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Intloduction: Recently resistive ballooning modes have become the object of intensified
theoretical investigation The reason for this increased interest is that they may be linked
to confinement degradation observed in tokamak experiments at high plasma pressure
in previous publications [1.2] we investigated the ballooning stability of ASDEX highv
fly discharges and demonstrated that the hard 3 -saturation observed in ASDEX can be
naturally explained within the framework of resistiIve ballooning modes. Here we concentrate
the investigation to the region near the separatrix. Furthermore we include a detailed
discussion of resistivity effects on the second stable regime This analysis is based on an
analytic large aspect—ratio model for plasma equilibrium in the neighbourhood of a given
flux surface (local equilibrium) [3]. Finally, we comment on the resistive stability of toroidal
24D ASDEX equilibria with experimentally determined current and pressure profiles.

Local equilibljia and second region of resistive ballooning stability: To eluci—
date the characteristic features of the problem in terms of a limited number of parameters
we refer to the theory of a local equilibrium presented in [3]. The shape of the flux surfaces
is controlled by assigning particular values to the expression
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Here (r,I9) are polar coordinates with the radius r normalized by a geometrical parameter
r0. 0I is the angular position of the X»p0int and k the distortion of the flux surface: k : 1
is the separatrix case and k : 0 is a circle. The resulting resistive ballooning equations are
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where W,D,b,h and f are defined in [5] and
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with a : —2u0r0r2p’/Bp2, ,8 : VTpop/B2, the magnetic Reynolds number SA 2 TR/TA
and the ratio of the specific heats "7T : cp/cv and the growth rate ’1 is normalized to the

Alfvén frequency 7,; : rozs/(rzuop)

In the limit of circular flux surfaces
(k = 0) these equations reduce to the
s — a model. with the shear 5 related
to the current density parameter A by
s : 2 — A. We start the investiga
tion of the second regime in this limit.
Fig.1 shows the real part of the growth
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V,./"/ ‘ rate versus (1 for ideal ballooning modes
, 4/ (dot—dashed line) and resistive modes

,L/ (solid lines]. The hat—shaped curve
7,1,1. ”7] shows second stability behaviour. The

,r #q :3. m‘ slight bulge in this curve at Q ~ 0.6 indi—
I‘ huhr u cates the transition to overstability [6].
X l i: I“ i ”.4. This resistive curve closely parallels the

N ideal stability curve and is reproduced
by the A’-criterion for resistive balloon-
ing modes [6,7] to reasonable accuracy:
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with & : qc/A/cm , (fig/7&3 : n2n52q2,82(1 +2q2)/SA and where A’ is in general to be
evaluated numerically [8]. This dispersion relation (4) is derived in the limit '7 << ’75 2
W3, where 75 denotes the sound frequency, ln the other limit ('7 >> ’75) a compressibility
mode, not driven by A’. can occur. Its growth rate is governed by the dispersion relation
[9]
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This mode can also be seen to occur in our numerical results in Fig.1, where the branch
occuring for a > 2.6 (,3 : 3 x 10’3) is compared with the solution of (5) (longedashed
line). It should be noted that in general 7 << 75 for typical tokamak parameters, but in
the second stable regime the high arvalues make the region where q ~ “is more accessible.
From Fig.1 it can be seen that the dispersion relation (5) continues to apply reasonably
well to the regime 'y > 75 where 7 o< n/(SAqsgl. Thus we conclude that the existence of
a second stable regime depends on "is and SA — for large enough values of either parameter
a second stable region exists below the critical value of a at which compressibility modes
(5) are destabilized. This is separately demonstrated by the short dashed curve in Fig.1.
representing the compressibility mode for ,3 : a :x' 10’ 3. The corresponding hatrshaped
solutions are essentially unchanged with respect to this increase in ,3. so that effectively a
second stable window exists for this case. It should be noted that the picture is in general
more complicated, since the region of instability has to be maximized by optimizing the free
parameter 00 which appears in eqs.3.4. Our conclusions presented above. however, are not
affected by the variation of ()0. Furthermore we find similar results on the basis of a model
where the Shafranov shift of circular flux surfaces is taken into account.

We now move on to study the non—circular
I case. i.e. A: j.» 0. Fig.2 shows for I; :
i 0.885, A : 0.8 the growth rate in the com~
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“ “Rm stable resistive ballooning regime. There
“H i 7 7 are. however. branches with f > 7‘5 which

l . ‘ 7 :M‘l do not show second regime stability as a is
A ‘ h Al " ""l increased: these branches can be supressed

. I by increasing the sound frequency,
‘ ' [\\ u: I n For the ideal ballooning mode coalescence

nu / \r l of the first and second stable regime occurs
as the separatrix is approached (k i 1) for
a sufficiently high current density parame
ter [5].

It has only proved possible. for the cases examined. to obtain this coalescence for the
resistive ballooning mode by increasing the local {30 to 5%. which is rather larger than the
expected values near the separatrix. For 13.; < 5976 and large k :2» 0.9 an unstable mode.
which maybe related to the 7 0: 51471.92 (as SA a 00) branches of ReflO. occurs. The
quantitave dependences of these modes on the parameter A: and the question whether and
how their behaviour is related to the appearence of compressibility modes is still under
Investigation.
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Ballooning stability in the ASDEX separatrixWregion: We now briefly examine
the ballooning stability of a typical ASDEX highfll7 discharge by solving the full resis—
tive ballooning equations on the basis of a separatrix—bounded lVlHD equilibrium [1.2]. To
make parametric studies we alter the value of the pressure gradient from the experimentally
observed quantity using a multiplication factor Cr“ Results for the real part of the growth
rate versus this factor CI, are shown in Fig.3 for various flux surfaces from r/a *v 0.87 to
r/a 2 0.994.
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in line with our previous results [1.2] we find a transition from purely growing to overstable
modes, When compressibility effects become important. .

As soon as the bifurcation into the
M” i '5 l ‘ I "I i I i I ll complex 1—plane occurs. the real

i ' solutions form separate branches
“"‘ ””5” , ' which move to larger multi-

5 “,3" AW” j - plication factors with decreas—
l ,1 ing growth rates (dashed lines).

3 ii’“=""7” whereas the overstable branches
1 (solid lines) show the opposite be-

haviour and are therefore the more
‘ ,» unstable solutions.
‘ From the observation that the bi-

furcation to overstability moves to
, smaller values of Re{7} when r/a

7:775:77: i. increases (—» 77 decreases and the
Ill) 7 , l“: - l strong compressibility dependence

of the bifurcation point we con-
”l ' ‘ ' “'5' ' ' 1‘ " ' ‘ ' ' ' ‘ " f” clude that the overstable branches

“1.:Ili'».w'1’ mm are assocrated With the propaga—
tion of ion sound waves [6]

Interpreting these results in terms of absolute pressure gradients we find that the higher—
shear surfaces close to the separatrix can support larger pressure gradients.
@clusions: To summarize we have found that in the separatrix region resistive balloon~
ing modes are generally more stable than in the plasma confinement region. However. we
have demonstrated that for a second resistive ballooning stable regime to exist sufficiently
large values for 75 or SA are required. Ideal calculations for the local separatrix equilibrium
model show Bishop's results [4.5] for coalescence of the first and second stable regimes
as the separatarix is approached (k a 1). In the resistive case we find that separatrix
effects are only strong enough to completely stabilize a ballooning mode at rather large
values of [30(> 5%). Consequently the coalescence effect is restricted to this region of
parameter space Whether the small growth rates, which in general accompany resistive
ballooning modes near k ~_— 1, inhibit the LH transition predicted in Refs. 4,5. requires
additional analysis. Finally we found ASDEX highrflp equilibria to be resistively unstable
with small growth rates below the maximum value of fly. in the separatrix region larger
absolute pressure gradients are supported so that growth rates decrease and corresponding
effects on the transport do not appear to be significant here.
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