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1. Introduction

In this work we consider timelike minimal submanifolds of dimension 1 + n, n ≥ 2,
of Minkowski spacetimes of dimension 1 + n + q, q ≥ 1. A submanifold is called
minimal if it is stationary with respect to variations of the induced area, which thus
provides an action for the system. Timelike minimal submanifolds may be viewed
as simple but nontrivial examples of D-branes, which play an important role in
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string-theory, and the system under consideration here thus has natural
generalizations motivated by string theory. In this work we prove a small data,
global existence result for timelike minimal submanifolds of arbitrary codimension
q. The solutions which are constructed are close to flat timelike planes.

The Euler–Lagrange equations arising from variation of the area form a quasi-
linear system of PDE’s, which under suitable conditions on the data is hyperbolic.
This system is closely related to the scalar quasilinear hyperbolic PDE governing
timelike minimal hypersurfaces. The small data, global existence problem for time-
like minimal hypersurfaces has been considered by Brendle [1] and Lindblad [8]. The
work of Lindblad makes use of the null structure of the system, and our approach
is closely related to the work in [8].

Consider an embedding of R
1+n into Minkowski spacetime R

1+n+q given by the
graph of a map f : R

1+n → R
q. Let Greek indices α, β, . . . take values in 0, 1, . . . , n

and let uppercase latin indices I, J, . . . take values in 1, . . . , q. We introduce cartesian
coordinates xα on R

1+n and xI on R
q. The induced metric R

1+n is

hαβ = ηαβ + f I
αfJ

β δIJ , (1.1)

where f I = xI ◦ f , f I
α = ∂αf I and η = diag (−1, 1, . . . , 1) is the Minkowski metric.

Varying the action

S =
∫ √− dethµν d1+nx,

yields the Euler–Lagrange equations

0 = ∂µ

[√− deth hµνf I
ν

]
I = 1, . . . , q, (1.2)

which we consider for small data

f I(0, ·) = εgI ∂tf
I(0, ·) = εkI , (1.3)

with gI , kI smooth and decaying sufficiently fast for large |x|; for simplicity we
restrict to ε ≤ 1. Here hµν is the inverse of hαβ .

For future use, we note that Eq. (1.2) can be written in divergence form

�f I = ∂µ[Fµνf I
ν ], (1.4)

where � = ηµν∂µ∂ν is the Minkowski wave operator and Fµν(∂f) = ηµν −√− dethhµν , as well as in the form

Hµν
JL(∂f)∂µ∂νfJ = 0, I = 1, . . . , q (1.5)

where

Hµν
JL =

√− deth
[
δJLhµν − δIJ δKL

(
hµνhαβfK

α f I
β

+ hµαhνβf I
αfK

β + hµαhνβfK
α f I

β

)]
. (1.6)
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We raise and lower Greek (intrinsic) indices using hµν and its inverse, while Latin
(extrinsic) indices are raised and lowered using the identity δIJ and its inverse. From
Eq. (1.6), it follows that Hµν

JL has the symmetries

Hµν
JL = Hµν

LJ = Hνµ
JL. (1.7)

Due to the symmetries, an energy estimate and local well posedness holds for the
system (1.5).

The local existence argument follows [2] (see also [11]) and uses an energy
inequality which takes advantage of symmetries in the system; see [4] for a treatment
of well-posedness and lifespan results for symmetric systems. The global existence
result also requires estimates applicable to divergence equations (see [9]) and an
L∞ − L1 estimate. Furthermore, the global existence result in n = 2 dimension
exploits the fact that the equation satisfies the null condition; see Sec. 4 for details.

2. Local Existence

The local well-posedness for systems of the form (1.5) is well established. Therefore
we do not give a complete proof here but rather provide a simple proof of the basic
energy estimate. The proof of local well-posedness then follows along the same lines
as the proofs given in [2] or [11]. Note that the energy estimate we state here also
plays a key role in the global existence results discussed in the next section.

Write |∂f |2 = ηµνδIJf I
µfJ

ν ; the function space norms used below are defined in
terms of this and analogous expressions. Using the identity

(f I
0 )(Hµν

IJfJ
µν) = ∂µ

[
Hµν

IJf I
ν fJ

0 − 1
2
Hαβ

IJf I
αfJ

β δµ
0

]

− ∂µ [Hµν
IJ ] f I

ν fJ
0 +

1
2
∂0 [Hµν

IJ ] f I
µfJ

ν ,

a standard argument yields the following energy estimate.

Lemma 2.1. Let f ∈ C2([0, T ) × R
n; Rq) for T > 0 and assume that Hµν

IJ has
the symmetries (1.7). Further, assume that Hµν

IJ satisfies∑
|Hµν

IJ − ηµνδIJ | <
1
2

on [0, T ]. (2.1)

Then for t ∈ [0, T ) we have

‖∂f(t, ·)‖L2 ≤ 2

(
‖∂f(0, ·)‖L2 +

∫ t

0

∑
I

‖Hµν
IJ∂µ∂νfJ(τ, ·)‖L2dτ

)

× exp
(∫ t

0

2‖∂H(s, ·)‖L∞ds

)
. (2.2)

With this energy estimate, the proof of local well-posedness can now be com-
pleted by an iteration procedure following exactly the outline in [11] or [2]. The

J.
 H

yp
er

. D
if

fe
re

nt
ia

l E
qu

at
io

ns
 2

00
6.

03
:6

91
-7

00
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 M

A
X

 P
L

A
N

C
K

 I
N

ST
IT

U
T

E
 F

O
R

 o
n 

11
/1

6/
15

. F
or

 p
er

so
na

l u
se

 o
nl

y.



January 19, 2007 10:30 WSPC/JHDE 00096

694 P. Allen, L. Andersson & J. Isenberg

approach in [2] makes use of some extra structural assumptions which are eas-
ily removed, and gives local well-posedness in Sobolev spaces Hs, for integer
s > n/2 + 2. The argument in Sogge gives the result for s > n + 3. Since we
are concerned with small data, global existence here, the exact regularity needed
for the local well-posedness is not important. We can now state the following result.

Theorem 2.2. Let s > n/2 + 2 and consider equation

Hµν
JL(x, f, ∂f)∂µ∂νfJ = GL(x, f, ∂f), I = 1, . . . , q (2.3a)

with initial data

f(0, ·) = g, ∂0f(0, ·) = k . (2.3b)

Here Hµν
JL and GL are assumed to be smooth functions of their arguments and

Hµν
JL is assumed to satisfy the symmetries (1.7). Suppose the initial data (g, k)

is such that Eq. (2.1) is valid for Hµν
JL evaluated on (g, k). Then there is a

T > 0, which depends only on the norm of (g, k) in Hs × Hs−1, and a function
f ∈ C2([0, T ] × R

n; Rq) which solves (2.3), with |∂αf | bounded for |α| ≤ 2. The
maximal time of existence is bounded from below by the supremum of all T such
that (2.3) has a C2 solution such that for 0 ≤ t ≤ T, Eq. (2.1) is valid and ∂αf is
bounded for |α| ≤ 2.

3. Global Existence in Dimensions n ≥ 3

Global existence follows from a procedure similar to that discussed in [8]. The
estimates needed rely on a collection of weighted norms defined using the set of
Lorentz vector fields Zµ, which include the generators of the Lorentz group, along
with the generator of dilations:

{∂µ, Ωab := xb∂a − xa∂b, Ω0a := t∂a + xa∂t, L := t∂t + r∂r}.
These form a Lie algebra, which satisfies the following commutation relations

[Zµ, ∂ν ] =
∑

a α
µν ∂α, a α

µν = 0,±1, and

[Zµ, �] =
{−2�, if Zµ = L,

0, otherwise.

It follows that the equation �ψ = 0 is preserved by these operators. We now define
the following norms in terms of products Zα (for multi-index α) of the Lorentz
vector fields applied to f :

M1(t) ≡
∑

|α|≤m

‖∂Zαf(t, ·)‖L2, (3.1a)

M2(t) ≡
∑

|α|≤m

‖Zαf(t, ·)‖L2 , (3.1b)
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N1(t) ≡
∑
|α|≤l

‖∂Zαf(t, ·)‖L∞ , (3.1c)

N2(t) ≡
∑

|α|≤l+1

‖Zαf(t, ·)‖L∞ . (3.1d)

Here m is an integer such that m > 2n + 1 and l = (m + 1)/2. Since ∂µ ∈ {Zν},
these norms control the L2 and L∞ Sobolev norms (of order k and l, respectively)
of f and ∂f . It follows that controlling these norms is sufficient to overcome the
obstruction to local existence discussed at the end of the previous section. In par-
ticular, if we control these norms, then f is bounded in C2. Furthermore, we use
the norms N1, N2 to show stability in the sense that they decay as t grows. Note
that any estimate for N2 implies an estimate for N1 as well.

The following two propositions also play a role in our proof of global existence.
(See [9], and also [3, 5, 8], for some of the proofs of these results.)

Proposition 3.1. If g is a solution to{
�g = ∂µFµ

g(0, ·) = εg, ∂0g(0, ·) = εk

then

‖g(t, ·)‖L2 ≤ Cdataε m(t) +
∑

µ

∫ t

0

‖Fµ(τ, ·)‖L2 dτ,

where

m(t) =
{

log (2 + t), if n = 2,

1, otherwise,

and Cdata depends on g, k, and F 0(0, ·).
Proposition 3.2. The solution to{

�g = G

g(0, ·) = εg0, ∂0g(0, ·) = εg1

satisfies

|g(t, x)| ≤ C

(1 + t + |x|)(n−1)/2

×
(

Cdataε +
∫ t

0

∑
|α|≤n−1

∥∥∥∥ ZαG

(1 + s + | · |)(n−1)/2
(s, ·)

∥∥∥∥
L1

ds

)
.

To make use of the above propositions in controlling the norms (3.1), we apply
Zα to both sides of Eq. (1.5) for f I , and obtain

Hµν
IJ∂µ∂ν(ZαfJ)

=
∑

k≥3,
P |αi|≤|α|+1

HI,I1···Ik,γ1···γk,α1···αk
(∂γ1Z

α1f I1) · · · (∂γk
Zαkf Ik). (3.2)
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Since hµν = ηµν + O(|∂f |2), this may also be written as

�
(
Zαf I

)
=

∑
k≥3,

P |αi|≤|α|+1

ĤI
I1···Ik,γ1···γk,α1···αk

(∂γ1Z
α1f I1) · · · (∂γk

Zαkf Ik).

(3.3)

with some modified coefficient functions Ĥ , satisfying Ĥ = O(|∂f |2). Note that at
most one of the αi can satisfy |αi| > (|α| + 1)/2. The global existence proof also
depends on the form of the divergence equation (1.4). In particular, we note that√

det [h] hµν = ηµν + O(|∂f |2) as |∂f | → 0, and thus Fµν := ηµν −√− deth hµν =
O(|∂f |2). Hence applying Zα to (1.4) we obtain

�
(
Zαf I

)
= ∂µ


 ∑

k≥3,
P |αi|≤|α|

Fµ,I
I1···Ik,γ1···γk,α1···αk

(∂γ1Z
α1f I1) · · · (∂γk

Zαkf Ik)


 ,

(3.4)

where again at most one of the αi can satisfy |αi| > |α|/2.
We are now prepared to show global existence in dimensions n ≥ 3. The proof

uses a continuous induction, or bootstrap argument.
To set up the bootstrap argument, we assume that there is a constant K so that

on [0, T ) we have the following estimates for the norms defined in (3.1):

M1(t) ≤ Kε, (3.5a)

M2(t) ≤ Kε, (3.5b)

N1(t) ≤ Kε

(1 + t)
n−1

2

, (3.5c)

N2(t) ≤ Kε

(1 + t)
n−1

2

. (3.5d)

To close the bootstrap, we show that we can in fact choose K sufficiently large and
ε sufficiently small so that the above inequalities hold independently of T with Kε

replaced by Kε/2. This implies that for small data, solutions can be extended for
all T > 0.

Applying the energy estimate of Lemma 2.1 to (3.2) and summing over |α| ≤ k,
we have

M1(t) ≤ C

(
Cdataε +

∫ t

0

CN1N1(s)2M1(s) ds

)
· exp

(
C

∫ t

0

N1(τ)2 dτ

)
,

where CN1 is a constant absorbing possible “extra” factors of N1(s) and only reflects
the finiteness of N1(s). Likewise, applying Proposition 3.1 to (3.4) and Proposi-
tion 3.2 to (3.3) gives us

M2(t) ≤ Cε +
∫ t

0

CN1N1(s)2M1(s) ds
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and

N2(t) ≤ C

(1 + t)(n−1)/2

(
Cdataε +

∫ t

0

(N1(s) + N2(s))
(1 + s)(n−1)/2

(M1(s) + M2(s))
2
ds

)

where we have made use of the Cauchy–Schwartz inequality. Under the assumed
bounds, we have that for some C,

M1(t) ≤ eC(Kε)2
(
Cdataε + C(Kε)2Kε

) ≤ Kε

2
,

M2(t) ≤ Cdataε + C(Kε)2Kε ≤ Kε

2
,

N2(t) ≤ 1
(1 + t)(n−1)/2

(
C Cdataε + C(Kε)4

) ≤ Kε

2(1 + t)(n−1)/2
,

where the second inequality in each line holds for all t if K is chosen sufficiently
large and ε is chosen sufficiently small. Recall that an estimate for N1(t) follows
from the estimate for N2(t). Obtaining these tighter bounds on the norms, we have
closed the bootstrap. In view of the continuation property stated in Theorem 2.2,
we have proved small data global existence for n ≥ 3.

4. Global Existence in Dimension n = 2

In the case of n = 2, we require more detailed information concerning the structure
of the system. In particular, we exploit the fact that the system satisfies the so-called
“null-condition” of Klainerman [6,7], which is a condition on the quadratic part of
the nonlinearity. We consider null forms, quadradtic forms of first derivatives, which
are given by

Q00(f, g) = ηµν(∂µf)(∂νg), Qαβ(f, g) = (∂αf)(∂βg) − (∂βf)(∂αg), α 	= β

(4.1)

and satisfy time decay closer to that of cubic terms. In particular, if Q is any null
form, then

|Q(f, g)(t, x)| ≤ C

1 + t + |x|
∑
|α|=1

|Zαf(t, x)|
∑
|β|=1

∣∣Zβg(t, x)
∣∣ . (4.2)

Furthermore, for any Lorentz vector field Z and null form Q there exist constants
aµν so that

ZQ(f, g) = Q(Zf, g) + Q(f, Zg) + aµνQµν(f, g). (4.3)

Returning to the system (4.2), we note that the Lagrangian associated to the
volume element of the induced metric is L =

√− deth. For small |∂f |, we have

− deth = 1 + ηµνδIJf I
µfJ

ν + O(|∂f |4)
= 1 + δIJQ00(f I , fJ) + O(|∂f |4)
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and thus the Euler–Lagrange equations take the form

(1 + δKLQ00(fK , fL))�fJ

=
1
2
ηµνfJ

µ ∂ν

[
δABQ00(fA, fB)

]
+ O (|∂2f | · |∂f |4) . (4.4)

For small |∂f | we have that(
1 + δKLQ00(fK , fL)

)−1
= 1 + O (|∂f |2) ; (4.5)

thus we obtain

�fJ =
1
2
Q00

(
fJ , δABQ00(fA, fB)

)
+ O (|∂2f | · |∂f |4) . (4.6)

Applying Zα yields

�(ZαfJ) =
∑

P |αi|≤|α|
Q00(Zα1fJ , δABQ00(Zα2fA, Zα3fB))

+O (|Zβ1∂2f | · |Zβ2(∂f)4|) , (4.7)

where |α1| + |β2| ≤ |α|.
The proof of global existence when n = 2 follows closely the proof for higher

dimensions, with three differences. First, the null equation (4.7) is used in place of
(3.3). Second, we use the following variation of the energy estimate of Lemma 2.1.

Lemma 4.1. Under the hypotheses of Lemma 2.1, we have

‖∂f(t, ·)‖L2 ≤ C‖∂f(0, ·)‖L2 · exp
(
−
∫ t

0

C‖∂H(τ, ·)‖L∞ dτ

)

+ C

∫ t

0

∑
I

‖BI(s, ·)‖L2 · exp
(
−
∫ t

s

C‖∂H(τ, ·)‖L∞ dτ

)
ds.

The third difference is that the bootstrap assumptions of (3.5) are replaced by
the following:

M1(t) ≤ Kε(1 + t)δ, (4.8a)

M2(t) ≤ Kε(1 + t)δ, (4.8b)

N1(t) ≤ Kε

(1 + t)1/2
, (4.8c)

N2(t) ≤ Kε

(1 + t)1/2
, (4.8d)

where 0 < δ < 1
2 is a fixed, arbitrary constant. We apply Lemma 3.1 to (3.2) and

obtain the estimate

M1(t) ≤ Cdataε · exp
(∫ t

0

C (Kε)2

(1 + τ)
dτ

)

+
∫ t

0

C (Kε)3

(1 + s)1−δ
· exp

(∫ t

s

C (Kε)2

(1 + τ)
dτ

)
ds.
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Computing

exp
(∫ t

s

C (Kε)2

(1 + τ)
dτ

)
= exp

(
C (Kε)2 log

(
1 + t

1 + s

))
=
(

1 + t

1 + s

)C(Kε)2

,

one sees that

M1(t) ≤ Cdataε(1 + t)C(Kε)2 + C(Kε)3(1 + t)C(Kε)2
∫ t

0

(1 + s)δ−1−C(Kε)2 ds

= Cdataε(1 + t)C(Kε)2 + C(Kε)3(1 + t)C(Kε)2 [(1 + t)δ−C(Kε)2 − 1]

≤ Kε(1 + t)δ/2

for large K and small ε. Similarly, application of Proposition 3.1 to (3.4) implies
that for suitable large K and small ε we have that

M2(t) ≤ Cdataε log (2 + t) +
∫ t

0

C (Kε)3

(1 + s)1−δ
ds

≤ Cdataε log (2 + t) + C̃(Kε)3(1 + t)δ ≤ (1 + t)δKε/2.

Lastly, via application of Proposition 3.2 to (4.7) and use of the null estimate (4.2),
we obtain

N2(t) ≤ C

(1 + t)1/2

(
Cdataε +

∫ t

0

C (Kε)3

(1 + s)3/2−2δ
ds

)

≤ 1
(1 + t)1/2

(
C Cdataε + Č(Kε)3

)

≤ Kε

2(1 + t)1/2
,

provided K is large and ε is small. As the estimate for N2(t) implies the desired
estimate for N1(t), we have that for all finite intervals [0, T ), the estimates (4.8)
imply that better estimates hold, thus concluding the proof.

5. Concluding Remarks

The analysis of timelike minimal surfaces and submanifolds introduces a family of
geometrically-motivated quasilinear PDE systems which are both intriguing and
relatively unstudied. The work done by Brendle and Lindblad and continued here
constitutes merely a first step in this analysis.

Among other things, one would hope to see progress on the characterization of
local well-posedness for the timelike minimal submanifold PDEs in general Lorentz
spaces, as well as discovery of nontrivial stable solutions other than the flat planes
one finds in Minkowski space. Exploring the nature and formation of singularities
in these submanifolds should lead to interesting new phenomena.

Further, it is interesting to explore the relation between the timelike minimal
surface PDE’s and the classical minimal surface problem, see e.g. [10] and references
therein.
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In addition to the case considered in this paper, the more general D-brane
equations which arise when various matter fields are incorporated into the action
occur in string theory and are of current interest in theoretical physics. It is clear
that timelike minimal submanifolds will provide a rich source of new mathematical
problems for some time to come.
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