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JANG’S EQUATION AND ITS APPLICATIONS TO

MARGINALLY TRAPPED SURFACES

LARS ANDERSSON, MICHAEL EICHMAIR†, AND JAN METZGER

Abstract. In this paper we survey some recent advances in the analysis of
marginally outer trapped surfaces (MOTS). We begin with a systematic re-
view of results by Schoen and Yau on Jang’s equation and its relationship
with MOTS. We then explain recent work on the existence, regularity, and
properties of MOTS and discuss the consequences for the trapped region. We
include an outlook with some directions for future research.
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1. Introduction

Given a Riemannian 3-manifold (M, g) and a symmetric (0, 2)-tensor k on M ,
the triple (M, g, k) is an initial data set for flat Minkowski spacetime if and only if
the overdetermined system of equations

gab = gflatab −DauDbu

kab =
DaDbu

(1 +DcuDcu)1/2

(1)

has a solution for some flat metric gflat. Here indices are raised using the metric
gab.

This statement and its proof appear in the paper [31] by Pong-Soo Jang, who
attributes it to Robert Geroch. The details of the calculation leading to (1) can be
found in [31, Appendix], see also [11, Appendix C]. In his paper Jang sets out to
generalize Geroch’s approach to proving the positive mass theorem (based on the
inverse mean curvature flow) from the case of time-symmetric initial data to the
general case.

Recall that the Geroch mass for a two-surface Σ ⊂M with scalar curvature RΣ

and mean curvature H is defined by

(2) 16πmGeroch(Σ) =

√

|Σ|
16π

∫

Σ

(2RΣ−H2
Σ)dµΣ.
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(M, g, k)

R3,1

Figure 1.

The Geroch mass is a specialization of the Hawking mass [28] to the time-symmetric
case. The explicit form given here appeared in [32]. Although phrased slightly
differently in [24], Geroch’s argument for the positive mass theorem is based on
the observation that mGeroch(Σs) is monotone increasing for a smooth family Σs
moving in the normal direction with speed given by the inverse mean curvature, in a
3-manifold of non-negative scalar curvature. This inverse mean curvature flow was
later analyzed by Huisken and Illmanen [30], who were able to prove monotonicity
of the Geroch mass for a weak version of the flow, and use this to give a proof of
the Riemannian Penrose inequality.

In generalizing Geroch’s argument, Jang introduces the defects

ĝab(u) = gab +DauDbu

k̂ab(u) = kab −
DaDbu

(1 +DcuDcu)1/2
.

(3)

The condition that (M, g, k) forms initial data for Minkowski space is therefore

equivalent to the condition that k̂(u) = 0 and ĝ(u) be flat for some function u.

Taking the trace of k̂(u) with respect to the metric ĝ(u) yields the quasilinear
equation

(4)

(

gab − DauDbu

1 +DcuDcu

)(

kab −
DaDbu√

1 +DcuDcu

)

= 0,

which in particular must be satisfied for the height function of any spacelike asym-
potically flat hypersurface in Minkowski space. This is Jang’s equation.

At this point it is convenient to note that ĝab(u) is precisely the metric induced

on the graph M̂ = (x, u(x)) in the Riemannian product space (M ×R, g+dt2). Let

HM̂ = ĝab
DaDbu

(1 +DcuDcu)1/2

trM̂ (k) = ĝabkab.

Then HM̂ is the mean curvature of the graph M̂ , with respect to the downward

pointing normal, and trM̂ (k) is the trace of the restriction to M̂ of the pullback of
kab to the product M × R via the canonical projection π : M × R → M . Now we
can write Jang’s equation in the form

(4′) HM̂ − trM̂ (k) = 0
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(M, g, k)

(M̂, ĝ, k̂)
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Figure 2.

Assuming that the triple (M, g, k) is the induced geometric data for a hypersurface
in a spacetime satisfying the dominant energy condition, the induced scalar cur-
vature is non-negative modulo a divergence term (which of course can be large).
Jang then, following the approach taken by Geroch in the case of non-negative
scalar curvature, introduces a modified inverse mean curvature flow depending on
a solution of Jang’s equation, as well as an adapted Geroch mass that he shows to
be formally monotone along his flow. If these steps outlined by Jang can be made
rigorous, then his arguments lead to a proof of the positive energy theorem in this
general situation.

Jang’s work has not been developed further due to the fact that an effective
theory for existence and regularity of solutions of Jang’s equation (4) was lacking
until the work of Schoen and Yau, who applied Jang’s equation differently from the
original intention by using it to reduce the space-time positive mass theorem to the
time symmetric case. Further, it is not clear how to define an appropriate weak
solution of the modified IMCF introduced by Jang.

1.1. Jang’s equation and positivity of mass. A complete proof of the positive
mass theorem was first given by Schoen and Yau [51], for the special case of time-
symmetric initial data. They then extended their result to general, asympotically
flat initial data satisfying the dominant energy condition by using Jang’s equation
to “improve” the properties of the initial data in [55]. We describe here several
aspects of Jang’s equation which play a fundamental role in their work.

Firstly, Jang’s equation is closely analogous to the equation

(5) HΣ+trΣ(k) = 0

defining marginally outer trapped surfaces Σ ⊂M , where as above HΣ, trΣ(k) are
the mean curvature of Σ and the trace of k restricted to Σ, respectively.

Equations of minimal surface type may have blow-up solutions on general do-
mains and an important step in [55] is the analysis of the blow-up sets for the
solutions of Jang’s equation. At the boundaries of the blow-up sets, the graph of u
is asymptotically vertical, asymptotic to cylinders over marginally outer (or inner)
trapped surfaces – here the above mentioned relation of Jang’s equation to the
MOTS equation comes into play.

Secondly, the induced geometry of the graph M̂ of a solution of Jang’s equation
can be confomally changed to a metric with zero scalar curvature without increasing
the mass.

The fundamental reason for this is that the analogue of the stability operator for
M̂ , i.e., the linearization of Jang’s equation, has, in a certain sense, non-negative
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spectrum. Equation (4) is translation invariant in the vertical direction. One of
the consequences of this fact is that the non-negative lapse for the foliation of
M ×R arising by this translation can be viewed as a principal eigenfunction of the
linearization of equation (4), with eigenvalue zero.

This spectral property allows one to prove the inequality

(6)

∫

M̂

RM̂ φ2 + 2|DM̂φ|2 ≥ 0

valid for any compactly supported Lipschitz function φ on M̂ , which in turn im-
plies that the Yamabe invariant of M̂ is non-negative. This means that (M̂, ĝ) is
conformal to a metric of non-negative scalar curvature. In fact, equation (6) is
stronger, since the Yamabe operator has the factor 8 instead of the factor 2 in front
of the |DM̂φ|2. The extra term in (6) with respect to the Yamabe operator allows
to control the change of the mass under this conformal deformation. We refer to
section 4.1 for the actual calculation. In performing the conformal transformation
to zero scalar curvature, the cylinders of the marginal boundary components are
conformally blown down to (singular) points.

The relationship between existence of solutions to Jang’s equation, the existence
of MOTS, and concentration of matter was observed and exploited in [56].

This problem has been revisited more recently by Yau [64], and by Galloway and
O’Murchadha [22].

In spite of a great deal of activity related to the positive mass theorem and
minimal surfaces in the years following the Schoen-Yau and Witten proofs around
1980, little attention has been paid to Jang’s equation and MOTS from an analytical
point of view until relatively recently.

1.2. Existence and regularity of MOTS. As mentioned above, the close anal-
ogy between Jang’s equation, the MOTS equation, and the minimal surface equa-
tion was exploited in the work of Schoen and Yau [55]. In particular, in that paper
ideas from the regularity theory for minimal surfaces were applied to Jang’s equa-
tion. The positivity of the analogue of the stability operator, as discussed above,
plays a central role here, completely analogous to the situation in minimal surface
theory. The analogy between minimal surfaces and MOTS was further developed
in [1], where stability for MOTS was stated in terms of non-negativity of the (real
part of the) spectrum of the stability operator. The positivity property of the sta-
bility operator for a strictly stable MOTS was used there to prove local existence
of apparent horizons. Further, in [2], the curvature estimates for stable MOTS
were developed along the same lines as the regularity estimates for stable minimal
surfaces and for Jang’s equation.

MOTS are not known to be stationary for an elliptic variational problem on
(M, g, k). This means that the direct method of the calculus of variation is not
available to approach existence theory in parallel with minimal or constant mean
curvature surfaces. The results in [55] lead Schoen [47] to suggest to prove existence
of MOTS between a trapped and an untrapped surface by forcing a blow-up of
solutions of the (regularized) Jang’s equation. In order to carry out this program
one would like to construct a sequence of solutions to the Jang’s equations whose
boundary values diverge in the limit. The physically suggestive one-sided trapping
assumptions proposed by Schoen are not sufficient to accomplish this directly.

These technical difficulties were first overcome in [3] using a bending procedure
for the data to convert the one-sided trapping assumption into the two-sided bound-
ary curvature conditions necessary to solve the relevant Dirichlet problems, hence
leading to a satisfying existence theory for closed MOTS, and subsequently in an
independent approach using the Perron method in [17]. These two constructions
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have established further features of MOTS related to their stability [2, 3], outward
injectivity [3] in low dimensions, and almost-minimizing property [17]. These prop-
erties confirm that MOTS are in many ways very similar to minimal surfaces and
surfaces with prescribed mean curvature, which they generalize, even though they
do not arise variationally except in special cases.

The Perron method was used to solve the Plateau problem for MOTS in [17] and
also to extend the existence theory for closed MOTS to more general prescribed
mean curvature surfaces that do not arise from a variational principle, including
generalized apparent horizons (see [11]) in [18]. The combination of the almost min-
imizing property of MOTS and the Schoen-Simon stability theory [48] introduced
to this context in [18] provide a convenient framework for the analysis of MOTS in
arbitrary dimension, allowing techniques from geometric measure theory to enter
despite the lack of a variational principle.

1.3. Overview of this paper. In section 2 we introduce notation and give some
technical preliminaries. Section 3 provides a systematic and detailed overview of
the analysis of Jang’s equation and the MOTS equation. As mentioned above, the
solutions to Jang’s equation in general exhibit blow-up, and boundaries of the blow-
up regions are marginally outer (or inner) trapped. Section 3.5 explains how this
fact can be exploited for proving the existence of MOTS in regions whose boundaries
are trapped in an appropriate sense. Stability of MOTS is discussed in subsection
3.6, where we also describe a new result on stability of solutions to the Plateau
problem for the MOTS equation. Section 4 discusses in detail some of the main
applications of Jang’s equation in general relativity, including the positive mass
theorem, formation of black holes due to condensation of matter and the existence
of outermost MOTS. Finally, section 5 gives an overview of some open problems
and potential new applications of Jang’s equation and generalizations thereof.

2. Preliminaries

2.1. Initial data sets and MOTS. In this section we introduce the notation,
sign conventions, and terminology used in this survey. Classical references for this
material are [29] and [61].

An initial data set is a triple (M, g, k) where M is a complete 3-dimensional
manifold, possibly with boundary, together with a positive definite metric g and a
symmetric (0, 2) tensor k. In the context of general relativity, such triples arise as
embedded spacelike hypersurfaces of time-orientable Lorentzian manifolds (M̄, ḡ),
referred to as the spacetime, with induced metric g and (future directed) second
fundamental form k. Hence, if η is a future directed normal vector field of M ⊂ M̄
such that ḡ(η, η) ≡ −1, and if ξ, ζ ∈ TpM ⊂ TpM̄ where p ∈ M , then k(ξ, ζ) =
ḡ(D̄ξη, ζ). Here, D̄ is the Levi-Civita connection of the spacetime.

Now let Σ ⊂M be an embedded two-sided 2-surface and let ν be a unit normal
vector field of Σ ⊂ M . We write h for the second fundamental form of Σ with
respect to ν so that h(ξ, ζ) = g(Dξν, ζ) for tangent vectors ξ, ζ ∈ TpΣ for any
p ∈ Σ, where D is the Levi-Civita connection of (M, g). We may think of ν as
a vector field along Σ ⊂ M̄ so that l = ν + η is a future directed null vector
field of Σ when viewed as a spacelike 2-surface of the spacetime. Note that then
χ(ξ, ζ) := (h+ k)(ξ, ζ) = ḡ(D̄ξl, ζ) for tangent vectors ξ, ζ ∈ TpΣ. This symmetric
(0, 2)-tensor χ is the null second fundamental form of Σ ⊂M with respect to l. Its
trace θΣ = trΣ χ is called the expansion of Σ with respect to the null-vector field l.
Note that θΣ = HΣ+trΣ k where HΣ is the mean curvature of Σ ⊂M with respect
to the unit normal ν.

In many places in this survey, Σ ⊂ M has a clearly designated outward unit
normal. If we compute the null-second fundamental form and expansion of such a
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surface Σ with respect to the corresponding future-directed outward null-normal,
we will write χ+

Σ and θ+Σ for emphasis. If Σ is such a 2-surface, with θ+Σ ≡ 0 on Σ,
then we say that Σ is a marginally outer trapped surface or MOTS for short.

If we use the future-directed inward unit normal to compute the expansion we
write χ−

Σ and θ−Σ . If θ
−
Σ ≡ 0 we say that Σ is a marginally inner trapped surface or

MITS. For ease of exposition, we say that a two-sided surface Σ ⊂M is an apparent
horizon if it is either a MOTS or a MITS, i.e., if HΣ+trΣ(k) ≡ 0 holds for one of
the two possible consistent choices to compute the mean curvature scalar.

The following spacetime analogue of the Bonnet-Myers theorem, whose proof
uses the Raychaudhuri rather than the Riccati equation, lies at the heart of the
Penrose-Hawking singularity theorems of general relativity (cf. [29, Proposition
4.4.3]): if the null energy condition holds in M̄ , i.e. if for the spacetime Ricci
tensor Ric(υ, υ) ≥ 0 holds for all points q ∈ M̄ and null vectors υ ∈ TqM̄ , and if
the expansion θΣ of Σ ⊂ M̄ with respect to the null vector field l along Σ is negative
at p ∈ Σ, then a null geodesic emanating from p in direction l(p) has conjugate
points within a finite affine distance. Physically, this means that the surface area
of a shell of light emanating from Σ near p will go to zero before it has a chance to
‘escape to infinity’.

Frequently, additional assumptions are included in the definition of an initial
data set in the literature. In this survey we will always state such extra hypotheses
explicitly when needed. Two such extra assumptions will be particularly relevant for
us. First, recall [61, p. 219] that a spacetime (M̄, ḡ) is said to satisfy the dominant
energy condition if its stress-energy tensor T := Ric − 1

2 R̄ḡ has the property that

for every p ∈ M̄ the vector dual to the one form −T(η, ·) with respect to ḡ is a
future directed causal vector in TpM̄ for every future directed causal vector η ∈
TpM̄ . Here Ric and R respectively denote the spacetime Ricci tensor and spacetime
scalar curvature. Note that this dominant energy condition implies the null energy
condition used above in connection with the formation of caustics along light-like
geodesics in the spacetime. If η arises as above as the future directed normal vector
field of a spacelike hypersurface M ⊂ M̄ , then one can use the Gauss and the
Codazzi equations to express the normal-normal component (abbreviated by µ)
and the normal-tangential part of T (written as a one form J) along M entirely in
terms of the initial data (M, g, k). Explicitly,

1

2

(

RM −|k|2M + (trM (k))2
)

=: µ(7)

divM (k − trM (k)g) =: J(8)

where RM is the scalar curvature of (M, g), D is its Levi-Civita connection, and
where |k|2M and trM (k) are the square length and trace of k with respect to g.
Physically, µ and J are, respectively, the energy density and the current density
of an observer traveling with 4-velocity η. A consequence of the dominant energy
condition for the spacetime (M̄, ḡ) is that µ ≥ |J | must hold onM . By slight abuse
of language one says that an initial data (M, g, p) satisfies the dominant energy
condition if µ ≥ |J | holds. An important special case of the dominant energy
condition is when M is a maximal slice of the spacetime, i.e. when trM (k) ≡ 0,
so that the dominant energy condition implies that the scalar curvature RM ≥ 0
is non-negative. In the case where k ≡ 0, M ⊂ M̄ is called a time symmetric slice
or maybe more precisely a totally geodesic slice. In the case of time-symmetric
data (M, g, k ≡ 0), the dominant energy condition is equivalent to RM ≥ 0, and
apparent horizons Σ ⊂M are precisely minimal surfaces.

For our discussion of the positive mass and positive energy theorem in subsection
4.1 we will also need the following definition (stated here as in [55]): An initial data
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set (M, g, k) is said to be asymptotically flat if there is a compact set K ⊂ M
so that M \ K is diffeomorphic to a finite number of copies of R3 \ B̄(0, 1) (each
corresponding to an end), and such that under these diffeomorphisms

|gij − δij |+ |x||∂pgij |+ |x|2|∂2pqgij | = O(|x|−1) and |RM |+ |∂pRM | = |x|−4

as well as

|kij |+ |x||∂pkij |+ |x|2|∂2pqkij | = O(|x|−2) and

∣

∣

∣

∣

∣

3
∑

i=1

kii

∣

∣

∣

∣

∣

= O(|x|−3)

as |x| :=
√

(x1)2 + (x2)2 + (x3)2 → ∞ on each end. For the rigidity part of the
positive mass theorem it will also be necessary to assume that the third and forth
order derivatives of the metric are O(|x|−4). These conditions guarantee that the
ADM energy

EADM =
1

16π
lim
r→∞

3
∑

i,j=1

∫

|x|=r

(∂igij − ∂jgii)
xj

|x|dH
2

and the ADM linear momentum

P lADM =
1

8π
lim
r→∞

3
∑

j=1

∫

|x|=r

|x|−1
(

xjklj − xlkjj

)

dH2

are well-defined, see [4, 8, 45]. The spacetime coordinate transformations which
leave the asympototic conditions invariant are asymptotically Lorentz transfor-
mations and the ADM 4-momentum vector PµADM = (EADM, P

l
ADM) is Lorentz

covariant under such transformations. In particular, the ADM mass mADM =
√

−PµADM(PADM)µ is a coordinate independent quantity. Note that we will be
sloppy in the sequel and refer to the positive energy theorem, i.e. the question
whether EADM ≥ 0, by the term positive mass theorem, which would rather be
appropriate for the statement mADM ≥ 0.

2.2. Linearization of the expansion. Marginally outer trapped surfaces Σ ⊂
M ⊂ M̄ in general initial data sets are not known to arise as critical points (or
indeed to occur as minimizers) of a standard variational problem described in terms
of the data (M, g, k). (However, note that by definition a MOTS Σ ⊂M is a critical
point for the area functional inside the future-directed null-cone of Σ ⊂ M̄ .) In
recent years, properties of MOTS akin to those of minimal surfaces have been
introduced and investigated. In this subsection we discuss the linearization of the
expansion θΣ with respect to variations in M . This sets the ground for a discussion
of the natural notion of stability of MOTS in subsection 3.6.

Let Σ ⊂ M be a two-sided hypersurface and let ϕs be a smooth family of dif-
feomorphisms of M parametrized by s ∈ (−δ, δ) so that ϕ0 is the identity. Assume
that d

ds |s=0ϕs = σ+fν on Σ, where σ ∈ Γ(TΣ) is a tangential vector field, where f
is a smooth scalar function on Σ, and where ν is a smooth unit normal vector field
of Σ. The mean curvature scalar and tangential trace of k of Σs := ϕs(Σ) can be
viewed as functions on Σ via pullback by ϕs, and they are smooth functions of s.
Here we agree that the mean curvature scalar of Σ is computed as the tangential
divergence divΣ(ν) of ν. It follows that

−〈DΣHΣ, σ〉+
d

ds
|s=0ϕ

∗
s HΣs

= −∆Σf −
(

|h|2Σ +Ric(ν, ν)
)

f, and

−〈DΣ trΣ(k), σ〉+
d

ds
|s=0ϕ

∗
s trΣs

(k) = 2k(ν,DΣf) +Dν(trM (k))f − (Dνk)(ν, ν)f.

(9)
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Here, ∆Σ and DΣ denote respectively the non-positive Laplacian and the gradient
operator of Σ with respect to the induced metric, |h|Σ is the length of the second
fundamental form of Σ, and Ric and D are the ambient Ricci curvature tensor and
covariant derivative operator. The literature often refers to the first identity as the
Riccati or Jacobi equation, in particular when the tangential part σ of the variation
vanishes identically. If X ∈ Γ(TΣ) denotes the tangential part of the vector field
dual to k(ν, ·) one can compute that

(Dνk)(ν, ν) = −HΣ k(ν, ν) + 〈h, k〉Σ + (divM k)(ν) − divΣX.

Using the Gauss equation and the expressions for the mass density µ in (7) to
substitute for Ric(ν, ν), and the current density J in (8) to re-write divM k, it
follows that

− 〈DΣθΣ, σ〉+
d

ds
|s=0ϕ

∗
sθΣs

= −∆Σf + 2〈X,DΣf〉
+
(

1
2 RΣ − 1

2 |h+ k|2Σ − J(ν)− µ+ divΣX − |X |2 + 1
2θΣ(2 trM (k)− θΣ)

)

f

=: LΣ f

(10)

where θΣs
:= HΣs

+trΣs
(k) is the expansion of Σs. See [1, (1)] and [23, (2.3)], and

also [55, (2.25)] for an important special case of this formula that we will come
back to in subsection 3.6. Following [23] we point out that when Σ is a MOTS and
f > 0, one can rearrange and express 1

f LΣ f more compactly as

(11) divΣ(X −DΣ log f)− |X −DΣ log f |2Σ +
1

2
RΣ −|h+ k|2Σ − J(ν)− µ.

Note that if the dominant energy condition µ ≥ |J | is assumed, then the last three
terms make a non-positive contribution to this expression.

3. Analytical aspects of Jang’s equation and MOTS

3.1. Jang’s equation. Given a compact subset Ω ⊂ M with smooth boundary,
F ∈ C1(Ω̄), and a function φ defined on ∂Ω we consider the quasi-linear elliptic
partial differential equation expressed in local coordinates x = (x1, x2, x3) as

(

gij − uiuj

1 + |Du|2
)

(

DiDju
√

1 + |Du|2
− kij

)

= F (x) on Ω

u = φ on ∂Ω

(12)

where k = kijdx
i ⊗ dxj , g = gijdx

i ⊗ dxj , gikg
kj = δji , u

i = gij∂ju are the compo-
nents of the gradient Du = ui∂i of u, |Du|2 = gij∂iu∂ju is its length squared, and
DiDju = ∂i∂ju−Γkijuk are the components of the second covariant derivative (the

Hessian) of u so that ∇du = (DiDju)dx
i ⊗ dxj , where {Γkij} are the Christoffel

symbols of the g metric in these coordinates. The left-hand side of (12) is indepen-
dent of the choice of coordinate system and is easily seen to be of minimal surface
type [25, Chapter 14]. Indeed, the graph of u viewed as a submanifold graph(u) of
(M ×R, g + dt2) (where t is the vertical coordinate) and parametrized by an atlas
of M via the defining map x → (x, u(x)), has, in ‘base coordinates’, metric ten-

sor gij + ∂iu∂ju with inverse gij − uiuj

1+|Du|2 , downward pointing unit normal vector

ν = ui∂i−∂t√
1+|Du|2

, and second fundamental form hij =
DiDju√
1+|Du|2

, so that the term

H(u) :=

(

gij − uiuj

1 + |Du|2
)

DiDju
√

1 + |Du|2
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in (12) can be interpreted geometrically as the mean curvature of graph(u), while
the remainder

tr(k)(u) :=

(

gij − uiuj

1 + |Du|2
)

kij

computes the trace of k (viewed as a tensor on the product manifold trivially
extended, so that k(∂t, ·) ≡ 0) over the tangent space of graph(u). We extend these
geometric definitions in the obvious way to two-sided hypersurfaces Σ ⊂ M × R

and write HΣ and trΣ(k) (they are functions on Σ). Note that in order to interpret
the mean curvature scalar unambiguously we need to specify a normal vector field
of Σ, while trΣ(k) makes sense independently. If Σ = graph(u) arises as above,
HΣ will always be computed with respect to the downward unit normal (i.e. as its
tangential divergence) so that HΣ(x, u(x)) = H(u)(x). When Σ is a hypersurface
in the base M , then clearly trΣ(k) = trΣ×R(k) and also HΣ = HΣ×R provided the
orientations match. It is clear that, with appropriate identifications, the geometric
operators H and tr(k) are continuous with respect to C2 and C1 convergence of
hypersurfaces respectively.

3.2. Schoen and Yau’s regularization of Jang’s equation. In [55], R. Schoen
and S.-T. Yau introduced the geometric perspective on solutions of Jang’s equation
discussed in subsection 3.1 and showed that solutions should only be expected to
exist in a certain sense that we will explain in detail in subsection 3.4. They used
their existence theory for Jang’s equation to reduce the spacetime version of the
positive energy theory (with general k satisfying the dominant energy condition)
to the special case [51] of the positive energy theorem where the scalar curvature
of the initial data set is non-negative. The analytic difficulty with Jang’s equation
H(u)−tr(k)(u) = 0 is the lack of an a priori estimate for supΩ |u| due to its zero order
term trM (k) = gijkij . That this is not just a technical difficulty but a fundamental
aspect of Jang’s equation will become apparent below in Theorems 4.5, 4.3. The
approach of [55] to bypass this issue is a positive capillarity regularization term:

Theorem 3.1 (Schoen and Yau). Let (M, g, k) be an initial data set, Ω ⊂ M a
bounded subset with C2,α boundary, φ ∈ C2,α(∂Ω), 0 < τ ≤ 1, and assume that
H∂Ω −| tr∂Ω(k)| > τφ along ∂Ω. Then there exists a unique solution uτ ∈ C2,α(Ω̄)
of

H(uτ )− tr(k)(uτ ) = τuτ on Ω

uτ = φ on ∂Ω.
(13)

If (M, g, k) is asymptotically flat (cf. subsection 2.1), then there exists a unique
solution uτ ∈ C2,α(M) of

H(uτ )− tr(k)(uτ ) = τuτ on M with

uτ → 0 as |x| → ∞ on each asymptotically flat end.
(14)

Note that the estimates

sup
Ω
τ |uτ | ≤ max{3|k|C(Ω̄), τ |φ|C(∂Ω)}

respectively
sup
M

τ |uτ | ≤ 3|k|C(M)

are immediate from the maximum principle for solutions uτ of these regularized
equations (13), (14). The second part of this theorem is proven in detail in [55].
The boundary gradient estimates necessary to establish existence in the first part
can be derived from the boundary curvature condition H∂Ω −| tr∂Ω(k)| > τφ from
a classical barrier construction due to J. Serrin (as described in [25, §14]): a suffi-
ciently (C2-) small monotone inward perturbation of the boundary cylinder ∂Ω×R
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below the rim {(x, φ(x)) : x ∈ ∂Ω} will be the graph of a function uτ defined near
∂Ω which satisfies H(uτ ) − tr(k)(uτ ) > τuτ (because τ > 0) with uτ = φ on ∂Ω
and hence is a sub solution. The condition that H∂Ω+tr∂Ω(k) > τφ along ∂Ω can
be used to construct a super solution uτ near ∂Ω by perturbing inward above the
boundary rim. For concise references and details see [17, §2].

3.3. Classical results on minimal graphs and their limits. In order to moti-
vate and explain the analysis [55] of the ‘limits’ of solutions as τ ց 0 of the regu-
larized equations uτ in Theorem 3.1, we are going to review some classical results
from minimal surface theory. First, recall that if u ∈ C2(Ω) satisfies the minimal
surface equation, then Σ := graph(u) ⊂ Ω × R is an area minimizing boundary in
Ω × R. This means that if we denote by E = {(x, t) : x ∈ Ω and t ≥ u(x)} the
super graph of u in Ω× R, then

P(E,W ) ≤ P(F,W ) for every F ⊂ Ω× R with E∆F ⊂⊂W ⊂⊂ Ω× R.

Here, P(F,W ) denotes the perimeter of the set F inW (cf. [26, p. 5]). This follows
from a classical calibration argument using the closed 3-form η := (d volg+dt2)⌊ν
where ν = 1√

1+|Du|2
(ui∂i − ∂t) denotes the downward normal to Σ thought of as a

unit normal vector field on Ω × R. Being an area minimizing hypersurface, Σ is a
stable critical point of the area functional, and hence

(15)

∫

Σ

(

|h|2Σ +Ric(ν, ν)
)

φ2 ≤
∫

Σ

|DΣφ|2 for all φ ∈ C1
c (Σ).

Here DΣφ denotes the tangential gradient of φ along Σ, |h|Σ is the length of the
second fundamental form, and Ric is the Ricci tensor of the ambient M × R.
Using the Rayleigh quotient characterization of the first eigenvalue of an ellip-
tic operator, one sees that the stability inequality (15) is equivalent to the non-
negativity of the Dirichlet spectrum of LΣ on compact domains of Σ, where LΣ f :=
−
(

∆Σ +Ric(ν, ν) + |h|2Σ
)

f is the linearization of the mean curvature operator, cf.
subsection 2.2 (with k ≡ 0). We also remind the reader that stability is implied
by the existence of a positive function f > 0 on Σ such that LΣ f ≥ 0. This can
be seen either analytically, by use of the maximum principle, or more directly by
integrating the pointwise inequality

0 ≤ LΣ f

f
φ2 =

(

∆Σ log f + |DΣ log f |2 + |h|2Σ +Ric(ν, ν)
)

φ2

over Σ. Then
∫

Σ

(

|h|2Σ +Ric(ν, ν)
)

φ2 =

∫

Σ

2〈DΣφ, φDΣ log f〉 − φ2|DΣ log f |2

≤
∫

Σ

|DΣφ|2
(16)

follows from an integration by parts and an application of Young’s inequality. The
vector field −∂t generates a family of diffeomorphisms ϕs that act by downward
translation. Clearly, the variations of Σ by ϕs also have zero mean curvature,
and hence it follows from subsection 2.2 that LΣ

(

1
v

)

= 0, where as usual v =
√

1 + |Du|2. Hence 1
v is a positive Jacobi field for LΣ on Σ. Our point here is

that the stability property of minimal graphs as expressed by (15) can be recovered
without recourse to their stronger minimizing property. We emphasize that this
Jacobi field 1

v measures the vertical component of the (upward) unit normal of Σ.
Minimizing boundaries are smooth in ambient dimension ≤ 7 and they form a

closed subclass F of boundaries of locally finite perimeter in Ω × R with respect
to current convergence (see e.g. [26]). It follows that every sequence of minimal
graphs has a smooth subsequential limit Σi → Σ in F . If 1

vi
denotes as above
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the vertical part of the (upward) unit normal of Σi, then LΣi
v−1
i = 0, and hence

∆Σi

1
vi

≤ β
vi

holds where β = |Ric |C(Ω) is a constant independent of i. This
differential inequality has a non-parametric interpretation: the vertical part of the
unit normal of the hypersurface Σi is a non-negative super solution of a geometric
homogeneous elliptic equation on Σi. This aspect of minimal graphs passes to their
subsequential limit Σ. The Hopf maximum principle then implies that on every
connected component of Σ the vertical part of the unit normal either has a sign
or vanishes identically. Put differently: subsequential limits of minimal graphs are
minimizing boundaries in Ω× R whose components are either graphical over open
subsets of Ω or vertical cylinders whose cross-sections are minimizing boundaries
in the base Ω. This analysis of the limiting behavior of minimal graphs is carried
out in detail in [41], where concise references can be found.

3.4. Behavior of graph(uτ ) in the regularization limit. We consider a sequence
of solutions {uτ}0<τ≤1 ⊂ C2,α(Ω) of H(uτ )− tr(k)(uτ ) = τuτ as in Theorem 3.1.

For general k, their graphs Στ do not satisfy an apparent, useful variational
principle. However, using the Jacobi equation to compute the variation of the
mean curvature of Στ with respect to vertical translation, one obtains that

(

∆Στ
+Ric(ντ , ντ ) + |hτ |2Στ

) 1

vτ
= −ντ (H(uτ ))

1

vτ

where as before vτ :=
√

1 + |Duτ |2, hτ denotes the second fundamental form of

Στ and |hτ |Στ
is its length, ντ = 1

vτ
(uiτ∂i − ∂t) is the downward unit normal of

Στ , Ric is the Ricci tensor of (M × R, g + dt2), and where we differentiate H(uτ )
on the right as a function on the base Ω. Expanding the right-hand side using the
equation for uτ , one obtains

(

∆Στ
+Ric(ντ , ντ ) + |hτ |2Στ

) 1

vτ
≤ 10 (|k|M |hτ |Στ

+ |Dk|M )
1

vτ
.

Multiply this pointwise inequality by vτφ
2 where φ ∈ C1

c (Στ ), integrate over Στ ,
and integrate by parts as in (16) to see that there exists a constant β = β(|k|C1(Ω))
so that

∫

Στ

(

Ric(ντ , ντ ) + |hτ |2Στ

)

φ2 ≤
∫

Στ

|DΣτ
φ|2 + β

∫

Στ

(|hτ |Στ
+ 1)φ2

for all φ ∈ C1
c (Στ ).

This almost looks like the stability inequality (15) for minimal graphs. Schoen and
Yau observed that this inequality, together with the a priori estimate for τ |uτ | that
follows from the maximum principle in the situation of Theorem 3.1, the bound for
H(uτ ) hence resulting from the defining equation for uτ , and a local area bound for
Στ that follows from this bound on the mean curvature and a calibration argument
as in subsection 3.3, can be used to derive pointwise curvature estimates for Στ as
in [49]. Moreover, they derived a geometric Harnack inequality for the vertical part
1
vτ

of the unit normal of Στ in the effective form supBρ∩Στ

1
vτ

≤ γ infBρ∩Στ

1
vτ

for
any extrinsic ball Bρ centered on Στ and such that B2ρ ⊂ Ω× R.

These results of [55] replace the variational arguments for minimal graphs in
subsection 3.3. Hence, given a sequence {uτ}0<τ≤1 of solutions of (13) so that
supΩ,τ τ |uτ | <∞, their graphs Στ have a smooth embedded subsequential limit Σ
as τ ց 0. (The curvature estimates depend on the distance to the boundary of
Ω. Boundary barriers as in the proof of Theorem 3.1 can be used to show that Στ
must remain bounded near ∂Ω× R so that standard PDE techniques can be used
to analyze the limit of uτ near ∂Ω.) From the Harnack estimate above it is then
not difficult to see that the components of the limit Σ are complete, embedded, and
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separated from one another by a positive distance, and that each is either graphical
or cylindrical.

Obviously, HΣ− trΣ(k) = 0 must hold and it follows that the graphical compo-
nents in the limit are solutions of Jang’s equation, and that the cross-sections of
the cylindrical components are apparent horizons of the base. These cross-sections
inherit an orientation from the surfaces Στ of the regularization limit, depending
on whether these graphs ‘blow-up’ or ‘blow-down’ along them. The union of the
graphical components of Σ is the graph of a function u defined on an open set
Ω0 ⊂ Ω, and this u must be unbounded on approach to ∂Ω0 \ ∂Ω. Moreover,
Σ0 smoothly asymptotes the boundary cylinder above the respective component
of ∂Ω0 \ ∂Ω, diverging either to positive or negative infinity, and it follows that
∂Ω0 \ ∂Ω is made up of apparent horizons.

In summary, one has the following general existence result:

Theorem 3.2 ([55]). Let (M, g, k) be a complete 3-dimensional initial data set, let
Ω ⊂ M be a bounded open subset with C2,α boundary such that H∂Ω > | tr∂Ω(k)|
holds along ∂Ω where H∂Ω is the mean curvature of ∂Ω computed as the tangential
divergence of the unit normal pointing out of Ω, and where tr∂Ω(k) is the trace of
k over the tangent space of ∂Ω, and let φ ∈ C2,α(∂Ω).

Then there exists an open subset Ω0 ⊂ Ω with embedded boundary consisting
of ∂Ω and of the union of two finite, possibly empty collections of smooth disjoint
connected closed apparent horizons {Σ+

i } and {Σ−
j }, as well as a function u ∈

C2,α(∂Ω ∪ Ω0) so that

H(u)− tr(k)(u) = 0 on Ω0

u = φ on ∂Ω

u(x) → +∞ uniformly as dist(x,Σ+
i ) → 0, and

u(x) → −∞ uniformly as dist(x,Σ−
j ) → 0.

Computing the mean curvature scalar with respect to the unit normal that points
into Ω0, the surfaces Σ+

i satisfy HΣ+

i
+trΣ+

i
(k) = 0 while HΣ−

j
− trΣ−

j
(k) = 0.

The same conclusion holds if (M, g, k) is asymptotically flat, Ω = M , and where
u(x) → 0 on each of the asymptotically flat ends.

3.5. Existence of MOTS due to blow-up. The analysis of [55, Proposition 4]
outlined in the previous subsection contains the following, general result: given
a sequence of functions {uτ}0<τ≤1 ⊂ C2,α(Ω) with H(uτ ) − tr(k)(uτ ) = τuτ and
supΩ,τ τ |uτ | < ∞, then for every Ω′ ⊂⊂ Ω there exists a sequence τi ց 0 so that
the graphs Στi converge to a smooth hypersurface Σ ⊂ Ω′ × R. This limit Σ is an
apparent horizon in the initial data set (M×R, g+dt2, k), and each component of Σ
is either graphical or is a vertical cylinder whose cross-section is an apparent horizon
in the base Ω′. The sets Ω± := {x ∈ Ω : lim supi→∞ ±uτi(x) = ±∞} are disjoint
and relatively open in Ω′, and their relative boundaries in Ω′ are smooth, embedded
apparent horizons. Let Ω0 := Ω\(Ω̄+∪Ω̄−). The union of the graphical components
of Σ is a graph u : Ω′ ∩ Ω0 → R solving Jang’s equation H(u) − tr(k)(u) = 0. The
union of the cylindrical components of Σ is given by Ω′ ∩ (∂Ω+ ∩ ∂Ω−) × R. The
function u tends to ±∞ near Ω′∩(∂Ω0∩∂Ω±) and its graph is smoothly asymptotic
as a submanifold to the vertical cylinder based on this set. In particular, if the
sequence uτ (x) diverges to +∞ for some x ∈ Ω as τ ց 0 while staying finite or
diverging to −∞ at other points of Ω, then there must be (part of) an apparent
horizon in Ω.

Using this blow-up analysis of Schoen and Yau and Theorem 3.1 for the ex-
istence of solutions for the regularized Jang’s equation, it is not difficult to see
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that (non-empty!) closed apparent horizons Σ ⊂ Ω exist in every bounded subset
Ω ⊂ M , provided that ∂Ω has at least two boundary components and satisfies
H∂Ω −| tr∂Ω(k)| > 0 (say greater than some small ε > 0). Simply consider solutions
uτ : Ω̄ → R of H(uτ ) − tr(k)(uτ ) = τuτ with uτ = ε

τ on one of the boundary
components and uτ = − ε

τ on the others. From the maximum principle one has
that supΩ̄,τ τ |uτ | ≤ max{ε, 3|k|C(Ω̄)}. The barriers used in the proof of Theorem
3.1 can be used to show that these solutions uτ diverge in a fixed neighborhood of
the boundary.

Schoen [47] suggested that the existence of MOTS should even follow if one only
assumes that some boundary components of Ω, whose union we denote by ∂+Ω,
satisfy H∂+Ω− tr∂+Ω(k) > 0, while H∂

−
Ω+tr∂

−
Ω(k) > 0 holds for the union ∂−Ω of

all other boundary components, because these conditions give rise to upper barriers
for ‘blow-up’ near ∂+Ω and to lower barriers for ‘blow-down’ near ∂−Ω. There is
an important technical difficulty in implementing this approach: these one-sided
barriers do not guarantee that solutions of the boundary value problems (13) exist
classically.

That these technical difficulties can be overcome has been shown first by [3] and
then by [17] using two independent methods which exhibit different features for the
MOTS that are shown to exist.

The ‘bending of the boundary data’ approach of [3] shows that the metric g
and the second fundamental form tensor k of the initial data set (M, g, k) can be

modified to g̃ and k̃ in a neighborhood of ∂+Ω so that the region where the changes

takes place is foliated by surfaces Σs with positive expansion H̃Σs
− trΣs

(k̃) > 0 but

so that k̃ vanishes identically near ∂+Ω. A similar modification can be made near
∂−Ω. The above argument can then be used to show that a MOTS Σ exists in the
modified data set. The maximum principle shows that this Σ cannot intersect the
region where the data has been modified so that Σ is also a MOTS with respect
to the original data set. The change of the geometry and the data are local but
large. In particular, the change of the quantity |k̃|C(Ω̄) that many of the geometric
estimates for Σ in subsection 3.4 depend on is hard to control explicitly. Importantly
though, [3, §4] develop a delicate barrier argument that shows that the MOTS Σ
arising in the blow-up is stable in the sense of MOTS as discussed in subsection
3.6. The curvature estimates of [2], which do not require a priori area bounds and
which depend only on the original data, are then available for Σ.

An alternative line of proof is given in [17], where the Perron method was
introduced to the analysis of Jang’s equation (cf. [58] for its classical applica-
tion to minimal and constant mean curvature graphs) and used to generate max-
imal interior solutions uτ for the boundary value problems (13) with estimates
supΩ̄,τ τ |uτ | ≤ max{ε, 3|k|C(Ω̄)}. These solutions won’t assume particular bound-

ary values in general, but they will lie above (respectively below) the lower (upper)
barrier constructed from the boundary curvature conditions, which is all that is
needed in the argument to force divergence near the boundary. Instead of using
stability-based curvature estimates, a variant of the calibration argument mentioned
in subsection 3.3 is applied to show that the surface Σ constructed in the process
is a C-almost minimizing boundary in Ω. By this we mean that Σ is the boundary
of a set E in Ω such that

P(E,W ) ≤ P(F,W ) + C|E∆F |
for every F ⊂ Ω such that E∆F ⊂⊂W ⊂⊂ Ω

(17)

where C := 6|k|C(Ω̄). (See [14] for a systematic study of such almost minimizing

boundaries, and [17, Appendix A] for further concise references on the relevant
geometric measure theory.) So Σ minimizes area in Ω modulo a lower order bulk
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term that is controlled explicitly. This feature of Σ ⊂ Ω is inherited from an
analogous property of graph(uτ ), see [17, Example A.1] for details. The stability-
based curvature estimates in [55] are replaced by techniques from geometric measure
theory which allow transitioning of the argument to high dimensional initial data
sets if one accepts a thin singular set, as with minimal surfaces.

In conclusion, we have the following existence theorem combining [3] and [17]:

Theorem 3.3. Let (M, g, k) be a 3-dimensional initial data set and let Ω ⊂M be
a connected bounded open subset with smooth embedded boundary ∂Ω. Assume this
boundary consists of two non-empty closed hypersurfaces ∂+Ω and ∂−Ω, possibly
consisting of several components, so that

(18) H∂+Ω− tr∂+Ω k > 0 and H∂
−
Ω+tr∂

−
Ω k > 0,

where the mean curvature scalar is computed as the tangential divergence of the
unit normal vector field that is pointing out of Ω. Then there exists a smooth
closed embedded hypersurface Σ ⊂ Ω homologous to ∂−Ω such that HΣ+trΣ(k) = 0
(where HΣ is computed with respect to the unit normal pointing towards ∂−Ω). Σ
is stable in the sense of MOTS and it is C-almost minimizing in Ω for an explicit
constant C = C(|k|C(Ω̄)). This existence result and all the properties listed above
carry over to initial data sets of dimensions ≤ 7. In dimensions greater than 7
we have the existence of a C-almost minimizing boundaries Σ in Ω with a singular
set of Hausdorff codimension at most 7 that satisfy the marginally outer trapped
surface equation distributionally.

The approach via the Perron method can easily be adapted to prove existence
of surfaces Σ whose mean curvature is prescribed as a continuous function of po-
sition and unit normal under boundary curvature conditions analogous to those
in Theorem 3.3, see [18], recovering classical existence results for variational pre-
scribed mean curvature problems in special cases. In [17], the Perron method has
been used in conjunction with the analysis of Schoen and Yau described above to
prove existence of MOTS spanning a given boundary curve, in analogy with the
classical Plateau problem for minimal surfaces. We describe the general result for
n-dimensional initial data sets:

Theorem 3.4. Let (Mn, g, k) be an initial data set and let Ω ⊂ Mn be a bounded
open domain with smooth boundary ∂Ω. Let Γn−2 ⊂ ∂Ω be a non-empty, smooth,
closed, embedded submanifold that separates this boundary in the sense that ∂Ω \
Γn−2 = ∂−Ω∪̇∂+Ω for disjoint, non-empty, and relatively open subsets ∂−Ω, ∂+Ω
of ∂Ω. Assume that H∂Ω− tr∂Ω k > 0 near ∂+Ω and that H∂Ω +tr∂Ω k > 0 near
∂−Ω where the mean curvature scalar is computed as the tangential divergence of
the unit normal pointing out of Ω. Then there exists an almost minimizing (rela-
tive) boundary Σn−1 ⊂ Ω, homologous to ∂−Ω, with singular set strictly contained
in Ω and of Hausdorff dimension ≤ (n − 8), so that Σn−1 satisfies the equation
HΣ +trΣ(k) = 0 distributionally, and so that Σn−1 is a smooth hypersurface near
Γn−2 with boundary Γn−2. In particular, if 2 ≤ n ≤ 7, then Σn−1 is a smooth
embedded marginally outer trapped surface in Ω which spans Γn−2.

We conclude this section by noting the close relation of the features of the regu-
larization limit of Jang’s equation from [55] with the classical Jenkins-Serrin theory
[33] of finding Scherk-type (i.e. infinite boundary value) minimal graphs in polygo-
nal regions in R

2 and its obstructions, as expressed by the Jenkins-Serrin conditions,
and also the extensions of this theory to infinite boundary value constant mean cur-
vature graphs [58], [60] and [27] (see also references therein) in curvilinear domains
in R

2, S2 and H
2.
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3.6. Stability of MOTS and an identity of Schoen and Yau.

Definition 3.1 ([1],[2]). A closed two-sided surface Σ ⊂ M ⊂ M̄ with vanishing
expansion θΣ ≡ 0 (computed with respect to the future-directed null normal l =
η + ν ∈ Γ(Σ, T M̄) where ν is a designated ‘outward’ unit normal vector field of
Σ ⊂M) is said to be stable in the sense of MOTS if there exists a positive function
f > 0 on Σ so that LΣ f ≥ 0, where

LΣ f := −∆Σf + 2〈X,DΣf〉+
(

1
2 RΣ− 1

2 |h+ k|2Σ − J(ν)− µ+ divΣX − |X |2
)

f

Here, X is the tangential part of the one form dual to k(ν, ·) on Σ and RΣ is the
scalar curvature of Σ.

A few remarks are in order. First, note that LΣ f here is the linearization of the
expansion θ+ for normal perturbations fν of Σ, cf. subsection 2.2. When k ≡ 0,
then this definition is consistent with the usual strong stability condition for closed
minimal surfaces, as can be seen using the argument in subsection 3.3. Note that
if we had f > 0 with strict inequality LΣ f > 0, then a neighborhood of Σ in M
could be foliated by surfaces {Σs}−δ<s<δ with Σ0 = Σ and so that Σs lies ‘outside’
of Σ with respect to η and has positive expansion θΣs

> 0 for 0 < s < δ, and such
that Σs lies inside of Σ and has negative expansion for −δ < s < 0. (For minimal
surfaces this strict stability condition implies that the surface is minimizing in this
neighborhood.) Note that in general the operator LΣ is not self-adjoint. It was
noted in [1, Lemma 1] that by the Krein-Rutman theorem the eigenvalue λ of LΣ

with the least real part is real, and that there exists an eigenfunction LΣΘ = λΘ,
positive on at least one and vanishing on all other connected components of Σ,
corresponding to this principal eigenvalue λ. The maximum principle then implies
that the condition in Definition 3.1 is equivalent to λ ≥ 0. As in subsection 2.2, it
is useful to rewrite the pointwise condition 0 ≤ 1

f LΣ f of Definition 3.1 as

(19) µ+ J(ν) ≤ divΣ(X −DΣ log f)− |X −DΣ log f |2Σ +
1

2
RΣ −1

2
|h+ k|2Σ.

If the dominant energy condition µ ≥ |J | holds, then the left-hand side here is
non-negative, and an integration by parts exactly as in (16) implies that

(20)

∫

Σ

1

2
|h+ k|2Σ ≤

∫

Σ

1

2
RΣ φ

2 + |DΣφ|2 for every φ ∈ C1
c (Σ).

Together with the Gauss-equation one can conclude that

(21)

∫

Σ

|h|2Σφ2 ≤
∫

Σ

|DΣφ|2 + β

∫

Σ

(|h|Σ + 1)φ2

where β only depends on the initial data set but not on Σ.
The following example of stable MOTS is one of the key observations in [55]. Let

u : Ω0∪∂Ω → R be a graphical solution to Jang’s equation in the sense of subsection
3.4. So Ω0 ⊂ Ω, the boundary of Ω0 consists of ∂Ω together with a finite number of
smooth embedded apparent horizons, H(u)− tr(k)(u) = 0 on Ω0, Σ := graph(u) ⊂
M × R is a complete submanifold with boundary {(x, u(x)) : x ∈ ∂Ω}, and u
diverges uniformly on approach to the components of ∂Ω0 \ ∂Ω. As discussed in
subsection 3.1, Σ has vanishing expansion in the initial data set (M×R, g+dt2,−k)
(mind the sign!), and LΣ f ≡ 0 where 0 < f = 1√

1+|Du|2
= 〈−∂t, ν〉 is the normal

component of the unit vector field generating downward translation. As above one
has

(22) µ− J(ν) = divΣ(X −DΣ log f)− |X −DΣ log f |2Σ +
1

2
RΣ−|h− k|2Σ.

where µ and J are computed with respect to (M ×R, g+dt2, k) (sorry!) and where
X is the tangential part of the one form dual to −k(ν, ·) (we triple checked this
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sign). Note that µ does not depend on the t-coordinate and coincides with the mass
density of (M, g, k), and that the same holds for J . This is equation (2.25) in [55]
where it was derived by direct computation. See also equation (18) in [31] where
the identity appears in disguised form and without geometric interpretation.

It has been known from [55] that closed MOTS Σ ⊂ M that arise in the reg-
ularization limit of Jang’s equation are “symmetrized stable,” i.e., the operator
Lsym
Σ f := −∆Σf +

(

1
2 RΣ− 1

2 |h+ k|2Σ − J(ν) − µ
)

f on Σ has non-negative spec-
trum. In [3] it was proven such surfaces are stable in the sense of MOTS, which is
a stronger [21, Lemma 2.2] and physically more conclusive result. Here we discuss
this stability from a geometric point of view, and we also discuss the stability of
MOTS solving the Plateau problem in [17].

Let Σ ⊂M be a connected closed two-sided unstable MOTS with respect to the
unit normal ν. The Krein-Rutman theorem implies (cf. [1]) that there is λ < 0
and a strictly positive function Θ ∈ C∞(Σ) so that LΣΘ = λΘ. The stability
operator of Σ×R with respect to the extended initial data set (M ×R, g + dt2, k)

is LΣ×R = − d2

dt2 +LΣ (where LΣ ignores the dependence on the vertical variable t).

Note that if T = T (t) is a function T ∈ C2(R) then LΣ×R(ΘT ) = Θ(λT − d2

dt2T ).

Consider the function T (t) = −ε
(

1− exp( tN )
)

where ε > 0 is small and N > 1 is
large. The relevant properties of T are that T (0) = 0, that T ′ < 0, that T (t) → −ε
as t → −∞, and that −T ′′ + λT ≥ − ελ

2 > 0 for all t ∈ (−∞, 1] provided N

is sufficiently large (depending only on λ). Hence LΣ×R(ΘT ) ≥ −Θ ελ
2 ≥ η in this

range for a positive constant η > 0. This means that for s > 0 sufficiently small, the
surface {exp(θ,t) (sΘ(θ)T (t)ν) : (θ, t) ∈ Σ×(−∞, 1)} is a smooth hypersurface (with

boundary) in M ×R that has positive expansion everywhere. Since T is monotone
this hypersurface can be written as the graph of a function ũ : U → R where U is
an open neighborhood of Σ such that ũ > 0 in the part of U that lies to the side
of ν and so that ũ → −∞ on approach to the part of the boundary of U that lies
in direction −ν as seen from Σ. For ū := −ũ we have that H(ū)− tr(k)(ū) < 0 is a
super solution of Jang’s equation. Using −T instead of T one obtains a sub solution
u of Jang’s equation with analogous properties. (The awkward sign reversal here
is due to the fact that Jang’s equation is the MITS equation rather than a MOTS
equation with respect to the data set (M × R, g + dt2, k).)

There are three situations in which a closed MOTS Σ can arise in the regulariza-
tion limit of Jang’s equation: Σ ⊂ ∂Ω0∩∂Ω+, Σ ⊂ ∂Ω0∩∂Ω−, and Σ ⊂ ∂Ω−∩∂Ω+.
The first two situations are the cases of graphical blow-up and graphical blow-down
so there exists a solution of Jang’s equation u0 : Ω0 → R which diverges to posi-
tive, respectively negative infinity on approach to Σ ⊂ ∂Ω0. The strong maximum
principle rules out the possibility that Σ be unstable in these cases straight away
in view of the sub and super solutions constructed in the preceding paragraph.
The third situation is the case of cylindrical blow-up: concretely, there is a family
of graphs {ui}∞i=1 ⊂ C∞(Ω) where ui = uτi solve the regularized Jang’s equation
H(uτi) − tr(k)(uτi) = τiuτi where τi ց 0, and such that ui → ±∞ uniformly on
compact subsets of Ω±. From the analysis of Schoen and Yau in [55, Proposition 4]
it follows that the hypersurfaces graph(ui) ⊂ Ω×R converge smoothly on compact
sets to the ‘marginally trapped cylinder’ Σ × R. Note that graph(ui) is a super
solution of Jang’s equation where ui < 0 and a sub solution where ui > 0. Again
using vertical translates of the sub and super solutions for Jang’s equation above
we can rule out the scenario that a component of a MOTS Σ arising in such a
cylindrical blow-up be unstable.

The next case to deal with is the Plateau problem. A MOTS Σ with boundary is
stable in the sense of MOTS if there exists a function f on Σ, positive in the interior
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and vanishing on the boundary, so that LΣ f ≥ 0. We note here that the Krein-
Rutman theorem applies as before to show the existence of a real eigenfunction
(with Dirichlet boundary data) of LΣ that is positive on at least one component of
Σ and vanishing on all the others. For MOTS with boundary we have the following:

Lemma 3.1 ([19]). Assumptions as in Theorem 3.4 in the smooth dimensions
2 ≤ n ≤ 7. Then there exist solutions Σ of the Plateau problem for MOTS in Ω
with boundary Γ that are stable in the sense of MOTS.

Schoen and Yau used (21) to derive pointwise estimates for |h|Σ by adopting the
iteration technique of [49]. They obtained the area bounds needed for this argument
from a calibration argument for solutions of Jang’s equation by comparison with
extrinsic balls. These curvature estimates have been generalized in [2] to stable
MOTS. This iteration technique extends to initial data sets (M, g, k) of dimension
at most 6. It is remarkable and important that—as with minimal surfaces—in
ambient dimension 3, stable MOTS have curvature estimates that are independent
of a priori area bounds. This is uesed crucially in section 4.3.

Theorem 3.5 ([2]). Let Ω ⊂ M be a bounded open subset of an n-dimensional
initial data set (M, g, k) where 3 ≤ n ≤ 6 and let Σ ⊂ Ω be a closed marginally
outer trapped surface that is stable in the set of MOTS. Then one has the pointwise
bound

(23) |h|Σ ≤ C(dist(Σ, ∂Ω), |k|C1(Ω̄), |RicM |C(Ω̄), inj(Ω, g), |Σ|).
When n = 3, then the bound on the right is independent of an a priori bound for
the area |Σ| of Σ.

We also mention that the regularity and compactness theory developed in [48]
for stable minimal hypersurfaces generalizes to embedded MOTS, as was observed
and used in [18]. This theory has the advantage of being available in all dimen-
sions provided one accepts the usual singular set of Hausdorff co-dimension 7. This
furnishes a convenient framework to carry out analysis on MOTS in high dimen-
sions. This theory is particularly effective when combined with a one-sided almost
minimizing property, see [18, Appendix A] and subsection 4.3.

4. Applications to general relativity

In this section we discuss the applications that motivated the development of
the mathematical theory for Jang’s equation.

4.1. The positive mass theorem. The first place where Jang’s equation is ana-
lyzed is in its application to reduce the general version of the positive mass theorem
(PMT) to its time-symmetric form due to Schoen and Yau in [55].

The positive mass theorem is a question about asymptotically flat initial data
sets (M, g, k) and its ADM-mass and ADM-momentum.

Theorem 4.1 (Positive mass theorem). If (M, g, k) is a complete, asymptotically
flat initial data set which satisfies the nn dominant energy condition µ ≥ |J |,
then mADM ≥ |PADM|. Moreover, if mADM = 0, then (M, g, k) is initial data
for Minkowski space.

In the maximal case, where trM k = 0, the dominant energy condition implies
RM ≥ 0. This leads to a formulation of the PMT relating only to the Riemannian
manifold (M, g), called the Riemannian PMT.

Theorem 4.2. Assume that (M, g) is asymptotically flat and has RM ≥ 0. Then
mADM ≥ 0 and equality holds if and only if (M, g) is flat R3.
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In a first step Schoen and Yau [51, 54] proved the Riemannian PMT in dimension
3 using the existence of certain area minimizing slices. Their method extends to
dimensions 3 ≤ n ≤ 7 by a dimension reduction argument, see [52] and also [57].
The minimal surface argument of Schoen and Yau to prove the Riemannian PMT
are closely related to their proof of the non-existence of metrics of positive scalar
curvature on the torus in dimensions n ≤ 7 in [50]. In fact, Lohkamp observed in
[37] that the non-existence of such metrics and the time symmetric positive mass
theorem are essentially equivalent in all dimensions. Two independent approaches
to extend the positive mass theorem to all dimensions by addressing singularities
of minimizing hypersurfaces when n > 7 have been given by Lohkamp [38] and by
Schoen.

An independent proof of Theorem 4.1 using spinor methods was later put forward
by Witten [63, 46]. It does not need the reduction of the PMT to the Riemannian
PMT that we describe below, and works in all dimensions under the topological
assumption that the data set be spin.

To describe the reduction of the general form of the positive mass theorem to
the Riemannian case using Jang’s equation, we follow [53]. The actual argument
due to Schoen and Yau can be found in [55]. For the time being we assume that
(M, g, k) is such that there exists a global solution u to Jang’s equation (4) with
boundary conditions u→ 0 at infinity. By Theorem 3.2 we know that such solutions
always exist providedM does not contain any closed apparent horizons. The graph
M̂ of u with the induced metric ĝ is again asymptotically flat, and has the same
ADM-mass as (M, g, k). The Schoen-Yau identity (22) on M̂ implies, in view of
the dominant energy condition and a calculation similar to the one in section 3.6,
that for all functions φ ∈ C∞(M̂) with compact support

(24)

∫

M̂

2|DM̂φ|2 + φ2 RM̂ ≥
∫

M̂

|h− k|2
M̂
.

Written in a slightly different way this implies

(25)

∫

M̂

8|DM̂φ|2 + φ2 RM̂ ≥ 6

∫

M̂

|DM̂φ|2 ≥ 0.

It then follows from standard methods that there exists a positive solution ζ of the
equation

−∆M̂ζ +
1
8 RM̂ ζ = 0,

such that ζ → 1 at infinity. This implies that the conformal metric g̃ := ζ4ĝ has
scalar curvature R̃M̂ = 0. Moreover, it can be shown that ζ has the asymptotic
expansion

ζ = 1 +A/r +O(r−2).

Inserting ζ as test function into equation (25) yields that

A ≤ − 6

32π

∫

M̂

|DM̂ζ|2 ≤ 0.

That ζ is a legitimate test function can be verified by checking that the boundary
term in the integration by parts, used to derive (25) from (22) decays sufficiently
fast.

A direct calculation shows that the ADM-mass of (M̂, g̃) satisfies

mADM(M̂, g̃) = mADM(M, g) + 1
2A ≤ mADM(M, g)

so that the resulting manifold (M̂, g̃) has ADM-mass no more than the initial data
set (M, g, k). Since the scalar curvature is zero, the Riemannian PMT gives that
mADM(M, g) ≥ 0. If mADM(M, g) = 0 one can work backwards through this
argument to see that in this case g̃ is flat, ζ is constant, so that ĝ = g̃. Moreover,
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there is also equality in the Schoen-Yau identity, so that h = k. In particular, the
criterion of Jang (1) is satisfied and (M, g, k) is a data set for Minkowski space.

Recall the simplifying assumption that a solution to Jang’s equation exists on
(M, g, k). This is indeed a restriction, as Jang’s equation can blow-up (or down)
asymptotic to cylinders over marginally outer (or inner) trapped surfaces, cf. The-
orem 3.2. The resolution of the situation was achieved in [55] by compactifying
the resulting cylindrical ends using a conformal transformation. While the actual
procedure is out of the scope of this article, we wish to remark that this step is a
major obstacle in the reduction of the general Penrose conjecture to the Riemann-
ian version, proved by Huisken and Ilmanen [30] and Bray [9]. A detailed discussion
of this fact can be found in [39].

This reduction has been described by Schoen and Yau [55] for three dimensional
initial data sets. The technical difficulties in higher dimensions are due to the
potential singularities of apparent horizons and hence the blow-up cylinders in
the solutions of Jang’s equation, and their potentially complicated topology that
prevents direct application of the arguments from [55]. These technical difficulties
are resolved in [16] in dimensions 4 ≤ n ≤ 7.

4.2. Formation of black holes. The mechanism that causes Jang’s equation to
possibly blow-up along apparent horizons yields an approach to the existence of
apparent horizons in the following way. Assume that (M, g, k) is an initial data
set, where M is compact with non-empty boundary. In addition suppose that the
boundary geometry is such that the barriers needed to solve Jang’s equation exist.
Then the condition that (M, g, k) does not contain apparent horizons implies that
the Dirichlet problem to Jang’s equation is solvable without the possibility of blow-
up with arbitrary boundary data, cf. Theorem 3.2. If one can devise conditions
that lead to a contradiction using this solution, the existence of apparent horizons
can be concluded.

The first time that this prototype was used, is in the paper by Schoen and Yau
to prove the following theorem.

Theorem 4.3 ([56]). Let (M, g, k) be a compact initial data set with non-empty
boundary ∂M such that H∂M > | tr∂M (k)|. Let Ω ⊂ M such that the following
conditions are satisfied:

(1) µ− |J | ≥ Λ > 0 on Ω,

(2) Rad(Ω) ≥
√

3
2Λπ.

Then M contains an apparent horizon.

Here Rad(Ω) denotes the H-radius of a set Ω which is defined as follows. Let
Γ ⊂ Ω be a curve bounding a disk in Ω. The radius of Ω relative to Γ is defined as

Rad(Ω,Γ) := sup{r : dist(Γ, ∂Ω) > r, Γ does not bound a disk in Tr(Γ)}.

Here Tr(Γ) is the tubular neighborhood of Γ with radius r. The radius of Ω then
is defined as

Rad(Ω) = sup{Rad(Ω,Γ) : Γ bounds a disk in Ω}.

Roughly speaking, Rad(Ω) is the diameter of the largest tubular neighborhood of
a curve Γ that does not contain a disk spanned by Γ.

As already indicated the argument proceeds via contradiction, so assume that
there are no apparent horizons in M . Then the Dirichlet problem for Jang’s equa-
tion on (M, g, k) is solvable with zero boundary values, cf. Theorem 3.2. We denote

the graph of the solution by M̂ . From the Schoen-Yau identity (22), it follows that
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on the portion M̂Ω of M̂ above Ω one has

RM̂ ≥ 2Λ + 2|ω|2 − 2 divM̂ ω,

where ω = X −DM̂ log f , f = −〈∂t, ν̂〉, ν̂ is the downward unit normal to M̂ , and
X is the tangential part of the one form −k(ν̂, ·) as before. This inequality yields

that the first Dirichlet eigenvalue λ of the operator L := −∆M̂ + 1
2 RM̂ on M̂Ω

satisfies λ ≥ Λ. Furthermore, since the distances in the ĝ metric are no less than

in the g metric, it also follows that Rad(M̂Ω) ≥
√

3
2Λπ.

The first Dirichlet eigenfunction φ of L on M̂Ω, satisfying −∆M̂φ+
1
2 RM̂ φ = λφ

is positive and can be used to define the following functional on surfaces Σ ⊂ M̂ ,

Aφ(Σ) =

∫

Σ

φdσ̂,

where dσ̂ denotes the area element induced by ĝ. Note, that this functional can
be interpreted as the area functional for surfaces of the form Σ × S1 in M̂ × S1

equipped with the metric g̃ = ĝ + φ2ds2, where ds2 denotes the standard metric
on S1. Note that g̃ has scalar curvature R̃ = R̄M̂ − 2φ−1∆M̂φ = 2λ ≥ 2Λ in

M̂Ω. This interpretation also implies that one can find a minimizing disc Σ for Aφ
with boundary Γ, where Γ is chosen such that Rad(M̂Ω,Γ) ≥ Rad(M̂Ω) − ε. The
minimizer Σ satisfies the Euler-Lagrange equation H = −〈DM̂ logφ, ν〉, where ν is
the normal vector field on Σ used to define H. More importantly, stability of Σ
implies that the operator defined by

f 7→ −∆Σf − 〈DΣ logφ,DΣf〉+ f(Λ− 1
2 RΣ+φ−1∆Σφ)

has non-negative Dirichlet spectrum. The form of this operator follows for example
by reduction of the stability operator in (M̂ × S1, g̃) for equivariant variations on
surfaces with S1-symmetry. Let ψ > 0 be the first eigenfunction of this operator
and define a functional for curves γ in Σ as follows:

Iφψ(γ) =

∫

γ

φψ.

Recall Bonnet’s theorem, which asserts that stable geodesics in surfaces with scalar
curvature bounded below by a positive constant have bounded length. Here, the
modification of the length functional by introducing the weight φψ into Iφψ leads
to a similar effect for curves minimizing Iφψ in the sense that the stability of the
minimizer forces the minimizer to be short, in particular the length is bounded by
√

3
2Λπ. By definition of Rad(M̂,Γ) the disc Σ intersects the boundary of a tubular

neighborhood Tr(Γ) of radius r < Rad(M̂,Γ). Thus it is always possible to find
a minimizer for Iφψ with length at least r, since one can minimize Iφψ among all
curves with one endpoint on Γ and one endpoint on ∂Tr(Γ) ∩ Σ. This yields the

desired estimate for Rad(M̂), and thus for Rad(M). See [56] for details.
There are several variations on this theme in the literature. Clarke [13] gave

an interesting and useful observer independent condition on the energy-momentum
tensor of a space-time that implies the trapping condition on the boundary of the
initial data set in Theorem 4.3.

A refined criterion for the existence of horizons was given by Yau [64].

Theorem 4.4. Let (M, g, k) be an initial data set satisfying the following condi-
tions:

(1) There exists c > 0 such that H∂M −| tr∂M (k)| > c.

(2) Rad(M) ≥
√

3
2Λπ where Λ ≤ 2

3 c
2 + µ− |J | on M .
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Then M contains an apparent horizon.

It is instructive to consider the case k ≡ 0 first: if c > 0 is large, the first
condition suggests that M shrinks quickly from its boundary ∂M inwards, while
the second condition implies that the interior of M is large in a certain sense. The
conclusion is that part of the interior of M must be separated from the boundary
by a minimal surface.

Again, Jang’s equation enters prominently. Yau’s argument in [64] is by con-
tradiction and proceeds as follows. Assume in virtue of Theorem 3.2 that Jang’s
equation has a global solution u on M . Denote the graph of u in M ×R by M̂ and
its induced scalar curvature by RM̂ . Then, by the Schoen-Yau identity (22) one
has that

2(µ− |J |) ≤ RM̂ −2|ω|2 + 2divM̂ ω,

where ω = X +DM̂ log v as in equation (22), where we use v to denote f−1. This

yields for all φ ∈ C∞(M̂) the following estimate:

(26) 2

∫

M̂

(µ− |J |)φ2 ≤
∫

M̂

2|DM̂φ|2 +RM̂ φ2 + 2

∫

∂M̂

φ2〈ω,N〉,

where N denotes the outward pointing normal to ∂M̂ in M̂ . The point is that
the difference of the boundary term in equation (26) and the mean curvature of
the boundary has a positive lower bound, as one can see as follows. Recall that
〈ω,N〉 = 〈DM̂ log v,N〉 − k(ν̂, N) where v = f−1 =

√

1 + |DMu|2. Moreover, a

calculation shows that the mean curvature of ∂M̂ in M̂ satisfies H∂M̂ = v−1 H∂M ,
where the latter is calculated with respect to the metric g. The normal N is
given by N = v−1(η + |DMu|∂t), where η is the outward pointing normal to ∂M
in M . To calculate H∂M̂ −〈ω,N〉, note that since u = 0 on ∂M we have that
DMu = σ|DMu|η, where σ ∈ {±1}. We let V = π∗ν̂ = v−1DMu = σv−1|DMu|η.
Then the mean curvature of M̂ on ∂M̂ is given by

HM̂ = divM V = σ divM (v−1|DMu|η) = σv−1|DMu|H∂M +v−3D2
Mu(η, η)

= σv−1|DMu|H∂M +σ|DMu|−1〈DM̂ log v,N〉.
Note that this is also true if DMu = 0, since then also DM log v = 0. By Jang’s
equation, HM̂ = trM̂ (k), where

trM̂ (k) = trM (k)− k(ν̂, ν̂) = tr∂M (k) + v−2k(η, η).

Since furthermore k(ν̂, N) = σv−2|DMu|k(η, η) it follows that
0 = σ|DMu|(HM̂ − trM̂ (k))

= v−1|DMu|2H∂M +〈DM log v,N〉 − σ tr∂M (k)− k(ν̂, N)

and thus

〈ω,N〉 = σ tr∂M (k)− |DMu|2 H∂M .

Finally,

H∂M̂ −〈ω,N〉 = vH∂M −σ|DMu| tr∂M (k) ≥ v(H∂M −| tr∂M (k)|) ≥ c.

This boundary term then has a similar effect as the Λ in an extension of the argu-
ment of Schoen and Yau to get an estimate on Rad(M) contradicting the assump-
tion as before.

Of the several different proposals to define the size of a body in an alternative
way, we want to mention specifically the suggestion of Galloway and O’Murchadha
[22]. They use the intrinsic diameter of the largest stable MOTS bounded by curves
in the boundary of the body to define the radius of the body and show in turn that
this radius is bounded if the matter content of the body is large.
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The boundary effect discovered by Yau plays a crucial role in the proof that the
quasi-local mass defined by Liu and Yau is non-negative [35, 36]. The common
theme with section 4.1 is that Jang’s equation is used to transform the question
whether the Liu-Yau mass is non-negative to a question in Riemannian geometry.
As before the transition to Jang’s graph is followed by a conformal transformation
to a metric with zero scalar curvature. In the Riemannian setting established by
this procedure, the Liu-Yau mass is transformed to a quantity bounded below by a
modified version of the Brown-York mass. This uses the boundary effect calculated
above in a crucial way. Liu and Yau show that this quantity is non-negative by
extending an argument of Shi and Tam [59].

Eardley [15] uses Jang’s equation to give a different criterion for the formation of
black holes. To this end, for a data set (M, g, k) and a region Ω ⊂M the following
quantity is introduced

kmin(Ω) := inf{trM (k)− k(v, v) : p ∈ Ω, v ∈ TpM, |v| ≤ 1}.

Note that kmin is the smallest value that tr k(u) could take at any point of Ω for
any graph u : Ω → R. In the setting below, where k is positive definite, it equals
the minimal value of the sum of two smallest eigenvalues of k on Ω.

Theorem 4.5 ([15]). Given compact initial data (M, g, k) with non-empty boundary
such that H∂M > | tr∂M (k)|. If there is Ω ⊂M such that

kmin(Ω)Vol(Ω) > Area(∂Ω),

then there is an apparent horizon in M .

Proof. The proof of this theorem is by contradiction. If there are no apparent
horizons inM , then there exists a global solution of Jang’s equation to the Dirichlet
problem with zero boundary data. Denote the graph of this solution by M̂ and by
V = π∗ν̂, the orthogonal projection of the downward unit normal. Then Jang’s
equation is equivalent to

divM V = trM (k)− k(V, V ),

since divM V is the mean curvature of M̂ with respect to ν̂ and the right hand side
is just the trace of k on M̂ . Integrating this on Ω ⊂M yields

kmin(Ω)Vol(Ω) ≤
∫

Ω

trM (k)− k(V, V ) =

∫

∂Ω

〈V, ν〉 ≤ Area(∂Ω).

Here ν denotes the outward normal to ∂Ω in M . This contradicts the assumptions
of the theorem. �

4.3. Existence and properties of outermost MOTS. In section 4.1 the poten-
tial blow-up of Jang’s equation at apparent horizons is an undesirable property that
has to be overcome. In section 4.2 the existence of apparent horizons is a rather
indirect consequence. In contrast, the way Jang’s equation is used to construct
MOTS in section 3.5 is far more direct and can be used to derive crucial properties
of outermost MOTS.

To get started, fix a complete initial data set (M, g, k), and assume for simplicity
that M is compact and that ∂M satisfies θ+∂M > 0. We say that a MOTS Σ ⊂ M
is outermost if it is of the form Σ = ∂Ω, where Ω ⊂M , and the following holds: If
Σ′ = ∂Ω′ is any other MOTS, with Ω′ ⊃ Ω, then Ω′ = Ω. In other words, if Σ is
outermost, then there is no MOTS in the region M \ Ω exterior to Σ.

We expect the outermost MOTS to be the boundary of the trapped region. To
this end, we define a set Ω ⊂M to be trapped, if θ+∂Ω ≤ 0. The trapped region T is
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then the union of all trapped sets [61, 29],

T =
⋃

Ω is trapped

Ω.

Using a slight extension of the existence Theorem 3.3 adapted to weakly trapped
boundaries, cf. [3, Section 5] and also [18, Remark 4.1], it follows that a trapped
region Ω as in the definition of T is contained in a trapped region Ω′ ⊃ Ω whose
boundary ∂Ω′ is a MOTS, and such that ∂Ω′ is stable in the sense of MOTS and
is C-almost minimizing with respect to variations in M \ Ω′.

To conclude smoothness of ∂T as for example in [30] where the time-symmetric
case k ≡ 0 is discussed, we need to verify three points. These are whether two
intersecting MOTS are contained inside one smooth MOTS that encloses them, the
embeddedness of ∂T , and area bounds.

The question whether the union of two trapped sets is a trapped set relates to
the following problem. Given a sequence of MOTS, Σn = ∂Ωn, we wish to replace
it by an increasing sequence Σ′

n = ∂Ω′
n so that Ω′

m ⊂ Ω′
n for all m ≤ n, as in [30].

This can be handled in two different ways. In [3] a sewing lemma due to Kriele and
Hayward [34] was employed in conjunction with Theorem 3.3 to conclude that if

two sets Ω1 and Ω2 with θ+∂Ωi
= 0 intersect, then there is Ω̃ ⊃ Ω1∪Ω2 with θ+

∂Ω̃
= 0.

Alternatively, the Perron method and an approximation argument can be used to
find an enclosing MOTS [18, Remark 4.1].

To conclude embeddedness of ∂T we have to show that the limit of such an in-
creasing sequence of MOTS Σn = ∂Ωn is embedded. Since all the Σn are increasing
and embedded, the only crucial point is that the limit Σ does not touch itself on the
outside. For minimal surfaces this scenario would be ruled out by the maximum
principle, which does not work for MOTS in this situation. The problem is that
locally two sheets of a MOTS may touch, but with opposite orientation. The case
of two touching spheres in flat space illustrates this. To show that this can be ruled
out for outermost MOTS, in [3] a quantity called the outward injectivity radius was
introduced. It is then shown that one can assume it to be bounded below along
the sequence Σn as above. This bound yields a lower bound on the arc length of a
geodesic starting on Σn in direction of the outer normal, before it can intersect Σn
again. The argument in [3] derives this property from the fact that along a short
geodesic that joins two points on Σn, a neck with negative θ+ can be inserted.
Then the sewing lemma can be used to produce a barrier suitable for Theorem 3.3.
This procedure can only be applied a finite number of times, since it can be shown
that each surgery can be made at a place where it consumes a fixed amount of vol-
ume outside of the initial MOTS. This surgery requires curvature bounds for stable
MOTS, which have been derived in [2] in ambient dimension 3. Alternatively, one
can use results from [18] based on the lower order properties of horizons and the
regularity theory of Schoen-Simon to conclude embeddedness of Σ. In fact, it is
easy to see that if two sheets of the hypersurface Σn are close on the outside as
above, then they can be joined by a small catenoidal neck to save area. This would
contradict the almost minimizing property of Σn with respect to variations in the
complement of Ωn. This approach also works in higher dimensions.

This leaves as a last point the fact that the area of the surfaces Σn needs to be
bounded. In [18] these bounds are immediate from the almost minimizing property.
In [3] it is shown that a lower bound on the outward injectivity radius implies an
upper bound on the area. This follows from the observation that, given curvature
estimates, the area of the MOTS can be estimated by the volume of the outward
part of an embedded tubular neighborhood of radius ρ divided by ρ. Since the
outward injectivity radius is bounded below for outermost MOTS, one can take a
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fixed ρ and conclude the area bounds from the fact that there is only finite volume
outside the MOTS. The approach in [3] is specific to ambient dimension three, since
the lower bound on the outward injectivity radius requires the surface in question
to have curvature bounded independently of the area.

Let us investigate the topology of the outermost MOTS. In three dimensions
outermost MOTS (assuming an outer untrapped barrier) are unions of topological
spheres. This is well known in the time symmetric case in three dimensions, where
MOTS are minimal surfaces, for example [20] uses minimal surfaces techniques from
[42] or [30, Lemma 4.1] where this is proven without curvature restriction.

For MOTS the question of topology was answered by Galloway and Schoen [23],
who showed that any stable MOTS must be of non-negative Yamabe type, provided
the dominant energy condition holds. The argument is based on the Schoen-Yau
identity, which follows for stable MOTS and a calculation similar to section 4.1.
Galloway [21] was able to exclude the marginal case for smooth outermost MOTS.
The argument is based on an observation that in case of tr k ≤ 0 a stable MOTS Σ
with Yamabe type 0 has an integrable Jacobi field that leads to a local foliation by
MOTS on the outside of Σ, which contradicts the condition that Σ be outermost.
The case of a general tr k can be reduced to this case by bending the data (M, g, k)
in its ambient space-time to the past, and using the Raychaudhuri equation to show
that the foliation of MOTS in this new slice gives rise to trapped surfaces outside
of Σ in the original data set.

Collecting these results, we arrive at the following comprehensive theorem about
the existence, regularity, and properties of the trapped region [2, 3, 18, 17, 23, 21].

Theorem 4.6. Assume that (M, g, k) is an asymptotically flat initial data set of
dimension 2 ≤ n ≤ 7. There is an explicit constant C > 0 depending only on the
geometry of (M, g, k) such that the following hold:

If the trapped region T of (M, g, k) is non-empty, then ∂T is a smooth, embedded,
outermost and stable MOTS. The area and the second fundamental form of ∂T are
bounded by C and its outward injectivity radius is bounded below by 1

C . Furthermore,
∂T is C-almost minimizing with respect to variations in M \ T .

If (M, g, k) satisfies the dominant energy condition, then ∂T is the union of
components with non-negative Yamabe-type. If (M, g, k) is a slice of a space-time
satisfying the dominant energy condition, then the components of ∂T have positive
Yamabe-type.

For the explicit dependence of the constant, see the original references [2, 3, 18,
17].

To conclude, we wish to point out that the existence of the trapped region in
(M, g, k) allows the construction of blow-up solutions to Jang’s equation. These are
nontrivial solutions to Jang’s equation which are defined on M \ (T ∪ Ω−) where
Ω− ⊂M is such that the boundary components of Ω− disjoint from ∂T are MITS.
The construction uses the techniques discussed in section 3.5 and is described in
[43]. A catch however is that some or all of the components of ∂T may lie in the
interior of Ω− if they are enclosed by surfaces Σ satisfying HΣ− trΣ(k) = 0.

5. Outlook

In this section we indicate a couple of directions for further research related to
the ideas discussed in this survey.

5.1. Generalizations of Jang’s equation. The Penrose inequality

mADM ≥
√

A(Σ)

16π
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is an equality only for slices in the Schwarzschild spacetime. As we have seen,
Jang’s equation was motivated by the idea of “detecting” data sets which generate
a Minkowski geometry−dt2+gflat. Based on this observation, it appears reasonable
that any approach to proving the general Penrose inequality must utilize a setting
which is sensitive to the Schwarzschild geometry. Motivated by this line of thought,
Bray and Khuri [11, 10] recently extended Jang’s equation to a system of equations
which is designed to identify slices of the Schwarzschild space-time.

Recall that the Schwarzschild spacetime in isotropic coordinates can be written
as a warped product with metric gSchw − dt2φ2 where

φ =
1− 2m

|x|

1 + 2m
|x|

, gSchw =

(

1 +
m

2|x|

)4

δijdx
idxj .

The condition that an initial data set (M, g, k) can be represented as a graph
(x, u(x)) in the Schwarzschild spacetime is then that

gab = gSchwab − φ2DauDbu, kab = πab,

where πab is the second fundamental form of graphu in the Schwarzschild space-
time. As shown by Bray and Khuri, one may also in this more general situation
introduce defects in terms of which the condition that (M, g, k) is the data induced
on graph(u) in the Schwarzschild spacetime can be characterized. As in the classi-
cal setup, these data can be calculated in terms of a related Riemannian spacetime,
which is a product over (M, g). In the generalization this is a warped product over
M with warping function φ2, i.e. (M×R, g+φ2dt2). This spacetime is additionally
endowed with a symmetric 2-tensor K which is a lift of k, the second fundamental
from of M in the spacetime, to the warped product. Recall that in the classical
Jang equation, the lift of k is simply π∗k, where π is the vertical projection. For
the generalized Jang’s equation, the lift K is defined as

K = π∗k + φdφ(N)dt2

where N is the downward pointing normal of graph(u) in the warped product.
The generalized Jang’s equation now takes the form

(27) HM̂ − trM̂ K = 0,

cf. [10, section 2]. Due to the lack of symmetry in the warped product, it is
necessary to consider the warping function φ as an unknown and add an equation
for this as well.

Bray and Khuri [11, 10] propose three different systems of equations incorporat-
ing the generalized Jang’s equation together with equations for φ, which have the
potential for yielding a proof of a Penrose inequality. As shown by the counter-
example of Carrasco and Mars [12], one version of the Penrose inequality proposed
by Bray and Khuri, in terms of generalized apparent horizons, is not valid. How-
ever, in spite of this counter-example, the approach introduced by Bray and Khuri
may still be applicable to other versions of the Penrose inequality, see the survey
paper [40] for further discussion.

The analysis of the systems proposed by Bray and Khuri is made more difficult
by the fact that φ tends to zero at the horizon and as a consequence the generalized
Jang’s equation is degenerate there. Bray and Khuri have been able to carry out
the necessary analysis in the spherically symmetric case, providing a new proof of
the general PI in this restricted case.

5.2. Evolution of MOTS. Consider a spacetime which is the maximal develop-
ment of asymptotically flat data onM for an Einstein-matter system satisfying the
DEC. Supposing that the Cauchy surface contains a stable MOTS Σ, which we
without loss of generality can assume to be outermost, the spacetime contains a
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black hole, and under some weak genericity conditions the MOTS lies on a spacelike
marginally outer trapped tube (MOTT) H. The MOTT is determined by a choice
of Cauchy foliation of the spacetime.

The outermost MOTT is, with the exception of jump-times (see below) space-like
in the generic case. Thus, the MOTT is an outflow boundary for causal equations
in its exterior, and the maximal development of the restriction of the Cauchy data
on M contains the exterior to H.

M̄

M

H

Figure 3.

This leads to an exterior Cauchy problem for eg. the Einstein equations in
spacetime harmonic coordinates. Let a Cauchy surface M be given, containing an
outermost MOTS. The exterior Cauchy problem is the initial-boundary value prob-
lem for the evolution of this system in the closed exterior of the MOTT, including
the MOTS boundary, evolving from the outermost MOTS. This problem can be
expected to be relevant for the problem of Kerr stability, and in particular it is
interesting to prove a useful continuation criterion for it.

If we consider the maximal extension of the MOTT to the future in a spacetime
with a regular Cauchy foliation, one expects that after a finite sequence of jumps
[3] this eventually approaches the event horizon. It is an interesting question to
understand the details of this scenario. In particular, in terms of the Kerr stability
problem, one expects to have Price law decay of the matter and gravitational energy
flux across the event horizon. It is reasonable to speculate that the corresponding
statement holds for the fluxes across the (weakly) spacelike MOTT. As the strength
of the flux decreases this has the effect of turning the MOTT null.

This leads to the expectation that the MOTT asymptotically approaches the
event horizon and terminates at future timelike infinity. Since the MOTT is ex-
pected to rapidly turn null, one expects the distance along the MOTT to its bound-
ary at future timelike infinity to be finite. This behavior was verified in the spheri-
cally symmetric case by Williams [62] who showed that for an Einstein-scalar field
spacetime with decay along the event horizon of the form v−2−ε, the MOTT has
its boundary at a finite distance. As pointed out by Williams, the required decay
is weaker than the expected Price law decay of v−3. If this scenario is correct, it
is likely there is a relation between the decay of fluxes across the MOTT and the
regularity at the boundary of the MOTT at future timelike infinity. We mention
here also the work of Ashtekar and Krishnan [6, 7] in the dynamical horizon (DH)
setting1 which shows that the area of the cross sections of a DH is increasing (a

1A MOTT is a dynamical horizon if it is spacelike and foliated by marginally trapped surfaces,
i.e. MOTS which also have negative expansion with respect to the ingoing null normal, see [5,
section 2.2] for details.
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M̄

H

M

I

event horizon

i+

Figure 4.

quasi-local version of Hawking’s area law for event horizons), and gives expressions
for the rate of increase of area in terms of the flux across the DH.

As discussed in section 4.3, once a MOTS is created in an evolving spacetime on
a Cauchy surfaceM0 then, if the spacetime satisfies the null energy condition, each
Cauchy slice in the future of M0 contains an outermost MOTS. Further, each time
a MOTS Σ0 is created, it is through a bifurcation process which leads to an inner
and an outer branch of the MOTT originating at Σ0. The outer branch may jump
but remains stable, while one expects that the inner branch eventually becomes
unstable.

It is of interest to understand in more detail the space-time track of the MOTS.
The generalized maximum principle for MOTS, cf. section 4.3 implies that two lo-
cally outermost MOTS which approach sufficiently closely must eventually be sur-
rounded by a MOTS. In terms of the evolution of binary black hole data this means
that two black holes (as determined by their apparent horizons) which approach
sufficiently closely, eventually are swallowed by a larger black hole surrounding the
two.

Ashtekar and Galloway [5] proved a uniqueness result which gives further infor-
mation on the spacetime geometry of dynamical horizons, a special case of MOTTs.
This result states that in a spacetime satisfying the null energy condition, the past
domain of dependence of a DH cannot contain a marginally trapped surface, see [5,
Theorem 4.1]. It would be interesting to understand better whether results of this
type hold for MOTTs and MOTSs.

If one considers two BH’s, one of which is small relative to the other, it is natural
to consider a scenario where the small BH falls into the larger one. In this case,
the generalized maximum principle for MOTS does not give any information about
the small BH crossing the horizon of the large one, but the classical maximum
principle prevents one MOTS from “sliding” inside another. In particular, the
configuration shown in fig. 5.2, corresponding to the moment when the small BH
moves inside the larger BH is ruled out by the maximum principle. Therefore
one expects that as the BH’s coalesce, the two apparent horizons will eventually
approach each other and merge. It is interesting to speculate whether the MOTS
in such a situation form a continuous spacetime track, with one branch connecting
the merging horizons with the outermost, surrounding, MOTT. See [44] for details.

6. Concluding remarks

In this paper we have given a survey of the state of the art concerning Jang’s
equation, MOTS, implications on the existence of black holes and related issues.
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Figure 5. This situation is ruled out by the maximum principle

The main motivation for considering these issues has so far been in the asymptoti-
cally flat case. However, it is important to recall that also in considering the Cauchy
problem for the Einstein equations in strong field situations, analogues of MOTS
and trapped regions can be expected to play an important role, and therefore some
of the topics discussed in this survey may have applications in future approaches
to global evolution problems and the cosmic censorship problem.
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