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NONEXISTENCE OF SHRINKERS FOR THE
HARMONIC MAP FLOW IN HIGHER DIMENSIONS

PIOTR BIZON AND ARTHUR WASSERMAN

ABSTRACT. We prove that the harmonic map flow from the Eu-
clidean space R? into the sphere S? has no equivariant self-similar
shrinking solutions in dimensions d > 7.

This note is concerned with the harmonic map flow for maps u from
the Euclidean space R? to the sphere S¢. This flow, defined as the
gradient flow for the Dirichlet energy,

B(w) = [ [VuP, g
R4
obeys the nonlinear heat equation
uy = Au+ |Vul?u, (2)
where (t,z) € R x R and u(t, z) € S¢ — R, This equation is scale
invariant: if u(t,z) is a solution, so is uy(t,x) = u(t/A* x/)\). Under
this scaling F(uy) = A 2E(u) which means that d = 2 is the critical

dimension and higher dimensions are supercritical.
We consider equivariant maps of the form (where r = |z|)

u(t,z) = <§ sinv(t,r), cosv(t, 7’)) . (3)
r
This symmetry assumption reduces Eq.(2]) to the scalar heat equation
d—1 d—1
Vp = Upp + L sin(2v) . (4)

A natural question, important for understanding the global behavior of
solutions and formation of singularities, is whether there exist solutions
of Eq.() which are invariant under scaling, i.e. v(t/A\? r/)\) = v(t, 7).
Such self-similar solutions come in two kinds: self-similar expanding
solutions (expanders for short) of the form

v(t,r):g(%), t>0, (5)
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and self-similar shrinking solutions (shrinkers for short) of the form

,
v(t,r) = , t<0. 6
=1 (5) ©)
Expanders are easy to construct in any dimension and well understood
(see [I] and [3]) so here we will consider only shrinkers. Substituting
the ansatz (@) into Eq.(d]) and using the similarity variable y = r/v/—t
we get an ordinary differential equation for f(y) on y > 0

'+ (% B %) = dz;l sin(2f) = 0. ®

It is routine to show that both near the center and near infinity there
exist one-parameter families of local smooth solutions satisfying

f0)=0, f(0)=a>0, (8)
and
floo) =, lim " F'(y) = —(d = 1)sin(2), 9)

where a and b are free parameters. The assumption that a > 0 is made
for later convenience (without loss of generality). The question is: do
there exist global smooth solutions satisfying the conditions () and
@)? This question has been answered in affirmative for 3 < d < 6
by Fan [2]. Using a shooting method, Fan proved that there exists a
countable sequence of pairs (ay,, b,) for which the local solutions satis-
fying (8) and (@) are smoothly connected by a globally regular solution
fn(y). The positive integer n denotes the number of intersections of
the solution f,(y) with 7/2. More detailed quantitative properties of
the shrinkers were studied in [3].

Remark 1. To justify the conditions (8) and (@), let us recall that
singularities of the harmonic map flow have been divided by Struwe [0]
into two types depending on whether the quantity (—¢)|Vu|* remains
bounded (type I) or not (type II) as t ,* 0 (here we assume without
loss of generality that the blowup occurs at time ¢ = 0). Calculating
this quantity for the equivariant ansatz (3]) and (@) one finds that the
blowup is of type I if and only if

d—1
Y2
for some constant C' and all y > 0. The condition (I0]) together with
the requirement of smoothness is equivalent to the conditions (&) and

Fy)?+ sin®f(y) < C (10)
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[@). In the case of (8)) this is evident. To see how (@) comes about, let
us rewrite Eq.(7) in the integral form

d—1 Y
£ =S A, Aly) = [ st in (2 (s))ds.
0
For f'(y) to be bounded at infinity, it is necessary that lim, ., A(y) =0
and then () follows from 1’'Hopital’s rule. Thus, the conditions (8) and
[@) are equivalent to the requirement that the blowup mediated by the
shrinker ([6)) is of type I.

One of the key ingredients of the shooting argument in [2] is that the
linearized perturbations about the equator map f = 7/2 are oscillating
at infinity. This happens for d*> — 8d + 8 < 0 which implies the upper
bound d = 6 = L4 + 2\/§J (of course, only integer values of d make
sense geometrically). There is numerical evidence that there are no
smooth shrinkers for d > 7, however to our knowledge this fact has not
been proved. The aim of this note is to fill this gap by proving the
following non-existence result:

Theorem 1. For d > 7 there exists no smooth solution of equation ()
satisfying the conditions [8) and Q).

Proof. The proof is extremely simple. Suppose that f(y) is a global
solution satisfying (8) and define the function h(y) = 3*f'(y). Multi-
plying Eq.(T) by y? and differentiating we get

y*h" = a(y)h + By)h, (11)

where

oz(y):%y(y2—2d+10) and  B(y) = d—7+(d—1)(1+cos2f) . (12)

We assume that d > 7, so S(y) > 0. It follows from (&) that h(0) =
R'(0) = h"(0) = 0 and A" (0) = 6a > 0, hence h'(y) > 0 for small y.
We now show that A'(y) cannot go to zero. Suppose otherwise and let
Yo be the first point at which h'(yo) = 0. If d > 7 or f(yo) # 7/2, then
B(yo) > 0 and therefore h”(yo) = B(vo)h(yo) > 0, contradicting that
yo exists. If d = 7 and f(yo) = 7/2, then B(yo) = 0 and h"(yo) = 0,
so a bit more work is needed. In this case, differentiating Eq.(IT]) we
find that A" (y,) = 0 and differentiating once more we get h()(yy) =
24y;® h3(yo) > 0, again contradicting the existence of 3. Thus b/ (y) >
0 for all y. From this, (1), and (I2) we obtain

YR (y) = a(y)h' (y) + By)h(y) > 0 fory >V2d—10.  (13)
Therefore, lim,_,, h(y) = oo, contradicting ([9)). O
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We conclude with a few remarks.

Remark 2. Eq.([) is the Euler-Lagrange equation for the functional
- 2 d—1 -2 d—1 —y?/4
e(f) = fod =SSy e iy, (14)
0

which can be interpreted as the Dirichlet energy for maps from R? with
2

the conformally flat metric g = e T Giat into S%. Thus, shrinkers
can be viewed as harmonic maps from (R, g) into S¢. Note that £(f)
is invariant under the reflection symmetry f — 7 — f and the equa-
tor map f. = m/2 is the only fixed point of this symmetry. For this
kind of functional Corlette and Wald conjectured in [4], using Morse
theory arguments, that the number of critical points (counted without
multiplicity) with energy below £(f.) is equal to the Morse index of f,
(i.e. the number of negative eigenvalues of the Hessian of £ at f.). In
the case of (I4]), the Morse index of f, drops from infinity to two at
d = 4+ 2v/2 and then from two to one at d = 7 (see [5]). Thus, ac-
cording to the conjecture of Corlette and Wald, for d > 7 there should
be exactly one (modulo the reflection symmetry) critical point of £(f)
(this unique critical point is, of course, f = 0), in perfect agreement
with Theorem 1.

Remark 3. Struwe showed that the type I singularities are asymptoti-
cally self-similar [7], that is their profile is given by a smooth shrinker.
Therefore, Theorem 1 implies that in dimensions d > 7 all singularties
for the equivariant harmonic map flow (@) must be of type II (see [5]
for a recent analysis of such singularities).

Remark 4. It is well-known that there are close parallels between the
harmonic map and Yang-Mills heat flows [8]. For the spherically sym-
metric magnetic Yang-Mills potential w(¢,r) in d > 3 dimensions a
counterpart of Eq.(]) reads

d—3 d—2

Wy = Wy + Wy — 2
T T

w(w —1)(w —2), (15)

and a counterpart of Eq.() for shrinkers w(t,r) = g(y) is

g+ (%—y) - alg- - =0. (5

2

The one-parameter families of local smooth solutions of this equation
near the origin and near infinity satisfy

9(0)=4'(0)=0, ¢"(0)=a>0, (17)
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and
o(o0)=b, I () = —2d -6 -1B-2).  (18)

Using a similar shooting technique as in [2] one can easily show that for

5 < d <9 there are infinitely many shrinkers g, (y). One novel feature,

in comparison with the harmonic map flow, is that the first shrinker is

known explicitly [9]:
2

91(y) ! 7:%(6d—12—(d+2)\/2d—4), § =

- )
4 0y? '

2

~3

19)
In complete analogy to Theorem 1 we have:

Theorem 2. For d > 10 there exists no smooth solution of equation ([I0)
satisfying the conditions (1) and (I8).

Proof. The same as for Theorem 1. The only change is that now the
function h(y) = y>¢'(y) satisfies Eq.(II)) with different coefficients

a(y):%y(y2—2d—l—14) and B(y) =d—10+3(d—2)(1—g)*. (20)

Note that for d = 10 the solution (I9]) becomes g; = 1 (which does not
satisfy the regularity condition at the origin (7)), while for d > 10 the
parameter 7 is negative so g;(y) has a pole at y = (—v/d)"/2. O

By arguments analogous to the ones given in Remarks 1 and 3, it
follows that in dimensions d > 10 all singularities for the equivariant
Yang-Mills flow ([I5]) must be of type II.
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