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Abstract

The BRST-Antifield reformulation of the deformation problem is reviewed in a self-
contained and heuristic way. The focus is on finding all consistent interaction terms
for fields propagating on a Minkowskian D-dimensional spacetime. Particular emphasis
is put on the physical interpretation for the mathematical objects of the formalism.
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Disclaimer

This review article contains nothing original besides, perhaps, its presentation. It is short
and offers a physicist’s perspective, and leaves out many demonstrations and historical
considerations. However the constructive approach that is followed hopefully renders
the material somewhat accessible. Noticeably, the list of references is far from being
exhaustive. Any type of remark regarding the present notes would be much appreciated.

Introduction

A typical problem in Theoretical Physics is the following: given a free field theory for some
field content, find out which interaction terms are allowed by consistency requirements
such as gauge invariance. We refer the unfamiliar reader to Section 1 where we briefly
recall the interpretation of gauge theories and the usual way they are dealt with.

Given an interaction term it is in principle straightforward to check whether it is
gauge invariant or not. However, from a constructive viewpoint one would wish to start
from some field content or, equivalently, from some free action principle, and proceed
to an exhaustive classification of all possible interaction terms. Such a task is far from
being straightforward, mainly for the following two reasons. First, the freedom of field
redefinitions together with that of integration by parts implies that the same interaction
term can be cast into seemingly different forms. Second, looking for interaction terms
which are gauge invariant under the free gauge transformation rules is not the most generic
thing to do. The free gauge transformations are those that leave the free theory invariant,
but an interacting theory which is not invariant under the free gauge transformations may
nevertheless be invariant under some deformed version of those transformations. In brief
the problem of adding interaction terms to a free Lagrangian is difficult because one asks
two questions at the same time and seeks a common answer, that is, one looks for vertices
that deform the Lagrangian and possibly the gauge transformations at the same time in
a consistent manner, and moreover field redefinitions must be taken into account.

The traditional way of dealing with this deformation problem is via the Noether pro-
cedure: suppose one finds a tentative vertex, to be added to some free theory. If the said
vertex is non-Abelian, then it deforms the original, Abelian gauge transformations. One
needs to verify whether the deformed gauge transformations form some deformed gauge
algebra or not. If they do, then one needs to determine the algebraic structure thereof,
and the procedure needs to be repeated for every putative vertex. The BRST-Antifield re-
formulation? of the deformation problem allows for proceeding backwards: the formalism
makes it very natural to start with the classification of the possible deformations of the
gauge algebra. The advantage is that the possible deformations of the gauge algebra are
much constrained, and in the BRST-BV language those constraints translate to precise
cohomological statements, so that one is assured to be exhaustive. One then follows a
systematic procedure called the consistency cascade, which consists in solving cohomol-
ogy equations in order to determine whether the tentative algebra deformation is allowed
or not. The obstructions to consistency are again related to precise cohomology classes,
and if the algebra deformation is consistent the procedure also yields the corresponding
gauge-symmetry and Lagrangian deformations.

The BRST-BV reformulation cleverly deals with the two difficulties outlined above:
field redefinitions and deformation of the gauge transformations. Instead of using the

2 Also called BRST-BV. We use all such terminologies interchangeably.



standard (free) action a (free) master action is constructed which on top of the standard
action contains terms with explicit information about the gauge transformations. The de-
formation problem then translates to that of deforming the master action, thus naturally
dealing at the same time with the problem of deforming the Lagrangian as well as the
gauge transformations in a consistent way. Also, a BRST operator is constructed which
implements at the same time the gauge transformations and the field redefinitions, and
relates them to precise cohomology classes. It is thus ensured that the freedom granted
by field redefinitions is fully used when classifying different gauge-invariant vertices.

All these advantages come at a price, namely that of having to introduce auxiliary
fields: antifields and ghosts (and antighosts), which enlarge the original phase space
(also referred to as the configuration space). The philosophy is that in this enlarged
phase space, to be defined below, it is possible to reformulate statements and properties
such as gauge invariance and on-shell triviality into precise cohomological equations.® In
particular, the usual properties of consistency and non-triviality will be related to the two
familiar aspects of cohomological calculus: computing the kernel of a nilpotent operator
as well as the trivial part therein. In a first approach, the formalism presented here may
therefore seem excessive, but we nevertheless think it not only extremely useful but also
quite natural. Furthermore the BRST-BV reformulation of the deformation problem is
intrinsically off-shell in spirit, that is, no gauge-fixing is required nor implied.

We owe the original BRST-BV formalism to Becchi, Rouet, Stora, Tyutin as well as
to Batalin and Vilkovisky [1—4], which they originally developed in order to address the
quantization of gauge theories. Later on it was realized that one could use this language
also at the classical (i.e. non-quantum) level to consistently search for deformations of
given gauge theories [5—8]. This is the application we present, in the simplified case where
one deforms a free theory. The literature on the BRST-Antifield reformulation of the
deformation problem includes the very good review [9] and we also point out the algebraic
and geometrically oriented lectures [10], the report [11] as well as the comprehensive book
[12], all of which go beyond the scope of the present review.

1 Contextualization of the Problem for Non-Experts

In broad strokes, the evolution in time (dynamics) of particles of some type is described
by means of a field theory for a corresponding set of fields. Mathematically speaking
the fields are sections of some fiber bundle over a base manifold which represents the
spacetime the particles propagate on. In this review we consider particles propagating on
a Minkowski spacetime of dimension D > 4, so that the base manifold is R” equipped
with the Minkowski metric 7, (p,v =0,..., D—1).* The isometry group of this manifold
is the D-dimensional Poincaré group, containing the Lorentz group as a subgroup, and
the fields can be considered concretely as tensors for the latter, that is, they transform
under irreducible representations of the Lorentz group. These fields depend on spacetime
coordinates which parametrize the base manifold, one of which is the time, the others
being called space coordinates.

Constructing a field theory for such fields means constructing an action .S, which is a
functional of our spacetime-dependent tensor fields, and which contains all the informa-

3 Recall that a quantity is said to be on-shell zero, or on-shell trivial, if it can be made so by making
use of the equations of motion.

4 Our universe seems to be approximately Minkowskian and to have four (large) spacetime dimensions.
Note that mathematically any pseudo-Riemannian manifold can be taken as the base manifold.



tion about the theory in a way that we will detail soon. The action, or action principle,
is the integral of a density over the base manifold. The density is called the Lagrangian,
and many questions in Field Theory can be reformulated in terms of it. As all the rest of
the present work is about deforming Field Theory Lagrangians in some set-up by means
of the BRST-Antifield techniques, let us explain succinctly the way they are understood
and dealt with in high-energy physics. Note that what follows is a short and sketchy
contextualization summarizing standard Field Theory textbook material, and for a more
mathematically oriented presentation of Field Theory we refer to [13].

More precisely, the aforementioned fields correspond to the type of particles one wishes
to consider. The prescription of (classical) Field Theory is that one chooses a vacuum
value for these fields and then considers perturbations (equivalently, excitations) of the
fields around this vacuum. These excitations are really what the particles are associated
with, and they are tensors for the whole Poincaré group of isometries of spacetime. The
time evolution of these particle fields is determined by solving the Euler-Lagrange equa-
tions, which are obtained by equating to zero the functional variation of the action with
respect to the field excitations. These equations of motion, as they are called in physics,
are partial differential equations which are solved by specifying a number of independent
functions of the space coordinates at some given time, namely a certain number of func-
tions on the Cauchy surface corresponding to that given time.” In physics speak it is
declared that the corresponding particle contains or propagates that number of degrees
of freedom.’

In some descriptions the number of components of a field excitation does not match
the particle’s number of degrees of freedom. Such redundant formulations are called gauge
theories, and the fields they describe transform under gauge symmetries accounting for
the mismatch. For example, the gauge invariant description of the photon is by means of
an action depending on the Maxwell one-form field A = A,(x)dz*, transforming in the
fundamental (vectorial) representation of the Lorentz symmetry group. On a Minkowski
spacetime of dimension 4 the photon propagates 2 degrees of freedom, whereas the vector
field A,(x) evidently has 4 components. The mismatch of two is corrected by gauge
invariance: it is postulated that the relevant object is not the field A,(x) but, rather,
the equivalence class of such fields, where in this case the equivalence relation reads
A — A+ dA(z). It is beyond of the scope of this introduction to work out the details of
this example, but it is a standard exercise in Field Theory for which we refer e.g. to [12].

Such gauge-invariant formulations might be perceived as being overly complicated.
Why not deal with some set of components corresponding to the number of degrees of
freedom carried by the particle of interest ? Such a formulation is called a (completely)
gauged-fixed one, or a formulation without gauge invariance. However, for many pur-
poses having a gauge-invariant formulation of the theory is more practical. One can
always gauge-fix a given gauge theory, thereby obtaining its gauge-fixed version, and it
is straightforward to do so. The converse, however, is not easy in general, and gauge-
invariant formulations are usually thought of as being harder to obtain in general.

Dealing with fields transforming under some gauge symmetry’ comes at a price: the

5 We are eluding a number of subtleties related to solving equations of motion.

6 Truly what determines the number of degrees of freedom is the number of independent (quantum)
numbers one needs to specify in order to determine the (quantum) state of the particle completely. This
does not always match the number of independent solutions to the free equations of motion, for reasons
outside the scope of this introduction.

7"We shall stick to the standard language lore according to which gauge transformations are called
gauge symmetries. It should be clear, however, that those are not true symmetries of our theory — no

4



action functional needs to be gauge invariant. If it were not, it would mean that our ac-
tion, the object containing all the physical information about our theory, depends on the
field representative chosen within its gauge equivalence class. Differently put, our action
would depend on the gauge choice, i.e. it would be unphysical. All physical quantities
need be gauge invariant. When trying to construct an action for a given set of fields, the
requirement of gauge invariance can be a hard one to meet. On a more philosophical
level, let us note that this is not necessarily a "price’ that we pay. Indeed, physicists often
look for guiding principles, constraining rules that may restrict the number of theories
one may a priori think of. A modern view is that gauge invariance, although it is not a
physical thing but a mere redundance in the way we formulate our theory, is nevertheless
a guide of great value for building physical theories.

An action can be either free or interacting. What this means at the conceptual level
is that a free action is one which describes the simplified scenario where particles freely
propagate in some spacetime, without interacting with other particles or with themselves.
They do not decay, collide, or exchange energy in any way — they just propagate. An
interacting action is one which describes the general but more intricate situation in which
we consider interactions among the different particles. How is the difference understood
at the mathematical level 7 The action is the integral of some density over the spacetime
manifold, and the density is a polynomial functional in the fields and their spacetime
derivatives. The density, also called the Lagrangian starts at degree 2 in the fields and
generically contains higher-order pieces. The degree-2 part is the free part of the action,
also called the kinematical part, whereas the higher-degree terms are referred to as the
interaction vertices, or interaction terms. As the various equations of motion are obtained
by equating to zero the functional variation of the action with respect to the various fields,
free equations of motion are linear in the fields.

Given a set of fields it is straightforward to construct the free action describing their
propagation over Minkowski spacetime. For example, in the case of a scalar field ¢(z)
(transforming according to the trivial representation of the Poincaré group), we immedi-
ately see that the only possible kinetic, free density is

()" p(x) . (1)

The Einstein convention is used according to which repeated indices are contracted with
the Minkowski D-dimensional metric 1), and its inverse n*” (conventions are given in the
main part of the text). A scalar field does not transform under any gauge symmetry, and
as we said it does not transform under the Lorentz group either because it belongs to the
trivial representation thereof. As a kinetic term needs at least one spacetime derivative,
the above is the simplest term we can think of, since it has to be Lorentz invariant (which
is why the two derivative indices need to be contracted). One could argue that both the
derivatives could act on the same field ¢ instead, but recalling that the ultimate object
is the spacetime integral of the above we see that, neglecting boundary terms,® such
combinations are equivalent thanks to the freedom of performing integrations by parts.

physical statement can be drawn from the knowledge that our theory is gauge invariant — , unlike e.g.
the symmetries leaving the relevant spacetime manifold invariant, which do have physical consequences.

8 Boundary terms is a very important aspect of dealing with actions. However, their treatment is
far beyond the scope of this work and we will limit ourselves to pointing out that, locally in spacetime,
the dynamics may be described without taking them into account provided that appropriate boundary
conditions are chosen for the fields.



We will not consider kinetic terms with more than two spacetime derivatives, and the
above expression is unique up to those.

The upshot is that free theories are easy and may be taken as the starting point of
a program aiming at constructing an interacting action principle for some set of fields.
Why is it not equally easy to add to free Lagrangians interaction terms of higher degree
in the fields ? The answer has much to do with gauge invariance. Lorentz invariance also
constrains the possible terms one can think of, but that requirement is straightforwardly
dealt with: if all spacetime indices are contracted Lorentz invariance holds. Gauge invari-
ance is more difficult to check, and even more so to enforce a priori. The above example
of the scalar field is blind to the problem because the field does not transform under a
gauge symmetry (the gauge equivalence class is trivial). Thus any functional of the scalar
field and its derivatives is gauge invariant and constructing interaction vertices is easy:
0P, v or other such combinations are all gauge invariant interaction terms. Let us
then go back to the example of the vector field A,(x), whose kinetic term reads

dA A*dA x (8,4,0"A" — 0,A,0"A") d°x 2)

where x denotes the Hodge dual of the curvature dA. One can think of the following
interaction vertex: V = A,A”A,A". However, it is easy to check that such is not an
invariant combination under A — A+ d\(x) = A+ JA. That is, one computes the gauge
variation 0V of V', using the chain rule, and observes that it is nonzero for a generic A(x),
even up to total derivatives.

2 BRST and Antifields: Getting Started

We restrict ourselves to the case where the theory one starts with is free, but in principle
the same framework can be used to address the problem of deforming a theory which is
not free — see e.g. [10]. Another assumption we make is that the free gauge theory is
irreducible.” This means that we start from a free, irreducible gauge theory of a collection
of fields {¢'}, with m Abelian gauge invariances

5.0' =R a=1,2,...,m, (3)

which leave the free action S(©[¢?] invariant. The R!, usually are differential operators.
We present the formalism in generic dimension D. We do so in the following seven steps:
Step 1: Ghosts for Gauge Parameters,

Step 2: Antifields and Gauge Variations,

Step 3: Longitudinal Differential Along Gauge Orbits,

Step 4: Koszul-Tate Differential,

Step 5: BRST Operator,

Step 6: Consistency Cascade,

Step 7: Second-Order Consistency and Antibracket.

9 Trreducibility of the theory means that the gauge transformations are mutually independent [12].



In Step 1 and 2 we enlarge the phase space of our original fields ¢’. Step 1 replaces
gauge parameters by ghosts, which are added to the configuration space, whereas Step 2 in-
troduces antifields, which source gauge transformations in some generalized action called
the master action. Then, in Step 3 and 4 we reformulate two important concepts in
cohomological terms. The first one, dealt with in Step 3, is gauge invariance, and it will
connect with Step 1. The second, addressed in Step 4, is field redefinitions, and it will
relate to Step 2. Step 5 then combines both reformulations of these concepts into a single,
unified operator: the BRST differential, conveniently implementing both the equations
of motion and the gauge symmetries. Once the correct operator has been identified, in
Step 6 we explain how to search for consistent interactions in this formalism, that is going
through the consistency cascade, which allows one to start from potential deformations of
the gauge algebra. Finally, Step 7 is concerned with second-order consistency and quartic
vertices. In the latter we discuss the antibracket; a symplectic structure on our enlarged
phase space which not only allows for an easier analysis of second-order consistency but
also for a ‘geometrical’ reformulation of the deformation problem in general, which we
touch upon briefly.

Step 1: Gauge Parameters for Ghosts

The first step is as follows: each gauge parameter €“ is replaced by a corresponding ghost
field C%, so that the gauge transformations (3) now read

' =R C* a=1,2,....,m. (4)

The ghost C* is declared to have the same algebraic symmetries but opposite Grassmann
parity as €*. This means that, e.g. if some gauge parameter is bosonic (as for example
that of a spin-1 gauge field), the corresponding ghost is Grassmann odd, and vice versa.

Remark : we do not spell out spacetime indices, and the index o in C* is accounting for
the various ghosts replacing the various gauge parameters. As no assumption is made on
the spin of the fields and their associated gauge parameters, it should be kept in mind that
each of the latter can have spacetime indices, but we treat them all generically. When
we say that the ghosts have the same algebraic symmetries as the original fields they
correspond to, we are referring to those spacetime indices, and mean that both transform
in the same representation of the Lorentz group.

The ghosts are now included in the phase space, thus enlarging that of the original
fields, and all of them are sometimes collectively also called fields, which we denote by
{®4} = {¢",C*}. In order to keep track of the nature of each of the fields we further
introduce a grading, called the pure ghost number, defined to be 0 for the original fields
and 1 for the ghosts:

pgh (¢)
pgh (C*)

0, (5a)
1

Step 2: Antifields and Gauge Variations

Let us define the free master action, corresponding to the original, free action S©[¢?]. As
we anticipated in the beginning of the present section, the point is to build a generalized
action which, in addition to containing information about the original Lagrangian will



also contain explicit information about the gauge transformations.'’ It is such a free
master action, denoted Sy (note the subtle change in notations), which is deformed later
on. The idea is the following: in addressing the deformation problem for non-Abelian
vertices, one is not only looking for deformations of the Lagrangian invariant under the
original gauge transformations. Rather, one needs to allow for the gauge transformations
to get deformed too. One virtue of the master action is that it contains explicit informa-
tion about both these aspects, and the deformation problem, when formulated in terms
of it, will automatically take into account both these features in a way which ensures
consistency and exhaustivity. The free master action is defined as follows:

Sy = SO[41] + / 4%z ¢ RiCO (6)

where the ¢} are the antifields, which play the role of sources (i.e. Lagrange multipliers)
for the gauge variations in the master action.

The configuration space is even further enlarged by also introducing antifields corre-
sponding to the ghosts, named antighosts. Collectively we thus have antifields ®%, which
are again defined to have the same algebraic properties as the corresponding ®* but
opposite Grassmann parity (which correctly makes the above master action Grassmann
even). Our phase space is now given by {®4, &%}, where {®%} = {¢7,C’}. Note that
in Step 1, the gauge parameters are replaced by ghosts and those are then added to the
phase space. Here, rather, we supplement the phase space with antifields corresponding

to the fields.

Note that the antighosts do not enter the above master action, and at this stage one
can think of them as being added also for the sake of democracy — their role will be
clarified in the sequel. As for the antifields, besides sourcing the gauge variations in the
master action, in Step 4 we shall see that they have another role to play. However for
the moment let us be content with the explicit presence of information about the gauge
symmetries in the master action. The rule will be that whatever multiplies the antifields
in the master action is the gauge transformation of the corresponding field. This will be
of much use when deforming the free theory.

Remark : a word of caution about the interpretation of the above action should be
added. For the unfamiliar reader, it might be tempting to consider the antifields and
the ghosts as auxiliary fields in the usual sense of Field Theory. The corresponding
paradigm is that the equations of motion which follow from variating the action with
respect to those auxiliary fields allow one to solve for them, hence integrating them out
when plugging their algebraic expressions (in terms of the dynamical fields) back into the
action. However, such is not the way in which one should understand the master action.
Rather, the latter is really a tool, allowing to keep gauge invariance and field redefinitions
under control, and should not be thought of as a standard action.

Finally, as we have introduced new (anti-)fields we need a new grading to keep track
of who is who in the phase space of all the fields and antifields. We thus define the

10°'We use the word ezplicit for the following reason: given some standard (free) action one can always
work out the corresponding gauge symmetries, so that this information is already contained in the action
functional, although in an implicit manner.



antighost number as

agh(®) =0, (Ta)
agh (®%) = pgh(®4) + 1. (7b)

Also, we need to extend the definition of the pure ghost number to the antifields, and the
correct definition is pgh(®%) = 0.

Step 3: Longitudinal Differential Along Gauge Orbits

As explained at the beginning of the present section, this third step has to do with Step
1. What is done is to define an operator I' implementing the (free) gauge variations on
our enlarged phase space. The definition is the following:

¢’ = R.C*, rc*=o0, (8)

that is, T is the ‘longitudinal derivative along the gauge orbits’ [12]. From the above
definition one sees that I' is Grassmann odd and that I'> = 0. Note that the latter
property, or equivalently I'C* = 0, reflect the fact that the gauge algebra of the free
theory is Abelian [12]. To finish implementing the gauge variations one needs to further
define the action of I' on the antifields and the antighosts, and the correct definition is
res =
As for every nilpotent operator (of degree two), it is natural to consider the cohomology
of I H(T),
H(I') = {X € phase space | 'X =0, X # 'Y}, (9)

where more precisely X and Y are local expressions built out of the fields and antifields.
The physical interpretation is clear: the cohomology of I' is the set of gauge-invariant
combinations that are not themselves gauge variations of something else (not pure gauge,
one might say). With this definition we are really beginning our formalization of the
properties that are crucial for us. Indeed, all the above definition does is formalize the
definition of what ‘being an observable’ means — to be refined in Step 5. We cannot
possibly stress enough that this approach is at the core of the present reformulation, and
in fact it is precisely the idea of associating physical quantities with cohomological classes
of nilpotent operators which the BRST-BV approach put forward [1-3]. Note that I has
pure ghost number equal to 1 but leaves the antighost number unchanged.

Before moving on to Step 4 we should add a few words about terminology and notation.
In the language of cohomology, a combination which is annihilated by some operator is
said to be closed, and one that can be expressed as the application of the operator to some
other quantity is said to be ezact. An equivalent way of phrasing things is to declare any
closed object a cocycle and any exact one a coboundary. We shall switch back and forth
between both terminologies, although we prefer the former. The cohomology of T', for
example, will be said to be the space of all I'-closed combinations which are not I'-exact.
Also, a I'-exact element shall sometimes be said to be trivial in the cohomology, and
therefore we shall sometimes drift towards the standard abuse of terminology according
to which ‘being in the cohomology’ is understood as being I'-closed and I'-exactness is
expressed as being trivial in H(T").

When we shall solve for the first-order deformation of the free master action by re-
quiring it to be gauge invariant (up to field redefinitions), those terms proportional to the

9



antifields will represent the deformation of the gauge symmetries, whereas the quantities
containing the original fields only are deformations of the original, free Lagrangian. As
for terms containing the antighosts, much like the terms multiplying antifields in the
master action are the gauge symmetries, the terms multiplying the antighosts shall be
seen to correspond to deformations of the gauge algebra. This fits quite nicely with the
fact that the free master action Sy contains no such terms, for the algebra of the free
theory is Abelian.

Step 4: Koszul-Tate Differential

Step 3 had to do with Step 1, and the present step has to do with Step 2, that is with
the antifields. Indeed, so far we have dealt with gauge invariance, and we further need
to address the freedom granted by field redefinitions. Again, this will be done by the
introduction of an odd operator, this time named A. The possibility of field-redefining
our deformations may sound like one which can be handled easily even in the standard
approach, but it is not, and although one may like to think of I" as being the main ingre-
dient of the ultimate BRST differential s = I' + A (see Step 5), the inclusion of A is in
fact crucial. It will ensure that field redefinitions are not left unconsidered when passing
to the cohomology of s, describing our gauge invariant observables.

In order to properly deal with fields redefinitions we again follow the fruitful paradigm
according to which ‘physical’ combinations should be associated with elements in the co-
homology of our nilpotent operator A. More precisely, this means that the quantities we
wish to consider as redundant (defining some equivalence class) should be associated with
trivial elements of the cohomology. The analogy with the previous step, concerned with
gauge invariance, is thus clear: in the same way as I'-exact objects are gauge variations of
something else, which are the redundancies corresponding to the possibility of performing
gauge transformations (see Section 1), A-exact objects will be associated with combina-
tions which are on-shell zero, that is, with field redefinitions.!’! We thus would like to
define the action of A on our phase space in a way such that the equations of motion for
our original fields are equal to A-variations of something else. The correct definition is

Ay = Ei(¢), (10)

where E; is defined to be the equation of motion for ¢, that is, §S® = E;0¢° (where §
here denotes a functional variation with respect to the fields). Moreover, starting from the
above definition, the Bianchi identities (zeroth-order Noether identities) corresponding
to the equations of motion are easily seen to enforce the following relations:

AR ¢¥) =0, (11)
It can then be shown that having objects such as R’,¢? in the cohomology of A leads to
inconsistencies in the formalism [10, 12]. However the cure to this problem is obvious: if
an object is A-closed and we wish to exclude it from the cohomology, the way out is to
make it A-exact. Accordingly, we define

AC! = R ¢} (12)

i -

1 Note that A-exact terms will describe all types of field redefinitions, including expressions stemming
from redefinitions of the gauge parameters.
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Our antighosts finally play a role! Note that, from the relation (10) one concludes that
A is also Grassmann odd, just like I', and its nilpotency is again guaranteed (and can be
checked explicitly on every field). One may think of the above relation in the following
way: we are just adding the antighosts to the game in order to express R! ¢} as a A-exact
quantity, much in the same way as we simply added the antifields because we needed an
object that could source the gauge variations in the master action (see Step 2).

The action of the A operator on the rest of the original fields is derived by acting with
it on (10), which yields A¢’ = 0, and the action on the ghosts then follows from applying
A to (8) and noticing that A anticommutes with I', for they are both Grassmann odd.
We are ready to formulate our second cohomology, that of A:

H(A) = {X € phase space | AX =0, X # AY}. (13)

The physical meaning is, again, quite clear: the cohomology of A is the space of all
quantities built out of the ®4 which are not themselves A-variations of something else,
that is quantities which are not proportional to the equations of motion (equivalently,
which are not field redefinitions, or on-shell zero). We are making progress towards a
complete and refined formalization of what we mean by an observable: a non-trivial, gauge
invariant quantity identified with others up to field redefinitions and gauge variations.
Evidently, the correct operator which will compute for us the ‘physical’ cohomology will
need to combine both A and I'. That operator is called the BRST differential, and is
formally introduced in Step 5 here below.

Regarding the gradings, A has agh(A) = —1 and pgh(A) = 0, as is easily deduced
from its action on the various fields and antifields.

Step 5: BRST Operator

With the above considerations in mind we can finally construct our ultimate nilpotent
operator: the BRST differential s. The aim is that its cohomology should correctly
describe the notion of an observable. Differently put, H(s) should be associated with the
space of inequivalent, gauge-invariant and non-trivial deformations S; of the free master
action Sy to be elucidated below. The definition which computes the correct cohomology
is the following;:

s=T+ A, (14)

and one can again check its nilpotency, either by noticing that I' and A anticommute or
directly. Its cohomology,

H(s) = {X € phase space | sX =0, X # sY}, (15)

is exactly the one computing all the consistent action deformations up to field redefi-
nitions. Indeed, it is the space of combinations which are on-shell gauge invariant but
which are not themselves the gauge variation of something else or a field redefinition of
something else, as follows from simply investigating the cohomology conditions in light
of the decomposition s = I" + A.

Let us now consider a consistent deformation of the free master action into some
deformed master action S, that is,

S:SO+951+9252+"', (16)
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where the ellipses stand for higher order deformations. In the generic case where the
deformation is possibly non-Abelian, the gauge transformations also get deformed in
such a perturbative way, and S is assumed to be invariant under the zeroth-order gauge
transformations. We shall primarily address the problem of first-order deformations. Now,
as it is well known and also easy to check, for the first order piece S; the requirement
of perturbative gauge invariance is really that of being invariant under the free gauge
symmetries — this is equally true whether one considers the master action or the original
action. Thanks to this fact, that we have implicitly used until now, we can analyze the
problem of finding and classifying the consistent deformations by means of the BRST
differential s, which implements all at once the necessary requirements of (free) gauge
invariance and (free) on-shell triviality. In cohomological terms the condition our first-
order deformation of the free master action must satisfy reads

Sy € H(s). (17)

Finding all the consistent first-order deformations up to equivalence is thus tanta-
mount to computing the cohomology of s, which is a well-defined mathematical problem.
However, we shall now proceed to introducing one last refinement of the cohomology we
want to compute, and that is the one of partial integration. Indeed, we shall always
assume that the deformations we seek are local,'? that is, they are spacetime integrals
of functionals of our phase space variables (the fields, antifields, ...) and of derivatives
thereof, provided the derivatives appear up to finite order only. Our notation goes

Slz/a. (18)

Therefore our problem can be and will be reformulated in terms of a, namely, at the
level of the (master) Lagrangian instead. Consequently, provided we are interested in the
local dynamics only, to which boundary terms in the action never contribute, we have
the freedom of performing integrations by parts. The relevant cohomology is thus not
H(s) but, rather, the cohomology of s modulo d, noted H(s|d), which is defined as H(s)
but with the extra freedom of performing partial integrations. The ultimate condition
that our deformation must satisfy then reads

a € H(s|d), (19)

which is both necessary and sufficient. On top of this condition, our deformation a might
of course be required ‘by hand’ to preserve certain global symmetries, such as Lorentz
invariance or parity. Note that the above condition can also be rewritten as a € H(s+d).

Before we can start analyzing the above condition in detail there is one more grading
we need to introduce, namely the total ghost number (or simply the ghost number), equally
defined on all fields as the pure ghost number minus the antighost number. That we do
so now is not an accident. Indeed, the BRST differential s does not have neither definite
pure ghost number nor definite antighost number, as is inferred from the properties of I'
and A. The correct quantum number which keeps track of the action of s is the (total)
ghost number, and in fact we find gh(s) = 1. The ghost number of the various fields
and antifields are straightforwardly computed, and also given in Table 1 at the end of

12 The fact that locality is compatible with the formalism is proved in [14].
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the section, together with the action of the various operators on the various fields and
antifields.

With our last quantum number, the total ghost number at hand, it is time we mention
a condition on the deformation we have been neglecting so far, and it is that of the
quantum numbers which it must have. Firstly, let us note a simple yet important fact:
just like s the free master action does not have definite pure ghost or antighost number,
but it has total ghost number 0, which the reader shall easily verify. Note that this further
indicates that the BRST differential is the right operator to consider when deforming the
free master action but, more importantly, it means that S; and a must have total ghost
number 0. This will much restrict the possible ingredients one may use to build a tentative
deformation term. Also, as we shall see the elements of H(s|d) with higher ghost number
shall also enter the game at some point. The subset of H(s|d) having ghost number equal
to k is called the cohomology at ghost number k and it is denoted by H*(s|d). The final
word about the deformation is thus the following:

a € HO(s|d) |. (20)

This condition repackages all the requirements of consistency and non-triviality of the
deformation.

Step 6: Consistency Cascade

Having formulated in a precise way the cohomology we wish to compute, we now explore
how to do so in a clever way. An obvious thing to do is to use the gradings we have
introduced to further inspect the problem. It is found that the antighost number is most
useful in doing so, and the main reason for that is the following theorem: let

a=ag+a;+ag+---, (21)

where agh (a;) = i (note negative antighost numbers cannot occur). The theorem, proved
in [7] under very generic assumptions, states that a; = 0 Vi > 2. This result is, in
general, very strong and as we shall see below it will be crucial in being able to analyze
the deformation in a systematic way. Let us point out that for cubic deformations the
theorem is trivially proved, in the sense that there is no gh# = 0 combination of three
of our fields and antifields of antighost number higher than 2, as one can directly observe
by considering the various quantum numbers we have assigned each of the fields. In the
sequel we shall confine ourselves to cubic deformations.

Remark : as we are addressing first-order deformations anyway, the reader might wonder
what it means to further confine ourselves to cubic deformations. Could one think of e.g.
quartic first-order deformations? Although this situation never arises in physics it is
nevertheless a logical possibility. In [15] it has been proved that such deformations never
occur up to spin 5 and argued to be true for all spins. In the present approach we
shall not prove the analogous result and simply make the assumption that our first-order
deformations are cubic.

The above result is more useful than it might seem at first glance. First of all, the
interpretation of the three pieces appearing in the above decomposition of a is much clear:
ap is the deformation of the Lagrangian, a; is the deformation of the gauge symmetries
and as is the deformation of the gauge algebra! This can be verified by noticing that ag
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contains only the original fields (agh# = 0), a; contains one original field, one ghost and
one antifield (agh# = 1) and ay contains two ghosts and one antighost (agh# = 2) — and
once again recalling that a has total ghost number zero.

Secondly, with the above decomposition in mind the cohomology condition

sa+d(...) = (T'+ A)(ap +a; +az) +d(...) =0, (22)

when analyzed antighost number by antighost number, gives rise to three independent
conditions:

Fas =0, (23a)
A(lg + F(ll = 0, (23b)
Aa; +Tap=0. (23c)

These conditions form what is known as the consistency cascade, and we have used a new
notation: ‘=’ is understood as the standard equality up to total derivatives. Moreover,
another general theorem [7] teaches us that one can always assume I'ay = 0, which is
stronger than the same condition up to total derivatives.

The above consistency cascade will be our main tool in finding out consistent deforma-
tions, and it is worth commenting on. The equation (23c) for ag is familiar: it expresses
the fact that the deformation of the Lagrangian, ag, is invariant up to field redefinitions
Aaq and total derivatives. The two remaining equations are less easily interpreted, but
their role is to ensure first-order consistency of the deformation of the Lagrangian. In-
tuitively, the situation is clear: (23b) involves a; and ay, and is thus ensuring that the
deformation of the gauge symmetries induced by aq closes to a gauge-algebra deformation
ay. Then, Equation (23a) ensures consistency of the gauge-algebra deformation as. In
fact, one can check that (23b) is the first-order projection of the condition that the gauge
symmetries close to some algebra and (23a) is a consistency condition for the gauge-
algebra deformation, again projected to first order in the deformation.

Having established the above consistency cascade, we are in principle ready to tackle
the problem of computing H(s|d). However, as mentioned at the beginning of this sec-
tion, the BRST-BV formalism will allow us to tackle that problem backwards. This means
that, instead of classifying the ag’s satisfying Equation (23c) and then working our way
up the consistency cascade, we shall start with classifying the as satisfying Equation
(23a) and from there make progress all the way down to the corresponding, consistent ay.
Such is the power of the BRST-BV framework: we classify the consistent gauge-algebra
deformations first and from there extract, by solving the consistency cascade (first for a;
and then for ag), the corresponding Lagrangian deformations. In this fashion the search
for consistent deformations is rendered systematic and involves only the solving of precise
cohomology equations. Also note that, by construction, a byproduct of this method is
that the gauge-symmetry and gauge-algebra deformations corresponding to some found
ag are readily available.

Let us discuss non-Abelian vertices first. The strategy is the following: classify all
the as satisfying Equation (23a). Take a linear combination of all of them with arbitrary
coefficients and plug it into Equation (23b). Then solve Equation (23b) for a;. Finally,
plug the found a; into Equation (23¢) and solve for ag: it is the non-Abelian deformation
of the Lagrangian.
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Actually, the classification of as is further constrained by an equivalence relation.
Indeed, two different as, both satisfying Equation (23a), might yield the same ay. This
simply stems from the fact that, so far, in addressing the computation of H%(s|d) we
have only analyzed the condition that a should be s-closed modulo d, and in (22) we
have expanded it in antighost number. The condition of non-triviality in the cohomology
should also be taken into account, and this means that the a candidates are defined up to
the equivalence relation given by the addition of s-exact terms modulo d, that is, terms
of the form sm + dn. Now, as the reader shall easily verify upon recalling that m and
n should also have total ghost number zero (and also stop at antighost number 2), such
an equivalence relation yields the following three equivalence relations for the different
components of a:

ay ~ as + by + dey, (24a)
a/l ~ a1+ Abl —+ dCl s (24b)
ag ~ ag + Aby + deg . (24¢)

This means that, when listing all the ay satisfying Equation (23a) we do so up to the
above equivalence, and indeed one straightforwardly checks that two ay’s differing by
[-exact terms modulo d yield the same ag, if any. Those would thus be two equivalent
ways of writing down the gauge-algebra deformation induced by some given aq.

We now address Abelian vertices, that is, deformations a for which the a, part is
trivial, i.e. [-exact up to total derivatives. Now comes of use another theorem: when as
is trivial one can always choose it to be zero, and hence the consistency cascade starts one
step lower, with Equation (23b) at ay = 0, that is, ['a; = 0 [8]. Even better, the theorem
further guarantees that one can chose a; to be exactly I'-closed, and not only modulo d.
The Abelian vertices which nonetheless deform the gauge transformations are thus found
by classifying all the inequivalent a;’s which are I'-cocycles. Again, two equivalent a;’s,
differing by A-exact terms up to total derivatives, are seen to yield the same ay.

Last of all we address the ‘completely Abelian’ vertices, namely those that not only
preserve the gauge algebra but also leave the gauge transformations undeformed. This
kind of deformations will have zero as and trivial a;, that is, the a; piece will be A-exact
modulo d. In that case one can evidently remove a; so to be left with only Equation
(23¢) at a; = 0, to be solved for ag, i.e. T'ag = 0, which is to be solved in light of the
equivalence relation for ag, simply given by field redefinitions and total derivatives.

One point worth highlighting is the crucial role played by the cohomology of T' at
antighost number 2, which is indeed the one computing the inequivalent ay candidates in
the non-Abelian case.'?

There is a subtlety in the non-Abelian case which we should comment on right away,
and which we have overlooked so far in order not to crowd our first approach of the
consistency cascade, but which is nonetheless an important point. Let us consider some
[-closed ay and plug it into Equation (23b) in order to solve for a;. The subtlety is the
following: the solution for aq, if it exists, is in fact defined up to I'-closed terms only.
Indeed, if two a;’s differ by I'-closed terms they will correspond to the same as. The
solution aq, if it exists, is then usually denoted as

ay = a; +ap, (25)

13 Actually, as has been emphasized, one can choose as to be strictly I'-closed, and not only I'-closed
modulo d.
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where the I'-closed term a; is called the ambiguity and the non-ambiguous piece a; is the
solution found to solve Equation (23b) for our candidate a;. Now comes the complication:
when plugging the above a; into the last consistency equation, Aa; + I'ag = 0, it might
be that a solution for ag only exists for some ambiguity a;, and in general that is the
case. In fact, this is the way the ambiguity is fixed. The computational intricacy is then
that, in general, it might be difficult to either guess the correct ambiguity or express
it into its most general form to then plug it into the last equation. For non-Abelian
vertices the situation is thus usually the following: determining whether a candidate as
has a corresponding a, is not extremely difficult but, if there is such an aq, finding out the
correct ambiguity (or establishing that no ag solves the last equation, whatever ambiguity
is used) can be tricky, and it is the most non-trivial part of the procedure.

Finally, before addressing second-order consistency in the next step, let us comment
on a procedural point, having to do with Abelian vertices. For the latter, the equation
to solve is 'ag = 0, as we have just seen. However, it might not be the easiest one to
solve and, as it usually turns out, it is easier to allow for A-exact terms in I'aq. It is
then easier to find the inequivalent ay’s satisfying an equation of the form I'ag = A(...).
The corresponding a; is then in general not equal to zero. However one can check that,
because a, is trivial, it can always be canceled by the addition of A-exact terms in aq. By
performing field redefinitions at the level of our vertex one can thus render its invariance
manifest up to total derivatives only (or do the inverse thing). Differently put, depending
on the chosen representation for our vertex, the absence of deformation of the gauge
transformations (triviality of a;) may appear explicitly (a; = 0) or not (a; # 0).

Step 7: Second-Order Consistency and Antibracket

Everything we have mentioned so far had to do with first-order consistency. In the com-
pletely Abelian case, when only the Lagrangian is deformed, no quartic or higher-order
terms are needed and the consistency is automatic to all orders in perturbation theory.
In the non-Abelian case where the gauge algebra is deformed (and in the ‘intermediate’
case too) the situation is different; either the vertex is consistent to second order only
up to the addition of a quartic term, Sy, or it is obstructed. In general, determining
whether a non-Abelian vertex is obstructed or not and, in the latter case, determining
the quartic term that needs to be added in order to render the theory fully consistent
is rather tedious. It is however remarkable that the BRST-Antifield construction also
provides one with just the right tool to deal with this issue, and that tool is called the
antibracket, which we now introduce.
One defines the following odd, symplectic structure on the space of functionals of our
fields and antifields:
Xy = dixdy  dfxadty (26)
(X, Y) = dd4 do¥  dd% ddA
This definition gives (®4, ®%) = 3, which is real. Because a field and its antifield have
opposite Grassmann parity, it follows that if ®# is real, ®% must be purely imaginary,
and vice versa.!! Note that the antibracket satisfies the graded Jacobi identity.

To understand the usefulness of the antibracket, we first note the following peculiar
and a priori anodyne fact: the action of the free BRST differential s can be rephrased as

14 Recall that the complex conjugation acts as (ab)* = b*a*, whose symbol “*’ has nothing to do with
the superscript distinguishing antifields.
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taking the antibracket with the free master action Sy, that is,
sF = (50, F), (27)

for any phase-space functional F'. Better yet, one can actually prove the equivalent of
the above statement for the fully deformed theory too! Let us denote the completely
deformed BRST differential by s, so that'®

S§=S+S5+ S+, (28)

where for example s; is the sum of some I'y, implementing the deformed piece brought in
by a1, and some A; which implements the contribution to the free equations of motion
induced by ag. The full statement is then

sF'=(S,F), (29)

which can be seen to hold by virtue of the Noether identities and the higher-order gauge-
structure equations [10].

We are now ready to formulate an equation which is the cornerstone of the BRST-BV
approach to Gauge Theory. Indeed, the full master action S is invariant under the full
BRST differential s, so that by virtue of the above relation we have

(5,8)=0. (30)

This is the so-called (classical) master equation, which contains all the information about
Noether identities and higher-order gauge structure equations. It remarkably repackages
all the conditions defining a fully consistent deformation into a single ‘geometrical’ equa-
tion. This structure allows for a rephrasal of many a property. For example, in this
way one can see the nilpotency of s as a mere consequence of the graded Jacobi identity
for the antibracket. Furthermore, let us also point out that the above odd structure is
related to the more familiar Poisson bracket, and to other structures as well [16], but in
the present guide we shall not dwell on these interesting questions.

To see how this new structure helps addressing the problem of second-order consis-
tency let us split the master equation above in terms of the coupling constant g by
inserting in it the perturbative expression (16). The first orders give us

(S0, 80) =0, (31a)
(S0, 51) =0, (31b)
(Sl, Sl) = —2(50, SQ) . (31C)

The first equation here above is satisfied by assumption: it can be rewritten as sSy = 0,
which is simply the statement of invariance of the free master action under the (free)
BRST differential. The second equation translates to sS; = 0, which is the integrated
version of the cohomological condition written down in (20). As for the third one, it
expresses in a compact way the condition that S; must satisfy so as to be consistent at
second order, where it is completed by a quartic term S5. It determines whether or not,
in a local theory, a consistent first-order deformation gets obstructed at the second order.

15 Note that, to be homogeneous in our use of notation we should have called the full BRST operator
s = 89+ s1 + -+, but as the zeroth-order part is the most often used piece we have chosen to be more
economical.
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One thus sees that second-order consistency is controlled by the local cohomology group
H'(s), for (S}, S;) has ghost number 1. More precisely, one easily checks that (S, S)) is
BRST-closed (by the graded Jacobi identity), and what the third equation here above
does is to further require it to be trivial in H'(s). Keeping in mind that s annihilates
(S1,S1) one may thus reexpress the requirement of second-order consistency as

(S1,81) ¢ H'(s). (32)

Moreover it can be shown that H'(s) is also the cohomology group controlling higher-
order deformations. However, more often than not in Gauge Theory a deformation is
either fully consistent, that is, to all orders, or consistent only at the cubic level, and
hence fails to satisfy the above requirement. Note that in the above condition it is truly
the cohomology of s which is used, not the cohomology modulo d, so that one should
expect strong conditions to arise from it.

There is (even) more to the antibracket. Indeed, with such a symplectic structure one
can actually reformulate the whole problem of deformation of the free master action. As
we have seen the free master action does satisfy the master equation (30), and the full
deformation should also fulfill it. The problem of consistently deforming a free theory can
thus be reformulated as the problem of deforming the solution Sy to the master equation,
and this allows for a different mathematical approach to the problem, which has proved
very useful [17]. More generically speaking, the BRST-BV reformulation presented here
has allowed for a systematic study of many aspects of Gauge Theory, as for example that
of [18], where the above techniques are used to discard as inconsistent theories involving
more than one graviton in interaction and the unicity of the Einstein—Hilbert action is
proved under very generic assumptions.

We end this section with a reminder of the quantum numbers for our fields and
antifields as well as the action of the different operators on them. In the free, irreducible
case of interest to us they read as follows.

Table 1: Properties of the Various Fields, Antifields and Operators

Z T(2) A(Z) peh(Z) agh(Z) gh(Z) (%)

¢ RiC* 0 0 0 0 0
ce 0 0 1 0 1 1
or 0 Ef¢] 0 1 -1 1
cC 0 R 0 2 —2 0

3 Quantum Electrodynamics: a Simple Example

The BRST-Antifield reformulation of the interaction problem has been introduced in the
previous section for free, irreducible theories. Let us now illustrate these techniques on
the simple example of quantum electrodynamics. To be fair we should point out that the
this example is perhaps a little treacherous, in the sense that there is no gauge invariance
for the fermion and hence the problem of building consistent interactions becomes much,
much simpler as we shall see. We believe it is nevertheless a good place to start applying
the formalism.
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Let us construct all the off-shell cubic vertices involving a particle of spin 1 and a
particle of spin % Our assumptions are Lorentz invariance, Parity invariance and locality.
Lorentz invariance means that spacetime indices must be contracted with one another
using the Minkowski metric 7,, (see Section 1), and Parity invariance boils down to
foregoing the use of an odd number of epsilon symbols. The starting point is the free
theory, which thus contains a photon A, and a massless electron field ¢, described by
the action

SO, 0] = [a%a (<3, — i) | (33)
which enjoys the Abelian gauge invariance

A, = O\, (34)

and no gauge invariance for ¢. In the above free action ¢ is the Dirac adjoint of ¥,
Y = 190, where v* are the Dirac gamma matrices with g = 0,...,D — 1 and our
notation goes #) = *@,, for any vector @),. Our convention for the gamma matrices is
{7, 7"} = 29" and ~}, = v, = 7°7,7°. The conjugation operator of is an involution
which squares to the identity and determines the reality properties of the various objects
under consideration. Our convention regarding reality conditions is the following: AL =
A, while ¢ is complex and conjugated to 1T. As is easily checked, the above master
action is hermitian.

For the Grassmann-even bosonic gauge parameter A we introduce the Grassmann-odd
bosonic ghost C', and no ghost corresponding to v is introduced for the latter enjoys no
gauge invariance.'® Therefore the set of fields becomes

ot = {A,,C, ¢} (35)

For each of these fields, we introduce an antifield with the same algebraic symmetries in
its indices but opposite Grassmann parity. The set of antifields thus is

Oy = {A™,C*, "} (36)

Now we construct the free master action Sy, which is an extension of the original gauge-
invariant action (33) by terms involving ghosts and antifields. Explicitly,

So = / 0 (<LF2, — i P + A™9,0) . (37)

Notice how the antifields appear as sources for the gauge variations, with gauge parame-
ters replaced by corresponding ghosts. It is easy to verify that the above free action Sy
indeed solves the master equation (Sy, Sg) = 0. The different gradings and Grassmann
parity of the various fields and antifields, along with the action of I' and A on them, are
given in Table 2 below.

The cohomology of I' is isomorphic to the space of functions of

e The undifferentiated ghost C,
e The antifields {A**, C*,4*} and their derivatives,

e The curvature F),, and its derivatives,

16 Here is where our setup is a little misleading in illustrating the BRST-BV methods, for only one
ghost needs to be introduced which will drastically simplify certain aspects.
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Table 2: Properties of the Various Fields & Antifields

Z T(Z) A(Z) pgh(Z2) agh(Z2) gh(Z) €(Z)

A, 9,0 0 0 0 0 0
cC 0 0 1 0 1 1
A0 =9, Fmw 0 1 —1 1
cr 0 —0,A™ 0 2 —2 0
0 0 0 0 0 0 1
v 0 —itp ) 0 1 —1 0
e The field 9.

Let us now classify the consistent cubic couplings. We start with the non-Abelian
ones. In fact, it is easily seen that there can be no consistent non-Abelian couplings in-
volving both types of fields in the present setup. Indeed, the construction of a candidate
as involving either 1 or ¢* fails at the level of the quantum numbers already, as can be
derived by looking at the above table and further recalling that a; must be a cubic combi-
nation of total ghost number zero and antighost number two. From those considerations
only, one sees that any ay should be of the schematic form ghost x ghost x antighost, and
as we have no ghost corresponding to 1 (because it enjoys no gauge invariance) one can
only construct self-coupling a, candidates for A,. We are not interested in those (which
lead to the familiar Yang—Mills cubic term [19] when the photon is colored), and wish
to look at cross couplings only. The non-Abelian case is thus covered, and there are no
non-Abelian consistent couplings.

Let us now address the Abelian couplings. We first investigate vertices which do
not deform the gauge algebra but nevertheless deform the gauge transformations, and
then move on to ‘completely Abelian’ ones, namely those vertices which deform only
the Lagrangian. In order to search for couplings with trivial as but non-trivial a;, let
us classify the possible deformations of the gauge transformations. They should have
antighost number 1 and total ghost number zero, and further be cubic in our fields and
antifields. Evidently, it should also be Lorentz invariant and have all spinor indices
contracted. The only such combination with no derivatives is easily concluded to be

a = gp*yC. (38)

If such a gauge-symmetry deformation indeed does not deform the gauge algebra, it
should satisfy 'a; = 0 (see previous section), which indeed it does. If it corresponds to a
vertex, it must also be such that Aa; + I'ag = 0. One easily realizes that, only when the
coupling constant g is imaginary does the above deformation get lifted to a consistent
Lagrangian vertex. Indeed, making use of partial integration the cohomology equation is
easily solved for ag, which is found to be

ap = igp A . (39)

One should now investigate the fate of a; candidates containing derivatives. However,
those are immediately ruled out as trivial. To see it, let us first make clear that the
antifield in a; can always be assumed to be undifferentiated, as a; is defined up to total
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derivatives only. Now, if a derivative acts on the ghost, it would produce the gauge
variation of A,, which is by definition a I'-exact object, and because I' does not act on
¥ nor ¥*, this situation would correspond to a I'-exact a; (one can pull out I' to make it
act on the whole a; above), and this would correspond to a A-exact ag, which is trivial
(see Step 6 of the previous section). If, on the other hand, a derivative acts on v, the
following argument can be used: this derivative cannot come alone (because of Lorentz
invariance), and there are no indices on the involved fields, so that it must be contracted
either with another derivative or with a Dirac y-matrix. Because no derivatives can act
on the ghost (see above) and because [0 = @@, both these situations give rise to the
equations of motion in ay, that is, to Ay* = —iw*é or combinations thereof. This does
not generically make the whole deformation A-exact, because the A-operator acts on ¢*,
but one can check that the cohomology equation Aa;+T'ag = 0 is then either not satisfied
(9 € C\R), or it is satisfied (g € R) but the resulting aq is A-exact. Considering even
more derivatives only makes the situation worse, and we thus conclude that there is only
one vertex which deforms the gauge transformations and it has zero derivatives.

Our search is now narrowed down to the couplings which preserve the gauge trans-
formations. The only part of the deformation that we need care about is thus ag, and
the a; piece can always be chosen to be zero (see previous section). We are left with
the equation I'ayg = 0 to be solved, and we shall alternatively use the weaker equation
Fag = A(...). We start with vertices containing no spacetime derivatives. We directly
see that the only Lorentz-invariant possibility is

ap = ,QZ_)A@Z) ) (40)

which obeys I'ag = A(...). This is the vertex we have already found above. Note that, if
we had not found this vertex previously, we could be tempted to conclude that the latter
is completely Abelian. However, because we have used the weaker equation I'ag = A(...)
here, this is not guaranteed, and in this instance it is of course not true. We take this
opportunity to recall that, when using the weaker equation one should check whether the
corresponding aq is trivial, that is, whether it can be canceled by field redefinitions at the
level of the Lagrangian.

We then address the vertices containing one derivative. An obvious possibility is the
term built in terms of the curvatures (in this case there is only one curvature, namely
that of A, for the fermion has no spacetime indices):

Ay = ,II)/YM,YV MV’QZ), (41)

which is strictly gauge invariant (not even modulo d). The only other Lorentz-invariant
combination with one derivative is 9" A, Y1, but it is easily seen to violate the consistency
equation I'ay = 0. Furthermore, it is easily proved that there are no higher-derivative
candidates, for all such Lorentz-invariant combinations would be on-shell trivial up to
partial integration, as the reader shall easily convince himself of.

Let us comment on the nature of the vertices. The last one (41) is a product of
curvatures and is strictly gauge invariant. The other one is seen to be different: whatever
field redefinition we perform on it the best we can do is bring it to a form in which it is
on-shell gauge invariant modulo d. That vertex is also the one which completes the free
kinetic term for the fermion, turning it into the familiar expression involving the covariant
derivative 1) D1), with D, = 0, —1igA,. The said cubic coupling is thus the one resulting
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from covariantizing the derivatives in the fermion kinetic term, namely, the so-called
minimal coupling, which in the present setup has zero derivatives. Although simple, for
future comparison it is useful to summarize the results of the present section, and we give
them in the table hereafter, where %—Abelian means that the gauge transformations are
deformed but in a way which preserves the original (Abelian) gauge algebra of the free
theory.

Table 3: Summary of 1 —%—% Vertices

# of derivatives Vertex Nature
0 ) YA :-Abelian
1 Yy ) Abelian

As mentioned above, the example treated here fails to capture some of the complexity
of the deformation problem, for there is not deformation of the gauge algebra, which
drastically simplifies the classification. A less trivial exercise which remains easy to go
through is that of Yang-Mills Theory, which is analyzed in [19] by means of the BRST—
Antifield technique.

4 Final Remarks

In this short and direct review we have attempted at introducing the BRST-Antifield
reformulation of the interaction problem in a pedagogical fashion, emphasizing its phys-
ical meaning and focusing on the simplest case where the starting theory is free in a
Minkowski spacetime of arbitrary dimension D > 4. As we have tried to convince the
reader, the reformulation of the problem of finding consistent (gauge-invariant) and non-
trivial vertices starting from some free Lagrangian using the BRST-BV formalism is most
helpful. Despite its apparent complexity, once the framework is constructed one gains
many advantages: off-shell and invariant cubic vertices can be obtained and classified in
a systematic and exhaustive way, the induced deformations of the gauge transformations
and gauge algebras are automatically obtained, field redefinitions are well under control
and the question of second-order consistency can be most elegantly addressed by making
use of the antibracket. In brief, we argue that the reformulation of a physics problem into
such a sharp, cohomological question grants one a clearer understanding of the precise
way the physical theory is being deformed by the vertices, and allows one to classify the
latter in a clever fashion: starting from inequivalent, putative gauge-algebra deformations
and arriving at the Lagrangian ones, not the other way around. The literature on the
BRST-Antifield reformulation of the deformation problem includes the very good review
[9] and we also point out the algebraic and geometrically oriented lectures [10], the re-
port [11] as well as the comprehensive book [12], all of which go beyond the scope of the
present review.

Before putting an end to our straight story, let us make some comments on settings
we have not discussed and hypothesis we have made. First let us make clear once again
that, although we have addressed the case where the starting point is a free theory, the
formalism we have presented can be extended to reformulate the problem of deforming
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any theory — with some modification.!” In the case at hand we have taken advantage of
the fact that the gauge transformations we start with are irreducible, which is not nec-
essarily the case for an interacting theory. Secondly we point out that, in principle, the
BRST-BV framework does not rely on the spacetime manifold being Minkowskian and
can be applied to a theory formulated on any background. However this could suppose
practical difficulties, as for example in anti-de Sitter where the explicit dependence of the
free Lagrangian on the spacetime coordinates (i.e. not only via the fields) makes things
less obvious. Also we note that, even though the case we have explicitly worked out in
the previous section deals with vector bosons and spin-1/2 fermions, the formalism is not
restrictive in this sense and can be used to study systems describing any kinds of field
tensors. Works making use of the Antifield formalism include [15, 20-25]."® Finally, let us
stress once again that locality of the would-be consistent couplings is assumed through
the text. In fact, one can show that if locality is not insisted on then any consistent cubic
coupling can be completed to the quartic order [5].

We hope the present guide has somewhat helped the reader grasping the meaning of
the BRST-Antifield reformulation of the deformation problem as well as its elegance.
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