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I. Introduction 

Toroidal rotation velocities of ASDEX plasmas of up to 2 x 107 cms- 1 have been 
measured under a variety of conditions and for both co- and counter neutral beam 
injection. The velocities were obtained from the Doppler sh ifts of OVIII 2976 A and/or 
C VI 3434 A excited by charge exchange recombination (CXR). Up to five lines of sight 
have been used (table I}, each of which intersects the axis corresponding to a source in 
the north-west neutral injection beam line. The main objective has been to compare 
the global momentum confinement with the energy confinement of ASDEX plasmas 
for different plasma parameters and heating scenarios. 

II. Estimates of Momentum Confinement Time 

The experimental global momentum confinement time was estimated from t .p= L / f 
where L is the total toroidal angular momentum of the plasma and r the momentum 
input from the beams. L ~ 27rR2 mp/ J

0
a V<1>(r)n,(r)hrdr where f is the ratio of the 

average atomic mass to that of a pure hydrogen plasma at the same n,. With the as­
sumption that only carbon and oxygen impurities, present in roughly equal dens ities, 

'b Z f !±22. 0 16(Z.u-l) contn ute to •ff• ~ L+ g + · (l+g) · 

The ratio g = no / nH was typically rather small (~ 1} in the H 0 ---+ D + plasmas and 
was es timated to about ± 50 % from neutron measurements. z.1 I was obtained from 
infra-red continuum measurements. Errors in g and Z,1 f do not a'fect l.P too criti­
cally and these ~wo quantities were assumed to be independent of radius. The main 
uncertainty in to1 arises from that in V</> ( r). 
One problem with measuring V</> with the observed CXR lines is that they are also 
excited in the plasma edge region even without NI. It has been poss ible to investigate 
the importance of edge excited lines, with plasmas heated by the SE beam which is 
not seen directly by any of the lines of sight in table I. Interference from the edge 
excited transition together with low signal to noise for the inner channels, due to beam 
penetration limitations (E0 = 41 keV), give rise to problems in measuring V</> at small 
radii, particularly for CV! 3434.A. However, at least for r ~ 14cm, V</> is believed to 
be accurate to within a systematic uncertainty~ ±l06 cms- 1 with statistical errors of 
a similar size. T he estimated errors in L.P are ~ ± 15 % statistical with a further ~ ± 
20 % sys tematic. 
Apart from neoclassical theory, which gives estimates of t.P~ 103 x higher than expe­
riment, the only theory which allows a quantitative estimate of L</> is the gyroviscous 
theory of Stacey et al. [l J. Here t.PG~ 2R;B0 (Zef1)/(T; ) , where the brackets imply 
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volume averages. T; can also be estimated from the CXR diagnostic and the uncer­
tainty in L <PG from experimental sources amounts to ~ ± 25 %. 
An estimate of L<P can, however, also be obtained from the diffusive transport of par­
t icles. In the source free case, with D = const , the particle confinement time is given 
by 1:; (r) = :~ (1 - :~) [2] . Global dynamical confinement times LE> t; and t; can 
then be estimated from t~= J

0
at/J t; (r)rdr/ J

0
at/Jrdr with t/J = n eT,neV,p and ne 

respectively. Assuming parabolic profiles of T, Vq, and ne this yields t i;;='t;= 1
3
6 a

2 / D 
and t;= ia2 /D. For peaked energy and momentum sources these decay times should 
become close to the stationary confinement times tE and tq, considered in this paper. 

III. Results 

Momentum confinement results have been obtained for H 0 injection into mainly D+ 
but also some H+ plasmas with co- (L-mode) and counter injection. A study of H­
mode discharges has also started. 
Rotation measurements for a co-injection (L-mode) run at fixed power and different 

ne are shown in Fig. 1. The rotation velocity falls with increasing ne bas ~ n.; 112
) 

while the velocity profile is relatively broad (Vq,(r) / Vq,(o) ~ (1 - r 2/ a 2 ) 0 • ) and shows 
no measurable change over the ne range studied (Fig. 2). Ti also shows a slow decrease 
with ne so that the ratio of toroidal velocity to deuteron thermal velocity decreases 
with ne from~ 0.44 to 0.30 (r = 34 cm). The average ratio of toroidal to oxygen ion 
thermal velocities is therefore ~ 1.0. 
Unlike Vq,, t<P shows no clear ne dependence (Fig. 3), due particularly to n, profile 
effects and a strong decrease in Zeff with increasing ne (from ~ 4 to 1.5). The global 
energy confinement time tE likewise shows no marked ii.e dependence and is larger 
than t<P though within the combined error limits. t<PG tends to show a decrease with 
n0 , a result of Zeff falling off with ii.0 faster than T;, but generally the agreement 
with experiment is better than a factor of 2. The diffusive transport model, with 
D = 0.5m2s-1 , gives tE:=t;= 60ms, in surprisingly good agreement with experiment. 
An extension of the gyroviscous theory was used by Stacey to attempt to explain the 
decrease in tE with input power for TFTR plasmas in terms of increasing viscous dis-

sipation at higher rotation velocities [3]. In this case tEo-tEo /(1 + te~~£I· ), where 
w is the ion gyrofrequency and f p a profile factor. 
The observed density dependence of Vq, for ASDEX plasma in principle provides a 
way of testing this theory at constant input power because in the ohmic ("reference") 
phase Vq, << Vq,(NI) and1:Eo~tE0 , which is essentially independent of ii.e (Fig. 4). 
However , us ing experimental values for Zeff,tEo and Vq,,tEG is also essentially inde­
pendent of iiei though with a reduction from the ohmic heating case about 2x lower 
than observed (Fig. 4) . This is again due to the strong ii.e dependence of Zef !> which 
influences the effective w. 
Significantly different from the co-injection results are those obtained with counter 
injection. Here the velocities rise to values more t han 2x those obtained at the same 
density with co-injection (Fig. 1) leading to values of t <P of up to 90 ms, similar in 
magntiude to tE (Fig. 3). In these discharges, the increased energy and momentum 
confinement is accompanied by improved particle confinement which leads to a steep 
rise in ii.e with time. The corresponding impurity accumulation, which occurs for light 
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effects and a strong decrease in Zen with increasing fie (from 2' 4 to l. . The global
energy confinement time TE likewise shows no marked fie dependence ind is larger
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sipation at higher rotation velocities (3].111 this case TEGNTEU /(1 + w), where
w is the ion gyrofrequency and IF a profile factor.
The observed density dependence of V4; for ASDEX plasma in principle provides a
way of testing this theory at constant input power because in the ohmic (“reference”)
phase V¢ << V¢(NI) and 15521330, which is essentially independent of fig (Fig. 4).
However, using experimental values for 28”o and V¢,TEG is also essentially inde«
pendent of m, though with a reduction from the ohmic heating case about 2x lower
than observed (Fig. 4). This is again due to the strong its dependence of Zeff, which
influences the effective w.
Significantly different from the co-injection results are those obtained with counter
injection. Here the velocities rise to values more than 2X those obtained at the same
density with co—injection (Fig. 1) leading to values of I} of up to 90 ms, similar in
magntiude to TB (Fig. 3). In these discharges, the increased energy and momentum
confinement is accompanied by improved particle confinement which leads to a. steep
rise in r‘zc with time. The corresponding impurity accumulation, which occurs for light
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a.swell a.s heavy impurities, leads to large axial radiation losses and termination of the 
discharges by major disruption. Gyroviscous theory gives too small a tc/> because Zef I 
in the counter-l'iI ca.se is not much larger than in the co-NI ca.se while Ti is approxi­
mately the same. The diffusive model gives tcf>~'te, a.s observed. 
Co-inject ion discharges where the density is ramped up with time, as well as pellet 
injected discharges, (both of which can reach similar densities to the counter-injection 
cases) attain similar velocities to those in steady state co-discharges, well below the 
corresponding counter-injection velocities (Fig. 1). 
H-mode discharges (single-null) with a high ELM frequency (::::: 400Hz) show no signi­
ficant differences in velocity to corresponding L-mode (double-null) discharges except 
at the relatively large radius of 35 cm. Here a dist inctive increase of~ 2x in V,p is seen 
which disappears when the discharge goes back into the L-mode. Such an increase in 
Ve/> could be interpreted as a decrease in edge momentum diffusivity which accompa­
nies a decrease in edge electron thermal diffusivity and particle diffusion. The lack of 
significant increase in global tc/> for such discharges is also to be compared with a lack 
of increase in tE compared with the L-mode. 

IV. Summary 

In the results studied tc date tc/> is always about the same size as tE· In two scenarios 
where improved energy confinement is seen relative to the L-mode, improved momen­
tum confinement is also found (and indeed improved particle confinement). There is 
a global improvement with counter injection but only an edge improvement for the 
H-mode with high ELM frequency. Gyroviscous theory gives agreement with experi­
ment within about a factor of 2 though systematic differences are apparent. A s imple 
diffusion model also gives satisfactory agreement. 
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Channel radial position spatial angle with 
(outer minor radius) resolution toroidal direction 
(cm) (cm) 

CXRl 42.0 ±2.0 40 
CXR2 34.5 ±2.0 lo 
CXR3 24.0 ± 2.0 40 
CXR4 14.0 ±3.2 10° 
CXR5 4.0 ± 4.0 24° 

Table I: Details of lines of sight used for CXR spectroscopy 
(The separatrix is at r = 40 ems and the limiter typically at r = 46.0 ems.) 
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(311111111911 radial 1105111011 spatial angle with
(oulcr minor radius) resolution toroidal direction
(cm) (cm)
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