
variance at 10 mbar and 0 ø longitude as a function of latitude. 
The data are plotted every hour. At the beginning of the month, 
U ARS was observing mostly the Northern Hemisphere, from 
approximately 35 ø S to about 80 ø N. As can be seen from the 
plot, the corresponding variance increases with time in the region 
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Assimilated Ozone, ppm Analysis Error, % MLS Measurements ppm 

0 1 2 3 4 5 6 7 8 9 10 11 ppm 0 2 4 6 8 10 12 14 16 % 0 1 2 3 4 5 6 7 8 9 10 11 ppm 

Assimilated Ozone, ppm Analysis Error, % MLS Measurements, ppm 

0 1 2 3 4 5 6 7 8 9 10 11 ppm 0 2 4 6 8 10 12 14 16 % 0 1 2 3 4 5 6 7 8 9 10 11 ppm 

a) b) c) 

Plate 1. Results of the assimilation for January 13, 1993, at 10 mbar. (a) Analyzed ozone at 1300 UT, ppmv; 
(b) analysis error in percent at 1300 UT; (c) MLS ozone observations. 
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Time evolution of ozone at 10 mb 
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Plate 2. Time evolution of ozone (ppmv) and square root of the variance (ppmv) at 10 •ba• and 0 ø longitude 
for January 1993. 
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Figure 1. Plot of •/N as a function of time for January 1993. 
Each value is computed for one assimilation analysis (1 hour 
in length, containing approximately 55 profiles or 365 points). 
The thick line is the 100-point (-4 days) moving average. 

where no MLS observations are available, while it stays 
approximately constant in the region where there are 
observations. Around January 10 the satellite switched to the 
south looking mode, and the analyzed ozone and variance fields 
at high southern latitudes change accordingly, while the variance 
starts to grow at high northern latitudes. 

Figure 2 presents individual ozone profiles measured by 
another U ARS instrument, Halogen Occultation Experiment 
(HALOE), and the corresponding profiles from the assimilation 
system together with estimated errors of the assimilation results. 
Note that HALOE measurements were not used in the 

assimilation. HALOE ozone measurements have errors of the 

order of 5% in the region between 25 and 60 km according to the 
HALOE Data Quality Document 
http://haloedata. larc.nasa.gov/Haloe/qualityvalidationstatus.html. 
The assimilation results are given at every model pressure level. 
Note that the error bars are generally smaller at the pressure 
levels where MLS observations are present than on the pressure 
levels that are not directly constrained with observations. Overall, 
the agreement between our results and independent HALOE 
measurements is fairly good at least at the MLS observed levels, 
and HALOE observations are practically always located within 
the estimated error bars of the assimilation analysis. The upper 
three plots in this figure showing rather large analysis errors on 
January 2, 5, and 9 correspond to high southern latitudes where 
no MLS data were available for about 30 days. The agreement 
between HALOE data and the analysis is nevertheless reasonable. 
It appears than that the assimilation scheme overestimates the 
analysis variance when there are long temporal gaps in 
observations. We believe that this is due to the linear error 

growth assumption as discussed in the Summary and Conclusions 
section. At the 6.8 mbar level the agreement between HALOE 
and MLS is generally much worse than at the adjacent levels. 
This is because there is no retrieved MLS ozone at this level in 

MLS version 4 data. We expect this problem to disappear when 
the more recent MLS version 5 data are used. 

To validate the estimated variances of our results, we 

computed root-mean-squared (RMS) differences between the 
assimilation analysis and all available HALOE ozone 
measurements. Comparisons between the calculated RMS 
differences and average estimated analysis variances are shown in 

Figure 3 for several 10ø-wide latitudinal bands. Corresponding 
zonally and time-averaged HALOE and assimilation ozone 
profiles are also shown. In most cases a reasonable agreement 
exists between RMS differences of our results and HALOE 

measurements and the independently estimated analysis errors. In 
those cases when the two estimates differ considerably, 
calculated assimilation variances are usually larger than the RMS 
values, implying that our error estimates are conservative. 

A somewhat more systematic view of differences between 
MLS observations and our results is shown in Plate 3. This plot 
presents monthly and zonally averaged root-mean-squared 
differences between the analysis and observations, corresponding 
bias, and standard deviation from the mean. As one can see, both 
the bias and the standard deviation are within 5-10% in the 

region between approximately 25 and 45 km. This is to be 
expected, as both the accuracy and precision of the MLS data 
decrease beyond this region. While OmF residuals can be 
considered a by-product of the assimilation, as seen from Plate 3 
their analysis provides an important quality control mechanism 
and highlights systematic differences between the analysis and 
data. 

7. Summary and Discussion 

Development of data assimilation techniques for use with 
global atmospheric chemistry transport models can be a very 
resource-intensive task. At the same time, use of such techniques 
for analysis of chemical observations of atmospheric composition 
promises significant benefits and is becoming increasingly 
important as more space-based instruments are deployed. These 
instruments supply vast amounts of information that need to be 
analyzed in a systematic and rigorous manner. Properly designed 
data assimilation methodologies will allow scientists to better 
understand and interpret chemical composition and dynamical 
processes of the Earth's atmosphere. These tools also provide 
means to systematically evaluate and validate the associated 
numerical models. 

One of the main goals in developing the assimilation scheme 
was to provide a simple to use and computationally fast tool for 
use by scientists using and developing three-dimensional 
chemistry transport models. At the present time the developed 
technique has been used in a number of different CTMs for 
assimilation of several types of observations. While results of this 
and several other research efforts [Lamarque et al., 1999; Levelt 
et al., 1998; Collins et al., submitted manuscript, 2000] 
demonstrate the usefulness of the proposed approach, there is 
certainly room for improvement. Several assumptions made in 
the formulation of the data assimilation method can be discarded 

in the future implementations. 
One of the most important simplifications is the assumption of 

the weakly nonlinear model. While this assumption appears to be 
justified for ozone in the lower and middle stratosphere, in the 
upper stratosphere the ozone photochemical lifetime becomes 
short due to increasing importance of several chemical processes. 
To compute time evolution of the error covariance under these 
conditions using the extended Kalman filter, one needs to know 
the linearization of the model [Khattatov et al., 1999]. While 
such computations are feasible for simple zero-dimensional box 
models as described by Khattatov et al. [1999], applications to 3- 
D models appear to be practically impossible at the present time. 

We have assumed that values of adjustable parameters Lx3.,, 
•, and r in (10), (11), and (12) are independent of time and 
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Figure 2. Individual ozone observations from HALOE (solid circles), ozone profiles from the assimilation 
system (solid line), and the corresponding error bars of the assimilation at several different locations for 
January 1993. See Results section for discussion of the assimilation analysis error bars. 

geographical location. While this assumption significantly 
simplifies tuning these parameters, it is certainly not necessary 
and can be changed. For instance, the vertical correlation length 
is expected to be larger in the stratosphere than in the 
troposphere. The model error growth rate will be larger in the 
regions where dynamical processes are not modeled very well 
(e.g., tropics) or where some chemical processes are omitted from 
the model formulation. Accordingly, Z 2 analysis should be 
performed at several different geographical regions and pressure 
levels, rather than globally as was done in this work. 

It is reasonable to assume that the correlation length in the 
zonal direction is larger than that in the meridional direction. 
Thus (9) can be amended to include one more exponential term 
and thus another free parameter. This, of course, will make the 
process of tuning the scheme even more cumbersome. 

Finally, the assumption of linear growth of the errors during 
model integration is unrealistic. It is reasonable to conclude that 
modern CTMs simulate distributions of most atmospheric 
chemicals with errors less than 100-200%. If the linear error 

growth assumption were correct, the analysis error would not 
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Figure 3. Monthly (January) and zonally averaged ozone profiles from HALOE (solid circles) and the 
assimilation (thick lines) for different latitude bins. Also shown are the average RMS differences between 
HALOE and assimilation (dotted lines) and average assimilation analysis error (dashed lines). Thin solid 
lines represent error bars of the assimilation analysis. 

have an upper bound at all in the regions where no observations 
are assimilated for prolonged periods of time. This explains the 
large error bars seen at the upper three plots in Figure 2. 

Ultimately. soundness of the adopted simplifications can be 
assessed by comparing assimilation results with independent 
data, such as measurements not yet used in the assimilation (Plate 
3) or observations from different instrument (Figures 1 and 2). As 
one can see from these plots, our results show reasonable 
agreement with both sources of independent data in the region 
from about 25 to 50 kin. 

The three-dimensional sequential data assimilation method 
described here allows fast and accurate mapping of sparse and 
scattered satellite data to regular time and space grid. This 
process provides means to easily visualize instantaneous 
distributions of the observed chemical species (e.g., Plate 1) and 
significantly facilitates comparisons with correlative data (e.g., 
Figure 2). Short- as well as long-term temporal variability at 
fixed geographic locations is readily observed (Plate 2). 
Estimated variance of the resulting instantaneous three- 
dimensional distributions supplies an important quantitative 
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quality indicator allowing for cross-validation of different 
sources of measurements. We expect that the developed 
technique will find numerous applications in processing and 
validation of data from future satellite missions, including EOS- 
TERRA and EOS-CHEM. The Fortran code of the assimilation 

scheme together with assimilation results for 12 months of 1993 
can be accessed at http://acd.ucar.edu/-boris/research.htm. 
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