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Abstract. In regression analysis for deriving scaling laws in the context of fusion

studies, usually standard regression methods have been applied, of which ordinary

least squares (OLS) is the most popular. However, concerns have been raised with

respect to several assumptions underlying OLS in its application to fusion data. More

sophisticated statistical techniques are available, but they are not widely used in the

fusion community and, moreover, the predictions by scaling laws may vary significantly

depending on the particular regression technique. Therefore we have developed a

new regression method, which we call geodesic least squares regression (GLS), that is

robust in the presence of significant uncertainty on both the data and the regression

model. The method is based on probabilistic modeling of all variables involved in the

scaling expression, using adequate probability distributions and a natural similarity

measure between them (geodesic distance). In this work we revisit the scaling law

for the power threshold for the L-to-H transition in tokamaks, using data from the

multi-machine ITPA databases. Depending on the model assumptions, OLS can yield

different predictions of the power threshold for ITER. In contrast, GLS regression

delivers consistent results. Consequently, given the ubiquity and importance of scaling

laws and parametric dependence studies in fusion research, GLS regression is proposed

as a robust and easily implemented alternative to classic regression techniques.

PACS numbers: 02.50.Cw, 02.40.Ky, 52.55.Dy
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1. Introduction

Statistical regression methods play a very important role in fusion data analysis, as one of

the main activities in making physics inferences from data in fusion experiments. On the

one hand, regression analysis is used for fitting deterministic relations reflecting physical

dependencies between plasma variables. This is an essential instrument for evaluating

theoretical predictions and for supporting theory building. On the other hand, scaling

laws fitted to multi-machine databases provide design guidelines for future devices, by

extrapolating key quantities along a regression line. Important examples are the energy

confinement time and the threshold for the power required for the transition from the

L-mode to the H-mode in tokamaks [1].

Ordinary least squares (OLS) regression is the statistical workhorse that is employed

for these purposes in the vast majority of cases, primarily owing to its ease of

implementation and availability in any software package for statistical regression.

Various assumptions underly OLS and, while in many simple cases these approximate

the true situation relatively well, fusion data can have quite rich distributional properties

with complex nonlinear relations among variables. As a result, OLS may yield

unreliable estimates for the regression parameters, adversely affecting theory building

and predictions from scaling laws [2].

Putting the issue in the right perspective, one might observe that great efforts go

into the careful design and operation of fusion diagnostics, and sophisticated theoretical

models and modeling codes are developed. Therefore, to link these activities it is equally

mandatory to employ state-of-the-art techniques from probability theory, statistics and

machine learning for validating, processing and analyzing the data. As far as regression

analysis is concerned, this is already relatively well accepted in many scientific fields

that rely heavily on regression and scaling, such as astronomy, biology and ecology. In

fusion science, however, this practice is considerably less widely spread. While in some

cases OLS regression is certainly adequate, in many more complex situations OLS is not

valid and will produce simply wrong results.

Unfortunately, the complexities of fusion data are very diverse and, while regression

methods have been developed to address specific violations of the OLS assumptions, this

covers an entire domain in statistics and probability theory. Each method requires its

proper techniques and the literature is vast, so for non-experts it can be difficult to

enter into the applications. Moreover, designing a robust regression model can be a

complicated matter, requiring many decisions tailored to the problem at hand or rather

ad hoc, which may or may not alter the results, possibly even leading to a loss of

precision. In such cases, a more structural solution is desirable.

For these reasons we have developed a new regression method, called geodesic least

squares regression (GLS), which is based on simple and straightforward principles and

yet is sufficiently flexible and robust to address the complexities of fusion data in a

unified way. The primary aims of this paper are to point out some of the dangers of

an overly simple regression methodology and to present GLS as an alternative that
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is well-grounded in probability theory, yet easily implemented by practitioners in the

field, not necessarily with a background in probability theory. We introduce the GLS

method and we discuss some of its advantages over OLS regression, as well as maximum

a posteriori estimation (MAP), which is a well-known Bayesian method. Next, we

present several regression experiments using synthetically generated data and we show

the enhanced robustness of the method, relative to OLS and MAP, against outliers and

model uncertainty originating from a logarithmic transformation of the data. These

experiments are inspired by our case study in this paper, which is the well-known

scaling of the L-H power threshold in the high-density branch. Reliable predictions

of the L-H power threshold as well as the details of its parametric dependence are of

great practical value for development of ITER plasma scenarios. Advanced (non-power-

law) regression functions and determination of an optimal set of predictor variables, have

been the subject of recent investigations, in relation to the L-H power threshold [3, 4].

In the present study, however, we concentrate on demonstrating the performance of

GLS regression for scaling of the L-H power threshold. We base this on the standard

regression model and the usual set of variables [5]. After presenting the results of the

experiments with synthetic data, we provide a demonstration of the failure of OLS

regression in consistently estimating and extrapolating the power threshold scaling law.

We show that the results obtained by GLS are more robust, in comparison with both

OLS and MAP, across different regression models and versions of the database.

The remainder of the paper is structured as follows. We start in Section 2 by

introducing the principles of GLS regression and its advantages over OLS and MAP.

A brief overview of the background related to information geometry is provided here,

which is required for the description of the methodology. We introduce our case study

related to power threshold scaling in Section 3, together with some general information

about the multi-machine databases. The numerical experiments on synthetic data are

discussed in Section 4, while Section 5 is devoted to the experiments and discussion

concerning the power threshold scaling law, using the actual data from the international

multi-machine databases. Finally, conclusions are drawn in Section 6.

2. Geodesic least squares regression

The necessity of an advanced approach to regression analysis when dealing with data

from fusion experiments, fundamentally originates in the complexity of the physical

system (the fusion plasma) and the measurement system (diagnostics in a hostile

environment). This results in uncertainty on physical models and data models,

which has to be addressed by means of dedicated statistical techniques. We start

the presentation of GLS regression by briefly addressing the various complexities of

fusion data, in relation to regression analysis. We will consider here so-called multiple

regression, involving several predictor variables xj (j = 1, . . . , m) and a single response

variable y. Our point of view regarding probability theory is Bayesian (although in its

present form GLS regression is not yet a fully Bayesian method; see below).
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2.1. Fusion data characteristics

One of the main premises of the GLS regression method is motivated by the often

strongly stochastic character of fusion data. Put simply, stochastic uncertainty is

caused by measurement noise and plasma fluctuations, and this may result in significant

error bars and non-Gaussian distributions. Consequently, it makes little sense to

characterize the physical quantity of interest merely by a single measurement value.

Instead, one could perform a series of repeated measurements and provide a summary

of the distribution underlying these measurements. In case the distribution of a scalar

quantity displays Gaussian characteristics, one could then mention estimates for its

mean and standard deviation. For more general distributions it might be feasible to

estimate higher-order moments. Another way to estimate probability models in fusion

science is by calculating the distribution from a raw data set using Bayesian probability

theory [6, 7, 8].

The key point is that the moments of the distribution of a plasma quantity, or,

even more accurate, the distribution itself, contains important information about (our

knowledge of) that quantity, beyond a single value or even a sample average. This

realization, that a more complete and rich source of information lies in the probability

distribution of a quantity of interest, is at the heart of GLS regression [9, 10, 11, 12, 13].

Naturally, in regression analysis not only the response variable but also the

predictor variables are affected by noise. It is important to note, however, that

classic OLS regression is based on the assumption of error-free predictor variables

(infinite measurement precision). In many applications this can be seen as a relatively

good approximation, because often the predictor variables have a significantly lower

measurement uncertainty, or they can be better controlled, compared to the dependent

variable. But in fusion applications the approximation can be too crude, and one needs

to account for stochasticity of the predictor variables too [11]. In fact, this is one of

the properties of fusion data that conflicts most often with the assumptions of OLS

regression.

In frequentist statistics, uncertainty on all variables is handled by so-called ‘errors-

in-variables models’, see for instance [14]. One of the main reasons why this problem

is more difficult than the simple case of error-free predictor variables, is that the

‘true’ values of the predictor variables are unknown. Hence additional unknowns are

introduced for every data point. Through errors-in-variables models, various remedies

have been proposed to deal with this indeterminacy. Unfortunately, many of these have

a rather ad hoc character and depend on additional assumptions. In contrast, a simple

structural Bayesian solution has been outlined in [15, 16, 17], adequately addressing

the issue of non-negligible stochastic uncertainty on the predictor variables. Our GLS

method is partly inspired by this Bayesian solution to regression analysis, in the presence

of errors on all variables.

On top of stochastic uncertainty on the measurements, there could be systematic

measurement uncertainty. In a Bayesian context systematic uncertainty can be modeled
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by appropriate nuisance parameters, but we will not specifically address that issue here.

Furthermore, there could be uncertainty in the regression model, which in turn can be

subdivided in two components. The first, deterministic component of the regression

model is the functional form that is assumed to model the deterministic dependencies

of the response variable on the predictor variables. The second, stochastic component

concerns the model for the probability distribution that is assumed to describe the noise

on the data. It may happen that the true regression function, the relevant set of predictor

variables or the true distribution of the data, are quite different from what is suggested

by the model assumptions. For instance, one particularly critical issue in deriving fusion

scaling laws is the practice of converting the power-law scaling into a linear regression

problem by transforming the variables to logarithmic space [1]. Despite this being a

wide-spread habit in many areas of science, it is a well-known fact in probability theory

that the logarithm (heavily) distorts the distribution of the data [2, 18]. It may seem

that taking the logarithm leads to a simplified problem with the additional ‘advantage’

that extrapolation from the scaling law is straightforward, towards a point not far off

the main data cloud on the logarithmic scale. In reality it is difficult to draw reliable

conclusions from such an analysis and we will demonstrate below that a logarithmic

transformation should be avoided.

A further complication that is not covered by standard OLS is heteroscedasticity, i.e.

the fact that not all measurements of a certain quantity are equally noisy. Particularly

in the case of multi-machine scaling laws this assumption is not fulfilled, as the same

quantity is measured by different diagnostics on different machines. In addition, there

may be statistical correlations between plasma parameters and the distributions of

the variables involved can be non-Gaussian. Gaussianity (of the response variable)

is not strictly an assumption of OLS regression (although zero skewness is), but it is

often assumed to obtain tractable distributional properties of the estimated parameters.

However, non-Gaussian or skewed distributions also occur frequently in fusion data,

either when fitting directly to the data, or when calculating the distribution of derived

quantities from the raw data using Bayesian probability theory. Finally, OLS regression

can yield inaccurate results in the presence of atypical observations (outliers) or in

the event of insufficient linear independence among the predictor variables (near-

collinearity).

In a particular case where one or multiple assumptions of OLS are questionable,

GLS regression can be used to address each of these issues in a single integrated

framework. In the form that will be presented here, GLS still requires the data

analyst to formulate the deterministic and stochastic components of the regression model

(although non-parametric extensions could be envisaged), but the key difference with

most existing regression techniques is that the dependence of the results on the model

assumptions is greatly reduced. This is a very useful feature for fusion data analysis.

Specifically, on the one hand, GLS considers the modeled distribution of the response

variable that would be expected if all assumptions of the regression model were true

(both deterministic and stochastic). This includes modeling of the uncertainty on the
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predictor variables. On the other hand, an estimate is made of the observed distribution

derived from the actual measurements of the response variable, with minimal additional

assumptions. As opposed to OLS, and, indeed, most existing regression methods, GLS

regression does not require both distributions to be the same, but rather it minimizes the

difference between them. More precisely, GLS minimizes the geodesic distance between

the distributions, which is a natural and mathematically well-founded similarity measure

between probability distributions [10, 19, 20]. As such, GLS does not rigorously impose

the assumptions of the regression model on the data, instead leaving sufficient flexibility

to allow deviations from the chosen regression model.

Finally, any physics knowledge that may help to estimate the regression parameters,

or physics-based constraints on the parameters, can be taken into account within

the GLS formalism. For example, such information may guide the choice of the

regression model. In addition, the geodesic-based regression method is presently based

on optimization, which can be performed under known constraints. Moreover, in

future developments the new method will be embedded in the Bayesian formalism,

at which point it will become possible to encode physics knowledge into the prior

distribution. However, it is important to note that also from a Bayesian point of view,

the geodesic-based regression is fundamentally different from established techniques,

and more general.

2.2. GLS methodology

The new GLS regression method presented here is a straightforward generalization of

OLS and the basic principles have been discussed earlier in [9, 11, 12, 13]. Here, we

provide a slightly more general introduction to GLS, by extending the classic multiple

linear regression problem.

2.2.1. Standard regression analysis A parametric multiple regression problem can be

formulated through a model function f that is nonlinear in general. f has some flexibility

that is determined by p parameters βk (k = 1, . . . , p) (e.g. regression coefficients in

linear regression). Let us suppose for now that all measurements are infinitely precise,

i.e. there is zero noise on all variables. Given n realizations (measurement values) ξij
for each of m predictor variables ξj (i = 1, . . . , n, j = 1, . . . , m), the regression function

produces n values ηi for the response variable η:

ηi = f(ξi1, . . . , ξim, β1, . . . , βp) ≡ f({ξij}, {βk}), ∀i, (1)

where we have introduced the notation {ξij} for the set of all ξij, and likewise for {βk}.
In reality, all variables can be affected by noise, which for now we assume to be of a

Gaussian nature, although this could be any distribution. Hence, all we have is a series

of noisy measurements xij and yi for the predictor and response variables xj , resp. y:

yi = ηi + ǫy, ǫy ∼ N
(

0, σ2

y

)

,

xij = ξij + ǫx,j, ǫx,j ∼ N
(

0, σ2

x,j

)

.
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Here, N (µ, σ2) denotes the normal probability distribution with mean µ and standard

deviation σ. Note that we explicitly allow for the challenging case of non-negligible

uncertainty on the predictor variables, which may be different for different variables.

Also, we have described the simplified case of homoscedasticity: all measurements of

a particular variable are assumed to be sampled from the same distribution. This can

easily be generalized, however.

The principle of OLS regression is to find the parameter estimates β̂k that minimize

the sum of squared differences between the observations yi of the response variable and

their respective modeled values through the function f :

{β̂k} = argmin
{βk}

n
∑

i=1

[

yi − f({xij}, {βk})
]2

. (2)

However, it is known that this produces unreliable results if the xj are affected by

noise that is not negligible compared to the noise on y [2, 14, 16]. A way around

this is to consider the more general maximum likelihood method (ML). This involves

maximizing the probability distribution of the response variable conditional on the

predictor variables. Continuing with the case of a normal distribution on the response

variable, this comes down to the following optimization problem (the σmod notation is

explained below):

{β̂k} = argmax
{βk}

1√
2πσmod

exp











−1

2

n
∑

i=1

[

yi − f({xij}, {βk})
]2

σ2

mod











. (3)

Here, we have assumed that the samples yi have been realized in an independent way,

that the variables xj are mutually independent and that their realizations xij have also

been drawn in an independent way. All these assumptions can be generalized. The

distribution in (3) is called the likelihood of the model. The standard deviation σobs

in general describes uncertainty on the response and the predictor variables. Indeed,

the uncertainty on the predictor variables propagates through the function f and in

(3) we have assumed that the result f({xij}, {βk}) is still Gaussian (therefore so is

yi−f({xij}, {βk})), or can be satisfactorily approximated by a Gaussian. However, in a

more general setting, particularly for strongly nonlinear functions f , it should be noted

that f({xij}, {βk}) may very well have a distinctly non-Gaussian shape. In that case

there is a problem with one of our premises, as then it makes little sense to model the

response variable by a normal distribution. We do not treat the full complexity of this

issue here and instead focus on the case where the Gaussianity of y and f({xij}, {βk})
is a reasonable approximation. We then need to find a good approximation for the

standard deviation σmod in (3). In addition, it is clear that, in the case of a Gaussian

error distribution and neglecting the error bars on the xj , the optimization in (3) is

equivalent to OLS in (2).

We furthermore note that the maximum likelihood method can be extended to

the Bayesian framework, by multiplying the likelihood distribution by appropriate prior

distributions for the regression parameters. Maximization of the resulting posterior
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distribution then leads to the maximum a posteriori method (MAP), which, together

with OLS, we will use in the experimental sections for comparison with GLS. Just

like maximum likelihood, MAP can take into account the uncertainty on the predictor

variables—a quality which they share with GLS.

One particularly convenient model is the linear one:

yi = β0 + β1xi1 + . . .+ βmxim + ǫy, ǫy ∼ N
(

0, σ2

y

)

,

xij = ξij + ǫx,j, ǫx,j ∼ N
(

0, σ2

x,j

)

.

Indeed, through marginalization of (integration over) the unknown ‘true’ variables ξj,

it can be shown that the conditional distribution of y, given a measurement xij , is still

Gaussian [15, 16]:

pmod(y|{xij}, {βk}) =
1√

2πσmod

exp

[

−(y − µmod,i)
2

2σ2

mod

]

,

j = 1, . . . , m, k = 1, . . . , p.

(4)

Here, we have defined

µmod,i ≡ β0 + β1xi1 + . . .+ βmxim, (5)

σ2

mod
≡ σ2

y + β2

1
σ2

x,1 + . . .+ β2

mσ
2

x,m. (6)

This could also have been obtained from standard Gaussian error propagation rules

(with the same underlying assumptions). From now on, we furthermore suppose that

the standard deviations σx,j and σy are known. For instance, they could be defined as

the error bars on the corresponding measurements. Again, this is an assumption that

can be relaxed. We will call pmod in (4) the modeled distribution of y, conditional on

the measured values of the predictor variables.

2.2.2. Extending to GLS We now describe the key difference of GLS regression

compared to existing methods. In classic regression, as described above, the goodness

of the estimates of the model parameters βk is measured purely by the likelihood of the

data {yi} under the proposed regression model. In other words, it is assumed that the

data points yi are samples from the likelihood. Any deviations of either the distribution

of the data, or the deterministic regression function from the proposed model, are likely

to cause unreliable estimates of the model parameters. For this reason we introduce

additional flexibility in the model, in that we will allow the true distribution of the data

to deviate from the proposed model. This extra flexibility is expected to allow for model

inaccuracies or model deviations.

In this simple example we will still assume that in reality the data have a normal

distribution. The added flexibility is realized by explicitly modeling the standard

deviation of the response variable y by an extra parameter σobs. It is this parameter

that is expected to capture deviations from the model assumptions. The mean of this

Gaussian, which we will call the observed distribution pobs of y, is taken at each of the
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individual data points. That is, the observed distribution of y, given the measurement

point yi, is given as follows:

pobs(y|yi, σobs) =
1√

2πσobs

exp

[

−(y − yi)
2

2σ2

obs

]

. (7)

Note that we have again assumed homoscedasticity, as σobs is the same for all

measurements. This provides another opportunity for generalization of the method.

The aim of GLS is now to estimate the regression parameters—in the present

example the βk—by minimizing the difference (maximizing the similarity) between the

modeled and the observed distribution. The question remains which similarity measure,

or measure of distance, to use between the two distributions. For this, we employ a

natural distance measure defined within a geometric approach to probability theory,

called information geometry [21].

2.2.3. The geometry of probability theory In information geometry, a probability den-

sity family is interpreted as a (Riemannian) differentiable manifold (multidimensional

surface). A point on the manifold corresponds to a specific probability density func-

tion (PDF) within the family and the family parameters provide a coordinate system

on the manifold. The Fisher information, a well-known concept in statistics, plays the

role of a unique metric tensor (Fisher-Rao metric). For a probability model p(x|θ) de-
scribing a vector x, parameterized by an m-dimensional vector θ with components θi
(i = 1, . . . , p), the entries gij of the Fisher information matrix are the following:

gij(θ) = −E

[

∂2

∂θi∂θj
ln p(x|θ)

]

, i, j = 1 . . . p.

Here, E signifies the expectation. Equipped with the Fisher-Rao metric one can calculate

geodesics and the Rao geodesic distance (GD) between two points on the manifold. This

sequence of steps is schematized in Figure 1. We do not go further into the mathematical

details, which can be found in [9], [20] and [21]. Suffice it to mention here that the GD

between two univariate normal distributions p1(x|µ1, σ1) and p2(x|µ2, σ2) is given by the

following closed-form expression [22]:

GD(p1, p2) =
√
2 ln

1 + δ

1− δ
= 2

√
2 tanh−1 δ,

δ ≡
[

(µ1 − µ2)
2 + 2(σ1 − σ2)

2

(µ1 − µ2)2 + 2(σ1 + σ2)2

]1/2

.

(8)

One could argue that a more simple distance measure between PDFs may be

obtained by calculating the Euclidean distance between their respective parameters.

For instance, the Euclidean distance ED(p1, p2) between two normal distributions

p1 = N (µ1, σ
2

1
) and p2 = N (µ2, σ

2

2
) could be defined by

ED(p1, p2) ≡
[

(µ2

1
− µ2

2
) + (σ2

1
− σ2

2
)
]

1

2

. (9)

The problem is that his cannot be a suitable distance between distributions, for it does

not respect the intrinsic geometry of the set of probability distributions from a certain
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Figure 1: Schematic of the ingredients that enable the calculation of geodesic distances

between probability distributions using information geometry.

family. We do not provide a rigorous proof of this statement here (see e.g. [21, 23]), but

rather present an intuitively appealing argument by means of Figures 2(a) and (b). We

consider two Gaussians with PDFs p1(x|4, 1.2) (i.e. µ = 4, σ = 1.2) and p2(x|16, 1.5),
drawn in Figure 2(a). In Figure 2(b) two Gaussians p3(x|4, 4.0) and p4(x|16, 5.0) are

displayed, with the same respective means but larger standard deviations compared to

the first case. Now, whereas p1 and p2 are easy to distinguish, the distributions p3 and

p4 overlap to a much larger extent. This difference in the level of ‘distinguishability’

should, of course, be reflected in the distance between the distributions. That is, the

distance between p1 and p2 should be larger than that between p3 and p4. Using the

expression in (8) it can be seen that the GD fulfills this requirement: GD(p1, p2) = 5.3

and GD(p3, p4) = 2.4. On the contrary, the Euclidean distance between p1 and p2,

calculated by means of (9), is 12.00, which is smaller than the Euclidean distance of

12.04 between p3 and p4. Also, as suggested by this example, the GD is more sensitive to

differences in the standard deviations, compared to the Euclidean distance. Hence, the

Euclidean distance does not properly take into account the intrinsically non-Euclidean

character of probability distributions, exemplified in particular by the standard deviation

in case of a normal distribution.

An instructive visualization of the two-dimensional surface of univariate Gaussians

is provided by the pseudosphere (tractoid), pictured in Figure 2(c). Each point on this

surface represents a normal distribution, with meridians representing lines of constant

mean, while circles of latitude have a constant standard deviation. Although the

pseudosphere exhibits some of the most important properties of the true geometry of

normal distributions, it should be noted that it is still an imperfect model. Indeed,

unlike the true Gaussian manifold, the pseudosphere is periodic in the mean µ and it

is only valid for σ > 1. Nevertheless, it is interesting to visualize the geodesics between
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the points corresponding to the distributions in Figures 2(a) and (b). One can visually

check on the pseudosphere that the distance between p3 and p4 indeed has to be shorter

than that between p1 and p2. A rescaled (‘unwrapped’) version of the pseudosphere is

pictured in Figure 2(d), showing the geodesics more clearly (although distorted in the

direction of µ).

2.2.4. GLS algorithm With the mathematical principles and tools discussed above,

we are in a position to formulate the GLS algorithm. We first continue with the

case of multiple linear regression and normal distributions. Assuming n independent

realizations of the data set consisting of yi and {xij} (i = 1, . . . , n), the optimization

task comes down to minimizing the GD between, on the one hand, a product of n

observed distributions pobs(y|yi, σobs) and n modeled distributions pmod(y|{xij}, {βk}).
It can easily be shown that the squared GD between two sets of products of

distributions is given by the sum of squared GDs between the corresponding individual

distributions [22]. Hence, the p + 2 parameters β0, . . . , βp, σobs are estimated by

minimizing the following expression:

{β̂k, σ̂obs} = argmin
{βk,σobs}

GD2

[

n
∏

i=1

pobs(y|yi, σobs),
n
∏

i=1

pmod(y|{xij}, {βk})
]

= argmin
{βk,σobs}

n
∑

i=1

GD2[pobs(y|yi, σobs), pmod(y|{xij}, {βk})]

= argmin
{βk,σobs}

n
∑

i=1

GD2[N (yi, σ
2

obs
),N (µmod,i, σ

2

mod
)].

As before, µmod,i and σmod are given by (5) and (6), while the GD is calculated by

means of (8). Thus, for a Gaussian distribution, GLS involves a comparison of not only

the means, but also the standard deviations of the observed and modeled distributions.

The observed distribution depends more purely on the data compared to the modeled

distribution, and much less on the model assumptions. As a result, together with the

added flexibility offered by the extra parameter σobs, GLS is less sensitive to incorrect

model assumptions, as will become apparent in the experimental sections.

It is interesting to note that, if we would force σobs ≡ σmod, then the GD between

the two Gaussian distributions pobs(y|yi, σobs) and pmod(y|{xij}, {βk}) would become [24]

GD(pobs, pmod) =
|yi − µobs,i|

σobs

.

This is also called the Mahalanobis distance between the points yi and µobs,i, assumed

to be drawn from the same normal distribution with standard deviation σobs. But

that would bring us right back to the maximum likelihood or maximum a posteriori

method, for minimization of the sum of squared GDs is equivalent to maximization of

the likelihood in (3). It is indeed desirable that GLS reduces to ML and MAP in the

case of Gaussian distributions with identical standard deviations.
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Figure 2: In (a), the normal PDF p1 (defined in the main text) is relatively far from p2,

compared to (b), wherein p3 and p4 have the same respective means, but are closer

according to the GD. (c) The pseudosphere as a model for the univariate normal

manifold. The parallels of the tractroid are lines of constant standard deviation σ,

while the meridians (the tractrices) are lines of constant mean µ. This representation of

the normal manifold is periodic in the µ-direction and a rescaled version (longer period

along µ) is shown in (d). The distributions in (a) and the geodesics between them have

been mapped on the surface of the pseudosphere in (c) and (d).
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Having shown that OLS, ML and MAP are special cases of GLS, we stress again that

GLS provides a solution to the robustness and stability issue of regression analysis that

is fundamentally different from existing techniques. For instance, when the presence of

outliers is suspected, common Bayesian approaches to robust regression analysis often

use a heavy-tailed or mixture likelihood distribution, or adequate prior distributions

are introduced for the regression parameters. However, it should be noted that similar

measures can be taken in the case of GLS, although unnecessary here, but the resulting

geodesic-based method would still be more general than the standard robust Bayesian

approach. Moreover, the latter leads to a loss of precision when it turns out that, in

reality, there are no outliers contaminating the data after all. In contrast, in the absence

of contamination, GLS simply equalizes the values of the observed and modeled standard

deviations, as will be shown in the experiments in Section 5. Furthermore, there are

similarities of GLS with a class of methods known in the statistics literature as ‘minimum

distance estimation’ (MDE) [25, 26]. However, there are also several differences,

primarily in that GLS calculates the geodesic distance between each individual pair

of modeled and observed distributions of the response variable, corresponding to an

individual measurement point. As such, each individual data point acquires the status

of a probability distribution in its own right. Consequently, GLS performs regression

between probability distributions on a Riemannian probabilistic manifold. This is

intrinsically different from classic regression methods, like OLS, ML and MAP, which

operate in a flat Euclidean data space.

It was already mentioned that, in principle, the GLS procedure can be generalized

to any deterministic regression function. With a view to the experiments in Sections 4

and 5, we now discuss the case of (nonlinear) power-law regression. In order to keep the

computations tractable, we will assume that the uncertainty on the predictor variables

is sufficiently small and the nonlinearity sufficiently weak in order to enable Gaussian

error propagation. This approximation may be improved in future work. The power

law relating the realizations xij of the predictor variables to the measurements yi of the

response variable, can be parameterized as follows, assuming additive Gaussian noise

on all variables:

yi = β0x
β1

i1 . . . xβm

im + ǫy, ǫy ∼ N
(

0, σ2

y

)

, (10)

xij = ξij + ǫx,j, ǫx,j ∼ N
(

0, σ2

x,j

)

.

According to standard Gaussian error propagation laws, the modeled distribution,

i.e. the distribution of the right-hand side in the expression for yi in (10), can be

approximated by a normal distribution with mean and standard deviation given by

µmod,i = β0x
β1

i1 . . . xβm

im ,

σ2

mod,i = σ2

y + µ2

mod,i

[

β2

1

(

σ2

x,1

x2

i1

)2

+ . . .+ β2

m

(

σ2

x,m

x2

im

)2
]

. (11)

Hence, the error bars depend on the measurements (heteroscedasticity). Nevertheless,

we will introduce an approximation leading to constant error bars of measurements
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originating from a single tokamak. This assumption may be relaxed in the future.

Finally, we still mention that, in the applications presented below, the minimization

of the GD is a straightforward optimization problem that can be carried out by a generic

algorithm. In the experiments we employed a classic active-set approach [27].

2.2.5. Credible intervals Presently, the GLS method does not directly offer confidence

intervals on the estimated quantities. In this paper, the concept of a confidence

interval—or more precisely: a credible interval—corresponds to the standard Bayesian

definition of an interval wherein the true value of a stochastic variable is assumed to

lie with a certain probability (e.g. 0.95). This is different from the confidence intervals

mentioned in [5] and [28], where the possibility is considered that the deviation of the

true parameter values from the estimated ones may be entirely systematic (although

they are defined as standard errors, hence in fact they are of a stochastic nature).

Then, the maximum deviations of the true power threshold from the predicted value are

calculated, when the systematic errors on all parameters would reinforce the deviation.

The method used in the present paper causes less extreme error bars, although the

influence of systematic errors deserves to be further investigated. Future work will

address the issue of credible intervals in more detail, but for now error estimates were

delivered by Monte Carlo estimation in the case of synthetic data (Section 4) and by

bootstrapping when using the real data (Section 5). Monte Carlo sampling simply

refers to repeating the regression experiment several times, each time performing the

sampling of the stochastic elements in the model for the synthetic data, such as the

noise, synthetic outliers, etc. Then, the regression analysis is carried out on each of

the data sets and Monte Carlo averages are calculated for the estimated coefficients.

Bootstrapping, on the other hand, is a well-known technique in statistics, which involves

creating a large number of artificial data sets from the measured data, by resampling

with replacement [29]. The regression analysis is then carried out on each of the data sets

and the mean and standard deviation, over all data sets, of each estimated regression

parameter and of the predicted quantities (e.g. the L-H power threshold for ITER) are

used as estimates of the parameter or prediction value and its error bar, respectively. We

used 100 bootstrap samples in our experiments with real data. This scheme typically

results in rather conservative error bars, which could possibly be narrowed down using

more sophisticated methods.

3. Power threshold scaling and database

The most recent commonly cited multi-machine scaling for the power threshold was

obtained by Martin et al., in [5], using a selection of data from the International Tokamak

Physics Activity (ITPA) multi-machine database for the L-H power threshold [30, 31,

32]. However, with the purpose of investigating the robustness of our estimates and

predictions, we also performed the analysis on an older version of the database, which

was used to construct a scaling law by Snipes et al. in [28].
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Various criteria have been established to select in the databases measurements from

ITER-like plasmas. These can be consulted in [30, 31, 5, 28] and we do not consider

them here in detail. The data selected in [5], which we will refer to as the ‘ITPA08’ data

set, consist of 1024 time slices originating from six devices: ASDEX Upgrade (AUG)

(175 slices), Alcator C-Mod (C-Mod) (115), DIII-D (56), JET (562), JFT-2M (58)

and JT-60U (58). The older data set described in [28], which we denote by ‘ITPA02’,

contains 616 time slices from eight tokamaks: ASDEX (37 slices), ASDEX Upgrade

(172), Alcator C-Mod (130), DIII-D (55), JET (118), JFT-2M (41), JT-60U (58) and

PBXM (5). Compared to the ITPA02 data set, ITPA08 contains new and corrected

time slices, and follows improved selection criteria, leading to a much improved data

conditioning. These criteria include an ion ∇B drift towards the X-point, deuterium

plasmas and sufficiently high line-averaged electron density n̄e—a regime where Pthr is

seen to increase as a function of density. Furthermore, the power threshold is assumed

to additionally depend on the vacuum toroidal magnetic field on the magnetic axis Bt

and the plasma surface area S. The dependence is chosen according to the following

power law:

Pthr = β0 n̄
β1

e
Bβ2

t Sβ3, (12)

where β0, β1, β2 and β3 are the regression parameters to be estimated. Here, Pthr is

in MW, n̄e in 1020 m−3, BT in T and S in m2. For the purpose of this paper, we will

continue using this global scaling law, without going into details regarding dependencies

of the power threshold suggested by recent physical models of the L-H transition.

The databases also contain some information regarding the error bars on the

measurements. This is important for our purposes, because we need the error bars

to calculate σmod in (6) or (11) (they define the σy and σx,j). In the database, relative

errors are quoted that are expressed as percentages. Unfortunately, the precise definition

of error bars quoted in fusion science is not always clear. Usually, an error bar represents

an estimate by the diagnostician of the typical range in which the ‘true’ quantity

can be expected, where the uncertainty is assumed to be caused by both stochastic

and systematic effects. Moreover, often it is difficult to assess the probability that is

covered by the stochastic component of the error. Since a detailed investigation of the

uncertainty of the threshold data is beyond the scope of the present paper, we will

assume that the error bars pertain to a stochastic uncertainty corresponding to a single

standard deviation of a Gaussian distribution. For some derived quantities the error

bars had to be calculated from the uncertainty on more fundamental measurements.

In those cases we employed Gaussian error propagation rules to estimate the standard

deviation on the derived quantities. For the case of the global H-mode confinement

database, this strategy has been shown to provide reasonable information on the actual

measurement error bars [10]. On average over all devices, the typical measurement error

bars quoted in the ITPA02 database are estimated at 4% for n̄e, 1% for Bt, 3% for S

and 15% for Pthr [30, 31]. In the ITPA08 database, although the relative error bars are

the same, the averages are somewhat different, primarily due to the different numbers
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of contributed data samples for the various devices. The average error bars for the 2008

data are 6% for n̄e, 1% for Bt, 4% for S and 14% for Pthr.

Nevertheless, it is important to mention that the uncertainty in the data used

for power threshold scaling, when compared to the predictions of a simple power law

regression model (often referred to as the distribution of the residuals), is not expected

to be due only to the measurement uncertainty on the individual variables. Indeed,

in regression analysis any deviation of a data point from the deterministic component

of the model (e.g. the scaling law) is interpreted as due to ‘random’ effects or ‘noise’.

More precisely, the uncertainty can be described as being caused by mechanisms that are

too complex to be modeled deterministically, or that are simply not the main subject

of investigation of a specific analysis. Now, in the case of the multi-machine ITPA

databases it is clear that, other than measurement error, there are additional sources

of deviation of the data from the scaling law. This is mainly due to the simplicity of

the model, which contains only a few global predictor variables, and variability between

machines and between experiments. It is difficult to estimate this uncertainty, but we

here provide upper bounds by means of the following calculation. First, the nonlinear

scaling law was estimated using OLS (the reference), as explained in Section 5.2. Then,

for a specific variable z (one of the predictor variables or the dependent variable) and for

each data point, the relative difference was computed between the z-value of the data

point itself, and the z-value of the projection of the data point on the hypersurface given

by the scaling law, keeping the values of the other variables fixed. This difference can be

interpreted as the deviation of the point from the theoretical scaling law, assuming the

deviation is solely due to the variability of z. Finally, the standard deviation of these

relative differences was taken and the procedure was repeated for every predictor variable

and the dependent variable. The resulting standard deviations can be interpreted as

upper bounds of the relative variability of each of the quantities around their ‘theoretical’

values given by the scaling law. When applying this procedure to the ITPA02 data set,

we obtained much higher values than the estimated error bars due to measurement error

alone, as seen in Table 1. On the other hand, using the same procedure on the ITPA08

database resulted in error bars that, for the predictor variables, are still higher than

those expected purely on the basis of measurement error, yet drastically lower than the

estimates obtained on the ITPA02 database; see Table 1. For Pthr, the procedure yields

5% using the ITPA08 data, which is even lower than the nominal 14% quoted in the

database. This confirms the significantly better conditioning of the data in the 2008

database: the data cloud is less dispersed and more closely fits a deterministic relation.

We end this discussion by stressing that the obtained error estimates are upper bounds,

so they cannot be used as estimates of the actual data variability. For this reason,

the capabilities of GLS (through σobs) to handle the larger uncertainty, relative to the

uncertainty expected from measurement error alone, will turn out to be important.
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Table 1: Estimates of the relative error bars (percentages) on the predictor and response

variables in the ITPA02 and ITPA08 databases, relative to the power threshold scaling

law estimated through nonlinear ordinary least squares regression.

n̄e Bt S Pthr

ITPA02 39 31 28 38

ITPA08 7 7 5 5

4. Numerical simulations

We now present a series of experiments with synthetic data, in order to strengthen

confidence in the proposed regression method. In these experiments, the deterministic

part of the regression model is based on the real-world problem for the L-H power

threshold in fusion plasmas, considered in Section 5. The values of the predictor

variables are those in the database, from which the values of the response variable

(normally Pthr) are generated synthetically. We discuss three different experimental

setups: linear regression with errors on the predictor and response variables, linear

regression under the same circumstances but introducing some atypical observations

(outliers) and linear regression carried out after a logarithmic transformation of a power

law, with errors on all variables. These experiments complement earlier studies of the

enhanced robustness of GLS against data outliers and logarithmic transformation using

synthetic data [9, 13, 11].

4.1. Linear regression

In the first experiment, the data set was created as follows. First, an artificial linear

regression law was put forward for a variable η, depending on the predictor variables n̄e,

Bt and S, which were introduced in the context of the power threshold scaling law in

Section 3‡. In particular, we generated a number of realizations of the variable η from

the following prescription:

η = β0 + β1n̄e + β2Bt + β3S. (13)

This was considered as the ‘true’ relation between the predictor and response variables,

where, as mentioned above, the values of the predictor variables were chosen to be

exactly those from the ITPA databases, which are normally used in the real power

threshold scaling law. We performed the analysis both on the 2002 and 2008 versions

of the database.

‡ We use the notation η for the response variable instead of Pthr because in this experiment η is

generated artificially and therefore it is not necessarily related to the actual power threshold in fusion

devices.
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An entire range of data sets was created using the following values of the coefficients

β0, β1, β2 and β3:

β0 = 1, 1.1, . . . , 20,

β1, β2, β3 = 0.1, 0.2, . . . , 2.
(14)

Thus, for each combination of values of β0, β1, β2 and β3, all 616 (1024) values of

η were calculated according to (13), based on the values of n̄e, Bt and S from the

ITPA02 (ITPA08) database. The range of coefficient values in (14) was chosen to be

representative for the values that are typically obtained from a regression analysis on

the true scaling law (see Section 5). The exception is β0, for which the range was chosen

of roughly the same order as η − β0 (much smaller values of β0 would not be estimable

in comparison with η − β0).

Next, Gaussian noise was added to the predictor and response variables. The noise

level was chosen according to the typical relative measurement errors in the ITPA02

database, i.e. (on average over all machines) 4% for n̄e, resulting in a variable x1, 1%

for Bt (variable x2), 3% for S (variable x3) and 15% for the dependent variable (variable

y, which is Pthr in the real-world regression problem). It should be stressed that, in the

light of our comments in Section 3 regarding the variability of the predictor quantities,

these are rather low noise levels. We further note that fixed relative noise levels lead to

a different standard deviation for each measurement (heteroscedasticity). Accordingly,

in implementing GLS a separate parameter describing the observed standard deviation

should be introduced for each measurement point, in principle. As this would lead to

unnecessary complications, we only defined one parameter σobs,α (α = 1, . . . , Nt) for

each of the Nt tokamaks contributing data to the database.

For each combination of coefficient values βk (k = 0, . . . , 3) taken from (14), 10 data

sets were realized, each time performing the sampling of the noise. Finally, the regression

analysis was carried out for every data set using OLS, MAP and GLS regression. As far

as MAP is concerned, in the case of regression with uncertainty in predictor and response

variables, special care has to be taken regarding the choice of maximally uninformative

prior distributions for the parameters. We used the priors established in [16].

To report the results, for each choice of the βk, the obtained estimates β̂k were

defined as the Monte Carlo average over the 10 data realizations. Next, histograms

were created based on these averages for the estimated coefficients, specifically the

normalized histograms of the relative difference (βk − β̂k)/βk (k = 0, . . . , 3), expressed

as a percentage, between the true value βk and the estimated value β̂k of each regression

parameter. The histograms of these percentage errors are shown in Figure 3(a), for the

case of predictor values taken from the ITPA02 database, and in Figure 3(b) for the

ITPA08 predictor values.

From the histograms it is clear that OLS does not perform well in estimating β1

(coefficient of n̄e) and β2 (coefficient of Bt), with relative errors easily reaching 20-60%.

In the case of the ITPA08 data, also the offset β0 is poorly estimated by OLS. This

classic method fails because it does not take into account the significant error bars on
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(a)

(b)

Figure 3: (a) Histograms of the relative error in estimating the regression coefficients

βk (k = 0, . . . , 3) by means of OLS, MAP and GLS for an artificial linear regression

problem. The values of the predictor variables were taken from the ITPA02 data.

Horizontal axes represent the error in percent and vertical axes probability, normalized

to 1. (b) Similar, for the ITPA08 data. Note the different scale on the abscissa for β3,

compared to (a).

the predictor variables. The results of MAP and GLS are almost equally good, with only

the estimates of β1, associated to n̄e, occasionally off the true value by more than 20%.

These are cases where, by chance, some unfavorable outliers where created by sampling

from the noise distributions. In fact, the parameter that is overall most difficult to

estimate turns out to be β1. On the other hand, the coefficient of S is relatively stable.

4.2. Linear regression with outliers

In the next test we intended to examine the influence of outliers on the value of the

dependent variable, deliberately introduced into the data set. The experimental setup
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(a)

(b)

Figure 4: Histograms of the relative error in estimating the regression coefficients βk

(k = 0, . . . , 3) by means of OLS, MAP and GLS for an artificial linear regression problem.

Similar to Figure 3, but including 10 outliers.

was identical to that of the previous experiment, but, in addition, 10 outliers were

created in each of the data sets. In particular, from the total of 616 points in each data

set using ITPA02 data (1024 for the ITPA08 data), 10 points were randomly chosen

and the associated value of the response variable y was multiplied with a factor F ,

where F was uniformly distributed between 1.5 and 2.5. Again, for each combination

of coefficient values βk (k = 0, . . . , 3) taken from (14), 10 data sets were realized, each

time performing the sampling of noise and outliers.

The results of carrying out the regression analysis by OLS, MAP and GLS on these

synthetic data sets are shown in Figure 4. Now OLS and MAP perform much worse

than GLS, both for the ITPA02 and ITPA08 data. In the case of GLS, the vast majority

of relative errors is of the order of a few percent and certainly smaller than 20%. Again,

the coefficient for n̄e is the most difficult to estimate, while the coefficient for S is more
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stable.

The superior performance of GLS over OLS and MAP can be explained by the

extra flexibility introduced through the observed standard deviation, which, in the case

of outliers, is larger on average than the variability predicted by the model. Neither

OLS, nor MAP possess this additional flexibility, instead forcing the unrealistic modeled

standard deviation on the data. This is the primary asset of GLS, as explained in

Section 2.

4.3. Log-linear regression

Finally, an experiment was carried out to point out the adverse effect of a logarithmic

transformation, which is often used to transform a power-law regression model into

a linear form. However, the logarithm alters the data distribution, which may lead

to misguided inferences from OLS [2, 18]. Therefore the flexibility offered by GLS is

expected to be beneficial in this case, as it allows the observed distribution to deviate

from the modeled distribution.

Again, the setup was very similar to the experiment in Section 4.1, however in

the present case we started from a power-law deterministic model. In particular, the

variable η was calculated for the same range of values of the parameters βk as given in

(14), but now according to a power law:

η = β0n̄
β1

e
Bβ2

t Sβ3.

Then, Gaussian noise was added to all variables. However, when applying the relatively

low noise levels used in Sections 4.1 and 4.2, only small differences were observed in the

performance of GLS and MAP (see also the final test below). Therefore the noise levels

for the predictor variables were augmented to (on average across all machines) 20% for

n̄e (variable x1), 5% for Bt (variable x2) and 15% for S (variable x3). The level for

Pthr was kept at 15%, as before. This is still well within the maximum variability range

that can be expected for the predictor variables in the ITPA02 database, as discussed

in Section 3 (Table 1).

After adding the noise, all data were transformed to the logarithmic domain and

10 data sets were generated for each combination of regression coefficients. In GLS, the

σobs,α now describe the observed standard deviations on the logarithmic power threshold.

This, of course, corresponds to the relative errors on the power threshold itself.

Subsequently, linear regression analysis was applied to each of the log-transformed

data sets. The coefficient estimates, defined as the average over the 10 replications, were

then compared among the various regression methods, as shown in Figure 5. Again, the

normalized histograms of the relative error on the estimated parameters are displayed,

showing the consistently better performance of GLS over OLS and MAP. For GLS, the

errors on β0 and β1 are the largest, compared to those on β2 and β3, but the majority

is still below 20%. As for β0, the slightly inferior performance of GLS relative to the

results with outliers in Section 4.2, is simply due to the fact that log β0 for the lowest

values of β0 is negligibly small compared to log η − log β0.
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(a)

(b)

(c)

Figure 5: Histograms of the relative error in estimating the regression coefficients βk

(k = 0, . . . , 3) by means of OLS, MAP and GLS for an artificial log-linear regression

problem. Similar to Figure 3, but with higher noise levels in (a) and (b). (c) Log-linear

regression using predictor variables from the ITPA08 database, but with lower noise.

Note the different scales on the abscissae, compared to (a) and (b).
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The explanation for the better performance of GLS lies again in its added flexibility

provided by the observed standard deviation. As a result, GLS is less restricted by the

model assumptions, which, due to the logarithmic transformation, are incorrect.

We finally performed one more test based on the ITPA08 data, lowering the noise

levels used in synthesizing the data to (on average over all devices) 5% for n̄e, 5% for Bt,

3% for S and 3% for Pthr. These levels are somewhat lower than the maximum variability

ranges seen in the ITPA08 database, listed in Table 1. As is to be expected, overall this

does lead to substantially lower errors on the coefficient estimates using all regression

techniques, but the trend remains the same: OLS and MAP perform significantly worse

than GLS.

5. Power threshold scaling with GLS

We now come to the application of power threshold scaling using real-world data from

the ITPA databases for all variables, including the response variable Pthr. We start

with log-linear regression and then apply nonlinear regression analysis. It is important

to note that we do not aim at a comprehensive database study here. Rather, we

intend to demonstrate the power and consistency of GLS regression. The results of

the experiments in this section are discussed in Section 5.3.

5.1. Log-linear scaling

We first followed the standard practice in transforming the power law (12) to the

logarithmic scale to estimate the coefficients β0, β1, β2 and β3 via linear regression.

To calculate σmod for each data point, we used the relative measurement error bars

quoted in the database (typically 4% for n̄e, 1% for Bt, 3% for S and 15% for Pthr).

Considering the discussion in Section 3 regarding other sources of uncertainty, it is clear

that the parameters σobs,α (α = 1, . . . , Nt), describing the observed standard deviation

in each of the Nt devices, will need to take into account other, ‘unexpected’ uncertainty

sources, hence increasing the flexibility of the method.

The results of OLS, MAP and GLS regression on the ITPA02 data are given in

Table 2. The predictions for ITER are also shown, for two typical densities (0.5 and

1.0×1020 m−3). All estimates are accompanied by their 95% credible intervals obtained

from 100 bootstrap samples. It is important to clearly state the interpretation of these

intervals. For a given regression model and a given regression method, these error

bars indicate the intervals in which the ‘actual’ values of the regression parameters lie

with a probability of 0.95, based on the variability displayed by the data. This does

not take into account, for instance, the possibility that the regression model might be

suboptimal (e.g. not all predictor variables are taken into account), that the applied

regression technique might be inadequate or that the data set is not representative of

the true scaling law (in fact, these are issues that GLS aims to address). It explains why

the regression results when using different methods and databases can be significantly
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Table 2: Estimates of regression parameters βk and predictions for ITER in log-

transformed linear scaling of the H-mode threshold power using the ITPA02 data set.

The bootstrap averages are given, as well as the 95% credible intervals (CI).

Method β0 β1 β2 β3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Av. 0.051 0.49 0.87 0.84 38 53

CI ±0.006 ±0.07 ±0.06 ±0.04 ±4 ±8

MAP
Av. 0.045 0.57 0.87 0.90 46 68

CI ±0.005 ±0.08 ±0.07 ±0.04 ±5 ±9

GLS
Av. 0.043 0.66 0.80 0.95 48 76

CI ±0.004 ±0.07 ±0.06 ±0.03 ±5 ±9

Table 3: Estimates of the observed standard deviations σobs,α on the logarithmic power

threshold, expressed as percentage errors on Pthr itself, in the machines contributing

to the ITPA02 data set, obtained using log-transformed linear scaling with GLS. The

bootstrap averages are given, as well as the 95% credible intervals (CI).

ASDEX AUG C-Mod DIII-D JET JFT-2M JT-60U PBXM

Av. (%) 42 23 22 16 25 16 23 28

CI (%) ±5 ±1 ±1 ±2 ±2 ±1 ±2 ±3

different, i.e. outside each other’s credible intervals, as will be noted in the discussion

section below. Also, we chose to mention only a single significant digit in the size of the

credible intervals, in order to avoid the unrealistic impression of overly precise regression

estimates.

The estimates by GLS of the parameters σobs,α (on logPthr), including their credible

intervals, for each of the devices contributing to the ITPA02 data, are given in Table 3.

They have been expressed as relative errors on the bootstrap-averaged Pthr. The relative

error on the power threshold lies around 20–30% for the various machines, except for

ASDEX, where the uncertainty reaches a higher level of about 40%.

The outcome of similar calculations on the ITPA08 data set are presented in

Tables 4 and 5.

5.2. Nonlinear scaling

Next, we show the results of nonlinear regression in the original data space, i.e. without

logarithmic transformation. Whereas this prevents an analytic solution using OLS,

the advantage is that the distribution of the data is left undistorted [2, 18], while the

implementation of both OLS and GLS is not significantly more complex.

The results of the scalings and predictions on the ITPA02 data are presented in

Tables 6 and 7, while the outcomes for the ITPA08 data can be found in Tables 8 and 9.
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Table 4: Estimates of regression parameters in log-linear regression using the ITPA08

data, similar to Table 2.

Method β0 β1 β2 β3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Av. 0.0478 0.73 0.796 0.952 53.7 89

CI ± 0.0007 ± 0.01 ± 0.009 ± 0.005 ± 0.7 ± 2

MAP
Av. 0.0491 0.69 0.83 0.926 50.8 82

CI ± 0.0008 ± 0.02 ± 0.01 ± 0.007 ± 0.8 ± 2

GLS
Av. 0.0484 0.75 0.79 0.954 53.7 90

CI ± 0.0008 ± 0.01 ± 0.01 ± 0.006 ± 0.8 ± 2

Table 5: Estimates of the observed standard deviations, in percentage, for log-linear

GLS using the ITPA08 data, similar to Table 3.

AUG C-Mod DIII-D JET JFT-2M JT-60U

Av. 18 11.2 14.5 15.0 12.1 19

CI ± 1 ± 0.5 ± 0.6 ± 0.3 ± 0.4 ± 2

Table 6: Estimates of regression parameters βk and predictions for ITER, in nonlinear

power-law regression on the original scale for the H-mode threshold power on the ITPA02

data set. The bootstrap averages are given, as well as the 95% credible intervals (CI).

Method β0 β1 β2 β3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Av. 0.027 0.77 1.0 1.04 70 120

CI ±0.008 ±0.09 ±0.1 ±0.07 ±20 ±30

MAP
Av. 0.046 0.64 0.79 0.93 44 69

CI ±0.004 ±0.07 ±0.08 ±0.03 ±4 ±8

GLS
Av. 0.040 0.72 0.75 0.98 52 85

CI ±0.004 ±0.07 ±0.08 ±0.03 ±4 ±9

Table 7: Estimates of the observed standard deviations σobs,α of the power threshold,

expressed as percentage errors on Pthr itself, in the machines contributing to the ITPA02

data set, obtained using nonlinear power-law regression with GLS. The bootstrap

averages are given, as well as the 95% credible intervals (CI).

ASDEX AUG C-Mod DIII-D JET JFT-2M JT-60U PBXM

Av. (%) 36 21 20 16 22 16 22 28

CI (%) ±9 ±4 ±3 ±2 ±4 ±2 ±5 ±8
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Table 8: Estimates of regression parameters in nonlinear power-law regression using the

ITPA08 data, similar to Table 6.

Method β0 β1 β2 β3 P̂thr,0.5 (MW) P̂thr,1.0 (MW)

OLS
Av. 0.045 0.77 0.80 0.98 58 99

CI ± 0.002 ± 0.02 ± 0.01 ± 0.01 ± 2 ± 4

MAP
Av. 0.049 0.69 0.83 0.925 50.6 81

CI ± 0.001 ± 0.02 ± 0.01 ± 0.007 ± 0.8 ± 2

GLS
Av. 0.048 0.74 0.79 0.951 53.6 90

CI ± 0.001 ± 0.01 ± 0.01 ± 0.007 ± 0.9 ± 2

Table 9: Estimates of the observed standard deviations, in percentage, for nonlinear

power-law GLS, similar to Table 7.

AUG C-Mod DIII-D JET JFT-2M JT-60U

Av. 17 11 15 14 12 18

CI ± 4 ± 1 ± 2 ± 2 ± 1 ± 4

To obtain the tables for the observed standard deviations we again calculated relative

errors. However, this time the relative errors are not the same for the measurements

coming from a single machine, so we calculated an average for each machine (and similar

for the credible interval).

5.3. Discussion

We now discuss the results of the experiments on real data, pointing out several

differences between the regression results obtained by OLS, MAP and GLS, when

applying these methods to different data sets and making use of different regression

models.

We first consider the experiments based on log-linear scaling, from which we can

obtain several noteworthy results:

• There are several instances, both in case of the 2002 and 2008 data sets, where

the regression parameters estimated by OLS and, to some extent also MAP, differ

significantly from those obtained by GLS. This is particularly the case for the

dependence of the power threshold on density and surface area, as shown by the

non-overlapping credible intervals.

• The parameters estimated by GLS are relatively similar for both data sets. Only

the ITPA08 parameter for the density is just outside the credible interval of the

corresponding ITPA02 parameter. A similar comment goes for MAP.

• The predictions for the power threshold are higher for the ITPA08 data than for

the ITPA02 data. However, for GLS and MAP the difference is by far not as
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pronounced as for OLS.

• In the case of ITPA08, the OLS parameters and predictions are very similar to

those provided by GLS, while MAP slightly deviates from these results.

• The 95% credible intervals on the 2008 results are much narrower than those for

the 2002 data set. This is the result of the improved conditioning of the 2008 data.

It is also seen in the values of the σobs,α, which are generally lower for the 2008

data.

• From the results in Table 3 for the ITPA02 data, we find an average observed

relative error on Pthr across devices of 24.2%. The average modeled standard

deviation, on the other hand, corresponds to an error bar of 16% on Pthr. This

is somewhat higher than the average measurement error of 15% on Pthr, which is

due to the additional uncertainty of the predictor variables propagating into the

value of Pthr calculated from the scaling law. The important point, however, is that

the average observed uncertainty (24.2%) is quite somewhat higher than the average

modeled uncertainty (16%) (although still considerably lower than the upper bound

of 38%, as calculated in Section 3). This is an indication of additional sources of

uncertainty, on top of mere measurement error, causing the data points to deviate

from the proposed regression model, as discussed already in Section 3. That extra

uncertainty is detected by GLS, which, accordingly, raises the values of the observed

standard deviations for each machine. This is the key to the enhanced flexibility

and robustness of the GLS method. One also notices that, in the case of ASDEX,

the observed variability around the scaling law is particularly high.

On the other hand, from Table 5 follows an average observed error bar for the 2008

data of 15%. This should be compared to the average modeled error bar, which

turns out to be 15% as well. Hence, in the case of the 2008 data, the observed

data variability is, on average, the one expected due to measurement error. There

is no need for GLS to augment the observed standard deviation over the modeled

value. This also explains why on the ITPA08 data the three regression methods

yield similar results.

When considering the nonlinear power-law scaling, we can additionally make the

following interesting observations:

• In comparing the results of GLS between log-linear and nonlinear scaling and

between the ITPA02 and ITPA08 data sets, again the good to excellent consistency

of GLS can be noted. This is a solid argument in favor of the method. At the lower

density level GLS gives predictions of Pthr of resp. 48 MW (log-linear ITPA02),

54 MW (log-linear ITPA08), 52 MW (nonlinear ITPA02) and 54 MW (nonlinear

ITPA08), all of which are in the same range, particularly the latter three. This

should be contrasted with the predictions by OLS at the same density, i.e. (in the

same order) 38, 54, 70 and 58 MW. This indicates that the OLS predictions on the

more recent ITPA08 database are more reliable than those on the ITPA02 data set,

where OLS suffers from important inconsistencies. As far as MAP is concerned,
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we obtain 46, 51, 44 and 51 MW . Hence, for MAP the consistency between the

log-linear and nonlinear regression and between databases is clearly better than

for OLS. On the other hand, for nonlinear regression the correspondence between

the 2002 and 2008 data is worse for MAP (44 vs. 51 MW) than for GLS (52 vs.

54 MW). Again, this is because GLS has extra degrees of freedom, through the

σobs parameters, to compensate for the additional uncertainty observed in the data,

relative to what the model predicts.

At higher densities the scatter on the predicted thresholds becomes more apparent,

but still GLS yields comparable results in all cases.

• With nonlinear power-law regression using OLS, the 95% credible intervals are

significantly wider than those provided by GLS and MAP.

• Still in the case of nonlinear OLS, the dependence on the magnetic field is

considerably different for the two data sets. This leads to a power threshold

predicted by OLS that is significantly higher for the 2002 data than for the 2008

data.

In order to further illustrate the improved estimates by GLS on the ITPA02 data, in

comparison with OLS, we provide an example of a visual interpretation of the regression

results as a function of density in Figure 6. The fits, obtained by log-linear OLS and

GLS on the older ITPA02 data, are overlayed on a restricted data set from Alcator C-

Mod at approximately constant magnetic field (Bt ≈ 5.2 T) and surface area (S ≈ 7.0

m2). Both Figure 6(a) and (b) contain the same data and fits, but (a) is drawn on

the logarithmic scale, whereas (b) is on the original scale. In (a), OLS appears to be

influenced more than GLS by the points on the upper left-hand side of the plot, which

could be seen as data outliers, at least on the original scale. We have observed this trend

also for many other subsets of the data. From Figure 6(b) it can be appreciated that

even slight differences in the values of the regression coefficients can lead to relatively

widely varying predictions of the power threshold in ITER.

We further wish to make a point regarding the commonly used visual assessment of

the goodness-of-fit of a regression model. In Figure 7 the experimental power threshold

is plotted against the one predicted by log-linear OLS and GLS using the older ITPA02

data. Although this figure does convey some information about the goodness of the

fit, it has the disadvantage of suggesting somewhat misleadingly that OLS and GLS do

not differ much in their predictions. Indeed, we have noted above that the regression

coefficients estimated by GLS are quite different from those given by OLS, particularly

in the density dependence, and the two methods predict significantly different power

thresholds for ITER when applied to the less well conditioned ITPA02 data. Therefore,

plots such as in Figure 7 are less suitable for comparing the performance of different

regression methods, models or data sets.

Moreover, we do not mention a root mean square error or χ2 value corresponding

to the fit, since for GLS this would have to be based on geodesic distances, rendering a

comparison in terms of such quantities with OLS and MAP meaningless.
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Figure 6: Experimental threshold power versus density (ITPA02 data) with regression

fits at constant field and surface area in Alcator C-Mod, on a logarithmic scale in (a)

and original scale in (b).
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Figure 7: Experimental threshold power versus the power predicted by OLS and GLS

regression for the ITPA02 data.
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Table 10: Results of the Kadomtsev constraint (15) for OLS and GLS regression on the

two data sets for log-transformed linear scaling.

Data set ITPA02 ITPA08

Method OLS MAP GLS OLS MAP GLS

8β1 + 5β2 − 8β3 1.55 1.71 1.68 2.20 2.26 2.32

Table 11: Results of the Kadomtsev constraint (15) for OLS and GLS regression on the

two data sets for power-law scaling.

Data set ITPA02 ITPA08

Method OLS MAP GLS OLS MAP GLS

8β1 + 5β2 − 8β3 2.84 1.63 1.67 2.32 2.27 2.26

In addition, it should be noted that the above scalings were derived without

additional constraints imposed by the physical system, other than those underlying the

regression model. For instance, the Kadomtsev constraint regarding the dimensionality

of the scaling is given by

8β1 + 5β2 − 8β3 = 3. (15)

From Tables 10 and 11, this is seen to be relatively well satisfied by our parameter

estimates, particularly for the ITPA08 data. Alternatively, it would be possible to

impose this constraint, or any other physics-based information, on the regression

analysis, but we have not done this here.

Finally, although not a specific aim of the present paper, we can make a few

comments about the attainability of the H-mode in ITER at different densities, given

an available input power of 73 MW. First, one can note that OLS, MAP and GLS

are close in their predictions of the power threshold, provided the latest version of the

ITPA power threshold database is used. This is further confirmed by the results of GLS,

which are relatively consistent across all experiments. The predictions also correspond

to those of the currently used scaling law for the power threshold [5]. Looking at the

predictions from the experiments, we may assume a threshold power of about 54 MW

at a modest density of 0.5 × 1020 m−3. Purely from this point of view the threshold

should therefore be easily reachable at lower density. The situation is less clear at higher

density (1.0 × 1020 m−3), where the estimate by GLS of 90 MW may cause difficulties

in reaching or maintaining the H-mode.

6. Conclusion

Several important scaling laws have been established in the past by means of statistical

methods, providing essential design constraints for next-step fusion devices. With the



Robust scaling in fusion science: Case study for the L-H power threshold 31

present paper we have aimed to show that a careful data-analytical study, combined with

adoption of adequate and state-of-the-art techniques in probability theory, is mandatory

in order to obtain reliable results from scaling laws. This is especially critical in the

case of considerable uncertainty on the data, statistical models or physical models—

circumstances that are rather common in fusion science.

The second goal of the paper was to present geodesic least squares (GLS) as a

flexible and robust, yet easily implemented solution to model and data uncertainty in

regression analysis. The essential difference with standard methods is that GLS is a non-

Euclidean technique that carries out the regression analysis on a probabilistic manifold.

It minimizes the difference (geodesic distance) between, on the one hand, the distribution

of the dependent variable expected under the model (modeled distribution) and, on the

other hand, the ‘true’ distribution of that variable, which relies as little as possible on

the model assumptions (observed distribution). In this paper, we have described the

simplest implementation of this idea for multilinear and power-law regression, leaving

ample room for generalization and improvement of the method. For instance, GLS is

not limited to Gaussian distributions, so the method can be readily transposed to other

probabilistic manifolds.

Our experiments with synthetically generated data indicate that, in comparison

with ordinary least squares and Bayesian maximum a posteriori estimation, GLS is

considerably more robust against outliers and model uncertainty originating from a

logarithmic transformation. In applying the log-linear and nonlinear regression analyses

to fit the scaling law for the high-density branch of the L-H power threshold, using data

from the ITPA 2002 and 2008 databases, consistent results were obtained by GLS. GLS

was seen to be less affected by the validity of model assumptions, and by the quality

and uncertainty of the data, as compared to standard OLS and, to some extent, even

MAP.

In explaining the better performance of GLS compared to OLS and MAP, the

flexibility offered by the observed distribution has proved to play a decisive role. In the

present simple implementation of GLS, this role is essentially played by the observed

standard deviation. Indeed, GLS allows the data uncertainty predicted by the model

to be different from the empirically observed uncertainty, whereas with OLS and MAP

they are identical by design. As a consequence, the degrees of freedom provided by the

parameters of the regression model better serve their actual purpose: to parameterize

a model that best describes a trend in the data, with minimal distraction by the data

‘noise’.

Furthermore, although not demonstrated in the experiments in this paper, GLS

regression has been shown to provide superior performance with respect to several other

sophisticated methods [11]. This includes total least squares regression (TLS) [33],

which is a typical errors-in-variables technique, and a robust method based on iteratively

reweighted least squares (bisquare weighting) [34].

Although not a particular aim of the present paper, our case study for the L-

H power threshold scaling law did confirm the validity of the scaling relation derived
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earlier in [5]. In addition, GLS provides very similar results when applied to the older,

less well conditioned database dating from 2002 [28]. This is an important motivation

for pursuing scaling studies not only with a well-conditioned data set, but also using a

state-of-the-art statistical methodology. In particular, application of linear regression

analysis on log-transformed data assumed to follow a power law, is not recommended.

Nevertheless, our experiments have pointed out that the data in the ITPA power

threshold database from 2008 are sufficiently well conditioned to allow reliable results by

means of simple OLS. On the other hand, it is clear that, in general, it can be dangerous

to rely on the restrictive assumptions of OLS in regression studies.

We also wish to stress that regression analysis is of much more general use than

for estimating scaling laws. Regression is routinely performed in fusion science for

the purpose of model building and prediction in the context of physics studies. More

often than not the assumptions underlying OLS are violated in fitting these models

to data, and one has to revert to more powerful techniques. With the GLS method,

we aim to provide a reliable tool to the fusion community for regression analysis in

demanding circumstances (e.g. large uncertainties). For this purpose, future work will

involve improving and generalizing GLS, particularly by reformulating the method in

the framework of Bayesian probability theory on the Riemannian probabilistic manifold,

yielding a full posterior distribution of the regression parameters and predictions. It

should be emphasized that this is different from classic Bayesian methods, such as

MAP, which operate in a flat Euclidean data space.

Finally, in the spirit of an ongoing tendency in fusion science, as in other disciplines,

to aim for synergies between data-driven methods and physical understanding and

techniques, we stress that it is perfectly possible to provide GLS regression with a set of

constraints or, in the Bayesian framework, prior information regarding the underlying

physics of the scaled quantity. This might be as simple as a set of rules encoding known

relations between the quantities involved in the scaling, or it might involve incorporating

a more detailed physical model into the regression model or in the prior information.

This would allow taking into account the underlying physical mechanisms, in particular

the physical picture of the L-H transition.
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