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An ohmic study is presented to define the experimental dependence of 
the value of (~ + 1i/2) derived f rom the Sha fra nov equation. The Alf ven 
Wave He ating pulse causes an i ncrease in both (p + 1i / 2) and density, and 
with R.F ., the value of (p + 1i/2) is sign ificantly grea te r than the 
o hmi c scaling . However, the maximum R.F. values never exceed the ma x imum 
achieved o hmic va lues . As this l i mit is approached , the m-2 activity 
increases , as in the ohmic ca se , and we show that thi s increa se 
co ["["elates we ll with the inc r ease in (p + li/2) . 

Results : This paper studies the inc rease in (p + li/2) measured during 
Alfven Wave Heating (f-2.5 MHz) on the TeA t o kamak (B , a = 0.61 , 0.18 rn, 
BQI S 1.51 T, Ip < 135 kA, D2 ) , and compares the results with ohmica lly 
heated discha["ges . When the B.F. pulse is applied, there is a significant 
and rapid inc ["ea se in the value of the Shafranov (p + li/2) calculat ed 
f["om t he vertical field and plasma c urrent . The origins of this increa se , 
whether ma i nly P, mainly li/ 2 or both , are discussed in a companion paper 
11 ] Figure 1 i llustrates the changes in (p + li/2) when different B .F. 
po we r leve ls a re applied, fo r a range of plasma currents a nd th ree 
excitation conditions (driving predominantly n- 4, n- 1 and n=2 wa ves). The 
increase in (p + li /2) i s largest f or low plasma currents and most 
effective fvr the n- 4 modes. Since , under our standard conditio ns, the 
n- 4 resonance su r face s are i n the ou te r part o f the pla sma , t his result 
is at first sight s urprising. Th is whole issue is fU rther complicated by 
the substantial increase in den sity which occurs during the R.F. pul se . 

In o r der to proceed furthe r, we have studied the va lues of (p + l i /2) 
obta ined in qua si - stationary ohmic discharge s f or thre e value s of 
to r oidal fi eld (0 .78, 1.16 , 1 .51 T) and plasma currents from 40-135 kA. 
The wi de range o f values obta ~ned , Fig . 2a , ca n b e redu c ed to an 
extremely ~ood descript ion o f the density d epe ndence by using the 
quantity A • (I p/130 kM where A*-( P + li/2 - 0 . 7) The value 0 .7 was 
selected to give the least devi a tion in the data . This quantity does not 
itself appear to have a ny absolute merit. Howe ver, we can redra w Fig. 2b 
sca led by 1/B0 in wh ich A"'· (I p /130 kA)' (1.51 T/80 ) is a well defi ned 
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function of ~/B0' the Murakami parameter. That is to say the value of 
A*(~) divided by the value of ~p at the Trayon limit is determined by 
the fraction of the operationa l densitl range in ohmi c condition s . The 
selected value 0.7 chosen to generate A corresponds to the minimum value 
of (P+ 1i/2) at high current (qa=3), being roughly 1. /2 for qa = 3 . At 
lower current s (p + 1 i /2 - 0.7) does not correspond to t , since the 1 i / 2 
contribution is then larger (Fig. la). 

When we look at non-stationary ohmic discharges , (p + 1i/2) can be 
higher than predicted by the stationary scaling, for example during a 
rapid density ramp-up . An example is sho wn as a dashed line trajectory in 
Fig. 2b . 

At the higher levels of R.F. power, the discharge evolution follows 
a much higher trajectory in the same plane and the maximum (p \+ lil2) 
values achieved were shown in Fig. 1 . Figure 2 shows the same results 
versus the p la sma density and a certa i n a lignment is already visible. 
with some h i ndsight we replot the data on the A *. (Ip/130 kM : ne plane, 
Fig . 4, with a typica l trajectory shown as a dashed .l:-ine. The R.F . 
accessed region is way above the quasi-stationary ohmic scaling, and 
exceeds the trajec t ory for hard gas-puffi ng . The dif f erent plasma 
curren t s and excitation modes are now indistinguishable. The most 
noticeable feature is that t he maximum A*.(Ip /130 kA) does not exceed the 
maximum ohmic value, that i s , the ohmic value near t he densit y limit 
(n;-8xI0 19m- 3 ) At the lowest densities the effect of the R . F . i s most 
marked , that is, when the ohmic discharge is "weakest ". 

The data shown i n Fig . 4 are those obtained in pulses wh ich d i d not 
disrupt . On trying t o exceed this experimentally o b served limi t , a 
dis rup t ion will ensue, characterised by a progressive increase in the 
Bea (m=2) amplitude . This form of disruption is similar to the density 
limit disruption , but at a lower density, one at which the r e would be n o 
significant m=2 activity in a quasi-stationary ohmic discharge . However, 
when we consider A*· (Ip/130 kA) as the determining parameter the · 
phenomenology of the two types o f disruption is similar, Fig. 5. The 
details of the exci t ed spectrum are, however, important as already noted 
[2], and can systematically alter the dependence of Fig. 5 , but not by 
very much . The observa t ion that the disruptions a re most likely to occur 
near a mode threshold corresponds to the observation that the hig hest 
point in the A*.(Ip /l30 kA) : n; plane is also frequently close to a mode 
threshold. 

The power levels in Fig. I (a,b,c) are much lower than t he available 
R.F. power. It has always been considered that the n=2 excitation is 
preferable in t hat much more R.F . power can be delivered than for n =1, 
n=4 . On reanalysing the highest power data, the trajkctories of those 
shots do, nonetheless, lie within the distribution of Fig. 4. We had 
found a way of increasing the power acceptance in conditions in which the 
increase in (p + li/2) had virtually saturated. In general, the longer 
R.F. pulses with lower ramp-rates produced less marked increases in (P+ 
li/2), and tolerated a greater leve l of R.F. power. 
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pj SCllssioo : These results show that all the quasi-stationary ohmic data 
can all be described by a simple l aw r elating (p + 11 /2) to the Troy on 
limit and the Mur akami fac tor for a given density. In this 
parameterisation, the maximum achieved (p + li /2 ) is simply studied f or 
varying p l asma conditions , and we find that , although we exceed the o hmic 
conditio n s for low density p!asmas , we do not exceed the maximum value 
f or ~~9xl019m-3 . 
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Fig. 4 R. F. discharges in the 

A* I p : ne plane , for 

different plasma currents 
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Fig . 5 Evolution of the m=2 amplitude as a function of a ) A * . Ip and b ) 

ne for o hmic and R . F. discharges . 
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