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Abstract
We investigate the dynamics of spinning binaries of compact objects at the next-to-leading

order in the quadratic-in-spin effects, which corresponds to the third post-Newtonian order (3PN).

Using a Dixon-type multipolar formalism for spinning point particles endowed with spin-induced

quadrupoles and computing iteratively in harmonic coordinates the relevant pieces of the PN metric

within the near zone, we derive the post-Newtonian equations of motion as well as the equations

of spin precession. We find full equivalence with available results. We then focus on the far-zone

field produced by those systems and obtain the previously unknown 3PN spin contributions to

the gravitational-wave energy flux by means of the multipolar post-Minkowskian (MPM) wave

generation formalism. Our results are presented in the center-of-mass frame for generic orbits,

before being further specialized to the case of spin-aligned, circular orbits. We derive the orbital

phase of the binary based on the energy balance equation and briefly discuss the relevance of the

new terms.
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I. INTRODUCTION

Coalescing binary systems composed of stellar mass black-holes and/or neutron stars are
among the most promising sources for a first direct detection of gravitational waves (GW)
by the network of ground-based interferometers formed by GEO-HF [1] and the advanced
version of the detectors LIGO [2] and Virgo [3], which should resume their science runs from
2015, approaching gradually their design sensitivity, expected to be better by an order of
magnitude than that of the first generation. The cryogenic detector KAGRA [4] will join
them in a near future. Further ahead, the space-based observatory eLISA [5, 6] — a serious
proposal for the mission recently announced by the European Space Agency — will allow
us to scan a different frequency band where we expect to detect, notably, GW emitted by
supermassive black-hole binaries before merger.

Extraction of the signal from the noisy data by means of matched filtering techniques
and source parameter estimation both require an accurate modeling of the waveform. For
binary systems of compact objects, the inspiralling phase of the coalescence can be modeled
extremely well by resorting to the perturbative post-Newtonian (PN) scheme (see [7] for a
review), in which all quantities of interest are expanded as formal series in powers of 1/c.
For non-spinning (NS) systems, the phase of the waveform is currently known up to the
order 3.5PN (i.e. including corrections up to 1/c7), whereas the full polarizations have been
obtained up to the order 3PN [8] (with the dominant quadrupole and octupole modes in the
decomposition of the waveform in spin-weighted spherical harmonics known up to the order
3.5PN [9, 10]).

In recent years, motivated by astrophysical observations suggesting that black holes in
our universe can have significant spins, considerable effort has been devoted to investigating
higher order corrections to the spin effects in the binary dynamics, mostly restricted to
the conservative piece of the body evolution in the near zone. While for the neutron stars
observed so far, the largest dimensionless spin magnitude ever measured [11] is only χ ∼ 0.4
(and may reasonably be assumed to be much smaller for typical expected observations), the
spin of a black-hole might be commonly close to its maximal value [12–15]. Then, its effect
on the waveform can be fairly strong and, in particular, for spins misaligned with the orbital
angular momentum of the system, the dynamics becomes much more involved as the orbital
plane undergoes precession, resulting in large modulations of the waveforms [16, 17]. Even
in the simpler case where the spins are aligned with the orbital angular momentum, they
significantly affect the inspiral rate of the binary, i.e. the frequency evolution of the signal,
starting at the 1.5 PN order (see for instance Ref. [18] for a detailed study of the effect of
the spin on the waveform quantified in terms of figures of merit relevant to data analysis).
To make all factors 1/c appear explicitly in this paper, we rescale the physical spin variable
Sphysical as

S = c Sphysical = Gm2χ , (1.1)

where χ is the dimensionless spin, with value 1 for an extremal Kerr black hole.
The calculation of the spin PN corrections to the conservative part of the dynamics and,

to some extent, to the radiation field of the binary beyond the leading order contributions has
been tackled using essentially three different approaches: (i) a Hamiltonian approach that
strongly relies on the use of the (second) Arnowitt-Deser-Missner (ADM) gauge [19], and
in which the dissipative part of the dynamics, demanding a special treatment, is generally
discarded (see however Ref. [20]), (ii) an effective field theory (EFT) Lagrangian formal-
ism [21, 22], whose application to binary systems in general relativity has been actively
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developed since the mid-2000’s, and (iii) a post-Newtonian iteration scheme in harmonic co-
ordinates (PNISH), reviewed in Ref. [7], which we follow in the present paper. The existence
of those three independent methods permits important checks of calculations that are often
tedious, whenever quantities are available at the same order in more than one formalism.

The binary dynamics at the spin-orbit level (i.e. linear-in-spin effects, which will be
referred to as SO from now on) are known up to the order 3.5PN in both the PNISH and
ADM approaches [23–28], and to the order 2.5PN in the EFT framework [29, 30]. On the
other hand, quadratic-in-spin corrections (labeled as SS throughout the paper) have been
obtained to the order 2PN in the PNISH formalism [31–33], while in both the ADM and
EFT formalisms they are known up to the order 3PN [34–37], and even 4PN for the simpler
S1S2 interactions [22, 34, 38, 39]. Higher-order-in-spin corrections have also been recently
derived [37, 40–42]. As for the spin contributions to the radiation field, they have mostly
been computed by using the same usual combination of the MPM and PNISH approaches as
in the present paper, although partial results required for the calculation of the 3PN flux [43]
and the 2.5PN waveform [44] have been obtained within the EFT approach. The energy
flux of gravitational-wave radiation is known up to the order 4PN at the SO level [45–47],
whereas at the SS level only the leading order (2PN) terms were known until now [33].
Moreover, the leading order cubic-in-spin terms, which arise at 3.5PN, have been calculated
very recently [42].

Our goal here will be to determine, within the PNISH approach, the 3PN (i.e. next-to-
leading order) spin-spin corrections entering both the source dynamics (thereby providing
an additional confirmation of the ADM and EFT results already available at this order)
and most importantly the energy flux, thus completing the knowledge of all the spinning
corrections to the phasing formula up to the 3PN order. At the next order 3.5PN, the
only remaining unknown terms all come from a SS tail contribution. By contrast, the spin
corrections to the full gravitational-wave polarizations are only known to the poorer 2PN
accuracy [33, 48] and we postpone to future work the task of obtaining all the corrections
up to the order 3PN.

Our source modeling, as well as the one used in the EFT and ADM approaches, consists
in representing each compact object as a (spinning) point particle whose internal structure
is entirely parametrized by a set of effective multipole moments. The validity of this descrip-
tion, which makes the calculations tractable analytically, relies on (i) the compact character
of the bodies, and (ii) the weak influence of their internal dynamics to their “global” mo-
tion in general relativity, often referred to as the effacement principle [49]. The foundations
of this formalism were laid down in the seminal works of Mathisson [50–52]. Later Papa-
petrou [53], found a particularly simple form for the evolution equations (which comprise
both the equations of motion and of spin precession) for dipolar particles, i.e. at linear order
in spins. His derivation was improved and rephrased in the language of distribution theory
by Tulczyjew [54], whose method — systematically extensible beyond the dipolar model —
has been recently applied at the quadrupolar level [55]. The dynamics of point particles with
finite-size effects described by higher multipoles was thoroughly investigated by Dixon [56–
59], who constructed an appropriate stress-energy “skeleton” to encode information about
the internal structure of the body while, on their side, Bailey & Israel proposed an elegant
effective Lagrangian formulation [60]. Recently, Harte [61] showed how the formalism of
Dixon could be extended to self-gravitating systems, by constructing appropriate effective
momenta and effective multipole moments evolving in some effective metric.

In the present article, we are interested in the quadratic-in-spin contributions arising from
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the quadrupolar moment of the compact object in the case where it is adiabatically induced
by the spin [32, 33, 35, 62], as well as the simpler contributions coming from products
of SO corrections. Because, in our source model, we replace extended bodies by point
particles within a self-gravitating system, our approach must be regarded as an effective one
and supplemented with some UV regularization procedure. A good choice is known to be
dimensional regularization, with possible need of renormalization. We find however that,
at this order, the so-called pure Hadamard-Schwartz prescription [63] is sufficient, i.e. that
dimensional regularization is not necessary.

The paper is organized as follows. In Section II, we explain how the dynamics of a
test point particle endowed with a spin-induced quadrupolar structure moving in a curved
background spacetime is described in the Dixon-Mathisson-Papapetrou formalism. We also
write the equations of evolution for the particle worldline, as well as for the spin, under
a convenient explicit form, and we define a spin vector of conserved Euclidian norm in
terms of which our PN results shall be written. The validity of the model to describe
the body dynamics in self-gravitating binaries is discussed. In Section III, dedicated to the
computation of the next-to-leading order SS contributions to the PN equations of motion, we
present expressions for the conserved energy in the center-of-mass frame, both for generic
orbits and for the restricted case of circular orbits in the absence of precession. Finally,
Section IV sketches the derivation of the next-to-leading order SS contributions to the GW
flux and includes a discussion of the impact of our newly derived terms on the phase evolution
of non-precessing binaries in the frequency band of LIGO and Virgo. Because of the length
of the equations, some results are relegated to appendices. Appendix A gives the explicit
expressions for the relative acceleration and the precession vector in the center-of-mass frame,
and Appendix B shows the relevant SS contributions to the source moments. We also give
the explicit transformation between spin vector and spin tensor in Appendix C, as well as
the correspondence between our results and the ADM ones in Appendix D.

We use the following conventions henceforth: O(n) means O(1/cn), i.e. represents a
contribution of the order (n/2)PN at least. Greek indices denote spacetime coordinates,
i.e. µ = 0, 1, 2, 3, while Latin indices are used for spatial coordinates, i.e. i = 1, 2, 3. Sym-
metrization and anti-symmetrization are represented by, respectively, parenthesis and brack-
ets around indices. We adopt the signature (−,+,+,+) and keep explicit both Newton’s
constant G and the speed of light c. Finally the covariant derivative along the worldline is
written as D/(c dτ) = uµ∇µ, where uµ is the four velocity of the particle, defined such that
uµuµ = −1.

II. DYNAMICS OF QUADRUPOLAR PARTICLES

We shall now introduce the model we have adopted to represent the two spinning compact
objects composing the binary as point particles. In Section IIA, we display the Dixon-
Mathisson-Papapetrou evolution equations for test bodies at quadrupolar order, set the
covariant spin supplementary condition, and discuss its consequences. In Section IIB, we
rewrite the equations of motion in terms of the 4-velocity and introduce a conserved mass.
Section IIC presents the construction of a spin vector with a conserved Euclidean norm and
shows the precession equation it satisfies. Finally, Section IID explains to what extent the
Dixon-Mathisson-Papapetrou dynamics can be used for the companions of a self-gravitating
binary.
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A. The Dixon-Mathisson-Papapetrou framework

When describing the dynamics of a binary system of compact objects with masses mA,
A = 1, 2, in the context of the post-Newtonian approximation, it is physically sound to
model the two companions as point particles. Indeed, the ratio of the radii RA ∼ GmA/c

2

to the body separation r12 is of the order GmA/(r12c
2), and thus much smaller than 1. The

dynamics of test point-like objects including finite size effects has been investigated exten-
sively by Dixon [56–59], who generalized the Mathisson-Papapetrou equations for spinning
particles [50, 51, 53, 64] by attaching arbitrary high-order moments to the individual bodies,
beyond the monopole and the current dipole also referred to as the particle spin. It can also
be derived from an effective Lagrangian-type approach for spinning particles, pioneered by
Bailey & Israel [60] (see also an extensive study for special relativity in [65]) and later im-
plemented in EFT [21, 22], where higher-order moments appear as parametrizing couplings
in the action to the value of the Riemann tensor and its derivatives on the worldline.

The Dixon-Mathisson-Papapetrou equations of evolution for a spinning particle with
quadrupolar structure read:

Dpα

c dτ
= − 1

2c
Rα

λµνu
λSµν − c

3
∇ρR

α
λµνJ

ρλµν , (2.1a)

DSαβ

c2dτ
= 2p[αuβ] +

4c

3
R

[α
λµνJ

β]λµν , (2.1b)

where pα is the 4-momentum of the particle and uλ = dxλ/(c dτ) the 4-velocity along the
world-line. The anti-symmetric spin tensor Sµν represents the effective 4-angular momentum
of the object, while the (effective) mass and current type quadrupoles are encoded into the
Dixon quadrupolar tensor Jρλµν , which is only constrained at this stage to have the same
symmetry properties as Rρλµν .

The stress-energy tensor T αβ of the model can be constructed after the Tulczyjew pro-
cedure, by making the only assumption that its support is point like with at most two
derivatives acting on the Dirac distributions, in the three following steps [55]: (i) write the
most general symmetric tensor that involves up to two (covariant) derivatives of the particle
scalar density

n =

∫ +∞

−∞

c dτ ′
δ4(x− y(τ ′))√−g

, (2.2)

where δ4(x − y(τ)) is a 4-dimensional Dirac delta, with y(τ) the particle worldline and x
the field point; (ii) derive the hierarchy of equations verified by the coefficients of n in T µν

due to the conservation equation ∇νT
µν = 0; (iii) constrain those coefficients by solving

all algebraic equations, which leaves two sets of ordinary differential equations. Identifying
these two equations to Eqs. (2.1) yields the expression of T µν in terms of pµ, Sµν and Jρλµν :

T µν = n

[

p(µuν)c+
1

3
R

(µ
λρσJ

ν)λρσc2
]

−∇ρ

[

nSρ(µuν)
]

− 2

3
∇ρ∇σ

[

n c2Jρ(µν)σ
]

. (2.3)

It can be recovered with a smaller amount of calculation, further assuming that the system
dynamics is governed by the effective Lagrangian of Bailey & Israel [60], by differentiating
the resulting action with respect to the metric [42].
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As the spin tensor Sµν is anti-symmetric, it actually contains six degrees of freedom.
Moreover, for an isolated body, the space-time components J0i of the total angular mo-
mentum Jµν = Sµν/c in an appropriate asymptotically Minkowkian gauge represent the
mass-type dipole of the object, and can thus always be taken to be zero. Similarly, for a
test particle moving in a gravitational background, three degrees of freedom among those
contained in the effective spin tensor are expected to be non-dynamical. They may be elim-
inated by fixing the “center-of-body” reference point with the help of three independent
space-time equations, globally referred to as the spin supplementary condition (SSC). The
three remaining degrees of freedom correspond to the spatial components of the spin vector
Sµ. Various choices of SSC are possible (see for instance [66]). Here we shall adopt, in
keeping with previous works, the covariant (or Tulczyjew [54]) condition

Sµνpν = 0 . (2.4)

Assuming that the rotating bodies are always at equilibrium, we can reasonably expect
their moments to depend on their masses, spins, as well as possible dimensionless parameters
that characterize the internal structures. Notably, the spins may induce mass quadrupoles
as they do for Kerr black holes. This effect produces spin square contributions that must
be crucially taken into account at quadratic order in the spin variables. Tidal fields inside
the bodies may also generate ℓ ≥ 2 multipoles, but their leading order contribution to the
acceleration would be ∼ (R1,2/r12)

5 = O(10) for a compact binary, so that they can safely
be neglected in the present work.

As not all degrees of freedom in the Dixon quadrupole are physical, its value as a function
of time cannot be uniquely determined by the internal dynamics of the body. In the adiabatic
approximation, there exists a relation, valid along the particle worldline, between Jρλµν , the
4-velocity uµ and the spin tensor Sµν . It can derived from an effective Lagrangian LSS built
to be the most general Lagrangian — modulo perturbative redefinitions of the gravitational
field, terms in the form of a total time derivative, terms that vanish under some given SSC,
and O(S3) remainders — with the properties of: (i) being quadratic in Sµν , (ii) depending
on uµ, the metric gµν , (derivatives of) the Riemann tensor, as well as some parameters
characterizing the object [21, 33, 35]. After redefining pµ, Sµν , we find that the stress-
energy tensor associated with LSS coincides with that of Eq. (2.3) provided Jρλµν is given
by

Jρλµν =
3κ

m̃ c4
Sσ[ρuλ]S [µ

σ uν] , (2.5)

at any instant. The above expression properly describes the presence of a non-vanishing spin-
induced quadrupole, with the source dependent constant κ representing the quadrupolar
polarisability. The mass parameter m̃ is defined by p2 ≡ pαp

α = −m̃2c2. Notice that m̃ is
not a priori conserved. In fact, as shown below, its time derivative is quadratic in spin and
cannot be consistently ignored at our accuracy level.

The (contravariant) 4-momentum and 4-velocity of the particle are proportional when
terms beyond linear order in the spins are neglected: pα = m̃ c uα + O(S2). Our first
step will consist in expressing pα as a function of uα to quadratic order in the spin. We
impose that the derivative along the worldine of the SSC (2.4) is zero, insert the equations
of motion (2.1a) and (2.1b) into the resulting identity, and use the fact that Jρλµν ∼ O(S2)
whereas Sαβuβ ∼ O(S3). This yields, at quadratic order in spin,

pα = m̃ c uα − SαβSµν

2m̃ c3
uλRβλµν +

4c

3
uβR

[α
λµνJ

β]λµν +O(S3) . (2.6)
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We are now in position to write the spin evolution equation in a more explicit way. In
the Lagrangian formalism, the effective linear and angular momenta are defined in a way
that guarantees the conservation of the spin magnitude [42, 62]. This conservation law is
a remarkable feature of the spinning-particle dynamics. In our context, it will follow from
Eq. (2.1) for some class of supplementary conditions. In fact, it can indeed be derived ex-
plicitly from those equations, for the form (2.5) of the quadrupole moment and the covariant
SSC (2.4). By substituting the 4-momentum (2.6) into equation (2.1b) we get

DSαβ

c2dτ
=

4c

3

[

R
[α
λµνJ

β]λµν + uγu
[βR

α]
λµνJ

γλµν − uγu
[βJα]λµνRγ

λµν

]

− uλRγλµνu
[βS

α]γSµν

m̃ c3
+O(S3) . (2.7)

If we contract this expression with Sαβ , we obtain SαβDSαβ/(cdτ) ∼ O(S4) and, therefore,
defining the spin magnitude as s2 = SαβS

αβ/2,

ds

dτ
∼ O(S3) . (2.8)

This demonstrates that the spin magnitude is actually conserved at order O(S2).

B. Conserved mass and evolution equations

Our next task is to investigate the issue of mass conservation at quadratic order in spins.
For this purpose, let us compute the time derivative of the mass parameter m̃. Using the
equation of motion (2.1a) and the Bianchi identities, we can write

− m̃ c2
dm̃

c dτ
= pα

Dpα

c dτ
= −m̃ c2

6
uβ∇βRρλµνJ

ρλµν +O(S3) . (2.9)

As the time dependence of Jρλµν is through the 4-velocity and the spin tensor, i.e. Jρλµν(τ) =
Jρλµν(uβ(τ), Sαβ(τ)), the fact that Duβ/(c dτ) ∼ O(S) and DSαβ/(c dτ) ∼ O(S2) implies
the approximate conservation of the Dixon quadrupole: DJρλµν/(c dτ) ∼ O(S3). Now,
substituting uβ∇β with D/(c dτ), we can write down the equation

d

dτ

[

m̃− 1

6
RρλµνJ

ρλµν

]

= O(S3) , (2.10)

which finally allows us to define a conserved quantity m as

m ≡ m̃− 1

6
RρλµνJ

ρλµν . (2.11)

Hereafter, the constant parameter m will be regarded as the effective mass of the particle.
This mass is the one that appears in all our post-Newtonian results. By construction, it is
conserved, like the spin magnitude. Substituting the expression (2.9) into Eq. (2.6) gives us
the link between the 4-momentum and the 4-velocity:

pα = mcuα +
c

6
uαRρλµνJ

ρλµν − SαβSµν

2mc3
uλRβλµν +

4c

3
uβR

[α
λµνJ

β]λµν +O(S3) , (2.12)
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where m was just shown to be a constant parameter at order O(S2). We are then in position
to rewrite the evolution equations for spinning particles to quadratic order in the spins, using
the 4-velocity instead of the 4-momentum. Those are:

Duα

dτ
=

uρ

2

DRβρµν

dτ

SαβSµν

m2c4
− 1

2
Rα

λµνu
λS

µν

mc
− c

3
∇ρR

α
λµν

Jρλµν

m

− uα

6

DRλρµν

dτ

Jλρµν

m
− 4uβ

3

DR
[α
ρµν

dτ

Jβ]ρµν

m
+O(S3) , (2.13a)

DSαβ

dτ
=

4c3

3

[

u[βR
α]
λµνuγJ

γλµν − u[βJα]λµνuγR
γ
λµν +R

[α
λµνJ

β]λµν
]

− Rγλµνu
λu[βS

α]γSµν

mc
+O(S3) . (2.13b)

C. Definition of a spin vector and equation of precession

From the anti-symmetric spin tensor Sαβ, we define the spin 4-covector S̃α as

S̃α = −1

2
ǫαβµν

pβ

mc
Sµν , (2.14)

where ǫαβµν =
√−g ηαβµν denotes the covariant Levi-Civita tensor, with ηαβµν being the

completely anti-symmetric symbol that verifies η0123 = 1, and where g = det gµν is the
determinant of the metric tensor in generic coordinates. The tilde on this covariant spin
vector will allow us to distinguish it from the Euclidean conserved-norm spin vector we shall
introduce below. Notice that S̃α automatically satisfies S̃αp

α = 0 and thus carries 3 degrees
of freedom as required. If we contract the above equation with ǫαγρσpγ and use the SSC

pνS
µν = 0, we can invert Eq. (2.14) and obtain the spin tensor in terms of S̃α:

Sαβ = ǫαβµν
pµ
mc

S̃ν +O(S3) . (2.15)

Remembering that pβ = mcuβ + O(S2) at the linear-in-spin level, it is straightforward to

check that S̃αS̃
α = s2, by virtue of the relation ǫαβµνǫ

λρστ = −4!δ
[λ
αδ

ρ
βδ

σ
µδ

τ ]
ν .

To derive the evolution equation for the spin 4-covector, we differentiate Eq. (2.14) with
respect to the proper time, which yields

DS̃α

dτ
= ǫαβµν

[

1

4
Rβ

λσρu
λS

σρSµν

mc
− 2c3

3
Rµ

λσρJ
νλσρuβ

]

+O(S3) . (2.16)

In what follows, we shall explicitly resort to our particular form (2.5) for Jµναβ , relevant in
the case of a spin-induced quadrupole. It will be convenient to investigate each term on the
right-hand side of Eq. (2.16) individually. With our definition of S̃µ, the first term there
reads

1

4
ǫαβµνR

β
λσρu

λS
σρSµν

mc
= −1

2
uκǫ

σρκγ S̃γ

mc
Rβ

λσρS̃βu
λuα +O(S4) . (2.17)

At this stage, it is useful to introduce the gravitomagnetic part of the Bel decomposition of
the Riemann tensor

Hµν = 2 ∗Rµκνλu
κuλ . (2.18)
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where ∗R is the self-dual Riemann tensor defined by

∗Rαβµν =
1

2
ǫ κγ
αβ Rκγµν . (2.19)

Physically, the tensor Hµν represents the tidal current-type quadrupole in the relativistic
theory of tides. We can now put Eq. (2.16) in the form

1

4
ǫαβµνR

β
λσρu

λS
σρSµν

mc
=

1

2
Hγβuα

S̃γS̃β

mc
+O(S3) . (2.20)

Let us focus next on the second expression on the right-hand side of Eq. (2.16). After
substituting the value for Jνλσρ therein, we rewrite the resulting expression in terms of the
gravitoelectric part of the Bel decomposition of the Riemann tensor

Gµν = −Rµλνρu
λuρ , (2.21)

which is nothing but the tidal mass-type quadrupole generalizing that of Newtonian gravity
(up to a factor 1/c2). Next, we directly replace the spin tensors with their corresponding
spin covectors in Eq. (2.16), hence:

DS̃α

dτ
=

1

2
Hγβuα

S̃γS̃β

mc
− κ ǫαβµνu

βGµσ S̃σS̃
ν

mc
+O(S3) . (2.22)

Finally, after setting

Ω̃αβ =
S̃λ

mc

[

u[αH
λ

β] − κ ǫαβµνu
µGνλ

]

, (2.23)

the spin precession equation for the covariant spin vector takes the form

DS̃α

dτ
= Ω̃αβS̃

β +O(S3) . (2.24)

The anti-symmetric tensor Ω̃αβ may be interpreted as a spin-precession frequency tensor.
It remains to construct a spin 3-vector Si with conserved Euclidean norm. A “canonical”

construction is already explained in Section 2.1 of Ref. [25], to which the reader may refer
for further details. The precession vector governing the evolution of Si differs from that of
Ref. [25], derived in the SO approximation, by additional terms that are quadratic in spins.

The passage to spin 3-vectors is achieved by introducing a direct orthonormal tetrad e µ
α .

The underlined index represents the vector label, which we may be viewed as the tetrad
index, spacetime indices being represented by Greek letters and spatial indices by Latin
letters as usual. Posing e µ

0 = uµ, we see that

S̃0 = S̃µe
µ
0 = O(S3) , (2.25)

which means that S̃0 may be neglected. The squared Euclidean norm of S̃a is then given by

δabS̃
aS̃b = γµνS̃

µS̃ν = S̃µS̃
µ = s2 , (2.26)

with γµν = gµν + uµuν . In words, the spin vector S̃a has a conserved Euclidean norm. To
define the spin variable uniquely in some coordinate grid, we still need to specify the choice
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to be made for the spatial part of the tetrad. Considering that δabeaiebj = γij, a natural
choice is to take for eai the unique symmetric positive-definite square root (in the matrix
sense) of γij . The complete expression for the tetrad is

e µ
a =

(

γµi − γµ0 v
i

c

)

eai . (2.27)

with vµ ≡= c uµ/u0 denoting the coordinate velocity. After projection on the basis vec-
tors (2.27), the precession equation for the spin vector becomes

dS̃α

dτ
=
(

ω̃αβ + Ω̃αβ

)

S̃β , (2.28)

where we have introduced the rotation coefficients for the tetrad

ω̃αβ = −e µ
α

Deβµ

dτ
, (2.29)

and where Ω̃αβ = Ω̃µνe
µ

α e ν
β . Now, as d/dτ = u0d/dt, it is convenient to define an anti-

symmetric precession frequency tensor associated with the coordinate time as

Ωαβ =
1

u0

(

ω̃αβ + Ω̃αβ

)

. (2.30)

Since S̃0 is negligible, the precession equation reduces to

dS̃i

dt
= ΩijS̃

j +O(S3) . (2.31)

Moreover, from the equality e µ
0 = uµ, it follows that the first term on the right-hand side

of Eq. (2.23) vanishes when projected on spatial tetrad indices, so that

Ω̃ij = −κ εijkG
kl S̃l

mc
, (2.32)

where εijk or εijk (indifferently) denote the Euclidean Levi-Civita symbol, with normalization

ε123 = ε123 = 1, which is linked to the four dimensional Levi-Civita tensor by the relation
ǫ0ijk = εijk.

In the rest of the paper, we shall use a conserved Euclidean spin vector S with spatial
components Si in harmonic coordinates such that

Si ≡ S̃i . (2.33)

Because of the anti-symmetric character of Ωij , we can finally rewrite the precession equation

in terms of a precession vector Ωi = −εijkΩjk/2 as

dSi

dt
= εijkΩ

jSk +O(S3) . (2.34)

It is the above precession vector Ωi that will be computed, along with the equation of motion,
in Section III. Our results will be displayed either in terms of the vector Si or of the spatial
components of the spin tensor Sij.
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D. Application to self-gravitating binary systems

Although the evolution equations (2.1) originally obtained by Dixon are only suitable to
describe the dynamics of test particles, their rederivation based on the method of Tulczyjew
or the Lagrangian approach of Bailey & Israel, regarded as effective field schemes, holds for
self-gravitating N point-like body systems. Nonetheless, the validity of the point particle
model breaks down at UV scales where the post-Newtonian expansion cannot be applied,
i.e. for rA ∼ RA, with r being the distance between the particle representing the body A
and the field point x. In particular, some infinities arise when computing the gravitational
field iteratively due to divergences at the particle positions yA. The situation is even worse
as we make x tend towards yA.

As usual, those infinities are cured thanks to dimensional regularization, which preserves
the invariance under diffeomorphism of general relativity, combined with some renormaliza-
tion procedure. For an appropriate choice of the space dimension d, the field remains weak
near rA = 0 and can be computed perturbatively in the post-Newtonian approximation.
We are confident that this leads to the correct PN dynamics because: (i) the result for the
acceleration is unambiguous up to the order 3.5PN for binaries of spinning compact objects,
(ii) it is equivalent to that obtained from other methods (see the review paper [7] for ref-
erences), and notably from the approach à la Einstein-Infeld-Hoffmann used by Itoh [67] in
the case of spinless bodies where no regularization is needed. Those cautions being taken, a
self-gravitating system of N spinning bodies endowed with a quadrupolar structure may be
modeled by means of the following effective stress-energy tensor, which generalizes that of
Eq. (2.3):

T µν =
∑

A=1,2

[

nA

(

p
(µ
A u

ν)
A c +

1

3
R

(µ
λρσJ

ν)λρσ
A c2

)

−∇ρ

(

nAS
ρ(µ
A u

ν)
A

)

− 2

3
∇ρ∇σ

(

nAc
2J

ρ(µν)σ
A

)

]

, (2.35)

where the subscripts A indicate the particle label.
The presence of poles ∝ ε−k in the metric at a given post-Newtonian order, with ε ≡ d−3

and k being a positive integer, may generate contributions in the source for the next or-
der that could not be recovered by resorting to a purely three dimensional regularization.
However, in the absence of such subtleties, the so-called pure Hadamard-Schwartz regular-
ization [68] is sufficient to get the correct result. This prescription essentially relies on a
specific use of the Hadamard partie finie regularization, which we shall briefly discuss now
(the reader will find more details in Ref. [69]).

Let us consider a function F (x) with the same regularity properties as those arising in
our problem, i.e smooth everywhere except at some singular points yA (A = 1, 2, ..., N) in
the neighborhood of which its admits an expansion of the form

F (x) =
∑

p0≤p≤P

rpAfp
A

(nA) + o(rPA) (2.36)

for any integer P , with nA = (x − yA)/rA. Such a function is said to be of class F . Its
Hadamard partie finie (F )A is then defined as the angular average of the finite part Af0(nA):

(F )A =

∫

dΩA

4π
f0
A
(nA) , (2.37)
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where dΩA denotes the elementary solid angle with direction nA centered on yA. The oper-
ation of taking the Hadamard partie finie is not distributive with respect to multiplication
in the sense that, for another generic function G(x) of class F , (F )A(G)A 6= (FG)A in
general. Moreover, it does not respect the Lorentz invariance. Because of the first of those
two unpleasant features, the so-defined regularization is fundamentally ambiguous as such.
Howbeit, it can still be used in practical computations provided it is supplemented by some
additional prescription. In the PNISH approach, the post-Newtonian metric is constructed
iteratively with the help of PN potentials. Those are elementary bricks satisfying a wave-
type equation (more details are provided in Section III). A convenient prescription is to
define the value of a product FG of two potentials (or potential derivatives) evaluated at
point yA as (F )A(G)A. Similarly, the regularized product of a potential F and an arbitrary
smooth function α(x) will be given by α(yA)FA.

Divergent integrals are cured by applying another kind of Hadamard partie finie regular-
ization. The regularized value of an integral with class-F integrand is calculated in three
main steps: (i) balls of radius η centered on the singular points are extracted from the
integration domain; (ii) terms that diverge near η = 0 are removed; (iii) one goes to the
limit η → 0. The singularities that generate poles in dimensional regularization produce
logarithmic divergences in the Hadamard one. Those are associated with cutoff parameters
sA entering terms such as ln(η/sA). For consistency between the two kinds of Hadamard
regularizations, all derivatives must be evaluated in the sense of distributions [69]. The
action of the three dimensional Dirac delta δA ≡ δ3(x− yA) on test functions must also be
generalized to F -class functions by posing F δA = (F )A δA.

In this context, the pure Hadamard-Schwartz regularization is an ensemble of prescrip-
tions designed to yield results that are “as close as possible” to those obtained through
dimensional regularization. Those prescriptions demand: (i) to evaluate monomials of the
form α(x)F1...Fn, where α(x) is a smooth function and the Fk’s are (derivatives of) F -
class potentials, as α(yA)(F1)A...(Fn)A; (ii) to evaluate divergent integrals by means of the
Hadamard partie regularization for integrals; (iii) to extend the definition of δA as explained
above; (iv) to compute all derivatives in the sense of Schwartzian distributions.

The absence of logarithmic cut-offs in the SS piece of the metric up to the order 3PN
suggests that dimensional regularization may safely be swapped for the pure Hadamard-
Schwartz one at this accuracy level. The insensitivity of the calculations to the choice
of regularization procedure has been checked explicitly by evaluating source terms of the
type FG δA in the stress-energy tensor as (F )A(G)A δA, thus violating the pure Hadamard-
Schwartz prescription. The results have always turned out to be unaffected by such modifi-
cations.

III. NEXT-TO-LEADING ORDER CONTRIBUTIONS TO THE POST-NEWTO-

NIAN EVOLUTION

We now turn to the computation of the dynamics of a binary system in the post-
Newtonian approximation, at next-to-leading order for the quadratic-in-spin effects, i.e.
at order 1/c6 (or 3PN) in the equations of motion and at order 1/c5 in the equations of
precession. We will recover the results for the dynamics obtained in the ADM [62, 70–73]
and EFT [21, 22, 35, 38, 39, 74] approaches, and extend them towards the completion of the
calculation of the gravitational waves energy flux.

We start with some general definitions in Section IIIA. Next, we introduce a set of
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potentials parametrizing the PN metric in Section IIIB, and express the quantities of interest
in terms of these potentials. In Section IIIC, we present their computation, and finally in
Section IIID the results obtained for the dynamics as well as various tests of their correctness.
The lengthier calculations are all performed by means of the algebraic computing software
Mathematica R© supplemented by the tensor calculus package xAct [75].

A. General definitions

The two objects are represented as quadrupolar point particles as explained above. An
important ingredient of the formalism is the treatment of the infinite self-field of the point
particles, essentially represented by means of Dirac deltas, through the pure Hadamard-
Schwartz regularization procedure discussed in Section IID. The distributional contributions
yielded by derivatives are handled by using the Gel’fand-Shilov formula [76]. We found that
at this order in spin, we have to keep track of distributional contributions in the metric
itself to obtain the correct result for the wave generation formalism, as will be detailed in
Section IVB.

The general structure of the equations of motion and precession is as follows:

A = AN
NS +

1

c2
A1PN

NS +
1

c4
A2PN

NS +
1

c5
A2.5PN

NS +
1

c6
A3PN

NS

+
1

c3
AN

SO +
1

c5
A1PN

SO +
1

c4
AN

SS +
1

c6
A1PN

SS +O(7) , (3.1a)

Ω =
1

c2
ΩN

NS +
1

c4
Ω1PN

NS +
1

c3
ΩN

SO +
1

c5
Ω1PN

SO +O(6) , (3.1b)

where the spin order in Eq. (3.1b) indicates the contribution in Ω itself, rather than in
Ṡ = Ω×S (notably the SO terms feature the constants κ1,2 and actually correspond to SS

terms in Ṡ). The 2.5PN NS terms in the acceleration are the first manifestation of radiation
reaction.

We use the same notations as in previous works. Three-dimensional indices are repre-
sented with Latin letters a, b, ... or i, j, ..., and are risen or lowered with the Euclidean metric
δij ; we do not distinguish between upper and lower indices. We sometimes use boldface for
Euclidean vectors. The positions and velocities of the two bodies are denoted by yi1, y

i
2 and

vi1, v
i
2. Apart from the separation distance r12 = |y12| = |y1−y2| which we have already de-

fined, we shall need the separation direction ni
12 = (yi1−yi2)/r12. The symbol 1 ↔ 2 indicates

the same expression as the one before it, with the label of the two particles exchanged. The
results are expressed in terms of the spatial components Sij

1 , S
ij
2 of the spin tensor Sµν , as

well as the spin vectors Si
1, S

i
2 of conserved Euclidean norm as defined above, in Section IIC.

The mixed components S0i of the spin tensors can always be eliminated with the help of the
spin supplementary condition (2.4). We allow repeated indices in scalars quantities enclosed
by parenthesis, in the absence of a risk of confusion.

In harmonic (or DeDonder) gauge, the gravitational field equations can be rewritten as

�hµν =
16πG

c4
|g|T µν + Λµν [h] ≡ 16πG

c4
τµν , (3.2)

where the stress-energy pseudo-tensor τµν includes both matter and field contributions
through T µν and Λµν , the latter source term being at least quadratic in hµν . The field equa-
tions (3.2), when iterated order by order, yield a solution expressed formally in terms of a
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hierarchy of potentials of increasing complexity and post-Newtonian order (see Refs. [77, 78]
for the precise definition of this iteration in the near-zone).

Since on the one hand we are working at order 1/c6 in the equations of motion, and
on the other hand the spin contributions always come at relative 1/c order at least, only
the so-called 2PN metric and potentials (i.e. necessary for the 2PN non-spinning case) are
required. In fact, we will see below that, among the potentials arising at the order 2PN,
only X̂ turns out to be needed. For completeness, we quote here the result of the iteration
for the 2PN metric, which reads

g00 = −1 +
2

c2
V − 2

c4
V 2 +

8

c6

(

X̂ + ViVi +
V 3

6

)

+O(8) , (3.3a)

g0i = − 4

c3
Vi −

8

c5
R̂i +O(7) , (3.3b)

gij = δij

[

1 +
2

c2
V +

2

c4
V 2

]

+
4

c4
Ŵij +O(6) . (3.3c)

The potentials therein are defined as1

V = �
−1
R [−4πGσ] , (3.4a)

Vi = �
−1
R [−4πGσi] , (3.4b)

X̂ = �
−1
R

[

− 4πGV σii + Ŵij∂ijV + 2Vi∂t∂iV + V ∂2
t V

+
3

2
(∂tV )2 − 2∂iVj∂jVi

]

, (3.4c)

R̂i = �
−1
R

[

−4πG (V σi − Viσ)− 2∂kV ∂iVk −
3

2
∂tV ∂iV

]

, (3.4d)

Ŵij = �
−1
R [−4πG (σij − δijσkk)− ∂iV ∂jV ] , (3.4e)

where the σ, σi, σij quantities are convenient matter source densities defined as

σ =
1

c2
(T 00 + T ii) , σi =

1

c
T 0i , σij = T ij , (3.5)

while �−1
R stands for the PN-expanded retarded d’Alembertian operator acting on a function

f(x, t) as [77, 78]

(�−1
R f)(x, t) = − 1

4π

∑

n≥0

(−1)n

n!
FPB=0

∫

d3x′(|x′|/r0)B|x− x′|n−1f (n)(x′, t) . (3.6)

Here FPB=0 denotes the so-called Finite Part regularization, and r0 is an associated arbitrary
length scale. This regularization is used and described in Section IVA for the wave gener-
ation formalism, but in Eq. (3.6) it cures the divergences of the near-zone post-Newtonian
metric at infinity rather than the divergences of the multipolar far-zone expansion at the
origin. At the order we are considering here, it does not matter for the equations of motion.
In particular the final results are all independent of the scale r0

2.

1 Possible contributions to the metric of non-linear tail terms, which are not made of (products of) elemen-

tary potentials defined by means of the operator �−1

R , do not arise below the order 4PN [77, 78].
2 At the 3PN non-spinning order, the scale r0 does appear in the final results for the dynamics, but it

disappears when considering gauge-invariant expressions such as E(ω), the conserved energy as a function

of the orbital frequency.
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B. Matter source and equations of motion in terms of potentials

In this section, we introduce convenient additional definitions for the matter source in
the PN context. In the covariant expression (2.35), the worldline integration contained in
the particle densities nA [see Eq. (2.2)] can be performed explicitly in a definite coordinate
grid (t,x). This results in

T αβ =
∑

A=1,2

[

Uαβ
A δA +∇µ

(

Uαβµ
A δA

)

+∇µ∇ν

(

Uαβµν
A δA

)

]

, (3.7)

where we have defined

Uαβ
A =

1

u0
A

√−g

(

c p
(α
A u

β)
A +

1

3
R

(α
AλµνJ

β)λµν
A

)

, (3.8a)

Uαβµ
A =

1

u0
A

√−g
u
(α
A S

β)µ
A , (3.8b)

Uαβµν
A =

1

u0
A

√−g

(

− 2

3
c2J

µ(αβ)ν
A

)

. (3.8c)

Here u0 = 1/
√

−gAµνv
µvν/c2, vµ = (c, vi) (so that uµ = u0vµ/c), and the label index A on

metric-dependent quantities means that they are to be regularized according to Hadamard
regularization at the location of the particle A. In terms of partial derivatives, we have

T αβ =
∑

A=1,2

[

T αβ
A δA +

1√−g
∂µ

(

T αβµ
A δA

)

+
1√−g

∂µν

(

T αβµν
A δA

)

]

, (3.9)

with

T αβ
A = Uαβ

A + 2Γ
(α
AµνU

β)µν
A + (∂λΓ

(α
µν)A U

β)λµν
A

+ Γ
(α
Aρλ(U

β)λµν
A Γρ

Aµν − Γ
β)
AµνU

ρλµν
A ) , (3.10a)

T αβµ
A =

√−g(Uαβµ
A + Γµ

AνλU
αβνλ
A − 2Γ

(α
AνλU

β)µνλ
A ) , (3.10b)

T αβµν
A =

√
−gUαβµν

A . (3.10c)

By using Eqs. (3.8), and the definitions of σ, σi, σij given in Eqs. (3.5), we arrive at the
following expressions in terms of metric potentials

σ = m1δ1

[

1 +
1

c2

(3

2
v21 − V

)

+
1

c4

(7

8
v41 − 4

(

va1Va

)

− 2Ŵ +
1

2
v21V +

1

2
V 2
)

+
1

m1c5

(

2(Sab
1 va1∂bV )− 4(Sab

1 ∂bVa)
)

+
1

c6

(

− 8(R̂av
a
1) +

11

16
v61

− 10v21(v
a
1Va)− 4(VaVa) + 2(va1v

b
1Ŵab)− 3v21Ŵ − 8Ẑ +

33

8
v41V

− 4(va1Va)V + 2ŴV +
11

4
v21V

2 − 1

6
V 3 − 4X̂ − κ1

2m2
1

(Sba
1 Sbi

1 ∂iaV )
)

]

+
1√−g

∂k

{

δ1

[

− 2Ska
1 va1
c3

+
Ska
1

c5

(

− 4V va1 + 4Va

)
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+
κ1

m1c6

(

Sab
1 Skb

1 ∂aV − (Sab
1 Sab

1 )∂kV
)

]}

+
κ1

2m1c6
√−g

∂2
t

(

δ1S
ab
1 Sab

1

)

+
κ1

m1c6
√−g

∂t∂k

[

δ1

(

− Sab
1 Skb

1 va1 +
(

Sab
1 Sab

1

)

vk1

)

]

+
κ1

m1

√−g
∂kl

{

δ1

[

Ska
1 Sla

1

2c4
+

1

c6

(

Ska
1 Sla

1

(3

4
v21 +

3

2
V
)

− 1

2
Ska
1 Slb

1 v
a
1v

b
1

+
1

2
(Sab

1 Sab
1 )vk1v

l
1 + Sab

1 (−Slb
1 v

a
1v

k
1 − Skb

1 va1v
l
1)
)

]}

+ 1 ↔ 2 +O
( 1

c7

)

, (3.11a)

σi = m1δ1

[

vi1 +
1

c2

(1

2
v21v

i
1 − V vi1

)

− Sia
1 ∂aV

2m1c3

+
1

c4

(3

8
v41v

i
1 − 4(va1Va)v

i
1 − 2Ŵvi1 +

3

2
v21V vi1 +

1

2
V 2vi1

)

]

+
1

2c3
√−g

∂t

(

δ1S
ia
1 va1

)

+
1√−g

∂k

[

δ1

(Sik
1

2c
− Ska

1 va1v
i
1

2c3

)

]

− κ1

2m1c4
√−g

∂t∂k

(

δ1S
ia
1 Ska

1

)

+
κ1

m1c4
√−g

∂kl

[

δ1

(1

2
Ska
1 Sla

1 v
i
1 −

1

4
Sia
1 Sla

1 v
k
1 −

1

4
Sia
1 Ska

1 vl1

)

]

+ 1 ↔ 2 +O
( 1

c5

)

, (3.11b)

σij = m1δ1

[

vi1v
j
1 +

1

c2

(1

2
v21v

i
1v

j
1 − V vi1v

j
1

)

]

+
1

c
√−g

∂k

[

δ1

(1

2
Sjk
1 vi1 +

1

2
Sik
1 vj1

)

]

+ 1 ↔ 2 +O
( 1

c3

)

. (3.11c)

Here we have dropped the indices on the metric potentials, as we recall that, according to
the pure Hadamard-Schwartz regularization, we can indifferently consider any quantity in
factor of a Dirac delta as regularized, according to the rule Fδ1 = (F )1δ1. Notice however
that the 1/

√−g prefactors must not be evaluated at point y1, i.e. they are still functions of
the field point x. These matter sources display explicit factors with spins and other without
spin, but we should always keep in mind that there are secondary spin contributions coming
from the potentials themselves.

Let us now turn to the expression of the equations of evolution in terms of the metric
potentials (3.4). If we pose Pµ = pµ/m, using d/dτ = u0d/dt, the covariant equations of
motion (2.1a) may be put in the form

dPµ

dt
= Fµ ≡ Γρ

µνv
ν pρ
m

− 1

2mc
Rµνρσv

νSρσ − c2

6mu0
Jλνρσ∇µRλνρσ +O(S3) , (3.12)

where Pµ = pµ/m can be read from Eq. (2.12). For a lower spatial index µ = i, we decompose
Pµ as (coming back to notations for the body 1)

P1i = PNS
1i + P SS

1i ,
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F1i = FNS
1i + F SO

1i + F SS
1i . (3.13)

Here, the order in spin refers to the order in the spin tensor as it reads in the formulas (2.12)
and (2.1a), but we should recall that there are also spin contributions coming from the
potentials themselves, as well as from the replacement of accelerations using the equations
of motion. We see from Eq. (2.12) that Pi has no SO part in this sense, and its NS part
comes from Pi = u0giνv

ν/c. The NS part of Fi comes from the usual connexion term in the
geodesic equation, the first term in Eqs. (3.12). As the NS and SO parts can already be
found e.g. in Eqs. (2.12) of Ref. [79] and in Eqs. (3.7) of Ref. [24], we only display here the
SS pieces:

P
(S2)
1i =

1

m2
1c

6

{

− Sab
1 Sib

1 ∂t∂aV + 2Sbj
1 Sia

1 ∂jaVb + Sib
1

(

Sbj
1 va1∂jaV − 2Saj

1 va1∂jbV
)

+ κ1

[

3

2
(Sai

1 Sab
1 ∂ibV )vi1 − S1abS

ib
1 ∂t∂aV

+ (Sab
1 Sab

1 )∂t∂iV + (Sab
1 Sab

1 )va1∂iaV + Sbj
1 Sib

1 v
a
1∂jaV

+ 2Sab
1 Sbj

1 va1∂jiV + Saj
1 Sab

1 (−2∂jbVi + 2∂jiVb)

]}

, (3.14a)

F
(S2)
1i =

κ1

2m2
1c

4
Saj
1 Sab

1 ∂ji∂bV +
κ1

m2
1c

6

[

(

Sab
1 Sab

1

)

va1∂t∂iaV

+
1

2

(

Sab
1 Sab

1

)

∂2
t ∂iV − 3

2

(

Sai
1 Sab

1 ∂ibV
)

∂iV +
(

Sab
1 Sab

1

)

∂aV ∂iaV

+
1

2

(

Sab
1 Sab

1

)

va1v
b
1∂ibaV − Sbj

1 Sib
1 ∂aV ∂jaV + Sab

1 Sbj
1

(

va1∂t∂jiV

+ 4∂aV ∂jiV
)

+ Saj
1 Sab

1

(

2∂t∂jiVb +
3

4
v21∂jibV +

1

2
V ∂jibV

)

+ Saj
1

(

2Sjk
1 va1v

b
1∂kibV − 1

2
Sbk
1 va1v

b
1∂kjiV

)

+ Sbk
1 Sbj

1

(

2va1∂kiaVj − 2va1∂kjiVa

)

]

. (3.14b)

In these formulas, the potentials and their derivatives are to be understood as regularized
at the location of body 1.

For the equation of precession of the conserved-norm spin, we decompose similarly the
precession vector into a NS and a SO part, before replacement of the potentials. We obtain

Ωi
1 =

(

Ωi
1

)

NS
+
(

Ωi
1

)

SO
, (3.15)

where (Ωi
1)NS is given by Eq. (2.19) in [25] and where

(

Ωi
1

)

SO
=

κ1

m1c3
Sa
1∂iaV +

1

m1c5

{

vi1
(

Sa
1v

b
1∂baV

)

− 1

2

(

Sa
1v

a
1

)

∂t∂iV + Sa
1v

b
1∂abVi

− Sa
1 (v

a
1v

a
1)∂iaV +

1

2
(Sa

1v
a
1) v

a
1∂iaV − (Sa

1v
a
1) ∂iaVa + Sa

1v
b
1∂iaVb

+ κ1

[

−
(

Sa
1∂t∂aV

)

vi1 −
3

2

(

Sa
1v

b
1∂baV

)

vi1 −
(

Sa
1v

a
1

)

∂t∂iV
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+ Si
1

(

2(va1∂t∂aV ) + (∂aV ∂aV ) + (va1v
b
1∂baV ) + ∂2

t V
)

− 3
(

Sa
1∂aV

)

∂iV − 3

2

(

Sa
1v

a
1

)

va1∂iaV + Sa
1

(

2∂t∂aVi + 2∂t∂iVa

+ 2vb1∂baVi +
3

2
v21∂iaV − 3V ∂iaV − 4vb1∂iaVb + 2vb1∂ibVa

)

]}

. (3.16)

The contributions featuring κ1 come directly from the second term in Eq. (2.30), while the
other contributions come from the first term there. The time derivatives of the velocities
that enter the definition of the tetrad are replaced by the expression of the acceleration in
terms of potentials, which include SO terms (as given for instance in Section 3 of [24]).

C. Spin contributions in the metric potentials

We now investigate the spin contributions to the metric potentials introduced in Sec-
tion IIIA. As we are effectively working at the next-to-leading order, calculating these
contributions from the results already presented above will be rather straightforward and
we will only need to resort to well-known techniques.

By inspection of the matter sources (3.11), one can see that the SO and SS contributions
to the metric potentials start at the following PN orders:3

V SO = O(3) , V SS = O(4) ,

V SO
i = O(1) , V SS

i = O(4) ,

X̂SO = O(1) , X̂SS = O(2) ,

R̂SO
i = O(1) , R̂SS

i = O(4) ,

Ŵ SO
ij = O(3) , Ŵ SS

ij = O(4) . (3.17)

From Eqs. (3.14) and (3.16), we see that it is sufficient to compute the new SS contributions
of the potentials V at the order 3PN (the leading order contribution at the order 2PN being

already known, see e.g. Ref. [33]), Vi at the order 2PN, and X̂ at the order 1PN.
We turn now to the caculation of V SS at the 3PN order which actually corresponds to

the relative 1PN order. Truncating Eq. (3.6) appropriately, we have (dropping the FPB=0

regularization, which plays no role for compact sources)

V SS =

[
∫

d3x′

|x− x′|σ(t, x
′)− 1

c

d

dt

∫

d3x′σ(t, x′) +
1

2c2
d2

dt2

∫

d3x′|x− x′|σ(t, x′)

]

SS

+O(8) ,

(3.18)
Because we are working at the next-to-leading order, various indirect contributions appear.
Aside from the SS terms generated directly by the SS terms of σ given in Eq. (3.11a), there
are contributions from the SO 0.5PN part of Vi in the SO 2.5PN part of σ, from the SS 2PN
part of V in the NS 2PN part of σ, and from the acceleration replacement featuring the SS
2PN part of ai in the second time derivative of the integral of the NS Newtonian part of σ
(in the third term above).

3 It is implicitly understood that the orders n showed in the terms O(n) below take their highest possible

values.
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In the following, to present the result in a more compact form, we adopt short cut
notations: for any vectors a, b and spin tensors SA,B, we define the scalars (ab) = aibi,

(SASB) ≡ Sij
AS

ij
B , (aSAb) ≡ aiSij

A b
j , and (aSASBb) ≡ aiSik

A Sjk
B bj (beware of the convention

for the order of the indices on the spin tensors).
We replace in Eq. (3.18) the full expression (3.11a) for σ, perform integration by parts

when derivatives of Dirac deltas occur, and compute the resulting integrals using Hadamard
regularization, i.e.

∫

d3xFδ1 = (F )1. The metric potentials can be considered as regularized
when appearing in factor of a Dirac delta in the integrals, according to the pure Hadamard-
Schwartz rule [63] Fδ1 = (F1)δ1.

An important point is that the derivatives have to be treated in a distributional sense.
For the first time in our formalism, we have to take into account an essential distributional
term in the potential V itself. The leading order result is indeed

V SS =
Gκ1

2c4m1
Sik
1 Sjk

1 ∂ij

(

1

r1

)

+ 1 ↔ 2 +O(6) , (3.19)

which, along with a non-distributional contribution, yields a distributional term given by

V SS
distr =

Gκ1

2c4m1r31
Sij
1 S

ij
1

4π

3
δ1 + 1 ↔ 2 +O(6) . (3.20)

This distributional term will play no role in the derivation of the equations of motion them-
selves, but it will produce a net contribution when computing the mass source quadrupole
moment, as explained below in Section IVB. Because, in this computation of the quadrupole
moment, the V potential is only needed at the 2PN order, we will not need to consider pos-
sible distributional terms at the higher 3PN order.

Gathering the different non-distributional contributions we obtain

V SS
non distr =

Gκ1

2c4m1r31
(3(n1S1S1n1)− (S1S1))

+
Gκ1

c6m1

[

(S1S1)

(

3(n1v1)
2

4r31
− (v1v1)

r31
− 3Gm2(n12n1)

4r412
+

3Gm2(n12n2)

4r412
+

3Gm2

2r1r
3
12

−3Gm2(n12n1)

4r21r
2
12

− Gm2

2r31r12
+

Gm2

2r2r312

)

− 3(n1S1v1)
2

2r31

+(n12S1S1n12)

(

15Gm2(n12n1)

4r412
− 15Gm2(n12n2)

4r412
− 9Gm2

2r1r312
− 3Gm2

2r2r312

)

+(n1S1S1n1)

(

−15(n1v1)
2

4r31
+

3(v1v1)

r31
+

3Gm2(n12n1)

4r
2r2

12

1

+
3Gm2

2r31r12

)

+(n12S1S1n1)

(

−3Gm2

2r412
+

3Gm2

2r21r
2
12

)

+
(v1S1S1v1)

r31
+

3Gm2(n12S1S1n2)

2r412

]

+
G

c6

[

(n1S1S2n12)

(

− 3G

2r412
− 2G

r21r
2
12

)

+ (n12S1S2n12)

(

15G(n12n1)

2r412
− 6G

r1r312

)

+(S1S2)

(−3G(n12n1)

2r412
+

G

r1r312

)

− 3G(n12S1S2n1)

2r412

]

+ 1 ↔ 2 +O(8) .

(3.21)
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For the calculation of V SS
i at its leading order 2PN, we proceed similarly as for V , but

keeping only the first term in the expansion (3.18). The calculation is simpler, with no
indirect SS contributions. We get

V SS
i =

Gκ1

2m1c4r31
(3(n1S1S1n1)− (S1S1)) v

i
1 −

Gκ1

2m1c4
4π

3
(S1S1)δ1 + 1 ↔ 2 +O(6) , (3.22)

where we have included for completeness a distributional term completely analogous to the
one discussed above for the potential V SS, but that will not contribute in the rest of our
calculations.

The computation of X̂SS is different, as it involves non-compact support terms. From
Eqs. (3.4), we see that the only 1PN SS contribution in X̂ is

X̂SS = �
−1
R

[

−2∂iV
SO
j ∂jV

SO
i

]

+O(4) , (3.23)

with the leading order SO part of Vi given by

V SO
i =

G

2c
Sij
1 ∂j

1

r1
+ 1 ↔ 2 +O(3) . (3.24)

We are working at leading order here, so that we keep only the first term in the expanded
inverse d’Alembertian operator, which is just an inverse Laplacian. For the cross term, with
derivatives of both 1/r1 and 1/r2, we use the function g = ln [r1 + r2 + r12] which satisfies
∆g = 1/(r1r2) (including the distributional part of the derivatives). With the notations
∂1
i = ∂/∂yi1, ∂

2
i = ∂/∂yi2, we can write4

∆−1

[

∂ij

(

1

r1

)

∂kl

(

1

r2

)]

= ∂1
ij∂

2
kl

[

∆−1

(

1

r1r2

)]

= ∂1
ij∂

2
klg . (3.25)

For the “self” terms, we can “factorize” the derivatives as explained in [81]. Since we may
ignore contributions of the form ∆−1

(

n̂L
1 /r

p
1δ1
)

for ℓ + p even, we disregard possible distri-
butional terms generated by space or time differentiation. After factorizing the derivatives,
we transform them into derivatives with respect to yi1,2 and apply ∆−1 straightforwardly on
the argument. The relevant formula is

∆−1

[

∂ij

(

1

r1

)

∂kl

(

1

r1

)]

=
1

128

[

3∂ijkl (ln r1)− 5 (δkl∂ij + δij∂kl)

(

1

r21

)

+3 (δik∂jl + δil∂jk + δjk∂il + δjk∂il)

(

1

r21

)

+ (δijδkl + δikδjl + δilδjk)∆

(

1

r21

)]

. (3.26)

Gathering these contributions, we find the following simple expression for the leading-order
SS part of the potential X̂ :

X̂SS =
G2

2c2r41

[

1

4
(S1S1)− (n1S1S1n1)

]

− G2

2c2
Sij
1 S

kl
2 ∂

1
jk∂

2
ilg + 1 ↔ 2 +O(4) , (3.27)

where we keep the derivatives in the second term unexpanded.

4 Including properly the regularization FPB=0 would yield an additional constant contribution [80], which

would vanish after applying the derivatives.

20



D. Results for the evolution equations

Using the results of the previous section and the NS and SO parts of the metric potentials
that are already known, we are in position to complete the calculation of the equations of
motion and precession (3.14) and (3.16). The results for the accelerations a1,2 and the
precession vectors Ω1,2 must pass several tests checking their validity.

The first one is to make sure of the existence of a set of conserved quantities, in the
absence of reaction reaction at this order, associated with the Poincaré invariance of the
problem: a conserved energy E, an angular momentum J , a linear momentum P , and a
center-of-mass integral G. We were actually able to construct all those quantities explicitly
by guess work. The higher-order terms in the precession equations intervene only in the
conservation of the angular momentum, whereas the higher-order terms in the equations of
motion intervene in all other conservation relations. We shall exhibit below the expression
of the conserved energy, which will be later used to control the phase evolution of the binary
in the case of circular orbits through the balance equation as explained in Section IVC.

Another test consists in checking the Lorentz invariance of the dynamics, which must be
manifest since the harmonic gauge choice is Lorentz-preserving. We use the same method
as in Refs. [23, 24], to which we refer the reader for more details, and find that our results
pass this second test.

As the 3PN SS dynamics has been already investigated in both the EFT [21, 22, 35, 38,
39, 74] and the ADM [62, 70–73] approaches, we must be able to recover their results in our
scheme. The equivalence between the ADM and EFT description has been shown to hold
in Refs. [36, 37, 73], so that we will only compare our results to the ADM ones, in keeping
with our previous works. We present this comparison, and the resulting transformation
from harmonic to ADM variables, in Appendix D. The agreement with the ADM results
also validates the test-mass limit of ours.

Because the expressions produced are rather lengthy, we will give directly their reduced
version in the center-of-mass (CM) frame. As in our previous works, this frame is defined
as the one where the center-of-mass integral Gi (which is such that dG/dt = P and hence
d2G/dt2 = 0) vanishes. We define x = rn = y1 − y2 the separation vector of the binary,
v = dx/dt the relative velocity, m = m1 +m2 the total mass, ν = m1m2/m

2 the symmetric
mass ration and δ = (m1 − m2)/m the mass difference. We also use, for convenience, the
same spin variables as in the previous works [23, 45], namely

S = S1 + S2 , Σ = m

(

S2

m2
− S1

m1

)

. (3.28)

The vectors S1 and S2 are the conserved-norm vectors constructed in Section IIC. Addi-
tionally, we will use the notation κ+ = κ1 + κ2 and κ− = κ1 − κ2.

The positions of the two bodies the new frame read

y1 =
m2

m
x+

1

c2
z , y2 = −m1

m
x+

1

c2
z , (3.29)

with z being a vector related to the center-of-mass integral G. In general, when working at
the nPN order, only the (n− 1)PN expression of G (or z) is required. This can be checked
explicitly from the Newtonian expressions in the general frame of the quantities of interest,
as explained for instance in Ref. [25]. Thus, we would only need the SS 2PN expression of
G in principle, but it turns out that there is no such contribution in G. We can therefore
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translate our results to the CM frame using simply the same rules as in previous works:
namely, we need the NS 1PN and the SO 1.5PN terms in z, as given in the Section 3 of
Ref. [25].

For the SS contributions to the conserved energy, we find

ESS =
Gν

c4r3

[

1

4
e04 +

1

c2

(

1

8
e06 +

1

4

Gm

r
e16

)]

, (3.30)

with

e04 = S2 (−2κ+ − 4) + (SΣ) (−2δκ+ − 4δ + 2κ−) + Σ2 ((δκ− − κ+) + ν (2κ+ + 4))

+ (nS)2 (6κ+ + 12) + (nΣ)2 ((3κ+ − 3δκ−) + ν (−6κ+ − 12))

+ (nS)(nΣ) (6δκ+ + 12δ − 6κ−) ,

e06 = S2
[

(nv)2 ((6δκ− − 6κ+ + 24) + ν (6κ+ + 12))

+v2 ((−2δκ− + 8κ+ − 28) + ν (2κ+ + 4))
]

+ (SΣ)
[

(nv)2 ((−12δκ+ + 48δ + 12κ−) + ν (6δκ+ + 12δ − 30κ−))

+v2 ((10δκ+ − 52δ − 10κ−) + ν (2δκ+ + 4δ + 6κ−))
]

+ Σ2
[

(nv)2
(

(6δκ− − 6κ+ + 24) + ν (−9δκ− + 21κ+ − 72) + ν2 (−6κ+ − 12)
)

+v2
(

(−5δκ− + 5κ+ − 24) + ν (δκ− − 11κ+ + 76) + ν2 (−2κ+ − 4)
)]

+ (nS)2
[

(nv)2ν (−30κ+ − 60) + v2 ((60− 18κ+) + ν (−6κ+ − 12))
]

+ (nS)(vS)(nv) ((−18δκ− + 18κ+ − 84) + ν (12κ+ + 24))

+ (vS)2 (6δκ− − 6κ+ + 28)

+ (nΣ)2
[

(nv)2
(

ν (15δκ− − 15κ+) + ν2 (30κ+ + 60)
)

+v2
(

(9δκ− − 9κ+ + 48) + ν (3δκ− + 15κ+ − 156) + ν2 (6κ+ + 12)
)]

+ (nΣ)(vΣ)(nv)
(

(−18δκ− + 18κ+ − 72) + ν (12δκ− − 48κ+ + 228) + ν2 (−12κ+ − 24)
)

+ (vΣ)2 ((6δκ− − 6κ+ + 24) + ν (−6δκ− + 18κ+ − 76))

+ (nS)(nΣ)
[

(nv)2ν (−30δκ+ − 60δ + 30κ−)

+v2 ((−18δκ+ + 108δ + 18κ−) + ν (−6δκ+ − 12δ + 6κ−))
]

+ (nΣ)(vS)(nv) ((18δκ+ − 72δ − 18κ−) + ν (6δκ+ + 12δ + 30κ−))

+ (nS)(vΣ)(nv) ((18δκ+ − 84δ − 18κ−) + ν (6δκ+ + 12δ + 30κ−))

+ (vS)(vΣ) ((−12δκ+ + 52δ + 12κ−) + ν (−24κ−)) ,

e16 = S2 (−3δκ− + 5κ+ + 8) + (SΣ) ((8δκ+ + 8δ − 8κ−) + ν (12κ−))

+ Σ2 ((4κ+ − 4δκ−) + ν (3δκ− − 11κ+ − 10)) + (nS)2 (9δκ− − 15κ+ − 36)

+ (nΣ)2 ((12δκ− − 12κ+) + ν (−9δκ− + 33κ+ + 30))

+ (nS)(nΣ) ((−24δκ+ − 32δ + 24κ−) + ν (−36κ−)) . (3.31)

The corresponding expressions for the relative acceleration a = a1 − a2 and the precession
vectors Ω1,2 are provided in Appendix A.

Finally, we further specialize our results to the case of circular, non-precessing orbits. As
discussed in Ref. [33], we have in fact three classes of orbits for the conservative dynamics.
The CM expression are valid for general orbits, for which we make no assumption on the
presence of precession and/or eccentricity. Quasi-circular precessing orbits correspond to
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the case where we allow a generic orientation of the spins, but assume that the separation
is constant at the SO level; as soon as SS and higher-order-in-spin terms are included the
radius and orbital frequency become also variable on an orbital timescale. In Ref. [33] the
definition of such orbits was investigated by perturbing orbital averaged quantities. The
third and simplest class of orbits is that of the circular orbits with spins aligned with the
orbital angular momentum and where precession is absent. As working at the next-to-
leading order makes their determination more complicated, we leave the investigation of
quasi-circular orbits for future work and focus on the circular, spin-aligned, non-precessing
case.

To present results for circular orbits, we use the same definitions as in previous works.
We introduce a moving basis (n,λ, ℓ), with n denoting the unit vector along the separation
vector, x = rn, ℓ = n × v/|n × v| the normal to the orbital plane, and λ completing the
triad. When neglecting both radiation reaction and spin precession and assuming the spins
aligned with ℓ the expressions for the relative velocity and acceleration become v = rωλ and
a = −rω2n, with ω the orbital frequency defined by ṅ = ωλ. For the projected value of the
(aligned or anti-aligned) spins along ℓ , we use the notation Sℓ = S · ℓ. We also introduce
the usual PN parameters γ = Gm/rc2 and x = (Gmω/c3)2/3, both of order 1PN. In the
following, we only display the SS terms, and refer the reader to Sections 9.3 and 11.3 of
Ref. [7] for NS and SO contributions, and to Ref. [42] for the newly computed cubic-in-spin
contributions.

First, we relate r to ω by means of the equations of motion. We obtain the following SS
terms for the PN generalization of Kepler’s law:

γSS =
x

G2m4

{

x2

[

S2
ℓ

(

−κ+

2
− 1
)

+ SℓΣℓ

(

−δκ+

2
− δ +

κ−

2

)

+Σ2
ℓ

((

δκ−

4
− κ+

4

)

+ ν
(κ+

2
+ 1
)

)]

+x3

[

S2
ℓ

((

−11δκ−

12
− 11κ+

12
+

14

9

)

+ ν

(

−κ+

6
− 1

3

))

+SℓΣℓ

((

5δ

3

)

+ ν

(

−δκ+

6
− δ

3
+

23κ−

6

))

+Σ2
ℓ

(

1 + ν (δκ− − κ+ − 2) + ν2

(

κ+

6
+

1

3

))]

+O(8)

}

. (3.32)

The result for the energy for circular, spin-aligned orbits is then

ESS = −1

2
mνc2x

1

G2m4

{

x2

[

S2
ℓ (−κ+ − 2) + SℓΣℓ (−δκ+ − 2δ + κ−)

+Σ2
ℓ

((

δκ−

2
− κ+

2

)

+ ν (κ+ + 2)

)]

+x3

[

S2
ℓ

((

−5δκ−

3
− 25κ+

6
+

50

9

)

+ ν

(

5κ+

6
+

5

3

))

+SℓΣℓ

((

−5δκ+

2
+

25δ

3
+

5κ−

2

)

+ ν

(

5δκ+

6
+

5δ

3
+

35κ−

6

))

+Σ2
ℓ

((

5δκ−

4
− 5κ+

4
+ 5

)

+ ν

(

5δκ−

4
+

5κ+

4
− 10

)
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+ν2

(

−5κ+

6
− 5

3

))]}

+O(8) .

(3.33)

This expression can be shown to be in agreement, in the test-mass limit, with the energy
of a test particle in circular equatorial orbits around a Kerr black hole [82]. It is crucial to
control the phase evolution through the balance equation (see Section IVC).

IV. NEXT-TO-LEADING ORDER CONTRIBUTIONS TO THE POST-NEWTO-

NIAN GRAVITATIONAL WAVES ENERGY FLUX

We now move to the computation of the 3PN spin-spin contribution to the energy flux
radiated by the system. We start by briefly reviewing in Section IVA the basic elements
of the wave generation formalism that we need here, before providing in Section IVB some
intermediate results useful in the calculation of the source multipole moments that are
required to this order. The explicit results for the moments in the CM frame are relegated
to Appendix B because of their length. Our explicit result for the GW flux is presented
in Section IVC for general orbits in the center of mass in the system and then reduced to
the case of circular orbits in the configuration where the spins are aligned with the orbital
angular momentum.

A. Formalism

We perform our calculation in the framework of the multipolar post-Newtonian approach
to gravitational radiation. This formalism has been developed over many years, see e.g.
[77, 83–87]. Since we will only use a simplified version of the full formalism, as we are
working at next-to-leading order, we will refer the reader to [7] for a review, and give only
a brief overview.

The asymptotic waveform is defined from the transverse-tracefree (TT) projection of the
metric perturbation, in a suitable radiative coordinate system Xµ = (c T,X), as its leading-
order term in the 1/R expansion when the distance R = |X| to the source tends to infinity
(keeping the retarded time TR ≡ T − R/c fixed). It can be parametrized using two sets of
symmetric and trace-free (STF) radiative multipole moments, UL of mass type and VL of
current type as

hTT
ij =

4G

c2R
PTT

ijkl(N)

+∞
∑

ℓ=2

NL−2

cℓℓ!

[

UklL−2(TR)−
2ℓ

c(ℓ+ 1)
Nm εmn(k Vl)nL−2(TR)

]

+O
(

1

R2

)

,

(4.1)

where we denote by L = i1...iℓ a multi-index composed of ℓ multipolar spatial indices i1, ...,
iℓ ranging from 1 to 3. Similarly L − 1 = i1...iℓ−1 and kL − 2 = ki1...iℓ−2; NL = Ni1 ...Niℓ

is the product of ℓ spatial vectors Ni. The transverse-traceless (TT) projection operator is
denoted PTT

ijkl = PikPjl − 1
2
PijPkl where Pij = δij −NiNj is the projector orthogonal to the

unit directionN = X/R of the radiative coordinate system. Like in the rest of this paper, the
quantity εijk is the Levi-Civita anti-symmetric symbol such that ε123 = 1. The symmetric-

trace-free (STF) projection is indicated using brackets or a hat. Thus UL = ÛL = U〈L〉 and

VL = V̂L = V〈L〉 for STF moments. We denote time derivatives with a superscript (n).
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In terms of these radiative moments, the energy flux into gravitational waves then reads

F =

+∞
∑

ℓ=2

G

c2ℓ+1

[

(ℓ+ 1)(ℓ+ 2)

(ℓ− 1)ℓ ℓ!(2ℓ+ 1)!!
U

(1)
L U

(1)
L +

4ℓ(ℓ+ 2)

c2(ℓ− 1)(ℓ+ 1)!(2ℓ+ 1)!!
V

(1)
L V

(1)
L

]

. (4.2)

The UL and VL can be expressed as (non-linear) functions of two sets of intermediate source
rooted so-called canonical moments ML and SL which are themselves related by a gauge
transformation to a set of two so-called source multipole moments IL, JL (plus 4 gauge STF
moments) which parametrize the most general solution to the Einstein equations outside
the source. The differences between ML and IL (and similarly between JL and SL) arise at
the 2.5PN order (see for instance [8]) and, since we are interested in SS effects which always
add at least a factor 1/c2, we can safely ignore their differences. Using the same argument,
we only need to consider the terms in the relation between the radiative moments and the
canonical ones up to the order 2PN. Furthermore, we can also neglect the tail terms, which
will only generate SS contributions at the order 3.5PN, so we finally have the simple relation

(Uij)SS = (I
(2)
ij )SS +O (7) , (4.3)

(Vij)SS = (J
(2)
ij )SS +O (7) , (4.4)

(Uijk)SS = (I
(3)
ijk)SS +O (7) . (4.5)

Noticing additionally that the leading order spin-spin contribution to any of the IL or JL

(and their time derivatives) is of the order 2PN (as will be clear from the expressions in the
next section), we can express the spin-spin flux in terms of the relevant source moments as

FSS =
G

c5

{

1

5
I
(3)
ij I

(3)
ij +

1

c2

[

1

189
I
(4)
ijkI

(4)
ijk +

16

45
J
(3)
ij J

(3)
ij

]

+
1

c4

[

1

84
J
(4)
ijkJ

(4)
ijk

]}

SS

+O (7) , (4.6)

which requires computing the SS parts of Iij to the order 3PN and of Jij and Iijk to the
order 2PN. We also need the NS parts of Iij up to the order 1PN and of Jij and Iijk at
the Newtonian order, as well as the SO contributions in Iij and Jij up to the order 1.5PN
and the leading 0.5PN SO contribution to Jijk, all of which are known from previous works.
Remember that the spin-orbit contributions to mass (resp. current) type moments start
at 1.5PN (resp. 0.5PN) order, and that time derivatives of non-spinning (resp. spin-orbit)
expressions generate spin-spin contributions with an additional order 2PN (resp. 1.5PN) at
least.

The matching procedure at the core of the formalism finally allows us to express the
source moments as closed-form integrals over space [87]. Instead of reproducing here the
general expressions which can be found in Eq. (123) of Ref. [7], we directly display below
the terms that contribute to the spin-spin corrections at the required orders. They read

(Iij)SS = FP
B=0

∫

d3x

(

r

r0

)B {

x̂ij

[

Σ +
r2

14c2
Σ

(2)
]

− 20

21c2
x̂qijΣ

(1)

q

}

SS

+O
(

1

c7

)

, (4.7a)

(Jij)SS = FP
B=0

∫

d3x

(

r

r0

)B

εab<jℓx̂i>aΣ
SS

b +O
(

1

c5

)

, (4.7b)

(Iijk)SS = FP
B=0

∫

d3x

(

r

r0

)B

x̂ijkΣ
SS

+O
(

1

c5

)

, (4.7c)
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where FPB=0 denotes a finite part operation defined by analytic continuation in the complex
plane for the parameter B, which deals here with the infrared divergences at infinity. An
arbitrary scale r0 is introduced, which will play no role in the present calculation and has to
disappear from gauge-invariant results. The basic “building blocks” Σ, Σi and Σij entering
the integrands are defined as

Σ ≡ τ 00 + τ ii

c2
, Σi ≡

τ 0i

c
, Σij ≡ τ ij , (4.8)

where τµν has been defined in (3.2), and the overline indicates a post-Newtonian (near-zone)
expansion. In identifying the relevant terms in (4.7a), we slightly anticipated on the results
of the next subsection (see Eq. (4.9a)) and used the fact that the SS contributions to Σ, Σi

and Σij all start at the 2PN order at least.

B. Computation of the source moments

To obtain the relevant SS contributions to the source moments, we first express the sources
Σ, Σi and Σij in terms of the potentials parametrizing the metric and the matter sources σ,
σi and σij defined in (3.5) (the complete relations can be found, generalized to d dimensions,
in [88]). Taking into account the order of the spin corrections in these quantities, the only
terms that yield spin-spin contributions to the orders we are interested in are

Σ
SS

=

{[

1 +
4V

c2

]

σ − 1

πGc2
∂iV ∂iV +

2

πGc4
∂iVj∂jVi

}

SS

+O (7) , (4.9a)

Σ
SS

i =

{[

1 +
4V

c2

]

σi −
1

πGc2
∂kV ∂kVi

}

SS

+O (5) , (4.9b)

Σ
SS

ij = O (3) . (4.9c)

The integrals in Eq. (4.7a) can now be performed using the standard techniques described
in [68, 69], handling the UV divergences of the integral through the Hadamard regularization
and the IR divergences through the finite part operation FPB=0.

We highlight here that the distributional parts of the sources have to be treated with
care. In particular, for the first time, we encountered the situation where such contributions
in the metric itself (more precisely in the potential V ), and not just those coming from
derivatives applied to the metric, have to be crucially taken into account.

More specifically, the spin-spin leading order contribution in the potential V was com-
puted in Eqs. (3.19) and (3.20) and contains a term proportional to δ1 which has to be
accounted for when integrating the ∂iV ∂iV term of (4.9a) in (4.7a). In order to illustrate
this further, let us focus on the second and third terms in ΣSS

Σ
SS

V =
4V

c2
σ − 1

πGc2
∂iV ∂iV , (4.10)

which we can rewrite using the identity 2∂iA∂iB = ∆(AB) − A∆B − B∆A, and the fact
that ∆V = −4πGσ at leading order, as

Σ
SS

V = −1

2

1

πGc2
∆[V 2] . (4.11)
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By reinjecting this second form into (4.7a), integrating by parts, using ∆x̂ij = 0 and treating

the surface terms as explained in the Section IV D of [68], we readily see that Σ
SS

V actually
gives a vanishing contribution to Iij . If on the other hand one uses (4.10) without including
the distributional part of V , one obtains an incorrect non-zero result.

Our explicit results for the SS contributions to the source moments reduced to the center
of mass are presented in Appendix B.

C. Gravitational waves energy flux

Using equation (4.6), our results for the source moments and the equations of motion and
precession obtained in Section IIID to compute time derivatives, we can finally compute
explicitly the gravitational wave flux. We will give the result already reduced in the center-
of-mass frame, and we use the same notations as already introduced in Section IIID. We
obtain

FSS =
G3m2ν2

5c9r6

[

1

3
f 0
4 +

1

21c2

(

f 0
6 +

Gm

r
f 1
6 +

G2m2

r2
f 2
6

)]

, (4.12)

with

f 0
4 = S2

[

(nv)2 (−312κ+ − 624) + v2 (288κ+ + 576)
]

+ (SΣ)
[

(nv)2 (−312δκ+ − 624δ + 312κ−) + v2 (288δκ+ + 576δ − 288κ−)
]

+ Σ2
[

(nv)2 ((156δκ− − 156κ+ + 18) + ν (312κ+ + 624))

+v2 ((−144δκ− + 144κ+ + 6) + ν (−288κ+ − 576))
]

+ (nS)2
[

(nv)2 (1632κ+ + 3264) + v2 (−1008κ+ − 2016)
]

+ (nS)(vS)(nv) (−696κ+ − 1392) + (vS)2 (144κ+ + 288)

+ (nΣ)2
[

(nv)2 ((−816δκ− + 816κ+ + 18) + ν (−1632κ+ − 3264))

+v2 ((504δκ− − 504κ+) + ν (1008κ+ + 2016))
]

+ (nΣ)(vΣ)(nv) ((348δκ− − 348κ+ − 12) + ν (696κ+ + 1392))

+ (vΣ)2 ((−72δκ− + 72κ+ + 2) + ν (−144κ+ − 288))

+ (nS)(nΣ)
[

(nv)2 (1632δκ+ + 3264δ − 1632κ−) + v2 (−1008δκ+ − 2016δ + 1008κ−)
]

+ (nΣ)(vS)(nv) (−348δκ+ − 696δ + 348κ−) + (nS)(vΣ)(nv) (−348δκ+ − 696δ + 348κ−)

+ (vS)(vΣ) (144δκ+ + 288δ − 144κ−) ,

f 0
6 = S2

[

(nv)4 ((2274δκ− + 12918κ+ + 35436) + ν (−14112κ+ − 28224))

+(nv)2v2 ((−2592δκ− − 17544κ+ − 51984) + ν (17928κ+ + 35856))

+v4 ((366δκ− + 5034κ+ + 18276) + ν (−4584κ+ − 9168))
]

+ (SΣ)
[

(nv)4 ((10644δκ+ + 50652δ − 10644κ−)

+ν (−14112δκ+ − 28224δ + 5016κ−))

+(nv)2v2 ((−14952δκ+ − 69672δ + 14952κ−)

+ν (17928δκ+ + 35856δ − 7560κ−))

+v4 ((4668δκ+ + 20812δ − 4668κ−) + ν (−4584δκ+ − 9168δ + 3120κ−))
]

+ Σ2
[

(nv)4 ((−5322δκ− + 5322κ+ + 9714) + ν (4782δκ− − 15426κ+ − 64788)
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+ν2 (14112κ+ + 28224)
)

+(nv)2v2 ((7476δκ− − 7476κ+ − 14286)

+ν (−6372δκ− + 21324κ+ + 86316) + ν2 (−17928κ+ − 35856)
)

+v4 ((−2334δκ− + 2334κ+ + 3796) + ν (1926δκ− − 6594κ+ − 23336)

+ν2 (4584κ+ + 9168)
)]

+ (nS)2
[

(nv)4 ((12930δκ− − 90570κ+ − 81570) + ν (71520κ+ + 143040))

+(nv)2v2 ((−8124δκ− + 81636κ+ + 65220) + ν (−62976κ+ − 125952))

+v4 ((570δκ− − 14778κ+ − 6546) + ν (13632κ+ + 27264))
]

+ (nS)(vS)
[

(nv)3 ((−19752δκ− + 51816κ+ + 16464) + ν (−29184κ+ − 58368))

+(nv)v2 ((9522δκ− − 19890κ+ − 180) + ν (4092κ+ + 8184))
]

+ (vS)2
[

(nv)2 ((6378δκ− − 9114κ+ + 7794) + ν (5100κ+ + 10200))

+v2 ((−1668δκ− − 324κ+ − 6478) + ν (120κ+ + 240))
]

+ (nΣ)2
[

(nv)4 ((51750δκ− − 51750κ+ + 18420)

+ν (−48690δκ− + 152190κ+ + 60960) + ν2 (−71520κ+ − 143040)
)

+(nv)2v2 ((−44880δκ− + 44880κ+ − 8112)

+ν (39612δκ− − 129372κ+ − 79608) + ν2 (62976κ+ + 125952)
)

+v4 ((7674δκ− − 7674κ+ + 3090) + ν (−7386δκ− + 22734κ+ + 10884)

+ν2 (−13632κ+ − 27264)
)]

+ (nΣ)(vΣ)
[

(nv)3 ((−35784δκ− + 35784κ+ − 33534)

+ν (34344δκ− − 105912κ+ + 48858) + ν2 (29184κ+ + 58368)
)

+(nv)v2 ((14706δκ− − 14706κ+ + 7782) + ν (−11568δκ− + 40980κ+ − 7794)

+ν2 (−4092κ+ − 8184)
)]

+ (vΣ)2
[

(nv)2 ((7746δκ− − 7746κ+ + 14124) + ν (−8928δκ− + 24420κ+ − 36432)

+ν2 (−5100κ+ − 10200)
)

+v2 ((−672δκ− + 672κ+ − 2242) + ν (1608δκ− − 2952κ+ + 9788)

+ν2 (−120κ+ − 240)
)]

+ (nS)(nΣ)
[

(nv)4 ((−103500δκ+ − 70920δ + 103500κ−)

+ν (71520δκ+ + 143040δ − 123240κ−))

+(nv)2v2 ((89760δκ+ + 71808δ − 89760κ−)

+ν (−62976δκ+ − 125952δ + 95472κ−))

+v4 ((−15348δκ+ − 8664δ + 15348κ−) + ν (13632δκ+ + 27264δ − 15912κ−))
]

+ (nΣ)(vS)
[

(nv)3 ((35784δκ+ − 15402δ − 35784κ−)

+ν (−14592δκ+ − 29184δ + 54096κ−))

+(nv)v2 ((−14706δκ+ + 8190δ + 14706κ−) + ν (2046δκ+ + 4092δ − 21090κ−))
]

+ (nS)(vΣ)
[

(nv)3 ((35784δκ+ − 240δ − 35784κ−)

+ν (−14592δκ+ − 29184δ + 54096κ−))
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+(nv)v2 ((−14706δκ+ − 5124δ + 14706κ−) + ν (2046δκ+ + 4092δ − 21090κ−))
]

+ (vS)(vΣ)
[

(nv)2 ((−15492δκ+ + 23052δ + 15492κ−)

+ν (5100δκ+ + 10200δ − 30612κ−))

+v2 ((1344δκ+ − 8188δ − 1344κ−) + ν (120δκ+ + 240δ + 6552κ−))
]

f 1
6 = S2

[

(nv)2 ((−2772δκ− + 23844κ+ + 48872) + ν (−1320κ+ − 2640))

+v2 ((2572δκ− − 21028κ+ − 41832) + ν (720κ+ + 1440))
]

+ (SΣ)
[

(nv)2 ((26616δκ+ + 55176δ − 26616κ−) + ν (−1320δκ+ − 2640δ + 12408κ−))

+v2 ((−23600δκ+ − 48872δ + 23600κ−) + ν (720δκ+ + 1440δ − 11008κ−))
]

+ Σ2
[

(nv)2 ((−13308δκ− + 13308κ+ + 1208) + ν (3432δκ− − 30048κ+ − 61736)

+ν2 (1320κ+ + 2640)
)

+v2 ((11800δκ− − 11800κ+ − 4408) + ν (−2932δκ− + 26532κ+ + 56288)

+ν2 (−720κ+ − 1440)
)]

+ (nS)2
[

(nv)2 ((28788δκ− − 135588κ+ − 300528) + ν (2028κ+ + 4056))

+v2 ((−12380δκ− + 77736κ+ + 182752) + ν (−1992κ+ − 3984))
]

+ (nS)(vS)(nv) ((−20472δκ− + 64056κ+ + 123000) + ν (1932κ+ + 3864))

+ (vS)2 ((4664δκ− − 14652κ+ − 27240) + ν (−168κ+ − 336))

+ (nΣ)2
[

(nv)2 ((82188δκ− − 82188κ+ − 5604) + ν (−29802δκ− + 194178κ+ + 264672)

+ν2 (−2028κ+ − 4056)
)

+v2 ((−45058δκ− + 45058κ+ + 9700) + ν (13376δκ− − 103492κ+ − 185532)

+ν2 (1992κ+ + 3984)
)]

+ (nΣ)(vΣ)(nv) ((−42264δκ− + 42264κ+ − 9808) + ν (19506δκ− − 104034κ+ − 69804)

+ν2 (−1932κ+ − 3864)
)

+ (vΣ)2 ((9658δκ− − 9658κ+ + 4784) + ν (−4580δκ− + 23896κ+ + 9808)

+ν2 (168κ+ + 336)
)

+ (nS)(nΣ)
[

(nv)2 ((−164376δκ+ − 282444δ + 164376κ−)

+ν (2028δκ+ + 4056δ − 117180κ−))

+v2 ((90116δκ+ + 183716δ − 90116κ−) + ν (−1992δκ+ − 3984δ + 51512κ−))
]

+ (nΣ)(vS)(nv) ((42264δκ+ + 46432δ − 42264κ−) + ν (966δκ+ + 1932δ + 39978κ−))

+ (nS)(vΣ)(nv) ((42264δκ+ + 50744δ − 42264κ−) + ν (966δκ+ + 1932δ + 39978κ−))

+ (vS)(vΣ) ((−19316δκ+ − 18480δ + 19316κ−) + ν (−168δκ+ − 336δ − 18488κ−)) ,

f 2
6 = S2 ((16δκ− + 144κ+ + 368) + ν (−576κ+ − 1152))

+ (SΣ) ((128δκ+ + 224δ − 128κ−) + ν (−576δκ+ − 1152δ + 512κ−))

+ Σ2
(

(−64δκ− + 64κ+ + 24) + ν (272δκ− − 400κ+ − 384) + ν2 (576κ+ + 1152)
)

+ (nS)2 ((−48δκ− − 432κ+ − 936) + ν (1728κ+ + 3456))

+ (nΣ)2 ((192δκ− − 192κ+ − 16) + ν (−816δκ− + 1200κ+ + 928)

+ν2 (−1728κ+ − 3456)
)
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+ (nS)(nΣ) ((−384δκ+ − 784δ + 384κ−) + ν (1728δκ+ + 3456δ − 1536κ−)) . (4.13)

After reduction to the case of spin-aligned, circular orbits, using the notations already
introduced in Section IIID for the energy, we obtain

FSS =
32ν2

5

c5x5

G

1

G2m4

{

x2

[

S2
ℓ (2κ+ + 4) + SℓΣℓ (2δκ+ + 4δ − 2κ−)

+Σ2
ℓ

((

−δκ− + κ+ +
1

16

)

+ ν (−2κ+ − 4)

)]

+x3

[

S2
ℓ

((

41δκ−

16
− 271κ+

112
− 5239

504

)

+ ν

(

−43κ+

4
− 43

2

))

+SℓΣℓ

((

−279δκ+

56
− 817δ

56
+

279κ−

56

)

+ν

(

−43δκ+

4
− 43δ

2
+

κ−

2

))

+Σ2
ℓ

((

279δκ−

112
− 279κ+

112
− 25

8

)

+ ν

(

45δκ−

16
+

243κ+

112
+

344

21

)

+ν2

(

43κ+

4
+

43

2

))]

+O(7)

}

. (4.14)

Using this result as well as the expression of the orbital energy (3.33), we can write the
balance equation F = −dE/dt for circular orbits to obtain the phase evolution of the
binary. Different ways of mixing analytical and numerical integration give rise to different
approximants (see for instance [89] for a comparison of these different approximants). For
simplicity, we will give here only the phasing formula for the TaylorT2 approximant: we
re-expand dφ = 2ωdt = 2ω(−F/(dE/dt)) and integrate term by term to obtain the phase
of the wave φ (here φ is the phase of the leading 22 mode, hence the factor of 2) as a function
of ω or equivalently of x. We get for the SS contributions

(φ)SS = −x−5/2

32ν

1

G2m4

{

x2

[

S2
ℓ (−25κ+ − 50) + SℓΣℓ (−25δκ+ − 50δ + 25κ−)

+Σ2
ℓ

((

25δκ−

2
− 25κ+

2
− 5

16

)

+ ν (25κ+ + 50)

)]

+x3

[

S2
ℓ

((

2215δκ−

48
+

15635κ+

84
− 31075

126

)

+ ν (30κ+ + 60)

)

+SℓΣℓ

((

47035δκ+

336
− 9775δ

42
− 47035κ−

336

)

+ν

(

30δκ+ + 60δ − 2575κ−

12

))

+Σ2
ℓ

((

−47035δκ−

672
+

47035κ+

672
− 410825

2688

)

+ν

(

−2935δκ−

48
− 4415κ+

56
+

23535

112

)

+ν2 (−30κ+ − 60)
)

]

+O(7)

}

. (4.15)
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The known NS and SO contributions are summarized in Sections 9.3 and 11.3 of [7], and

LIGO/Virgo 10M⊙ + 1.4M⊙ 10M⊙ + 10M⊙

Newtonian 3558.9 598.8

1PN 212.4 59.1

1.5PN −180.9 + 114.0χ1 + 11.7χ2 −51.2 + 16.0χ1 + 16.0χ2

2PN 9.8− 10.5χ2
1 − 2.9χ1χ2 4.0− 1.1χ2

1 − 2.2χ1χ2 − 1.1χ2
2

2.5PN −20.0 + 33.8χ1 + 2.9χ2 −7.1 + 5.7χ1 + 5.7χ2

3PN
2.3− 13.2χ1 − 1.3χ2

−1.2χ2
1 − 0.2χ1χ2

2.2− 2.6χ1 − 2.6χ2

−0.1χ2
1 − 0.2χ1χ2 − 0.1χ2

2

3.5PN
−1.8 + 11.1χ1 + 0.8χ2 + (SS)

−0.7χ3
1 − 0.3χ2

1χ2

−0.8 + 1.7χ1 + 1.7χ2 + (SS)

−0.05χ3
1 − 0.2χ2

1χ2 − 0.2χ1χ
2
2 − 0.05χ3

2

4PN (NS)− 8.0χ1 − 0.7χ2 + (SS) (NS)− 1.5χ1 − 1.5χ2 + (SS)

TABLE I. Number of cycles associated to the different PN terms in the phasing formula, between

the starting frequency for advanced detectors (10Hz) and a cut-off chosen to be the Scwarzschild

ISCO x = 1/6. We show the result for typical black hole/neutron star and black hole/black hole

systems. Spin-aligned, circular orbits are assumed, and we use the dimensionless spins χA such that

SAℓ = Gm2
AχA. We ignore contributions that are at least quadratic in the spin of the neutron star.

We gather all contributions known to date, the ones still unknown are indicated in parenthesis.

additional cubic-in-spin 3.5PN contributions can be found in [42]. We give in table I the
number of cycles of the signal resulting from each term in the phasing formula, for the
frequency band of advanced LIGO/Virgo detectors. Notice however that these results are
illustrative, as they are specific to the TaylorT2 approximant and as these number of cycles
give only a rough idea of the relevance of these terms in actual data analysis applications.

We can check that our result (4.14) is in agreement, in limit of a test particle orbiting a
Kerr black hole, with the result of [90] obtained in the framework of black hole perturbation
theory. We leave for future work the comparison of our results with the so far incomplete
results (given only at the level of the multipole moments) of [43, 44]. Natural extensions
of the work presented here include the investigation of quasi-circular precessing orbits, the
computation of the spherical harmonic decomposition of the waveform (or, equivalently, the
full polarizations h+,×), and the implementation of these results for the factorized waveforms
of the Effective-One-Body formalism with spins (see e.g. [91–94]).
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Appendix A: Explicit results for the equations of evolution

We gather in this appendix explicit results for the equations of motion and precession
obtained in Section IIID that are too long to be shown in the main text. We present them
already reduced to the center-of-mass frame.

For the precession vectors Ωi
1,2, we have found simpler to keep the variables S1,2 and κ1,2

instead of S,Σ and κ±. We get

(

Ωi
1

)

SO
=

G

c3r3

[

wi
3,0 +

1

c2

(

wi
5,0 +

Gm

r
wi

5,1

)]

+O(7) , (A1)

with

wi
3,0 = 3(nS2)n

i − Si
2 + 3κ1(nS1)n

i

(

1− δ

2ν
− 1

)

,

wi
5,0 = Si

2

[

(nv)2
(

3δ

4
− 3ν

2
+

15

4

)

+ v2
(

−3δ

4
− ν

2
− 9

4

)]

+ ni

[

(nS1)(nv)
2κ1

(

−15ν

2

)

+ (nS2)(nv)
2

(

−15δ

4
+

15ν

2
− 15

4

)

+(nS1)v
2

((

−3δ

2
− 3

1− δ

2ν
+

9

2

)

+ κ1

(

−3δ

2
− 3ν

2
+

9

2

1− δ

2ν
− 3

))

+(nS2)v
2

(

9δ

4
+

3ν

2
+

15

4

)

+ (nv)(vS2)

(

3δ

4
− 3ν

2
− 9

4

)

+(nv)(vS1)

((

3δ

4
+

3

2

1− δ

2ν
− 9

4

)

+ κ1

(

3ν

2
− 9

2

1− δ

2ν
+

9

2

))]

+ vi
[

(nS1)(nv)

((

3δ

2
+ 3

1− δ

2ν
− 9

2

)

+ κ1

(

3ν

2
− 9

2

1− δ

2ν
+

9

2

))

+(nS2)(nv)

(

−3δ

4
− 3ν

2
− 9

4

)

+ (vS2)

(

δ

2
+ 2

)

+(vS1)

((

−3δ

4
− 3

2

1− δ

2ν
+

9

4

)

+ κ1

(

3
1− δ

2ν
− 3

))]

,

wi
5,1 = ni

[

(nS1)

((

5δ

4
+

ν

2
− 5

4

)

+ κ1

(

−9δ

4
− 12

1− δ

2ν
+

57

4

))

+(nS2)

(

−3δ

4
+

ν

2
− 39

4

)]

+ Si
2

[

13

4
+

δ

4
− ν

2

]

. (A2)

For the relative acceleration ai = ai1 − ai2, we obtain (coming back to the S,Σ and κ±

variables)
(

ai
)

SS
=

G

c4r4m

[

1

4
αi
4,0 +

1

c2

(

1

8
αi
6,0 +

1

4

Gm

r
αi
6,1

)]

+O(8) , (A3)

with

αi
4,0 = Si

[

(nS) (−12κ+ − 24) + (nΣ) (−6δκ+ − 12δ + 6κ−)
]

+ Σi
[

(nS) (−6δκ+ − 12δ + 6κ−) + (nΣ) ((6δκ− − 6κ+) + ν (12κ+ + 24))
]
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+ ni
[

S2 (−6κ+ − 12) + Σ2 ((3δκ− − 3κ+) + ν (6κ+ + 12)) + (nS)2 (30κ+ + 60)

+ (SΣ) (−6δκ+ − 12δ + 6κ−) + (nΣ)2 ((15κ+ − 15δκ−) + ν (−30κ+ − 60))

+ (nS)(nΣ) (30δκ+ + 60δ − 30κ−)
]

,

αi
6,0 = Si

[

(nS)
(

(nv)2 ((60κ+ − 60δκ−) + ν (60κ+ + 120))

+v2 ((12δκ− − 36κ+ − 48) + ν (−72κ+ − 144))
)

+ (nΣ)
(

(nv)2 ((60δκ+ − 120δ − 60κ−) + ν (30δκ+ + 60δ + 90κ−))

+v2 ((24κ− − 24δκ+) + ν (−36δκ+ − 72δ + 12κ−))
)

+ (vS)(nv) ((30δκ− − 30κ+ + 84) + ν (−12κ+ − 24))

+ (vΣ)(nv) ((−30δκ+ + 132δ + 30κ−) + ν (−6δκ+ − 12δ − 54κ−))
]

+ Σi
[

(nS)(nv)2 ((60δκ+ − 60κ−) + ν (30δκ+ + 60δ + 90κ−))

+ (nΣ)(nv)2
(

(−60δκ− + 60κ+ − 120) + ν (30δκ− − 150κ+ + 240) + ν2 (−60κ+ − 120)
)

+ (nv)(vS) ((−30δκ+ + 48δ + 30κ−) + ν (−6δκ+ − 12δ − 54κ−))

+ (nv)(vΣ)
(

(30δκ− − 30κ+ + 96) + ν (−24δκ− + 84κ+ − 276) + ν2 (12κ+ + 24)
)

+ (nS)v2 ((−24δκ+ − 24δ + 24κ−) + ν (−36δκ+ − 72δ + 12κ−))

+ (nΣ)v2
(

(24δκ− − 24κ+ + 24) + ν (24δκ− + 24κ+) + ν2 (72κ+ + 144)
)

]

+ ni
[

(nS)2(nv)2ν (−210κ+ − 420) + (nv)2S2 ((30δκ− − 30κ+ + 120) + ν (30κ+ + 60))

+ (nS)(nΣ)(nv)2ν (−210δκ+ − 420δ + 210κ−) + (vS)2 (6δκ− − 6κ+ + 84)

+ (nΣ)2(nv)2
(

ν (105δκ− − 105κ+) + ν2 (210κ+ + 420)
)

+ (nv)2(SΣ) ((−60δκ+ + 240δ + 60κ−) + ν (30δκ+ + 60δ − 150κ−))

+ (nv)2Σ2
(

(30δκ− − 30κ+ + 120) + ν (−45δκ− + 105κ+ − 360) + ν2 (−30κ+ − 60)
)

+ (nS)(nv)(vS) ((−30δκ− + 30κ+ − 420) + ν (60κ+ + 120))

+ (nΣ)(nv)(vS) ((30δκ+ − 240δ − 30κ−) + ν (30δκ+ + 60δ + 30κ−))

+ (nS)(nv)(vΣ) ((30δκ+ − 420δ − 30κ−) + ν (30δκ+ + 60δ + 30κ−))

+ (nΣ)(nv)(vΣ)
(

(−30δκ− + 30κ+ − 240) + ν (900− 60κ+) + ν2 (−60κ+ − 120)
)

+ (vS)(vΣ) ((−12δκ+ + 132δ + 12κ−) + ν (−24κ−))

+ (vΣ)2 ((6δκ− − 6κ+ + 48) + ν (−6δκ− + 18κ+ − 180))

+ (nS)2v2 ((60κ+ + 120) + ν (180κ+ + 360))

+ S2v2 ((−6δκ− − 6κ+ − 48) + ν (−36κ+ − 72))

+ (nS)(nΣ)v2 ((60δκ+ + 120δ − 60κ−) + ν (180δκ+ + 360δ − 180κ−))

+ (nΣ)2v2
(

(30κ+ − 30δκ−) + ν (−90δκ− + 30κ+ − 120) + ν2 (−180κ+ − 360)
)

+ (SΣ)v2 ((−72δ) + ν (−36δκ+ − 72δ + 60κ−))

+ Σ2v2
(

−24 + ν (24δκ− − 24κ+ + 96) + ν2 (36κ+ + 72)
)

]

+ vi
[

(nS)2(nv) ((−240κ+) + ν (120κ+ + 240))
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+ (nv)S2 ((−12δκ− + 60κ+ − 48) + ν (−24κ+ − 48))

+ (nS)(nΣ)(nv) ((−240δκ+ + 240δ + 240κ−) + ν (120δκ+ + 240δ − 120κ−))

+ (nΣ)2(nv) ((120δκ− − 120κ+ + 240) + ν (−60δκ− + 300κ+ − 480)

+ν2 (−120κ+ − 240)
)

+ (nv)(SΣ) ((72δκ+ − 144δ − 72κ−) + ν (−24δκ+ − 48δ + 72κ−))

+ (nv)Σ2
(

(−36δκ− + 36κ+ − 96) + ν (24δκ− − 96κ+ + 240) + ν2 (24κ+ + 48)
)

+ (nS)(vS) ((6δκ− + 90κ+ + 84) + ν (−36κ+ − 72))

+ (nΣ)(vS) ((42δκ+ − 42κ−) + ν (−18δκ+ − 36δ + 6κ−))

+ (nS)(vΣ) ((42δκ+ + 36δ − 42κ−) + ν (−18δκ+ − 36δ + 6κ−))

+ (nΣ)(vΣ)
(

(−42δκ− + 42κ+ − 48) + ν (12δκ− − 96κ+ + 12) + ν2 (36κ+ + 72)
)

]

,

αi
6,1 = Si

[

(nS) ((−24δκ− + 72κ+ + 164) + ν (36κ+ + 72))

+ (nΣ) ((48δκ+ + 72δ − 48κ−) + ν (18δκ+ + 36δ + 30κ−))
]

+ Σi
[

(nS) ((48δκ+ + 84δ − 48κ−) + ν (18δκ+ + 36δ + 30κ−))

+ (nΣ)
(

(48κ+ − 48δκ−) + ν (6δκ− − 102κ+ − 148) + ν2 (−36κ+ − 72)
)

]

+ ni
[

(nS)2 ((48δκ− − 192κ+ − 420) + ν (−96κ+ − 192))

+ S2 ((−8δκ− + 40κ+ + 72) + ν (20κ+ + 40))

+ (nS)(nΣ) ((−240δκ+ − 396δ + 240κ−) + ν (−96δκ+ − 192δ − 96κ−))

+ (nΣ)2
(

(120δκ− − 120κ+) + ν (240κ+ + 372) + ν2 (96κ+ + 192)
)

+ (SΣ) ((48δκ+ + 72δ − 48κ−) + ν (20δκ+ + 40δ + 12κ−))

+ Σ2
(

(24κ+ − 24δκ−) + ν (−2δκ− − 46κ+ − 72) + ν2 (−20κ+ − 40)
)

]

. (A4)

Appendix B: Explicit results for the source multipole moments

We list in this appendix explicit results for the newly computed SS contributions to the
source moments, the computation of which is described in Section IVB. We recall that the
brackets indicate the STF projection.

For the mass quadrupole moment, we obtain

(

I ij
)

SS
=

1

mc4

[

iij4,0
2

+
ν

84c2

(

iij6,0 +
Gm

r
iij6,1

)

]

, (B1a)

with

iij4,0 = −S<iSj> (δκ− + κ+) + 4S<iΣj>νκ− + Σ<iΣj>ν(δκ− − κ+) ,

iij6,0 = 29S<iSj>v2 (δκ− − κ+) + 58S<iΣj>v2 ((κ− − δκ+)− 2νκ−)

+ Σ<iΣj>v2 (29(δκ− − κ+) + ν(−29δκ− + 87κ+ + 140)) + 66 (Sv)S<ivj> (κ+ − δκ−)

+ 66 (Σv)S<ivj> ((δκ+ − κ−) + 2νκ−) + 66 (Sv)Σ<ivj> ((δκ+ − κ−) + 2νκ−)
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+ 6 (Σv)Σ<ivj> (11(κ+ − δκ−) + ν(11δκ− − 33κ+ − 28)) + 22S2 v<ivj> (δκ− − κ+)

+ 44 (SΣ)v<ivj> ((κ− − δκ+)− 2νκ−)

+ 2Σ2 v<ivj> (11(δκ− − κ+) + ν(−11δκ− + 33κ+ + 14)) ,

iij6,1 = 6 (nS)2n<inj> ((7δκ− + 18κ+ + 36)− 40ν(κ+ + 2))

+ 2S2 n<inj> ((−11δκ− + 8κ+ − 48) + 30ν(κ+ + 2))

+ 6 (nS)(nΣ)n<inj> ((11δκ+ + 36δ − 11κ−) + 4ν(−10δκ+ − 20δ + 3κ−))

+ 3 (nΣ)2n<inj>
(

11(κ+ − δκ−) + 2ν(13δκ− − 24κ+ − 36) + 80ν2(κ+ + 2)
)

+ 2 (SΣ)n<inj> ((19δκ+ − 48δ − 19κ−) + 2ν(15δκ+ + 30δ + 7κ−))

+ Σ2 n<inj>
(

19(κ+ − δκ−)− 2ν(4δκ− + 15κ+ + 8)− 60ν2(κ+ + 2)
)

+ 12 (nS)n<iSj> ((2δκ− − 13κ+ − 22) + 5ν(κ+ + 2))

+ 2 (nΣ)n<iSj> (5(−9δκ+ − 2δ + 9κ−) + 3ν(5δκ+ + 10δ − 13κ−))

+ 2S<iSj> (17δκ− + 109κ+)

+ 2 (nS)n<iΣj> ((−45δκ+ − 122δ + 45κ−) + 3ν(5δκ+ + 10δ − 13κ−))

+ 6 (nΣ)n<iΣj>
(

15(δκ− − κ+) + ν(−9δκ− + 39κ+ + 44)− 10ν2(κ+ + 2)
)

+ 8S<iΣj> (23(δκ+ − κ−)− 17νκ−)

+ 2Σ<iΣj> (46(κ+ − δκ−) + ν(−17δκ− − 75κ+ + 56)) . (B1b)

The current quadrupole moment reads at leading order (see also Ref. [42] for leading order
expressions at any multipolar order)

(

J ij
)

SS
=

ν

2c4m

(

− 2κ−S
<iǫj>abSavb + (−3− δκ− + κ+)S

<iǫj>abΣavb

+ (−δκ− + κ+)Σ
<iǫj>abSavb + (−κ− + δκ+ + 2κ−ν)Σ

<iǫj>abΣavb
)

. (B2)

Finally, for the mass octupole moment, we find [42]

(

I ijk
)

SS
=

3νr

2c4m
n<i

(

−2κ−S
jSk> + 2(κ+ − δκ−)S

jΣk> + (δκ+ − κ− + 2κ−ν)Σ
jΣk>

)

.

(B3)

Appendix C: Correspondence between the spin vector and spin tensor variables

This appendix provides the link between the spin tensor and the conserved-norm spin
vector variables which we use to present our PN results. We recall that the spin tensor
variable Sij is the spatial part, in harmonic coordinates, of the spin tensor introduced in
Section IIA, and that the spin vector variable has been defined in Section IIC as Si = S̃i,
with S̃µ given by Eq. (2.14) and i being a spatial index referring to the tetrad e µ

α constructed
in the same section.

We display below the SS contributions to the expression of the spin vector in terms of the
spin tensor, in the general frame. These contributions complete those computed at the SO
order in Ref. [25], Eqs. (B.1) (notice that the spin tensor components there were denoted as
S̃ij instead of Sij). We have

(

Si
1

)

SS
=

G

c5r212

[

2na
12v

b
1S

aj
2 Sjk

1 εibk +
1

2
vi1
(

na
12S

aj
2 Sbi

1 ε
bij
)

− 1

2
vi2
(

na
12S

aj
2 Sbi

1 ε
bij
)
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−1

2
na
12S

ia
2

(

va1S
bi
1 ε

abi
)

− Sab
1 εiab

(

na
12v

b
1S

ab
2

)

+
1

2
na
12S

ia
2

(

va2S
bi
1 ε

abi
)

+Sab
1 εiab

(

na
12v

b
2S

ab
2

)

]

+O(7) , (C1)

where we have authorized the repetition of indices appearing in scalar quantities enclosed
with parenthesis. At this order, there appear S1S2 terms only and thus no S2

1 , S
2
2 terms.

Appendix D: Equivalence with ADM results for the dynamics

In this appendix, we compare our results for the dynamics with those previously obtained
in the ADM [62, 70–73] and EFT [21, 22, 35, 38, 39, 74] approaches. As the equivalence
of ADM and EFT results has been already demonstrated in Refs. [36, 37, 73], we actually
restrict ourselves to the comparison of our findings with the ADM ones, in line with our
previous works.

The two results have been obtained in different gauges and the spin variables differ in
their definition. It is thus important to take properly into account the transformation of the
particle positions and spins from one formalism to the other. In the following, we will denote
the ADM variables with an overbar and resort to the convenient notation πA = pA/mA. Let
us now introduce the contact transformation YA(x,p,S) and the rotation vector θA(x,p,S)
such that the harmonic variables are related to the ADM ones by

yA = YA(x,p,S) +O(7) , (D1a)

SA = SA + θA(x,p,S)× SA +O(6) . (D1b)

The ADM spin variables and ours have the same Euclidean norm SA · SA = SA · SA = s2A,
which is precisely the conserved norm introduced in Section IIA. Since the first corrections
enter as θA = O(4), we see that the transformation for the spins necessarily takes this form.

Now, if we denote by AA(x,p,S) and ΩA(x,p,S) the function that converts to ADM
variables the harmonic-coordinate acceleration and precession vector, and by ΩA the pre-
cession vector of the ADM spins, such that dSA/dt = ΩA×SA, the two relations to impose
for the dynamics to be equivalent are

AA = {{YA, HADM} , HADM}+O(7) , (D2a)

{θA, HADM}+ θA ×ΩA = ΩA

(

x,p,S
)

−ΩA +O(6) , (D2b)

where HADM is the ADM Hamiltonian (which can be found for instance in Section 6.2 of
Ref. [62]) and {, } is the usual Poisson brackets extended to spin variables. Here the term
θA ×ΩA is actually negligible, for θA = O(2) and ΩA = O(4).

We find that there are no contributions at leading order in the transformations (D1), i.e.
(YA)SS = O(6) and (θA)SO = O(5). Using the method of undetermined coefficients then
leads to a unique solution for the higher-order terms in the transformations. For the rotation
vector we obtain

(θ1)SO =
G

c5r212

[

m2

m1
θ
5,1
1 + θ

5,2
1

]

+O(7) , (D3)

with (adopting the same notations as in the rest of the paper for scalar products)

θ
5,1
1 = −3κ1

2
n12

[

(π2S1) + (n12π2)(n12S1)
]

− 3κ1

2
π2(n12S1)−

1

2
π1(n12S1) ,
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θ
5,2
1 = −1

2
S2(n12π2) +

1

2
n12

[

(π2S2)− 3(n12π2)(n12S2)
]

+
1

2
π2(n12S2) . (D4)

We recall that SO terms in θ actually correspond to SS effects in the dynamics. For the
contact transformation, we arrive at the simple expression

(Y1)SS =
Gm2

2m2
1c

6r212

[

S1(n12S1)− n12(S1S1)
]

+O(8) . (D5)

The relevant NS and SO contributions to these transformations are given for instance in
Ref. [24] and Refs. [24, 25].

The existence of a solution relating our variables to the ADM ones validates our results,
the problem of finding such transformations being largely over-constrained.
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