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I. INTRODUCTION AND CONCLUSIONS

Considerable attention has been paid to the interaction of black holes with external magnetic fields and charged
particles from the mid-1970s already. This was motivated astrophysically after highly relativistic jets from active
galactic nuclei and quasars were observed. There are various ways how a black hole or its accretion disc can power
two opposite jets. The most relevant appears to be the Blandford-Znajek mechanism in which magnetic lines threading
through the horizon of a rotating black hole are dragged by the black hole’s rotation to spin around the rotation axis.
As a consequence plasma is pushed outwards in opposite directions along the axis (see e.g. the review in [1], more
recently in [2–4]).
In the late 1960s and the 1970s the axially symmetric problem in the Einstein-Maxwell theory was reformulated

and, using the symmetries of the field equations in the new formulation, generating techniques were invented. One of
the most frequently applied is the so-called Harrison transformation [5]. This led to the first papers by Ernst [6, 7] on
spacetimes representing black holes in magnetic universes or accelerated charged black holes in an external electric
field (cf. also [8, 9]). In these spacetimes the gravitational back-reaction of the electromagnetic field is taken into
account.
The most general metric obtained by applying the Harrison transformation to the Kerr-Newman metric was written

down by Bretón Baez and Garćıa Dı́az in [10]. Therein the Harrison transformation is based on an arbitrary linear
combination of the two Killing vectors, ∂/∂t and ∂/∂ϕ, of the Kerr-Newman spacetime. The resulting metric involves
a mixture of external electric and magnetic fields, and of electric and magnetic monopole charges on black hole. The
final form is given by extremely lengthy expressions. We are not aware of any use of these metrics in the literature.
In the present work, as general magnetised black hole solutions the “magnetised Kerr-Newman” (MKN) solutions

will be analysed. They can be obtained by the Harrison transformation based on the axial Killing vector ∂/∂ϕ (see
Appendix B). These solutions coincide with those rederived recently by Gibbons, Mujtaba and Pope [11] by the use of
the SU (2, 1) global symmetry which arises after a Kaluza-Klein reduction of the four-dimensional Einstein-Maxwell
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theory. Our MKN solutions form a subclass in the branch MKN(α = 0, β = 1) of general solutions MKN(α, β) of
[10]; here α and β are coefficients in the linear combination of the Killing vectors ∂/∂t and ∂/∂ϕ. It was established
by Ernst [6] that it is the use of the Harrison transformation based solely on the Killing vector ∂/∂ϕ which leads to
adding an external magnetic (and corresponding gravitational) field. By putting the magnetic charge g = 0 in the
branch MKN(α = 0, β = 1), one obtains solutions described by Garćıa Dı́az in [12]. To find these solutions Garćıa
Dı́az employs the Harrison transformation with a complex continuous parameter which implies the “addition” of
both electric and magnetic fields. Here we confine ourselves to pure magnetisation (cf. Appendix B). In this way we
guarantee that the new solutions preserve the “mirror symmetry”, i.e. are invariant under reflections ϑ→ π− ϑ. For
the same reason it is necessary to put the magnetic charge p = 0 in the solutions of [11].

From the 1980s various aspects of rotating charged black holes with test or strong external fields were studied:
the motion of test charged particles, the formation of an effective ergosphere, the behaviour of wave fields, etc. A
comprehensive review of the results to which Gal’tsov and his colleagues contributed significantly can be found in [13],
where also many references are given. An important study of the structure of magnetised black holes was conducted
by Hiscock [14], who analysed the asymptotic behaviour of the dragging potential and electric field, concluding that
“the locally measured electric field on the symmetry axis in general approaches a constant, nonzero value far from
the black hole.” There exists a simple solution of the Einstein-Maxwell equations, named after Melvin [15], which is
static, cylindrically symmetric, with nontrivial magnetic but vanishing electric field. Hence, as Hiscock concludes “the
magnetized Kerr-Newman solution cannot globally (i.e., for all ϑ) approach MMU”, i.e. the Melvin magnetic universe.
In [14] it was also demonstrated that “the Schwarzschild-Melvin solution is unique among the Harrison-transformed
magnetized Kerr-Newman black hole solutions in being static with no naked singularities.”

Most recently, magnetised black hole spacetimes were analysed in depth in the work of Gibbons, Mujtaba and
Pope [11] and Gibbons, Pang and Pope [16]. In the first paper, the authors note that “the default assumption in
the literature has been that this [Harrison-type generating techniques] will produce a background at infinity that is
asymptotically Melvin”... That this is not necessarily so was anticipated in Hiscock’s work [14] mentioned above. In
[11] a deeper, more detailed analysis of these aspects is given. For example, ergoregions in MKN spacetimes are shown
to extend from the black hole to infinity. Only for a specific relation among black the hole’s charge, original seed
value of the angular momentum and the value of the appended magnetic field the metric is asymptotic to the static
Melvin metric [15]. In [16] the thermodynamics of magnetised Kerr-Newman black holes is studied, in particular the
formalism of how to calculate global quantities like mass and the angular momentum, which are suitable to formulate
the first law of thermodynamics. The authors also show, by using the expressions for the electromagnetic field in the
magnetised Kerr-Newman solution derived in [11], that if the physical charge on the black hole vanishes, the magnetic
flux through the upper hemisphere of the horizon vanishes for extremal black holes. This result appears already in
[17], where it is also shown that the magnetic flux vanishes when the angular momentum calculated from the Komar
expression at the horizon vanishes.

This is the so-called black hole “Meissner effect”: black holes approaching an extremal state expel external vacuum
axially symmetric stationary (electro)magnetic fields. The effect is seen in the simplest situation with the magnetic test
field, characterised by parameter B, which is uniform at infinity aligned with the rotation axis of a Kerr black hole [18].

The flux across the upper hemisphere of the horizon is equal to FH = Bπr2+
(

1− a4/r4+
)

, where r+ =M +
√
M2 − a2

is the location of the outer horizon in the Boyer-Lindquist coordinates – see [19, 20] – hence, it vanishes when the
black hole becomes extremal, i.e. r+ = M = a. In fact, one can demonstrate that the black-hole Meissner effect
is quite general: it takes place for all axisymmetric stationary test fields around a rotating black hole [20]; it arises
also for extremal charged (non-rotating) black holes when even test (electromagnetic) fields are in general coupled
to gravitational perturbations [21]. The expulsion also occurs in the exact models when external fields influence the
spacetime geometry as shown around 1990 in [17, 22], later in [23], and most recently in 2014 in [16] as mentioned
above. The Meissner effect was also demonstrated for some extremal black hole solutions in higher dimensions in
string theory and Kaluza-Klein theory [24]. A brief review until 2006 is contained in [25].

An important question of great astrophysical interest arises whether the Meissner effect decreases the efficiency
of the extraction of energy from rotating black holes. The standard model of formation of highly relativistic jets
from black holes requires magnetic field lines threading through the horizon. Due to the Meissner effect the fields
are expelled from (nearly) extremal black holes, so the formation of jets could be quenched in this case. There are,
however, field configurations which penetrate even into extremal black holes (non-axisymmetric fields [20], the split
monopole fields [26]). Moreover, recent axisymmetric simulations of rotating black holes surrounded by magnetised
plasma based on general-relativistic magnetohydrodynamics “see no sign of expulsion of flux from the horizon” [27]
although, as the authors mention, it is possible that they “have not gone close enough to a/M = 1”. For the most
recent review, summarising the simulations by various groups, see [4]. None of these simulations was performed for
the extremal case. Takamori et al. [28] analysed the Meissner effect perturbatively for a stationary magnetosphere in
an extremal black-hole background and found that if force-free electric current exists, higher multipole components
can penetrate the extremal horizon. However, in their sophisticated analytic investigation the black hole was, in fact,
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an extremely charged static black hole and the imposed test field was not treated consistently by using the coupled
Einstein-Maxwell system as in [21].
Regardless of its astrophysical relevance, the black-hole Meissner effect is a fundamental phenomenon the cause

of which should be elucidated. In the case of test magnetic fields, the physics underlying the effect was discussed
most recently in the works of Penna [26, 29], from two different perspectives. In the first, the effect is related to the

fact that the proper distance to the extremal horizon blows up and, in order to maintain the ~∇ · ~B = 0 equation,
the external field must vanish at such horizon (see Fig. 3 in [26]). In the second, the effect is derived from the
low temperature limit of two-point correlation functions in the Hartle-Hawking vacuum, which imply that modes on
either side of an extremal horizon become unentangled [29]. In the following, we analyse the Meissner effect within
the full Einstein-Maxwell theory in an alternative way – by employing the near-horizon description of exact solutions
representing extremal black holes in external magnetic fields characterised by parameter B.
The issue of describing the near-horizon geometry of extremal black holes has a long history. Indeed, some in-

dications can already be found in the well-known work by Carter [30], in which metrics enabling a separable wave
equation are derived. The Kerr metric is the best known example. However, Carter also includes (among different
cases labelled by [A] , [B (−)], etc.) metrics which, in fact, represent near-horizon geometries. The transition between
the cases is discussed formally only, without a physical interpretation. Various formulations of near-horizon limit
are possible with distinct interpretations related, for example, to the limiting behaviour of the Hawking temperature
(see e.g. [31, 32]). In our work, we start with extremal MKN black holes with fixed physical parameters and use an
arbitrary limiting parameter following the work by Bardeen and Horowitz [33] on the Kerr-Newman spacetime. We,
however, start from spacetimes which are not included in Carter’s framework. That the near-horizon limit can be
used beyond Kerr-Newman black holes has also been shown by Dias and Lemos in the case of accelerated black holes
[34].
It is known that limiting metrics describing the near-horizon “throat” regions usually have AdS-like asymptotics.

This property makes the near-horizon limit interesting in string theory and holographic duality (see [32, 33] and the
living review by Compère [35]). The high symmetry of the near-horizon limiting spacetimes has been analysed by
Kunduri and Lucietti [36, 37], emphasising that the picture is similar even beyond 4D general relativity. In Appendix
A we will give some explicit calculations that relate the well-known symmetry group SO(1, 2) × U(1) generated by
Killing vectors to the “Carter-type” symmetry studied in [30]. The fact that this kind of symmetry emerges in the
near-horizon limit even when it is not present in the original spacetime will be useful to support our conclusions below.
We found that there are some missing terms in the expressions for electromagnetic potential in Carter’s fundamental

work [30] (in subcases [B (±)]). (This can also be seen by comparison with formulae for the B0
± subcases restricted

to f = 1 in [38].) Krasiński noticed the problem when he was editing Carter’s later work [39] for its republication
[40] in the “Golden Oldie” series in the GRG journal. However, he did not relate the error to its root in the earlier
article [30]. Krasiński, in his editorial note [41], interpreted Carter’s derivation as a de facto near-horizon limit, but
he did not find the correct remedy for the error (whereas Bardeen and Horowitz [33] did not discuss the behavior of
the electromagnetic potential in the limit). We hope to give more comments on this issue in a future work. In the
present work, in order to clarify these uncertainties, we rederive the process of the near-horizon limit step by step in
Section III. The general scheme was summarised by Compère [35].
In this paper we do not aim to study all theoretical implications of the near-horizon limit nor use it to examine

intrinsic thermodynamic properties of the magnetised black holes. Instead, we employ it to investigate the interac-
tion of the black holes with the external field in the strong field regime. We use the term near-horizon (limiting)
“description” in our work.
The outline of this article is as follows. In Section II we briefly summarise some features of black hole solutions

in magnetic universes, including the three cases admitting degenerate horizons, going from simpler stationary Ernst
solution [6] describing a Reissner-Nordström black hole in an external magnetic field, to the magnetised Kerr metric
(i.e. Ernst-Wild solution [8]) and the general MKN black holes. We also mention possible gauges and the corresponding
regularity of the electromagnetic potential at the axis – which appears to be unnoticed in the literature so far. We
proceed to the near-horizon geometries of extremal cases in Section III, using the general prescription and clarifying
its details.
It is known that the near-horizon geometry has four Killing vectors. In Appendix A we use them to construct a

Killing tensor which is an element of symmetry related to the separability of the Hamilton-Jacobi (and the wave)
equation. Since all the metrics admitting such symmetry were already derived by Carter, we conclude that there has
to be some degeneracy and that it has to be possible to express the “new” near-horizon geometries that we obtained
(including the special case previously given in [42]) using some simpler metrics with less parameters. We discuss this
point in Section IV going from special cases that are easy to express to the general extremal case of MKN black holes.
We find that the near-horizon metric of extremal MKN black holes coincides (up to rescaling of Killing vectors by
a constant) with the near-horizon Kerr-Newman metric described using just two independent effective parameters

(M̂, â, Q̂ minus the constraint of extremality) instead of three (B,M, a,Q minus the constraint of extremality); the
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parameter B characterising the strength of the external magnetic field enters expressions for â and Q̂. We can further
reduce the number of parameters by excluding the physical scale and using dimensionless parameters. Then we end
up with a graph of a plane with two parameters, BM and γKN, where γKN is the “Kerr-Newman mixing angle”:
a =M cos γKN, Q =M sin γKN. The plane is foliated by curves (classes of equivalence) labeled by just one parameter
– the “effective Kerr-Newman mixing angle” γ̂KN. We note that this parameter is related to the invariants like the
curvature of the horizon.
We were led by the symmetry arguments given in Appendix A to conclude that the near-horizon description of

any extremal MKN black hole is given by the near-horizon description of a corresponding extremal Kerr-Newman
solution. However, this conclusion is also implied by the results of Lewandowski and Pawlowski [43], who used the
theory of isolated horizons to prove that all the extremal axially symmetric electrovacuum horizons must be the
Kerr-Newman ones (for generalisations of this statement in the framework of near-horizon description, see the living
review by Kunduri and Lucietti [37]). In Section IVD we sketch how the approach of [43] can also be used to define
the effective parameters.
Curiously enough, our expression for the product âM̂ coincides precisely with the angular momentum of a MKN

black hole derived from general principles in [16], when we restrict it to extremal cases. Our effective mass, however,
does not match the one proposed in [16]. Booth et al. [44] recently inquired into (dis)agreements of various procedures

of defining the mass of MKN black holes. One can see that our parameter M̂ coincides with “isolated horizon mass”
MIH discussed in [44], when we evaluate it in the extremal case.
In Section IV we also discuss the Meissner effect. The external magnetic field strength parameter B gets absorbed

in the effective Kerr-Newman parameters. Hence, the magnetic flux coming through the degenerate horizon can be
expressed without including B. Such flux is caused just by the physical charge on the black hole and its angular
momentum. The effect of the external magnetic field is just an “implicit” one.
The way to generate a MKN solution by the Harrison transformation of the Kerr-Newman metric is summarised

in Appendix B. Here it is also demonstrated that the rigidity theorems for dragging and electromagnetic potentials
(and some related properties) are preserved by the transformation.1

II. CHARGED, ROTATING BLACK HOLES IN MAGNETIC FIELDS

As mentioned in the Introduction, a simple solution to the Einstein-Maxwell system of equations, often referred
to as a “magnetic universe”, was studied by Melvin [15] (see also an earlier derivation in [47]). The metric can be
expressed in cylindrical coordinates (R = r sinϑ, z = r cosϑ) as

g =

(

1 +
1

4
B2R2

)2
(

−dt2 + dR2 + dz2
)

+
R2

(

1 + 1
4B

2R2
)2 dϕ2 . (1)

It is accompanied with the magnetic field, characterised by parameter B, with only non-zero component of the
electromagnetic potential

Aϕ =
1
2BR

2

1 + 1
4B

2R2
. (2)

The Harrison transformation applied on a “seed” Minkowski spacetime yields this Melvin magnetic universe. If the
Harrison transformation is applied to asymptotically flat black hole solutions, the results are black holes immersed in
magnetic universes. These were studied by Ernst [6].

A. Stationary Ernst solution

The stationary Ernst solution,

g = |Λ|2
[

−
(

1− 2M

r
+
Q2

r2

)

dt2 +
1

1− 2M
r

+ Q2

r2

dr2 + r2 dϑ2

]

+
r2 sin2 ϑ

|Λ|2
(dϕ− ω dt)

2
, (3)

1 The paper is based on some results obtained in [45] and during the Ph.D. study of F.H. under the supervision of J.B. A preliminary
summary appeared in [46].
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represents a Reissner-Nordström black hole with mass parameterM and charge parameter Q in an external magnetic
field. The influence of the magnetic field of a strength B on the geometry is expressed by a complex function Λ:

Λ = 1 +
1

4
B2
(

r2 sin2 ϑ+Q2 cos2 ϑ
)

− iBQ cosϑ . (4)

The electromagnetic field is more complicated than just a superposition of the electrostatic field of the black hole
and some simple external field. This arises from the non-linear nature of the Einstein-Maxwell system. However, the
actual field has the same crucial property as that simple superposition would have: a non-zero angular momentum.
This induces frame dragging with dragging potential

ω = −2BQ

r
+B3Qr +

B3Q3

2r
− B3Q

2r

(

r2 − 2Mr +Q2
)

sin2 ϑ . (5)

One can get the azimuthal component of the electromagnetic potential by means of the Harrison transformation
(see, e.g. [11])

A(1)
ϕ =

1

B |Λ|2
[

2ℜΛ (ℜΛ− 1) + (ℑΛ)2
]

. (6)

However, the given gauge is not very convenient because A
(1)
ϕ does not vanish on the axis. We can fix this problem

by subtracting the value of “raw” A
(1)
ϕ for ϑ = 0. In this way we obtain

Aϕ =
1

B |Λ|2

[

(

2 + 3
2B

2Q2
)

(ℜΛ)2 +
(

1− 1
16B

4Q4
)

(ℑΛ)2

1 + 3
2B

2Q2 + 1
16B

4Q4
− 2ℜΛ

]

. (7)

This unique gauge is important for the study of the particle motion within the Hamiltonian formalism, since there
the electromagnetic potential becomes a physically relevant quantity. For the importance of having a regular electro-
magnetic potential at the axis, see also [35].
Another important quantity is the tetrad component describing the radial electric field strength

F(r)(t) =
1

|Λ|4
{

[

(ℜΛ)2 − (ℑΛ)2
]

(2−ℜΛ) Q
r2

+
B

2

(

1− Q2

r2

)

ℑΛ
[

(ℜΛ)2 − (ℑΛ)2 − 4ℜΛ
]

cosϑ

}

. (8)

This directly enters some relations that we will discuss below.

B. Ernst-Wild solution and a general MKN black hole

In [8] the solution is obtained by applying the Harrison transformation to the Kerr (uncharged) “seed” metric with
rotation parameter a. The resulting metric

g = |Λ|2Σ
[

−∆

A
dt2 +

dr2

∆
+ dϑ2

]

+
A

Σ |Λ|2
sin2 ϑ (dϕ− ω dt)2 (9)

contains functions

Σ = r2 + a2 cos2 ϑ , A =
(

r2 + a2
)2 −∆a2 sin2 ϑ , ∆ = r2 − 2Mr + a2 (10)

from the “seed” metric and a new (complex) function

Λ = 1 +
1

4
B2 A

Σ
sin2 ϑ− i

2
B2Ma cosϑ

(

3− cos2 ϑ+
a2

Σ
sin4 ϑ

)

. (11)

The new dragging potential is

ω =
a

r2 + a2

{

(

1−B4M2a2
)

−∆

[

Σ

A
+
B4

16

(

− 8Mr cos2 ϑ
(

3− cos2 ϑ
)

− 6Mr sin4 ϑ+

+
2Ma2 sin6 ϑ

A

[

r
(

r2 + a2
)

+ 2Ma2
]

+
4M2a2 cos2 ϑ

A

[

(

r2 + a2
) (

3− cos2 ϑ
)2 − 4a2 sin2 ϑ

]

)]}

.

(12)
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The components of the field strength tensor are quite complicated. However, the azimuthal component of the potential
has a very simple form in the gauge implied directly by the Harrison transformation:

A(1)
ϕ =

2

B

(

1− ℜΛ
|Λ|2

)

. (13)

After subtracting its value at the axis to obtain a regular expression we have

Aϕ =
2

B

(

1

1 +B4M2a2
− ℜΛ

|Λ|2

)

. (14)

The general MKN (magnetised Kerr-Newman) black hole has the metric (9) with ∆ from the Kerr-Newman metric,
i.e. ∆ = r2 − 2Mr + a2 +Q2, and with a more complicated function Λ:

Λ = 1 +
1

4
B2

(

A + a2Q2
(

1 + cos2 ϑ
)

Σ
sin2 ϑ+Q2 cos2 ϑ

)

+

+
BQ

Σ

[

ar sin2 ϑ− i
(

r2 + a2
)

cosϑ
]

− i

2
B2a cosϑ

[

M
(

3− cos2 ϑ
)

+
Ma2 sin2 ϑ−Q2r

Σ
sin2 ϑ

]

.

(15)

The most complete and comprehensive picture of the properties of a general MKN black hole was recently given by
Gibbons, Mujtaba and Pope [11]. The expression for the dragging potential is given by equations (B.8)-(B.9) in [11],
whereas the components of electromagnetic potential are described by formulae (B.15)-(B.18).

C. Global properties of magnetised black holes

First, let us note that one can easily verify that the positions of the Killing horizons in the coordinate r are left in

place by the Harrison transformation. They are still given by the roots of ∆, i.e. r± = M +
√

M2 −Q2 − a2. The
roots coincide for M2 = Q2 + a2, which defines the extremal case; one can make sure that the surface gravity of the
Killing horizon vanishes in this case. These facts were already noted e.g. in [17].
The asymptotic properties of the magnetised black-hole spacetimes can be complicated for large values of dimen-

sionless quantity BM ; in that case an astrophysical meaning is doubtful. The conditions for the existence of an
approximately flat region have been discussed by Bičák and Janǐs [20]. The region must be well outside the horizon,

but it must also hold that |Λ|2 is approximately unity in that region. These two requirements are satisfied when r
satisfies inequality r+ ≪ r ≪ 1/B. This is well visualised by the embedding diagrams constructed in [48].
As first noted by Hiscock [14], a conical singularity along the axis of symmetry arises when the Harrison transfor-

mation is applied to the metrics of the Kerr-Newman family. In order to remove it, we have to adjust the range for
the azimuthal coordinate to ϕ ∈ [0, ϕmax), where

ϕmax = 2π lim
ϑ→0

√

gϑϑ(r, ϑ)

∂
√
gϕϕ(r,ϑ)

∂ϑ

. (16)

In case of a general MKN black hole we get

ϕmax = 2π

[

1 +
3

2
B2Q2 + 2B3MQa+B4

(

1

16
Q4 +M2a2

)]

. (17)

Alternatively, we can pass to the rescaled azimuthal coordinate ϕ̃ = (2πϕ)/ϕmax, which runs in the standard range
(0, 2π). However, we shall follow most of the literature and use ϕ with (17).

III. THE NEAR-HORIZON DESCRIPTION OF EXTREMAL CONFIGURATIONS

We now generalise the approach of [33, 35, 39] to find the near-horizon geometries of extremal black holes and apply
it to black holes in strong magnetic fields. In the case of the MKN black holes we impose the extremality condition
M2 = Q2 + a2.
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A. General prescription

The metric in the extremal case

The metric of an axisymmetric, stationary, electrovacuum black hole can be written as follows [49]:

g = −N2
dt2 + gϕϕ (dϕ− ω dt)2 + grr dr

2 + gϑϑ dϑ
2 . (18)

For an extremal black hole the metric can be cast into the form

g = − (r − r0)
2 Ñ2

dt2 + gϕϕ (dϕ− ω dt)2 +
g̃rr

(r − r0)
2 dr2 + gϑϑ dϑ

2 , (19)

where the degenerate horizon is located at r = r0 and Ñ and g̃rr are regular and non-vanishing at the horizon.
To describe the “near-horizon” region, we introduce new time and spatial coordinates τ and χ by relations

r = r0 + pχ , t =
τ

p
. (20)

The transformation depends on a limiting parameter p; for any finite non-zero value of p the new coordinates cover
the entire spacetime up to “standard” spatial infinity. However, in the extremal black-hole spacetimes, there exists
yet another infinity: the proper radial distance between two points along t = constant diverges if one of the points
approaches r0. With parameter p in transformation (20) converging to zero, the metric (19) goes over to a new metric
which describes the infinite region (“throat”) involving r = r0. The standard spatial infinity is “lost” in this limiting
procedure.
A more complicated issue arises in describing the dragging in the near-horizon limit. To do this we first expand ω

around its value ωH at the horizon

ω
.
= ωH +

∂ω

∂r

∣

∣

∣

∣

r0

(r − r0) = ωH +
∂ω

∂r

∣

∣

∣

∣

r0

pχ , (21)

so that

dϕ− ω dt
.
= dϕ−

(

ωH +
∂ω

∂r

∣

∣

∣

∣

r0

pχ

)

dτ

p
= dϕ− ωH

p
dτ − ∂ω

∂r

∣

∣

∣

∣

r0

χdτ . (22)

Since as a consequence of the rigidity theorem (see Appendix B) the value ωH is constant, the transformation from ϕ
to an “unwinded angle” ψ can be integrated

ϕ = ψ +
ωH

p
τ . (23)

With p→ 0, we obtain

dϕ− ω dt = dψ − ∂ω

∂r

∣

∣

∣

∣

r0

χdτ . (24)

It is seen that the new dragging potential, after the limit p→ 0, is just the first order of the expansion of the original ω.
Note that (23) is merely a transformation to (rigidly) rotating coordinates: it can be understood as a “gauge-fixing”
of the integration constant of the dragging potential.
Following this procedure, we arrive at the near-horizon metric given in Appendix A, equation (A3). In the specific

case of the Kerr-Newman solution, the resulting metric reads

g =
[

Q2 + a2
(

1 + cos2 ϑ
)]

(

− χ2

(Q2 + 2a2)2
dτ2 +

dχ2

χ2
+ dϑ2

)

+

(

Q2 + 2a2
)2

sin2 ϑ

Q2 + a2 (1 + cos2 ϑ)

(

dψ +
2a
√

Q2 + a2χ

(Q2 + 2a2)2
dτ

)2

,

(25)
(cf. [39] and, in particular, [33], where the equation above with small rearrangements is formula (4.2)).
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The electromagnetic field

As a consequence of the limiting procedure with p→ 0, we cannot expect that every tensor quantity will be regular
after this limit. In some cases such problems can be circumvented as it happens with the electromagnetic potential.
Defining the generalised electrostatic potential by

φ = −At − ωAϕ , (26)

and expanding the electromagnetic potential in r − r0 = pχ using equations (20), (23), we obtain

A = At dt+Aϕ dϕ
.
=

(

At|r0 +
∂At
∂r

∣

∣

∣

∣

r0

pχ

)

dτ

p
+

(

Aϕ|r0 +
∂Aϕ
∂r

∣

∣

∣

∣

r0

pχ

)

(

dψ +
ωH

p
dτ

)

.
=

.
=
(

At|r0 + ωH Aϕ|r0
)

dτ

p
+

(

∂At
∂r

∣

∣

∣

∣

r0

+ ωH
∂Aϕ
∂r

∣

∣

∣

∣

r0

)

χdτ + Aϕ|r0 dψ =

= −φH
p

dτ +

(

∂At
∂r

∣

∣

∣

∣

r0

+ ωH
∂Aϕ
∂r

∣

∣

∣

∣

r0

)

χdτ + Aϕ|r0 dψ .

(27)

Since φH = constant (see Appendix B), the singular first term can be subtracted from the final limiting potential as
a gauge constant.
For the particular case of the Kerr-Newman solution the near-horizon electromagnetic potential (without the sin-

gular gauge constant) reads2

A =
Q

Q2 + a2 (1 + cos2 ϑ)

(

Q2 + a2 sin2 ϑ

Q2 + 2a2
χdτ + a

√

Q2 + a2 sin2 ϑdψ

)

. (28)

Let us turn back to the case of axially symmetric, stationary, electrovacuum black hole with metric (18) and
electromagnetic potential (27). Introducing the frame vectors associated with metric (18)

e(t) =
1

N

(

∂

∂t
+ ω

∂

∂ϕ

)

, e(ϕ) =
1

√
gϕϕ

∂

∂ϕ
, (29)

e(r) =
1√
grr

∂

∂r
, e(ϑ) =

1√
gϑϑ

∂

∂ϑ
, (30)

we find that the frame component of the radial electric field strength reads

F(r)(t) =
1

N
√
grr

(

∂At
∂r

+ ω
∂Aϕ
∂r

)

. (31)

This component can be obtained directly from the Harrison transformation just by algebraic manipulation and deriva-
tives (cf. equation (B9)). Regarding (27), we can express the time component of the electromagnetic potential after
p→ 0 as

Aτ =
(

Ñ
√

g̃rrF(r)(t)

)∣

∣

∣

r0
χ . (32)

Now it is important to realise that on a degenerate horizon of any extremal MKN black hole (see Appendix B)

ω̃ ≡ ∂ω

∂r

∣

∣

∣

∣

r=r0

= constant , φ̃ ≡ ∂φ

∂r

∣

∣

∣

∣

r=r0

= constant . (33)

Using equations (24), (33) and realizing that the expression multiplying χ in equation (32) is just a function of ϑ,
we can write in the near-horizon limit

ω = ω̃χ , φ = φ̃χ , Aτ = Ãτ (ϑ)χ . (34)

2 Bardeen and Horowitz [33] do not give the expression for the electromagnetic potential. Carter’s potential (see equation (5.64) in the
original version in [39]) does not satisfy Maxwell equations as noted in the “Editorial Note” [41]. Unfortunately, the potential given in
the republication [40] of [39] is also not correct. The correct form of the potential, though given in an other rearrangement, is contained
in equation (39) in [35].



10

From the definition of the generalised electrostatic potential (26) we can express

φ = −Aτ − ωAψ , Aψ(ϑ) =
1

ω̃

(

−φ̃− Ãτ (ϑ)
)

, (35)

where, observing (27), we put Aψ = Aϕ|r0 . Since we demand the electromagnetic potential to be smooth, its azimuthal
component must vanish at the axis, so

φ = − Aτ |ϑ=0 , Aψ(ϑ) =
1

ω̃

(

Ãτ (0)− Ãτ (ϑ)
)

. (36)

We conclude that the knowledge of F(r)(t) in the original spacetime is sufficient to determine Aτ (see (32)) and
hence the whole potential of electromagnetic field in the near-horizon limit by relations (36).

B. Near-horizon description of extremal black holes in strong magnetic fields

We shall now apply the above procedure to black holes in strong magnetic fields going from the simplest stationary
Ernst solution to the MKN black holes.

Stationary Ernst solution

Applying the recipe described above to metric (3), we get

g =

[

(

1 +
1

4
B2Q2

)2

+B2Q2 cos2 ϑ

]

(

− χ2

Q2
dτ2 +

Q2

χ2
dχ2 +Q2

dϑ2
)

+

+
Q2 sin2 ϑ

(

1 + 1
4B

2Q2
)2

+B2Q2 cos2 ϑ

[

dψ − 2B

Q

(

1 +
1

4
B2Q2

)

χdτ

]2

,

(37)

which for B = 0 turns to (25) with a = 0, i.e. to the Robinson-Bertotti solution. The components of the electromag-
netic potential can be evaluated directly from F(r)(t) given in (8):

Aτ =
χ

Q

(

1 + 1
4B

2Q2
)2 −B2Q2 cos2 ϑ

(

1 + 1
4B

2Q2
)2

+B2Q2 cos2 ϑ

(

1− 1

4
B2Q2

)

, (38)

Aψ =
−BQ2

1 + 3
2B

2Q2 + 1
16B

4Q4

(

1− 1
16B

4Q4
)

sin2 ϑ
(

1 + 1
4B

2Q2
)2

+B2Q2 cos2 ϑ
. (39)

We checked explicitly that these quantities satisfy the full Einstein-Maxwell system.3

Ernst-Wild solution

Applying the near-horizon limit to metric (9), one gets

g =
[(

1 +B4a4
) (

1 + cos2 ϑ
)

+ 2B2a2 sin2 ϑ
]

(

− χ2

4a2
dτ2 +

a2

χ2
dχ2 + a2 dϑ2

)

+

+
4a2 sin2 ϑ

(1 +B4a4) (1 + cos2 ϑ) + 2B2a2 sin2 ϑ

[

dψ +
χ

2a2
(

1−B4a4
)

dτ
]2

.

(40)

3 It should be noted that this simple solution is contained in a richer class of solutions studied in [42]. There the generalisations of
Reinssner-Nordström and Robinson-Bertotti solutions employ Harrison transformation involving more parameters. Our expressions
(37)-(39) can be obtained from equations (4.1)-(4.5) in [42], if we choose a = 1, b = h = k = 0, α = 0, β = 1, rescale the metric by M2;
physical parametres in [42] g = B = 0 and e and E are equal to our Q/M and −BM/2; coordinates τ, q, p, and σ, respectively, are put
equal to our τ/M, χ/M , cosϑ, and ψ, respectively. At the end of [42], a near horizon limit of “magnetic Reissner-Nordström” solution is
shown to imply a “magnetised Robinson-Bertotti solution”. The near-horizon limit of the Ernst-Wild and MKN solutions analysed in
the following is not contained in [42].
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Note that the dragging potential (12) vastly simplifies in the near-horizon limit. From the F(r)(t) component of the
field strength tensor (see equation (B9)) one obtains

Aτ = −Bχ
(

1− 2
(

1 +B2a2
)2

(1 +B4a4) (1 + cos2 ϑ) + 2B2a2 sin2 ϑ

)

, (41)

Aψ =
1−B4a4

1 +B4a4
2Ba2 sin2 ϑ

(1 +B4a4) (1 + cos2 ϑ) + 2B2a2 sin2 ϑ
. (42)

Again, one can check that quantities evaluated above satisfy the full Einstein-Maxwell system.

A general MKN black hole

Although the Ernst-Wild solution is more complicated than the stationary Ernst solution, we have seen that their
near-horizon descriptions are likewise simple. Turning finally to the general MKN case, we find that such simplicity
is lost. The metric can be written in the form (cf. equation (A4) in Appendix A)

g =
˜
f(ϑ)

(

− χ2

(Q2 + 2a2)
2 dτ2 +

dχ2

χ2
+ dϑ2

)

+

(

Q2 + 2a2
)2

sin2 ϑ

˜
f(ϑ)

(dψ − ω̃χdτ)
2
, (43)

where (after rearrangements enabling to make “division” by denominator Q2+a2
(

1 + cos2 ϑ
)

) the dimensional struc-
tural function

˜
f(ϑ) is obtained as

˜
f(ϑ) =

(

1 +
1

4
B2Q2

)2
[

Q2 + a2
(

1 + cos2 ϑ
)]

+ 2

(

1 +
1

4
B2Q2

)

[

B2a2
(

Q2 + a2
)

+BQa
√

Q2 + a2
]

sin2 ϑ+

+B2
(

Ba
√

Q2 + a2 +Q
)2
[

a2 +
(

Q2 + a2
)

cos2 ϑ
]

.

(44)

This can still be simplified:

˜
f(ϑ) =

[

√

Q2 + a2
(

1 +
1

4
B2Q2 +B2a2

)

+BQa

]2

+

[

a

(

1− 3

4
B2Q2 −B2a2

)

−BQ
√

Q2 + a2
]2

cos2 ϑ . (45)

The dragging constant ω̃ can be evaluated using equation (B5) in the following form:

ω̃ = − 2

(Q2 + 2a2)
2

[

√

Q2 + a2
(

1 +
1

4
B2Q2 +B2a2

)

+BQa

] [

a

(

1− 3

4
B2Q2 −B2a2

)

−BQ
√

Q2 + a2
]

. (46)

From relations (B9) and (32) for the F(r)(t) component we obtain:

Aτ =
1

˜
f (ϑ)

χ

Q2 + 2a2

[

Q

(

1− 1

4
B2Q2

)

+ 2Ba
√

Q2 + a2
]















[

Q

(

1− 1

4
B2Q2

)

+ (47)

+ 2Ba
√

Q2 + a2

]2

+

[

a

(

1− 3

4
B2Q2 −B2a2

)

−BQ
√

Q2 + a2

]2

sin2 ϑ















,

Aψ = − ω̃

2
˜
f(ϑ)

(Q2 + 2a2)2
[

Q
(

1− 1
4B

2Q2
)

+ 2Ba
√

Q2 + a2
]

sin2 ϑ

1 + 3
2B

2Q2 + 2B3Qa
√

Q2 + a2 +B4
(

1
16Q

4 +Q2a2 + a4
) . (48)

Notice that even in this most complicated case, Aψ contains the overall sin2 ϑ factor.
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IV. NEAR-HORIZON DEGENERACY OF EXTREMAL MKN CLASS

A. Special cases

Starting from the previous section, we first investigate important special cases. First, notice that in the near-
horizon description of the Ernst-Wild solution (40), the dragging parameter ω̃ = 0 for Ba = 1. The metric becomes
static and the factor

[(

1 +B4a4
) (

1 + cos2 ϑ
)

+ 2B2a2 sin2 ϑ
]

= 4, so the metric simplifies significantly. After some
rearrangements we find

g = − χ2

(2a)
2 (2dτ)

2
+

(2a)
2

χ2
dχ2 + (2a)

2
dϑ2 + (2a)

2
sin2 ϑ

(

dψ

2

)2

. (49)

It is noteworthy that the electromagnetic field turns out to be purely electric in this case since the azimuthal component
of the potential (given by (38) and (39)) vanishes:

A =
χ

2a
(2dτ) + 0

dψ

2
. (50)

This special case is thus the Robinson-Bertotti spacetime with an electric constant 2a, which is expressed in the
rescaled time and azimuth. (The rescaling of azimuth does not lead to a conical singularity because ψ has the same
range as ϕ from the original Ernst-Wild solution; this runs from 0 to 4π due to (17).)

The fact that the limiting near-horizon metric is static and spherically symmetric has local implications for the
original spacetime – it is easy to see that the embedding of the cross section of the horizon (r = M, t = constant) of
the Ernst-Wild solution with a =M,Ba = 1 is indeed a two-sphere.

If we choose Ba = −1, we get the same results as above with Aµ exchanged by −Aµ.
The structure of the near-horizon metric (A4) is simple. It involves a single function f(ϑ) and two constants K and

ω̃. The Robinson-Bertotti solution with f ≡ 1, ω̃ = 0 and arbitrary K is still the simpler case of this class. Another
such case arises when 2f(ϑ) = 1 + cos2 ϑ and ω̃ = −1/K2 (the minus sign means rotation in the sense of positive ψ).
This case is the near-horizon description of an extremal Kerr solution, as can be seen from (25) with Q set to zero.
In the canonical form (A4) it reads

g =
1 + cos2 ϑ

2

(

− χ2

2a2
dτ2 +

2a2

χ2
dχ2 + 2a2 dϑ2

)

+
2a2

1
2 (1 + cos2 ϑ)

sin2 ϑ
(

dψ +
χ

2a2
dτ
)2

. (51)

Remarkably, we arrive at the same metric starting from the special case of a stationary Ernst solution. Regarding
potential (38) and (39) one easily sees that the potential vanishes if we choose parameters B and Q such that BQ = 2.
Function f(ϑ) simplifies to

f(ϑ) =

[

(

1 +
1

4
B2Q2

)2

+B2Q2 cos2 ϑ

]
∣

∣

∣

∣

∣

B= 2
Q

= 4
(

1 + cos2 ϑ
)

, (52)

and metric (37), after rearrangements, becomes

g =
1 + cos2 ϑ

2

[

− χ2

2 (2Q)2
(8dτ)2 +

2 (2Q)
2

χ2
dχ2 + 2 (2Q)2 dϑ2

]

+
2 (2Q)

2
sin2 ϑ

1
2 (1 + cos2 ϑ)

[

dψ

8
+

χ

2 (2Q)2
(8dτ)

]2

. (53)

Hence, the near-horizon metric for the stationary Ernst solution with B = 2/Q turns to the Kerr near-horizon form (51)
with rotation parameter 2Q. Notice that the condition ω̃ = −1/K2 emerges only in appropriately rescaled coordinates;
this is related to the range of ψ preserving smooth axis.

In Section IVC we shall see that even a general MKN class admits special combinations of parameters Q, a,B
for which either the dragging parameter ω̃ or electromagnetic potential vanish in the near-horizon limit. However,
already from the simple examples above, we conclude that “bare” parameters Q, a,B do not describe properly physical
properties of MKN black holes in the near-horizon limit. Since we do not observe any magnetic field in the near-
horizon description in the special cases, we can be led to an idea that external axially symmetric stationary magnetic
fields are expelled from degenerate horizons.
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B. Effective parameters

It is known that near-horizon limiting spacetimes possess high symmetry exhibited by four Killing vectors (cf. e.g.
[35]). In Appendix A we show explicitly that it is possible to construct a “Carter-type” Killing tensor from these
Killing vectors and therefore the near-horizon spacetimes belong to the class of spacetimes studied by Carter [30, 39],
even in the case when the original spacetime is outside this class. Therefore, it is natural to assume that the metrics
(25) and (43) representing near-horizon limits of extremal Kerr-Newman and MKN black holes are mathematically
equivalent in general. It should be possible to describe the near-horizon limit of extremal black holes in magnetic
fields characterised by three parameters (M,a,Q,B minus the constraint of extremality) by just two effective “Kerr-

Newman-like” parameters (M̂, â, Q̂ minus the constraint of extremality). However, metrics (25) and (43) cannot be
compared directly, since their Killing vectors are scaled in a different way, as we observed in special cases already.
Now we shall rescale the coordinates in general MKN cases. It is convenient to redefine ϕmax in (17) by introducing

Ξ = 2π/ϕmax, so that ψ ∈ (0, 2π/Ξ). In the extremal case

Ξ =
1

1 + 3
2B

2Q2 + 2B3Qa
√

Q2 + a2 +B4
(

1
16Q

4 +Q2a2 + a4
) . (54)

Next we rearrange the constants in metric (43) in analogy with (49) and (53) to obtain

g =
˜
f(ϑ)

[

−Ξ
2χ2

K4

(

dτ

Ξ

)2

+
dχ2

χ2
+ dϑ2

]

+
K4 sin2 ϑ

Ξ2

˜
f(ϑ)

[

(Ξ dψ)− Ξ2ω̃χ
dτ

Ξ

]2

, (55)

where “new” azimuthal coordinate Ξψ ∈ (0, 2π) and, correspondingly, the “new” time coordinate becomes τ/Ξ. Under
such rescaling the components of the electromagnetic potential become

A = ΞAτ
dτ

Ξ
+
Aψ
Ξ

(Ξ dψ) . (56)

Since the rescaling leaves function
˜
f(ϑ) in (45) unchanged, we can identify the coefficients appearing inside

function
˜
f(ϑ) in accordance with the limiting near-horizon metric of the Kerr-Newman solution (25) which is

˜
f(ϑ) =

[

Q2 + a2
(

1 + cos2 ϑ
)]

=M2 + a2 cos2 ϑ. Hence, we are able to write
˜
f(ϑ) in (45) as

˜
f(ϑ) = M̂

2
+ â2 cos2 ϑ , (57)

where the resulting effective parameters M̂ and â are

M̂ =
√

Q2 + a2
(

1 +
1

4
B2Q2 +B2a2

)

+BQa , (58)

â = a

(

1− 3

4
B2Q2 −B2a2

)

−BQ
√

Q2 + a2 . (59)

In analogy with the Kerr-Newman solution, we define the effective charge by Q̂
2
= M̂

2 − â2, which implies

Q̂ = Q

(

1− 1

4
B2Q2

)

+ 2Ba
√

Q2 + a2 . (60)

It will be seen that Q̂ is a physical charge.
To demonstrate that the near-horizon descriptions of MKN black holes and of corresponding Kerr-Newman black

holes are indeed equivalent, we replace Q and a in (25) by expressions for Q̂, â (60) and (59). We find that the result
is the limiting MKN metric (43) with coordinates rescaled according to the formula (55). Then we do the same for

the electromagnetic potential, i.e. insert the expressions for Q̂, â in place of Q, a in (28) and compare with (47) and
(48), again with coordinates rescaled the same way (see (56)). Such a procedure requires lengthy calculations but
using Mathematica we were able to verify that the description of the near-horizon limit of a MKN black hole using
the effective parameters indeed works. The solution (43) is thus mathematically equivalent to the solution (25) with

effective parameters M̂, â, Q̂.
Regarding the expressions (58)-(60) for the effective parameters, it is of interest to notice that each of them contains

the “bare” parameter multiplied by a “correction” involving B2 and an additional term linear in B. The extra term
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in the rotation parameter (59) is caused by the angular momentum of the electromagnetic field as can be seen from
putting the bare rotation parameter a = 0. The extra term in charge (60) corresponds to the “Wald charge” in the
weak-field limit (cf. [18]).
The effective parameters simplify considerably if one of the bare parameters Q or a is zero – they involve just one

term. This is reflected in the fact that the near-horizon descriptions of the stationary Ernst solution (37) and of the
Ernst-Wild solution (40) are much simpler than of a general MKN solution. For B = 0, the effective parameters are

equal to the bare parameters. It is also worthwhile to notice that when one solves the equation M̂ = 0 with respect
to B, one finds that it has no real roots, so M̂ cannot be negative.
Concerning the effective charge, it can be shown that it is the physical charge integrated over the horizon. Indeed,

Karas and Vokrouhlický [17] discuss various integral quantities for a MKN black hole, including its physical charge

QH =
1

4π

π
∫

0

ϕmax
∫

0

⋆Fϑϕ dϕdϑ . (61)

Using their formula (9) and evaluating the Ernst potentials (cf. Appendix B) for a general MKN black hole we obtain

QH = Q

(

1− 1

4
B2Q2

)

+ 2BMa , (62)

where M >
√

Q2 + a2 (cf. also [11]). In the extremal case, M =
√

Q2 + a2, and it is seen explicitly from (60) that

Q̂ = QH.
It is remarkable that when we define the angular momentum of extremal MKN black holes by Ĵ = âM̂ , i.e. in analogy

with the standard case without magnetic field, we find that the result coincides precisely with the thermodynamic
angular momentum given by Gibbons, Pang and Pope [16] in formula (5.11), when it is restricted to the extremal
case.4 We already know that, in properly rescaled coordinates, the near-horizon limit of any extremal MKN black
hole can be described just by effective parameters Q̂, â. We can substitute for â using Q̂, Ĵ as follows:

â =
sgn Ĵ√

2

√

√

Q̂
4
+ 4Ĵ

2 − Q̂
2
. (63)

Since Q̂ is a physical charge of the black hole and Ĵ is derived in [16] as a meaningful angular momentum, we can
conclude that the near-horizon limit of any extremal MKN black hole can be described by thermodynamic charges of
the black hole.

However, a puzzle remains: whereas our “near-horizon mass” M̂ =

√

Q̂
2
+ â2, the thermodynamic mass evaluated

in [16] by means of Kaluza-Klein reduction is found to be M/Ξ (with Ξ given by (54) in the extemal case) and,
therefore, is a distinct parameter. The problem of (dis)agreements among different notions of mass in the MKN
spacetimes has been recently discussed by Booth et al. [44]. By a closer inspection of their results, one can make sure

that our M̂ coincides with the “isolated horizon mass” MIH defined in [44], when we restrict it to the extremal case5.

C. Dimensionless parameters

As a consequence of the extremality condition, one of three (bare) parametersM,a,Q is not independent.6 Instead
of choosing two of these as independent parameters, it is more convenient to introduce the “Kerr-Newman mixing
angle” γKN by relations

a =M cos γKN , Q =M sin γKN . (64)

Here γKN can be taken from the interval [−π/2, π/2], if we restrict the rotation parameter to a > 0. Since the mass is
just a scale, it is ignorable. As another dimensionless parameter we consider BM . These two parameters, γKN and
BM , represent dimensionless quantities that define the parameter space. We now proceed to analyse its structure.

4 Let us note that the expression −2Ĵ appeared already in the curly bracket in formula (2.47) in thesis [45], which shortly preceded [16].

However, we did not even hint at the interpretation of Ĵ as a meaningful angular momentum.
5 In [44] the authors claim that their MIH is equal to the Komar mass of the MKN horizon. The Komar integrals for the MKN black
holes were discussed also in [17] long time ago. The results disagree. This is apparently caused by the fact that [44] uses different, more
sophisticated forms of the Komar expressions.

6 The same holds for the corresponding effective parameters.
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In Section IVA we considered a special case of the near-horizon description of Ernst-Wild solution for which the
dragging parameter ω̃ = 0. During our proof of the equivalence of the near-horizon descriptions of a general extremal
MKN black hole and the corresponding Kerr-Newman black hole (see the text below (60)) we found ω̃ ∼ M̂ â. From
this it is evident that the case with ω̃ = 0 within general extremal MKN black holes can be obtained just by putting
â = 0 in (59). We find two branches of the solution with respect to B as follows:

B =
−2Q

√

Q2 + a2 ± 2
(

Q2 + 2a2
)

a (3Q2 + 4a2)
. (65)

From equation (57) it follows immediately that these two subclasses have the near-horizon geometry of the Robinson-
Bertotti spacetime. Moreover, equations (47) and (48) indeed imply that Aψ = 0 and the component Aτ yields
constant electric field. In our dimensionless parameters the solutions (65) read

BM =
−2 sinγKN ± 2

(

1 + cos2 γKN

)

3 cos γKN + cos3 γKN
. (66)

Let us remark that in [17] Komar angular momentum for an extremal MKN black hole is evaluated; using our notation
we see that it vanishes for ω̃ = 0. Our result (65) coincides with (12) in [17]. However, therein the results were derived
differently – formula (65) was obtained by requiring the vanishing magnetic flux accross an “upper hemisphere” of a
horizon. We shall return to this Meissner-type effect below.
Let us turn to another special subclass of the MKN solutions. Since both components of the electromagnetic

potential, (47) and (48), for the MKN solutions in the near-horizon limit are proportional to the parameter Q̂ given

in (60), we can make them vanish by putting Q̂ = 0. This condition implies

B =
4a
√

Q2 + a2 ∓ 2
(

Q2 + 2a2
)

Q3
. (67)

(The ∓ sign corresponds to ω̃ = ∓1/ΞK2.) In terms of dimensionless parameters we get

BM =
4 cos γKN ∓ 2

(

1 + cos2 γKN

)

sin3 γKN

. (68)

Notice that in this case Q̂ = 0 implies the physical charge (62) also vanishes. In fact, as demonstrated in [17], the

physical charge QH = 0 even for a non-extremal MKN black hole if B = 2Q−3
(

2Ma±
√

4M2a2 +Q4
)

. In the

extremal case, this implies our result (67).
Regarding the parametrisation (64), we can view the special subclasses as curves in the parameter space of γKN and

BM given by formulae (66) and (68) respectively. Moreover, we know that using the effective parameters M̂, â, Q̂ (see
(58)-(60)) the near-horizon description of any extremal MKN black hole can be expressed as near-horizon description
of the corresponding extremal Kerr-Newman solution (see the text below (60)). Therefore the entire parameter space
can be foliated by curves which represent equivalent near-horizon geometries. This is illustrated in Figure 1. Four
of such curves, representing special subclasses (â = 0 and Q̂ = 0) analysed above, are given by four special values of
dimensionless parameter γ̂KN introduced in analogy with (64) by

Q̂ = M̂ sin γ̂KN . (69)

Substituting for Q̂ and M̂ from (60) and (58) and using the previous relation to express B we obtain

B =
4a
√

Q2 + a2 − 2Qa sin γ̂KN ∓ 2
(

Q2 + 2a2
)

cos γ̂KN

Q3 + (Q2 + 4a2)
√

Q2 + a2 sin γ̂KN

. (70)

Equivalently, in terms of dimensionless γKN and BM ,

BM =
4 cos γKN − sin 2γKN sin γ̂KN ∓ 2

(

1 + cos2 γKN

)

cos γ̂KN

sin3 γKN + (1 + 3 cos2 γKN) sin γ̂KN

. (71)

The ∓ sign is not necessary if we extend the interval for γ̂KN to (−π, π]. Then the minus sign in front of the term

with cos γ̂KN gurantees that γ̂KN = 0 implies â = M̂ .
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FIG. 1. Near-horizon geometries of extremal MKN black holes illustrated in the dimensionless parameter space (γKN, BM).
Each curve describes geometries with fixed parameter γ̂KN, i.e. with fixed ratios Q̂/M̂ and â/M̂ (see equation (69)).Various

regions in the plane correspond to different signs of parameters â, Q̂, respectively. The boundaries between the regions are
indicated by thick lines.

We can write equation (69) in an alternative form using â and M̂ as â = M̂ cos γ̂KN. Then we obtain

B =
−2Q

√

Q2 + a2 − 2Qa cos γ̂KN ± 2
(

Q2 + 2a2
)

sin γ̂KN

a (3Q2 + 4a2) + (Q2 + 4a2)
√

Q2 + a2 cos γ̂KN

, (72)

or

BM =
−2 sinγKN − sin 2γKN cos γ̂KN ± 2

(

1 + cos2 γKN

)

sin γ̂KN

3 cosγKN + cos3 γKN + (1 + 3 cos2 γKN) cos γ̂KN
. (73)

Karas and Vokrouhlický [17] found that in the two special cases with special relations among parameters B,Q, a
given by expressions (65) and (67) the magnetic flux vanishes corresponding to the black hole Meissner effect discovered
in the test-field limit. In these cases our results employing the near-horizon description support the conclusion given in
[17], since the magnetic field is encoded in the component Aψ of the electromagnetic potential, which is proportional

to the product Q̂â. The two cases (65) and (67) correspond to â = 0 and Q̂ = 0, respectively. Hence Aψ = 0 and
magnetic field necessarily vanishes.
For a general extremal MKN black hole the magnetic flux through the upper hemisphere of the horizon does not

vanish. It can be expressed as follows:

FH = 2π
Aψ |ϑ= π

2

Ξ
= 2π

Q̂â

M̂
=

4πQ̂Ĵ

Q̂
2
+

√

Q̂
4
+ 4Ĵ

2
. (74)

Since the structure of the azimuthal component of the electromagnetic potential in near-horizon limit is identical (up
to the rescaling) to the one of the Kerr-Newman black hole, the flux can be expressed using the Kerr-Newman-like
effective parameters. As stated above, these parameters can be related to the thermodynamic charges of the black
hole as derived in [16]. Therefore, we may conclude that the magnetic flux is intrinsic to the black hole configuration
and there is no flux caused directly by the external magnetic field.
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D. Remark on invariants and uniqueness theorems

As we have seen, due to the ambiguity of the scaling of the Killing vectors in the MKN spacetime, we have to
choose a particular rescaling in order to see that the near-horizon limit is given by a corresponding Kerr-Newman
solution with effective parameters given above. However, invariants are unaffected by coordinate transformations
of “ignorable” coordinates and, therefore, they can be in principle used to determine the effective parameters. For
example, consider the invariant R2D = 2/ρ1ρ2, where ρ1, ρ2 are curvature radii of the (axially symmetric) degenerate
horizon, given by the two-dimensional Ricci scalar

R2D =
2

gϑϑ

[

gϑϑ,ϑgϕϕ,ϑ
4gϑϑgϕϕ

− gϕϕ,ϑϑ
2gϕϕ

+
(gϕϕ,ϑ)

2

4 (gϕϕ)
2

]∣

∣

∣

∣

∣

r0

. (75)

In the near-horizon limit the angular metric functions have no spatial dependence, so

R2D =
2

gϑϑ

[

gϑϑ,ϑgψψ,ϑ
4gϑϑgψψ

− gψψ,ϑϑ
2gψψ

+
(gψψ,ϑ)

2

4 (gψψ)
2

]

. (76)

It is explicitly seen that altering gψψ by a multiplicative factor (due to the linear rescaling of the coordinate ψ) does
not change the result.
For Kerr-Newman solution the invariant turns out to be

2

R2D
=

[

Q2 + a2
(

1 + cos2 ϑ
)]3

(Q2 + 2a2) [Q2 + a2 (1− 3 cos2 ϑ)]
, (77)

and hence for a MKN solution the form will be the same with Q̂, â in place of Q, a.
Although these expressions are not uniquely invertible, they show that there exists a connection between the effective

parameters and the curvature invariants.
We used symmetry arguments stated in Appendix A to support the idea that the near-horizon geometry of any

extremal MKN black hole can be described using near-horizon geometry of a corresponding Kerr-Newman solution.
We should, however, note that Lewandowski and Pawlowski [43] conducted a sophisticated discussion of electrovacuum
extremal horizons including uniqueness theorem from which the mentioned statement arises as a special case.7 Namely
they solved the constraint equations for all axially symmetrical extremal isolated horizons equipped with axially
symmetrical electromagnetic field invariant with respect to the null flow (i.e. the field that is also in equilibrium).
Having set the magnetic charge to zero they found out that their family of solutions has just two parameters, one
of which is the area of the horizon and the other encodes the electric charge (they did not separate out the physical
scale as we did in our subcase with the definition of γ̂KN). Since there exists a Kerr-Newman extremal horizon
for each pair of values of their parameters, Lewandowski and Pawlowski conclude that there are no other extremal
isolated electrovacuum horizons than the Kerr-Newman ones (see also discussion of similar results including non-zero
cosmological constant in the framework of near-horizon geometries given in [37]).
The area of the horizon SH used in [43] to parametrise their solutions is an integral invariant. Unlike the example

of a differential invariant that we examined above, it can be used to give an alternative definition of the effective
parameters, as we would like to sketch here. The area of the horizon af any MKN black hole is

SH = 4π
r2+ + a2

Ξ
. (78)

Therefore the magnetic field influences it just via factor Ξ, which assures the smoothnes of the axis. In the extremal
case r2+ + a2 = Q2 + 2a2 and Ξ is given by (54). From the fact that the area of the horizon of an extremal MKN
black hole must be characterised by Kerr-Newman effective parameters, it follows the relation

Q2 + 2a2

Ξ
= Q̂

2
+ 2â2 , (79)

which is also obtained when we directly compare the MKN near-horizon metric in the form (55) with the Kerr-Newman
near-horizon metric in the form (A4) with effective parameters plugged in. If we assume that the effective charge is

the physical charge enclosed in the horizon Q̂ = QH, we can use formula (79) as a defining relation for â. Finally, we

can define M̂ =

√

Q̂
2
+ â2.

7 Indeed, in the recent preprint, [44] Booth et al., led by the considerations in [43], give our formulae (58) and (59) (which also appeared
already in the first summary of our results in 2014 – see [46]). Note that in [44] the effective parameters are defined by a formula
analogous to our equation (57), rather than in the way suggested here in Section IVD.
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Appendix A: Killing vectors and tensors in the near-horizon spacetimes

The metric of a near-horizon spacetime obtained by the procedure described in Section III A has the form

g = −χ2 Ñ2
∣

∣

∣

r0
(ϑ)dτ2 + gϕϕ|r0(ϑ) (dψ − ω̃χdτ)

2
+
g̃rr|r0(ϑ)
χ2

dχ2 + gϑϑ|r0(ϑ)dϑ
2 , (A1)

where the metric “functions” come from the original spacetime. In the models we analyse it is easy to see that

g̃rr

Ñ2

∣

∣

∣

∣

r0

= K4 (A2)

is independent of ϑ. So the metric (A1) can always be written as follows:

g = f(ϑ)

(

− χ2

K2
dτ2 +

K2

χ2
dχ2

)

+ gϕϕ|r0(ϑ) (dψ − ω̃χdτ)2 + gϑϑ|r0(ϑ)dϑ
2 , (A3)

where we choose the structural function f(ϑ) non-negative.
For the MKN class the near-horizon limiting metric can be expressed in even more special form (cf. (45))

g = f(ϑ)

(

− χ2

K2
dτ2 +

K2

χ2
dχ2 +K2

dϑ2
)

+
K2 sin2 ϑ

f(ϑ)
(dψ − ω̃χdτ)2 . (A4)

The near-horizon limit preserves stationarity and axial symmetry exhibited by Killing vectors ξ(1) = ∂/∂τ and

ξ(4) = ∂/∂ψ. Regarding the Killing equation, it turns out that the Killing vector of “anti-de Sitter type” (cf. [33])

ξ(2) = τ
∂

∂τ
− χ

∂

∂χ
(A5)

is guaranteed to exist by (A1), as well as another Killing vector of anti-de Sitter type,

ξ(3) =

(

K4

2χ2
+
τ2

2

)

∂

∂τ
− τχ

∂

∂χ
+ ω̃

K4

χ

∂

∂ψ
, (A6)

which involves constant K. We conclude that all the Killing vectors described by Bardeen and Horowitz [33] for the
Kerr case exist in a general near-horizon spacetime (see also [35]). We give the expressions (A5),(A6) explicitly here
to use them to construct Killing tensors.

The Killing vectors ξµ(1), ξ
µ

(2), ξ
µ

(3) with algebra
[

ξ(1), ξ(2)

]

= ξ(1),
[

ξ(1), ξ(3)

]

= ξ(2),
[

ξ(2), ξ(3)

]

= ξ(3) are generators

of the SO(1, 2) part of the symmetry group, whereas the axial Killing vector ξµ(4) generates the U(1) part. We have

thus reproduced, within our class of solutions, the result of [36].8

The enhancement of symmetry and the similarity to the Kerr case pose naturally the question, whether the “Carter-
type” constant of motion9 yielding the complete separability of geodesic equations exists in the near-horizon space-
times. We demonstrate that the separation can be achieved in detail elsewhere (see [45] and the paper in preparation),

here we just construct the Killing tensor which is related to the separation constant K̃ .

8 Let us note that the results of [36] are generalised in a recent work [37] which admits an interesting special case, when anti-de Sitter
properties of the near-horizon spacetime turn to de Sitter ones with the structural function f(ϑ) of (A3) being non-positive.

9 We mean a constant of motion consistent with the stationarity of dynamics. Killing vectors ξµ
(2)

and ξµ
(3)

have time-dependent components

and so the constants of motion induced by them do not conform with the stationarity.
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To construct it we start from the well-known fact that a symmetrised tensor product of two Killing vectors yields
a Killing tensor. First step is to find a non-trivial Killing tensor with time-independent components from the Killing
vectors available. The correct way to do so is to use all three Killing vectors of anti-de Sitter kind, which yields

ζικ(0) = ξι(1)ξ
κ
(3) + ξι(3)ξ

κ
(1) − ξι(2)ξ

κ
(2) , (A7)

ζαβ(0)

∂

∂xα
∂

∂xβ
=
K4

χ2

(

∂

∂τ

)2

− χ2

(

∂

∂χ

)2

+ ω̃
K4

χ

(

∂

∂τ

∂

∂ψ
+

∂

∂ψ

∂

∂τ

)

. (A8)

Covariant components of this Killing tensor can be simplified by adding the tensor product of the fourth Killing vector
with itself:

ζ(1)µν = ξ(1)µ ξ(3)ν + ξ(3)µ ξ(1)ν − ξ(2)µ ξ(2)ν + ω̃2K4ξ(4)µ ξ(4)ν , (A9)

ζ
(1)
κλ dxκ dxλ = f2(ϑ)

(

χ2
dτ2 − K4

χ2
dχ2

)

. (A10)

Now we can take the last step by employing the normalisation of a test particle velocity. We arrive at the Killing
tensor

ζ(2)µν = ξ(1)µ ξ(3)ν + ξ(3)µ ξ(1)ν − ξ(2)µ ξ(2)ν + ω̃2K4ξ(4)µ ξ(4)ν + f(0)K
2gµν , (A11)

where we assumed the decomposition f(ϑ) = f(0) + f(1)(ϑ) with f(0) = constant. It holds

ζ
(2)
αβ u

αuβ = K̃ . (A12)

Regarding how the Carter constant in the Kerr-Newman spacetime is also induced by a Killing tensor (cf. [39, 50]),
we can make sure that the Killing tensor ζCικ which induces the Carter constant in the Kerr-Newman spacetime

reduces, in the near-horizon limit, to the Killing tensor ζ
(2)
ικ defined above (see also [51]).

Appendix B: Harrison transformation

Here we give some relations between the quantities in the “magnetised” spacetime generated by the Harrison
transformation and quantities in the original, “seed” spacetime. We also show how the rigidity theorems are preserved
in the transformation from the Kerr-Newman solution to a general MKN black hole. For details on the Harrison
transformation, see [5, 6, 8] and [52].

1. Generating “magnetised” solutions

The complex Ernst gravitational potential for the Kerr-Newman solution that we employ reads

E = −
(

r2 + a2 − a
2Ma+ i

(

2Mr −Q2
)

cosϑ

r + ia cosϑ

)

sin2 ϑ−
(

4Ma2 + iQ2 cosϑ
) a− ir cosϑ

r + ia cosϑ
, (B1)

the corresponding complex Ernst electromagnetic potential is

Φ = Q
a− ir cosϑ

r + ia cosϑ
. (B2)

The Harrison transformation that we use is based on the axial Killing vector ∂/∂ϕ and employs a real continuous
parameter B. Utilising the potentials E , Φ and parameter B we construct a complex function Λ by

Λ = 1 +BΦ− 1

4
B2

E . (B3)

The transformation consists in the transition from the potentials E , Φ to the new potentials E ′, Φ′ representing a new
solution. It has the following form:

E
′ =

E

Λ
, Φ′ =

Φ− 1
2BE

Λ
. (B4)
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The new dragging potential ω′ (again a real quantity) for a general magnetised solution is given by two real partial
differential equations

∂ω′

∂r
= |Λ|2 ∂ω

∂r
+

2
√−g

gϕϕgϑϑ

(

ℜΛ∂ℑΛ
∂ϑ

− ∂ℜΛ
∂ϑ

ℑΛ
)

, (B5)

∂ω′

∂ϑ
= |Λ|2 ∂ω

∂ϑ
− 2

√−g
gϕϕgrr

(

ℜΛ∂ℑΛ
∂r

− ∂ℜΛ
∂r

ℑΛ
)

= (B6)

= |Λ|2 ∂ω
∂ϑ

− 2
N
√
gϑϑ√

gϕϕgrr

(

ℜΛ∂ℑΛ
∂r

− ∂ℜΛ
∂r

ℑΛ
)

, (B7)

where quantities involving the metric coefficients are taken from the original (“seed”) metric (cf. equation (18)), ℜ
and ℑ denote real and imaginary parts.
Real and imaginary parts of potential Φ are related to the components of the electromagnetic field as follows:

ℜΦ = Aϕ ,
∂ℑΦ
∂r

= −√
gϕϕgrrF(ϑ)(t) ,

∂ℑΦ
∂ϑ

=
√
gϕϕgϑϑF(r)(t) . (B8)

(This holds both for the original and transformed, “primed” quantities. Note that under the Harrison transformation
based on ∂/∂ϕ the products gϕϕgrr and gϕϕgϑϑ do not change.) Here Aϕ is the (coordinate) azimuthal component
of the electromagnetic potential, whereas F(ϑ)(t) and F(r)(t) are frame components of the field strength tensor in the
locally non-rotating tetrad (29)-(30). We substitute for Φ′ from (B4), with E , Φ and Λ expressed from (B1), (B2) and
(B3). Equation (B8) then implies

F ′
(r)(t) =

1
√
gϕϕgϑϑ

∂

∂ϑ

[

1

|Λ|2
(

−ℑΛℜΦ+
1

2
BℑΛℜE + ℜΛℑΦ− 1

2
BℜΛℑE

)

]

. (B9)

2. Remark on rigidity theorems

We wish to demonstrate that rigidity theorems for the dragging potential and the generalised electrostatic potential
as well as relations (33), that hold for the Kerr-Newman solution, are preserved by the Harrison transformation to a
MKN black hole. From equation (B7) it follows

∂ω

∂ϑ

∣

∣

∣

∣

N=0

= 0 =⇒ ∂ω′

∂ϑ

∣

∣

∣

∣

N ′=0

= 0 ; (B10)

so a MKN black hole satisfies the rigidity theorem for the dragging potential because the Kerr-Newman solution does.
(Note that N ′ = |Λ|N where |Λ| > 0.)
Regarding the generalised electrostatic potential φ′, let us first calculate its derivative from the definition (26),

∂φ′

∂ϑ
= −∂A

′
t

∂ϑ
− ω′

∂A′
ϕ

∂ϑ
− ∂ω′

∂ϑ
A′
ϕ . (B11)

Expressing coordinate components of the field strength tensor in terms of the tetrad component F(ϑ)(t) and using
(B8), we arrive at the following equation:

∂φ

∂ϑ
=

N
√
gϑϑ√

gϕϕgrr

∂Φ′

∂r
− ∂ω′

∂ϑ
A′
ϕ , (B12)

where Φ′ is given by (B4).
Therefore

∂ω′

∂ϑ

∣

∣

∣

∣

N ′=0

= 0 =⇒ ∂φ′

∂ϑ

∣

∣

∣

∣

N ′=0

= 0 ; (B13)

MKN black holes satisfy the rigidity theorem for the generalised electrostatic potential as a consequence of the rigidity
for the dragging potential.
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Let us take the derivative of the equation (B7) with respect to r

∂2ω′

∂r∂ϑ
=

∂

∂r

(

|Λ|2
) ∂ω

∂ϑ
+ |Λ|2 ∂2ω

∂r∂ϑ
− ∂

∂r

(

N2
) 2

N
√
grr

√

gϑϑ
gϕϕ

(

ℜΛ∂ℑΛ
∂r

−ℑΛ∂ℜΛ
∂r

)

−

−N2 ∂

∂r

[

2

N
√
grr

√

gϑϑ
gϕϕ

(

ℜΛ∂ℑΛ
∂r

−ℑΛ∂ℜΛ
∂r

)]

.

(B14)

Note that the product N
√
grr must be finite and non-zero for

√−g non-degenerate. When we evaluate the resulting
equation at N = 0 (regarding (B10)), we get

∂2ω′

∂r∂ϑ

∣

∣

∣

∣

N ′=0

=

(

|Λ|2 ∂2ω

∂r∂ϑ

)∣

∣

∣

∣

N=0

− ∂

∂r

(

N2
)

[

2

N
√
grr

√

gϑϑ
gϕϕ

(

ℜΛ∂ℑΛ
∂r

−ℑΛ∂ℜΛ
∂r

)]∣

∣

∣

∣

N=0

. (B15)

The radial derivative of N2 vanishes on the degenerate horizon, so we can state

∂2ω

∂r∂ϑ

∣

∣

∣

∣

N=0,κ=0

= 0 =⇒ ∂2ω′

∂r∂ϑ

∣

∣

∣

∣

N ′=0,κ=0

= 0 . (B16)

This is the result we wanted to prove: The radial derivative of the dragging potential for the MKN black hole does
not depend on ϑ when evaluated on the degenerate horizon because the same holds for the Kerr-Newman solution.
Similarly, we take the derivative of equation (B11) with respect to r to get

∂2φ′

∂r∂ϑ
=

∂

∂r

(

N2
) 1

N
√
grr

√

gϑϑ
gϕϕ

∂ℑΦ′

∂r
+N2 ∂

∂r

(

1

N
√
grr

√

gϑϑ
gϕϕ

∂ℑΦ′

∂r

)

− ∂2ω′

∂r∂ϑ
A′
ϕ − ∂ω′

∂ϑ

∂A′
ϕ

∂r
. (B17)

We restrict this equation to N = 0, so that it reduces to the form

∂2φ′

∂r∂ϑ

∣

∣

∣

∣

N ′=0

=
∂

∂r

(

N2
)

(

1

N
√
grr

√

gϑϑ
gϕϕ

∂ℑΦ′

∂r

)
∣

∣

∣

∣

N=0

−
(

∂2ω′

∂r∂ϑ
A′
ϕ

)
∣

∣

∣

∣

N ′=0

, (B18)

from which we see that

∂2ω′

∂r∂ϑ

∣

∣

∣

∣

N ′=0,κ=0

= 0 =⇒ ∂2φ′

∂r∂ϑ

∣

∣

∣

∣

N ′=0,κ=0

= 0 . (B19)

Hence the radial derivative of the generalised electrostatic potential does not depend on ϑ on the degenerate horizon
of an extremal MKN black hole.
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[22] J. Bičák, V. Karas, The influence of black holes on uniform magnetic fields, in Proceedings of the 5th M. Grossmann

Meeting on General Relativity, eds. D. G. Blair and M. J. Buckingham (World Scientific, Singapore, 1989).
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