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Abstract

We consider four-dimensional Higher-Spin Theory at the first nontrivial order correspond-

ing to the cubic action. All Higher-Spin interaction vertices are explicitly obtained from

Vasiliev’s equations. In particular, we obtain the vertices that are not determined solely

by the Higher-Spin algebra structure constants. The dictionary between the Fronsdal

fields and Higher-Spin connections is found and the corrections to the Fronsdal equations

are derived. These corrections turn out to involve derivatives of arbitrary order. We

observe that the vertices not determined by the Higher-Spin algebra produce naked in-

finities, when decomposed into the minimal derivative vertices and improvements. There-

fore, standard methods can only be used to check a rather limited number of correlation

functions within the HS AdS/CFT duality. A possible resolution of the puzzle is dis-

cussed.
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1 Introduction

Our study is motivated by the Higher-Spin AdS/CFT duality [1, 2] that identifies the 4d Higher-Spin

(HS) theory [3, 4] as an AdS/CFT dual of both free and critical vector models, depending on the

boundary conditions imposed on the scalar field of the HS multiplet.

Remarkable tests of the duality from the bulk side were performed in [5–14]. However, all these

highly nontrivial tests are based either on the particle content of the HS algebra multiplet [8–14]

or on the structure constants of the HS algebra [5–7] and therefore do not rely on the existence

of a fully non-linear theory. As we explain in Section 2, the HS algebra determines only a part of

the interaction vertices, but there are also other vertices that contribute already to the three-point

functions. These are the vertices that have led to formally divergent results in [5, 6]. Therefore, it is

important to study the bulk physics that extends beyond pure symmetry arguments and to resolve

these puzzles as well.

As a first step it is necessary to work out the Higher-Spin theory to the first nontrivial order that

corresponds to a cubic action or equations of motion with quadratic corrections due to interactions

around an AdS background. In the present paper, for the description of interacting HS fields we

consider the Vasiliev equations [3, 4] that provide a set of first-order differential equations on a space

extended by certain additional, non-commutative, variables. By solving the differential equations

with respect to these additional variables one can derive the equations of motion for HS fields

including gravity, propagating on an AdS background. This is what we do in the present paper,

see [5–7, 15–17] for related results.1

The equations for HS fields that come out of Vasiliev Theory are naturally expressed in the form

of unfolded equations [18, 19] in terms of two master fields — a gauge connection ω and a (twisted)-

adjoint matter field C of the HS algebra. These two fields encode a real scalar field together with

infinite tower of Fronsdal fields [20] Φm1...ms
that are gauge fields with transformations given by

δΦm1...ms
= ∇m1

ξm2...ms
+ permutations , (1.1)

as well as the on-shell nontrivial derivatives thereof of arbitrary order. They are used to construct

interaction vertices, which we extract in this work. Furthermore, the unfolded equations contain the

equations for Φm1...ms
and the differential consequences thereof that the derivatives of Φm1...ms

have

to obey. Therefore, in terms of ω and C the equations involve an infinite number of derivatives by

construction. In order to know if Vasiliev’s equations describe a local field theory, one needs to work

out the equations for the Fronsdal fields Φm1...ms
. To this effect one has to solve for all the auxiliary

components in ω and C, projecting finally onto the Fronsdal equations. We will elaborate on this

step in significant detail. Among other things, we will observe that one should not identify linearized

HS Weyl tensors with C beyond the free level.

1In [16] the authors attempted to derive the stress-energy tensor built out of the scalar field that sources Einstein

equations at the second order in perturbations around AdS4. We find that this expression is incorrect. We are grateful

to Per Sundell for early discussions about this issue.
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Having obtained the equations of motion for the physical fields Φm(s) ≡ Φm1...ms
, one observes

that they are explicitly pseudo-local for fixed spins, i.e. they display infinite series of terms with

unbounded number of derivatives, compensated by appropriate negative powers of the cosmological

constant Λ:

�Φm(s) + ... =
∑
k,l

ak,lΛ
−l∇m(s−k)∇n(l)Φ∇m(k)∇n(l)Φ + ... . (1.2)

Above we sketched the contribution of the scalar field to the right-hand side of the spin-s equations.

At least at the level of the cubic action it is known that given three spins there is a finite number

of cubic vertices with the number of derivatives bounded by the sum of the spins [21]. All vertices

with more than the necessary number of derivatives can be reduced to the standard ones removing

higher-derivative improvements with a field-redefinition.

Therefore, in order to bring the equations into a standard form, i.e. with the lowest possible

number of derivatives, certain field redefinitions are needed. Such redefinitions are necessary for

those vertices that are not determined directly by the HS algebra. Another interpretation is that any

bulk coupling can be decomposed into its standard part and improvements and we can determine the

coefficient of the standard part. One of the most important conclusions of the present paper is that in

doing so one accumulates an infinite prefactor in front of the standard vertices. This possibility was

mentioned in [22] and further discussed in [23]. Also, this result is in accordance with the observations

in [5] and with the infinity appearing in [6]. As such our result is first of all about the theory in the

bulk. Let us stress however that the appearance of this infinity prevents one from applying standard

AdS/CFT methods since it is the coefficient of the bulk vertex that diverges rather than the value

of the integral evaluated on boundary-to-bulk propagators. In particular, only a small subset of the

correlation functions that are entirely fixed by the HS algebra can be rigorously derived, which was

done in [5, 7]. In the Discussion Section we comment on the origin of these infinities and on possible

resolutions. Summarizing, our results are the following:

• The unfolded equations for higher-spin fields are obtained from the Vasiliev equations at the

second order in weak field expansion;

• The dictionary between the unfolded equations and Fronsdal’s formulation is worked out. A

subtlety is found for the HS Weyl tensors, which results in additional interaction vertices on top

of those considered in [5]. The HS stress-tensors are found to be pseudo-local, i.e. containing

an unbounded number of derivatives;

• Having obtained the second-order (in weak field expansion) corrections to the free Fronsdal

equations, we perform the required redefinitions in order to reduce the pseudo-local expressions

to local ones. As it turns out, the degree of pseudo-locality of the equations leads to divergent

coefficients for the vertices.

The paper is self-contained but we do not provide a detailed review of Vasiliev’s HS theories. For

a comprehensive review of the 4d Vasiliev theory and the unfolded approach we refer to [4, 24].
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The outline of the paper is as follows. In Section 2 we briefly review two approaches to the HS

problem: Fronsdal’s equations with a still unknown nonlinear completion, and unfolded equations

provided by Vasiliev Theory. In Section 3 we present the unfolded equations for HS fields at the

second order in perturbation theory and discuss briefly the properties that can be seen already there.

In Section 4 we relate our results on the unfolded equations to the Fronsdal equations. In particular

we derive the second-order corrections to the latter. Section 5 addresses the problem of locality of the

Fronsdal equations as obtained from Vasiliev’s equations. Perturbation theory of Vasiliev’s equations

is summarized in Section 6. The discussion of the results and the conclusions are in Section 7. More

technical aspects of our calculation can be found in the appendices together with a summary of our

notation.

2 General Structure of Higher-Spin Theories

In this section we briefly review the Fronsdal approach [20], the unfolded approach [18, 19] and

specialize the latter to the HS theory of interest, which is the 4d bosonic HS theory [25]. Then, we

discuss how the free HS fields can be described in the unfolded approach and end by sketching the

general structure of interaction vertices that appear at second order in perturbation theory.

The theory that we are looking for should provide a nonlinear completion for free HS fields.

These can be described by the Fronsdal fields2 Φm1...ms
≡ Φm(s), whose free propagation in AdSd

with cosmological constant Λ is governed by linear equations:

Fm(s) = 2Φm(s) −∇m∇nΦnm(s−1) +
1

2
∇m∇mΦn

nm(s−2) −m2
sΦm(s) + 2ΛgmmΦm(s−2)n

n = 0 , (2.1)

with m2
s = −Λ((d+ s− 3)(s− 2)− s). The Fronsdal equations enjoy the gauge symmetry

δΦm(s) = ∇mεm(s−1) . (2.2)

The Fronsdal field and the gauge parameter obey certain algebraic constraints:

Φnk
nkm(s−4) ≡ 0 , ξnnm(s−3) ≡ 0 . (2.3)

The gauge symmetry (2.2) should be a free theory limit of some non-abelian HS symmetry, likewise

(2.2) is the free limit of diffeomorphisms and Yang-Mills transformations for s = 2 and s = 1,

respectively. Interactions are known to require an infinite multiplet of fields of all integer spins [4],

s = 0, 1, 2, 3, 4, ....3

Unfolded equations. The only form in which examples of interacting HS theories are known at

present is the unfolded formulation [18, 19], that perfectly captures the peculiarity of HS theories to

have the largest symmetry possible. Unfolded equations are of the form

dWA = FA(W ) , FA(W ) =
∑
k

FAB1...BkW
B1 ∧ ... ∧WBk , (2.4)

2The summary of our notation can be found in Appendix A.
3There is also a truncation to even spins, which still keeps the multiplet infinite.
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where d = dxµ ∂
∂xµ

is the exterior derivative, ∧ is the exterior product and the fields WA(x) are a

set of differential forms of various degrees, labeled by A. The Taylor coefficients FAB1...Bk are the

structure constants of the unfolded system and are space-time independent. Any set of PDE’s can

be brought into this form possibly by introducing auxiliary fields. Let us furthermore note that

unfolded equations are automatically diffeomorphism invariant as they are expressed in terms of

differential forms. The system is required to obey the Frobenius integrability condition, i.e. be

formally consistent with dd ≡ 0, which results in algebraic constraints that are quadratic in the

structure constants FAB1...Bk :

0 ≡ ddWA = dFA(W ) = dWB ∧
−→
∂ FA(W )

∂WB =⇒ FB ∧
−→
∂ FA(W )

∂WB ≡ 0 . (2.5)

As a consequence of integrability, the unfolded equations possess gauge symmetries

δWA = dξA + ξB
−→
∂ FA(W )

∂WB , (2.6)

with gauge parameters ξA taking their values in the same space as WA but having a form degree

of one unit less than that of WA. Zero-forms do not have their own gauge parameters and in their

gauge variation the term of the form dξA is absent. A simple example of unfolded equations is given

by flatness condition dA = 1
2
[A,A] for a connection A of some Lie algebra. Then, the integrability

constraint is the Jacobi identity.

HS algebra. For HS theories involving only totally-symmetric Fronsdal fields, Φm(s) in the metric-

like formulation, the set of WA consists of one-forms ω and zero-forms C. The index A runs over an

infinite-dimensional set and will be omitted hereafter. Both ω and C take values in the HS algebra

that is the global symmetry algebra of a free conformal boson on the boundary of AdS. In the

case of four-dimensional AdS space, the HS algebra [26] is simply the Weyl algebra with two pairs

of canonical variables or the algebra of operators acting on the phase-space of the two-dimensional

harmonic oscillator. This simplification is achieved due to the isomorphism so(3, 2) ' sp(4,R).

To realize the HS algebra one takes a quartet Ŷ A, A = 1, ..., 4 of operators obeying the canonical

commutation relations

[Ŷ A, Ŷ B] = 2iCAB , (2.7)

with CAB being the sp(4) invariant tensor (charge conjugation matrix). Then, the bilinears deliver

an oscillator realization of sp(4):

TAB = − i
4
{Ŷ A, Ŷ B} , [TAB, TCD] = TADCBC + 3 more . (2.8)

The relevant HS algebra is defined as the algebra of all (even) functions f(Ŷ ) in Ŷ A. It is an

associative algebra and the product is conveniently realized by the Moyal star-product:

(f ? g)(Y ) = exp i
(←−
∂ AC

AB−→∂ B

)
, (2.9)
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where we passed from the operators Ŷ A to their symbols Y A, which are ordinary commuting variables

to be multiplied by the Moyal product. In most cases the integral representation of the star-product

is more useful4

(f ? g)(Y ) =

∫
dUdV f(Y + U)g(Y + V )eiUAV

A

. (2.10)

The exponential formula (2.9) can be derived by integrating (2.10) by parts and dropping the bound-

ary terms.

Therefore, the HS theory operates in terms of fields ω = ωm(Y |x) dxm and C = C(Y |x) that

are even in Y A. We need to provide the structure constants FAB1...Bk of (2.4) in order to build the

equations of motion.

Unfolded equations of HS theories. The unfolded equations take the following form [19]:

dω = F ω(ω,C) , (2.11a)

dC = FC(ω,C) , (2.11b)

where the power of ω is fixed by the form degree and the structure functions F ω,C admit an expansion

in powers of the zero-forms C

F ω(ω,C) = V(ω, ω) + V(ω, ω, C) + V(ω, ω, C, C) + ... , (2.12a)

FC(ω,C) = V(ω,C) + V(ω,C,C) + V(ω,C,C,C) + ... . (2.12b)

The first vertices provide the initial data for the deformation problem and are fixed by the HS algebra

V(ω, ω) = ω ? ω , V(ω,C) = ω ? C − C ? π(ω) , (2.13)

where ? denotes the (associative) product in the relevant HS algebra and π is an automorphism of

the HS algebra that is induced by the reflection of AdS translation generators Pa → −Pa.

HS algebra vs. Dynamics. The problem of classifying vertices is a cohomological problem, i.e.

consistent deformations modulo trivial ones induced by field-redefinitions. For example, if we drop

the π-map, the vertex

V(ω, ω, C) = ω ? ω ? C (2.14)

is consistent, but it is induced by a redefinition ω → ω + ω ? C. All consistent vertices expressed

as products in the HS algebra are induced by such redefinitions except for (2.13). The question

of whether star-product polynomials of fields correspond to admissible redefinitions is subtle since,

for instance, C ? C is pseudo-local and therefore contains an infinite number of derivatives. As we

will show, the interactions that are very close to the HS algebra product C ? C do not admit an

interpretation in terms of local field theory vertices in AdS, see [27] for a more detailed discussion.

In any case, nontrivial higher vertices cannot be written as pure star-products of the fields.

4Symplectic indices are raised and lowered as Y A = CABYB , YB = Y ACAB .
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Given some algebra the vertices (2.13) exist and are consistent on their own, but the existence

of higher vertices is not guaranteed.5 Therefore, tests of the AdS/CFT duality have to involve

(2.12) beyond (2.13), although for some AdS/CFT computations it can be sufficient to consider the

spectrum of the free theory or to use the structure constants of the HS algebra, for instance, via

(2.13). The computations based on (2.13) are highly nontrivial [5, 7] and are by no means guaranteed

to give the correlators compatible with AdS/CFT. At present, all computations beyond (2.13) have

faced the difficulty of getting naked infinities, [5, 6]. To be precise, it is V(ω,C,C) that was found

to be problematic in [5, 6], but as we will show the same is true for all the vertices that are at least

bilinears in C. We will analyze this issue in Section 5.

AdS as an HS background. The unfolded system (2.11) has a natural family of vacua given by

a flat connection Ω of the HS algebra,

dΩ = Ω ? Ω , (2.15)

provided that C = 0, i.e. all higher vertices vanish and the equation for C trivializes. Any such

vacuum has the full HS algebra as a global symmetry, while vacua with non-vanishing C would break

the HS symmetry. The simplest vacuum with C = 0 is AdS4 space:

Ω =
1

2
$ααLαα + hαα̇Pαα̇ +

1

2
$α̇α̇L̄α̇α̇ , (2.16)

where we split the sp(4) generators TAB into Lorentz generators Lαα and L̄α̇α̇ of sl(2,C)R and

translation generators Pαα̇ :

Lαα = Tαα = − i
4
{yα, yα} , Pαα̇ = Tαα̇ = − i

4
{yα, ȳα̇} , L̄α̇α̇ = Tα̇α̇ = − i

4
{ȳα̇, ȳα̇} ,

with YA = (yα, ȳα̇). The (anti)self-dual components of the 4d spin-connection are $αα = $αα
m dxm

and $α̇α̇ = $α̇α̇
m dxm while hαα̇ = hαα̇m dxm is the invertible vierbein of AdS4. This is the background

around which we expand (2.11).

First order. The flat connection (2.16) provides an exact solution ω = Ω, C = 0 of the unfolded

system (2.11), which describes AdS4. Let us consider linearized fluctuations around it [18]. To this

effect, we expand ω → Ω + ω and pick the part that is linear in ω and C. One finds:

dω = {Ω, ω}? + V(Ω,Ω, C) , (2.17a)

dC = Ω ? C − C ? π(Ω) . (2.17b)

5Many different HS algebras and truncations thereof were found in [26]. However, it turned out that only few of

those admit higher vertices (2.12) and the rest are obstructed. For example, while one can try to define some HS

algebra in flat space, its deformations are obstructed, which follows from the fact that the limit Λ → 0 is singular in

Vasiliev’s equations, but is well-defined at the level of HS algebra. The reason is that while the AdS algebra can be

contracted to the Poincaré algebra by sending Λ → 0, the corresponding unfolded equations may not admit such a

contraction. Moreover, under certain assumptions one can prove that the HS algebra is essentially unique [28].
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Hereafter we reserve the symbols ω and C for the first order fluctuations. The appearance of

V(Ω,Ω, C) corresponds to a deviation from a flat connection. The components of the curvature

that are allowed not to be vanishing are parameterized by V(Ω,Ω, C). Despite the slightly involved

structure due to the presence of several “vertices” the equations are linear and describe free fields

propagating in anti-de Sitter space.

The rough structure of (2.17) is that to each gauge field there corresponds a jet, i.e. the space

of all its derivatives. There is an infinite-dimensional subspace of those derivatives that are gauge

invariant. In this subspace there is a subspace that is set to zero by the equations of motion. The

complement, i.e. the space of all gauge invariant derivatives that are left free after imposing the

equations of motion, is parameterized by C. It starts with the HS Weyl tensor Ca(s),b(s) that is the

order-s curl of the Fronsdal field:6

Cα(2s)

C α̇(2s)
: Ca(s),b(s) ∼ [anti-symmetrized in b and a] ∇b1 ...∇bsΦa1...as − traces , (2.18)

where we used that in the spinorial language of 4d the HS Weyl tensors decompose into the (anti)self-

dual components Cα(2s) and Cα̇(2s) that can be found in the expansion of C(y, ȳ = 0) and C(y = 0, ȳ),

respectively. Other components of C contain on-shell nontrivial derivatives of the Weyl tensors:

Cα(2s+k),α̇(k)

Cα(k),α̇(2s+k)
: [symmetrized in all a] ∇as+1 ...∇as+kCa1...as,b1...bs − traces , k = 0, ...,∞ . (2.19)

The C field also contains a scalar field, Φ0 = C(y = 0, ȳ = 0), together with all of its on-shell

nontrivial derivatives Cα(k),α̇(k) ∼ ∇...∇Φ0.

The gauge connection ω contains the Fronsdal field Φm(s) that is a totally-symmetric component

of the HS vielbein and, in the 4d spinorial language, is identified with the component ω(y, ȳ) that

has equal number of dotted and undotted indices

Φm(s) = ωα(s−1),α̇(s−1)
m hm|αα̇...hm|αα̇ . (2.20)

The rest of ω(y, ȳ) contains some gauge-noninvariant derivatives of the Fronsdal field up to order-

(s− 1):

ωα(s−1−k),α̇(s−1+k)

ωα(s−1+k),α̇(s−1−k)
: [anti-symmetrized in b and a] ∇b1 ...∇bkΦa1...as , k = 0, ..., s− 1 . (2.21)

This identification works at the free field level only, while there are nonlinear corrections at higher

orders. The links between different fields are illustrated by fig. 1.

The two-form V(Ω,Ω, C) relates the order-s curl of the Fronsdal field to the first Weyl tensor. If

it had not been for V(Ω,Ω, C), (2.17a) would have been a linearization of the flatness condition for

6While the Fronsdal field Φm(s) is naturally a world-tensor, ω and C, when expanded in Y A, correspond to tensors

in the tangent space. The transfer between world and tangent tensors is performed by the vierbein ham, which is hαα̇m

in the sl(2,C) base, and its inverse. The formulas here-below are sketchy and are meant to indicate the order of

derivatives rather than precise expressions.
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Figure 1: A picture from [24] showing the position of various fields and their mixing via unfolded

equations. The coordinates are the number of undotted/dotted indices carried by a field. The fields

connected by links talk to each other via the unfolded equations (2.17).

dotted

undotted

gauge module, one-forms, ω

Weyl module, zero-forms, C

ωα(s−1),α̇(s−1)

Φm(s)

C α̇(2s)ωα̇(2s−2)

Cα(2s)

ωα(2s−2)V(Ω,Ω, C)

Ω+ω, which locally has pure gauge solutions only. Another nontrivial fact is that there is Fronsdal’s

equation hidden inside (2.17a) as we will review in detail in Section 4.1.

It is useful to rewrite the free equations and gauge transformations as:

Dω = V(Ω,Ω, C) , δω = Dξ , D̃C = 0 , δC = 0 , (2.22)

where we have used the background covariant derivatives D and D̃. Note that C is gauge invariant

to the lowest order in accordance with (2.6). Using the explicit form of the HS algebra product one

finds:

D• = d • −Ω ? • ± • ? Ω = ∇− hαα(yα∂α̇ + ȳα̇∂α) , (2.23)

D̃• = d • −Ω ? • ± • ? π(Ω) = ∇+ ihαα̇(yαȳα̇ − ∂α∂α̇) , (2.24)

∇ = d−$ααyα∂α −$α̇α̇ȳα̇∂α̇ , (2.25)

where ± accounts for a graded commutator and ∇ is the Lorentz-covariant derivative around AdS4.

The vertex that glues C to the ω-equations reads:

V(Ω,Ω, C) = −1

2
Hαα∂α∂αC(y, ȳ = 0)− 1

2
H α̇α̇∂α̇∂α̇C(y = 0, ȳ) , (2.26)

where Hαα = hαν̇ ∧hαν̇ , and analogously for H α̇α̇. Here we choose a normalization that results from

the Vasiliev equations of Section 6. Setting y = 0 or ȳ = 0 is a way to project onto the HS Weyl

tensors. We also note that only the background vierbein hαα̇ part of Ω contributes to V(Ω,Ω, C), as

it is manifestly Lorentz-covariant.
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Second order. In the present paper we are interested in the structure of interactions up to the

second order, where we expect to find:

Dω(2) − V(Ω,Ω, C(2)) = ω ? ω + V(Ω, ω, C) + V(Ω,Ω, C, C) , (2.27a)

D̃C(2) = ω ? C − C ? π(ω) + V(Ω, C, C) . (2.27b)

We singled out the operators D and D̃ that appear already at the first order and govern the free

propagation around AdS4. The equations of motion for the second order fields ω(2) and C(2) are

sourced by some “currents” that are bilinear in the first order fields. If we drop these sources we get

free equations (2.17) for ω(2) and C(2). As was already mentioned, there are two vertices that are

expressed solely in terms of the HS algebra structure constants. For example, correlation functions of

[5, 7] were extracted from ω?C−C?π(ω), which does not require any knowledge of the nonlinearities

of the Vasiliev equations. Here, in particular, we intend to determine the full structure at the second

order, i.e. V(Ω, ω, C), V(Ω,Ω, C, C) and V(Ω, C, C).

It is also useful to work out the gauge transformations (2.6) to the second order

δω(2) = Dξ(2) − [ω, ξ]? + ξ

−→
∂

∂ω
V(Ω, ω, C) , (2.28a)

δC(2) = ξ ? C − C ? π(ξ) , (2.28b)

which includes the deformation V(Ω, ω, C) that goes beyond the HS algebra.

Vasiliev’s equations allow us to extract the unfolded equations for the HS theory around AdS4.

These equations are over-determined and over-complete. First of all, the set of variables is over-

complete since the only dynamical variables are known to be the Fronsdal fields Φm(s) that occupy

certain components of ω for s > 0 and Φ0 = C(y = 0, ȳ = 0) for s = 0. The rest of ω and C are

either pure gauge or are expressed as derivatives of the Fronsdal fields by virtue of (2.17).

Secondly, the unfolded equations are also over-complete because the only dynamical equations

can be chosen to be the Fronsdal equations with sources that are schematically of the form:

�Φ(2)
s + ... = g

∑
s1,s2

fs,s1,s2∇...∇Φs1∇...∇Φs2 , (2.29)

where Φs is an index-free abbreviation for Φm(s). We also introduced by hand g as the unique

coupling constant of the HS theory while fs,s1,s2 are certain numbers (we set Λ = 1 here) in front of

all possible bilinears in the Fronsdal fields that are fixed by the theory up to redefinitions. The rest

of the equations are differential consequences of (2.29), i.e. the equations for the derivatives of Φ
(2)
s .

Equations (2.29) are the same one would find in the metric-like formalism from a hypothetical

Lagrangian of the form

S =
1

2

∑
s

∫ [
(∇Φs)

2 + . . .
]

+
g

3

∑
s,s1,s2

bs,s1,s2

∫
(∇...∇Φs1∇...∇Φs2Φs) +O(g2) , (2.30)

which we assume to exist for HS theories. The quadratic piece is given by a sum of Fronsdal La-

grangians over all spins. The cubic piece contains a unique coupling constant g, while the coefficients
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in front of all possible cubic couplings are fixed to be certain numbers bs,s2,s3 , which are related to

fs,s1,s2 , assuming that (2.29) are integrable.

The same Lagrangian can be rewritten in the frame-like formalism [29] where the variables are

HS connection ω, HS Weyl tensors and descendants thereof packed into C. This formulation is closer

to the unfolded equations since it makes use of the same set of variables. The action, which is partly

known, reads

S =
∑
s

as

∫
Rs ∧Rs + g

∑
s1,s2,s3

∫ (
ds1,s2,s3Cs1Cs2Cs3 + d′s1,s2,s3Cs1Cs2ωs3

)
+O(g2) , (2.31)

R = Dω − g ω ? ∧ω .

The first RR-term is of Yang-Mills type as it makes use of the usual Yang-Mills field-strength R

that is expanded over the AdS vacuum. It contains the kinetic term for the HS fields, which is

equivalent to Fronsdal Lagrangian upon using the frame-like vs. metric-like dictionary, as well as

some of the cubic vertices, which were originally constructed by Fradkin and Vasiliev in [30]. The

coefficients as are fixed by the Yang-Mills type of gauge symmetry δω = Dξ−g[ω, ξ]? and are related

to the trace on the HS algebra. As opposed to the previous vertices, the C3-vertices are abelian and

the coefficients ds1,s2,s3 cannot be determined by the first nontrivial deformation δ1ω = −g[ω, ξ]? of

the gauge transformations. One has to proceed to quartic vertices or use the unfolded equations of

motion consistent to all orders. Therefore, in order to extract the other coefficients, ds1,s2,s3 , one can

compare the equations coming from (2.31) with the unfolded ones. Another way of fixing ds1,s2,s3 is

to compare with the three-point functions in the free boson theory. On the other hand, the vertices

d′s1,s2,s3 correspond to current interactions, i.e. to a gauge field contracted with a conserved tensor

current, and can be fixed by the HS algebra, see [31] for the 3d example.

The r.h.s of (2.27a) can be thought of as HS stress-tensors. They consist of two parts: gauge-

invariant and gauge-noninvariant. In the following we will associate V(Ω,Ω, C, C) with the gauge-

invariant HS stress-tensors. Indeed, it is bilinear in C that is gauge-invariant to the lowest order.

While V(Ω, ω, C) is fixed by the HS symmetry at the given order, V(Ω,Ω, C, C) and V(Ω, C, C) are

not. This is analogous to the situation with the cubic action (2.31), where the abelian part cannot

be fixed without having any information about the quartic action. Vasiliev’s equations, which can

in principle give the unfolded equations to all orders, yield specific expressions for V(Ω,Ω, C, C) and

V(Ω, C, C), which we will analyze in significant detail.

3 Higher-Spin Theory at the Second Order

In this section we discuss the explicit results obtained by solving Vasiliev’s equations to the second

order. Let us display once again the general structure one gets to the second order:

Dω(2) − V(Ω,Ω, C(2)) = ω ? ω + V(Ω, ω, C) + V(Ω,Ω, C, C) , (3.1a)

D̃C(2) = ω ? C − C ? π(ω) + V(Ω, C, C) , (3.1b)
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where we isolated on the left-hand side the structures that would govern the free propagation of ω(2)

if there were no sources on the right-hand side. We refer to the source on the right-hand-side of the

equations as backreaction.

We find it convenient to work with Fourier transforms of ω and C:

C(Y |x) = C(y, ȳ|x) =

∫
d2ξ d2ξ̄ eiy

αξα+iȳα̇ξ̄α̇ C(ξ, ξ̄|x) , (3.2)

and analogously for ω(Y |x). In the following, the x-dependence is left implicit. The vertices that are

determined by the HS algebra are trivial to evaluate even without knowing Vasiliev’s equations7

ω ? ω =

∫
d4ξ d4η ei((y−η)(y+ξ)+(ȳ−η̄)(ȳ+ξ̄))ω(ξ|x)ω(η|x) , (3.3a)

ω ? C − C ? π(ω) =

∫
d4ξ d4η

(
ei((y−η)(y+ξ)+(ȳ−η̄)(ȳ+ξ̄))ω(ξ|x)C(η|x)

− ei((y+η)(y+ξ)+(ȳ−η̄)(ȳ+ξ̄))C(ξ|x)ω(η|x)
)
. (3.3b)

There is one more term that is easy to evaluate, since it comes from the free equations

V(Ω,Ω, C(2)) =

∫
d2ξ [H α̇α̇Tα̇α̇(Y, ξ̄) +HααTαα(Y, ξ)]C(2)(ξ|x) ,

Tα̇α̇(Y, ξ̄) =
1

2
ξ̄α̇ξ̄α̇e

i(ȳξ̄+θ) , Tαα(Y, ξ) =
1

2
ξαξαe

i(yξ−θ) .

(3.4)

There is also a free parameter, θ, which is inherited from Vasiliev’s equations. The theory at θ = 0

and ∆ = 1 boundary conditions should be dual to the free boson, [2, 17]. The nontrivial part of the

HS interactions resides in the rest of the vertices. The formulas for the vertices may look cumbersome

at first glance, but they are relatively simple taking into account that they encode interactions of an

infinite multiplet of fields. With details left to Section 6, the Vasiliev equations yield the following

expressions for the vertices:

V(Ω, C, C) =

∫
d2ξ d2ηK(Y, ξ, η)C(ξ|x)C(η|x) , (3.5a)

V(Ω, ω, C) =

∫
d2ξ d2η

(
L(Y, ξ, η)ω(ξ|x)C(η|x) + L̄(Y, ξ, η)C(ξ|x)ω(η|x)

)
, (3.5b)

V(Ω,Ω, C, C) =

∫
d2ξ d2η J(Y, ξ, η)C(ξ|x)C(η|x) , (3.5c)

7While ξ, ξ̄ and η, η̄ denote the holomorphic and anti-holomorphic parts of the spinors, the full sp(4) spinors ξA, ηA

are also abbreviated by ξ and η.
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where all the nontrivial information resides in the kernels K, L and J,

K(Y, ξ, η) =

∫ 1

0

dt
(
hαα̇

[
(ȳα̇t− (1− t)ξ̄α̇)ηαR2 − (ȳα̇t+ (1− t)η̄α̇)ξαS1

]
+ h.c.

)
, (3.6a)

L(Y, ξ, η) =

∫ 1

0

dt
(
hαα̇R1ξα(η̄α̇ + tξ̄α̇) + h.c.

)
, (3.6b)

L̄(Y, ξ, η) =

∫ 1

0

dt
(
hαα̇R2ηα(ξ̄α̇ + tη̄α̇) + h.c.

)
, (3.6c)

J(Y, ξ, η) =

∫ 1

0

dt

∫ 1

0

dq
(
Hαα(y + ξ)α(y + η)αQ1

(
iq2t2 + (ξ̄η̄)

qt(1− qt)
2

)
− i

2
H α̇α̇ξ̄α̇η̄α̇Q1 +

i

2
(1− t)H α̇α̇ξ̄α̇η̄α̇P1 +

i

2
H α̇α̇∂α̇∂α̇K0 + h.c.

)
,

(3.6d)

while the phases R1, R2, S1, Q1, P1 and K0 are:

R1 = exp i
(
(y(1− t)− tη)ξ + (ȳ − η̄)(ȳ + ξ̄) + θ

)
, (3.7a)

R2 = exp i
(
(y(1− t)− tξ)η + (ȳ − η̄)(ȳ + ξ̄) + θ

)
, (3.7b)

S1 = exp i
(
(y(1− t) + tη)ξ + (ȳ − η̄)(ȳ + ξ̄) + θ

)
, (3.7c)

Q1 = exp i
(
(qt(y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
, (3.7d)

P1 = exp i
(
(t(y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
, (3.7e)

K0 = exp i
(
tηξ + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
. (3.7f)

The meaning of the h.c.-operation is to exchange barred and unbarred variables as well as to flip the

sign of θ but not to conjugate any complex numbers. The unfolded equations above can be directly

checked to obey the Frobenius integrability constraint (2.5), see Appendix B.4 for the details.

3.1 Comments on the Results

Despite the technical nature of these results one can still draw some comments at the level of the

unfolded equations and then translate all the results in the language of Fronsdal fields, see eq. (2.29),

which will allow us to quantify the locality properties of the unfolded equations written here-above.

In checking the consistency of the unfolded equations one observes how various vertices relate to

each other. In particular, one can see that J without the K0-term, which we will denote as Js.t., is

D-conserved and is independent of the other vertices:

Js.t. =

∫ 1

0

dt

∫ 1

0

dq
[
Hαα(y + ξ)α(y + η)αQ1

(
iq2t2 + (ξ̄η̄)

qt(1− qt)
2

)
+

− i

2
H α̇α̇ξ̄α̇η̄α̇

(
Q1 − (1− t)P1

)
+ h.c.

]
,

DJs.t. ≈ 0 ,

(3.8)

where ≈ means that the conservation holds on-shell — D̃C = 0. Therefore, it is tempting to refer

to Js.t., which is gauge-invariant by itself, as stress-tensors. In particular, the contribution of such

stress-tensors to the correlation functions can be separated from the rest. Moreover, the scalar field
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appears only in Js.t. since ω does not contain the s = 0 component of the HS multiplet. Therefore,

by (3.1a) the s− 0− 0 correlation function is accounted for solely by Js.t..

It is tempting to associate C(2) with the HS Weyl tensors8 for the Fronsdal fields Φ(2) that sit

inside ω(2) as was the case at the free level, but there is a subtlety. The K0-term contributes to

exactly the same component of the equations as the so-called Weyl tensors C(2) do. Moreover, other

terms on the right-hand-side of (3.8) also have a non-vanishing projection onto the same component,

building up a nonlinear deformation of C(2). Therefore, one has to redefine C(2) so as to eliminate

all other contributions to the linearized Weyl tensors. Such a redefinition, when substituted into the

equation for C(2), will produce additional vertices in (3.1b). This observation may be important for

the method of extracting correlators from the boundary behavior of C(2) developed in [5] where the

free level relation between Φ(2) and C(2) was implied. We will give more details on the redefinition

in Section 4.4 devoted to HS Weyl tensors.

Technically, the expressions for the vertices in the 4d theory are much simpler than those in the

three-dimensional case considered in [31]. The reason is two-fold. Firstly, the 3d theory contains

additional fields that have to be truncated away order by order in perturbations. Such redefinitions

yield additional vertices. Secondly, the 4d theory does not produce prefactors quartic in Y, ξ, η at

the second-order.

As is also evident from Vasiliev Equations and our explicit results, the interaction vertices are of

similar form as the pure HS algebra product, C ? π(C). Technically, in order to get the interaction

vertices we need to take the star-product of two first-order fields, add t, q integrals and act with

simple differential operators that are contracted with hαα̇. Therefore, the vertices are seemingly

non-local because C encodes the derivatives of Φs of unbounded order and C ? π(C) contains a sum

over all derivatives for each spin. Note that V(Ω, ω, C), ω ? ω and ω ?C −C ? π(ω) are local because

ω contains a finite number of derivatives for a given spin.

This non-locality can be fake because the unfolded equations contain not only the equations for

Φ
(2)
s , but also for ∇...∇Φ

(2)
s and hence they have to be non-local in the naive sense of having an

unbounded number of derivatives. In order to quantify the degree of non-locality one has to project

onto the equation of motion for Φ
(2)
s , (2.29), and see if it is local or not when the spins s, s1, s2 of the

three fields are fixed. This step requires working out a dictionary between unfolded equations and

Fronsdal fields, which we discuss in the next section.

8One can try to generalize the definition of HS Weyl tensors to the interaction level, but unlike in gravity for which

there exists a nonlinear analog of the usual Weyl tensor, there is no simple way to do so. For example, any definition

will be affected by field-redefinitions, which are naturally absent in the gravity case, in the sense that there is no

uniquely defined metric tensor in Vasiliev Theory. Therefore, we prefer to talk about linearized HS Weyl tensors that

are given by s curls of the Fronsdal field and loosely refer to C(2) as HS Weyl tensors sometimes.
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4 Unfolded vs. Fronsdal Dictionary

The HS theory is known within the unfolded approach and therefore in terms of ω and C. The

only nontrivial content of these equations are the corrections to the Fronsdal equations (2.29), while

the rest are pure gauge or auxiliary fields and equations for the derivatives thereof. While passing

from the HS symmetry friendly variables ω and C to the Fronsdal fields Φs makes the underlying

symmetry not manifest, it can still be useful to work out the dictionary and see how the equations

look like in terms of the Fronsdal fields. We would like to determine (2.29). We refer to the source on

the right-hand side of (2.29) as Fronsdal currents. Among other things this would allow one to apply

standard AdS/CFT methods. However, we will show this to be impossible due to a high degree of

non-locality of the unfolded HS equations, which is one of the conclusions of our study.

4.1 Fronsdal Currents

Unfolded equations provide a first-order form of HS equations. The relation between ω and Φm(s)

for s > 2 is similar to that of the vielbein eam and spin-connection ωa,bm variables to the metric Φmn.

It is well-known that in the example of gravity the Einstein equations are encoded in the torsion

constraint and the Riemann two-form:

dea − ωa,b ∧ eb = T a , Ra,b = dωa,b − ωa,c ∧ ωc,b = Ja,b , (4.1)

where we allow for nonvanishing torsion that can be generated by the matter fields or, as in the HS

case, is induced by all the fields from the HS multiplet. Firstly, one solves for the spin-connection

ω = ω(e, ∂e, T ) in terms of the vielbein, its first derivative and the torsion, T , if any. Secondly, the

solution for ω is plugged into the Riemann two-form to recover the Einstein equations with the source

containing contributions from J and T . In the spinorial language of 4d the vierbein is eαα̇ = eaσαα̇a

and the Riemann two-form Ra,b splits into two (anti)-selfdual components Rαα and Rα̇α̇.

The part of the unfolded equations of Section 3 that contains the Fronsdal equations with non-

linear corrections (2.29) is:

(∇+Q)ω(2) = J , (∇+Q)J = 0 , (4.2)

where it is useful to split D into the Lorentz-covariant derivative ∇, (2.25), and operators Q± that

act algebraically on ω(2)

Q = yαhα
α̇ ∂α̇ + ȳα̇hαα̇ ∂α ≡ Q+ +Q− . (4.3)

Note that we can drop the contribution of the HS Weyl tensors C(2) as it has no effect on the Fronsdal

equations.

As in SUGRA there is a non-zero torsion generated by all the fields from the HS multiplet.

Torsion and the right-hand side of the HS analog of the equation for the Riemann two-form come as

different components of the backreaction J. The torsion constraint is the N = N̄ component, where
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N and N̄ are the number operators for y and ȳ, respectively, e.g. N = yν∂ν . The Riemann two-form

splits into (anti)-selfdual parts corresponding to the N = N̄±2 components, c.f. fig. 1. Both selfdual

and anti-selfdual components contain the same information and we will consider only the self-dual

one, N = N̄ − 2. Therefore, J can be taken to be the N = N̄ and N = N̄ ± 2 components of the

full backreaction of Section 3. If we are interested in the correction to the Fronsdal equations that

is due to the stress-tensors built out of the scalar field, then only Js.t., (3.8), needs to be taken into

account as the scalar entirely sits into C and has no components in ω.

In this section we will sometimes avoid using ω(2) and replace it with ω for the sake of conciseness

and when no confusion can arise. We also use ω±k as a short-hand notation for the components

ωα(s−1±k),α̇(s−1∓k) of ω, so that k = 0 corresponds to the vierbein, e = ω0. The fields ω±1 are the

(anti)-self dual components of the HS spin-connection.

The Fronsdal field Φ
(2)
m(s) consists of two traceless tensors of ranks s and s − 2 and hence in

the spinorial language is represented by some φα(s),α̇(s) and φ′α(s−2),α̇(s−2), which, in the spirit of the

approach we follow, can be collected for all spins into

φ =
∑
s

1

s!s!
φα(s),α̇(s)y

α(s)ȳα̇(s) , φ′ =
∑
s

1

(s− 2)!(s− 2)!
φ′α(s−2),α̇(s−2)y

α(s−2)ȳα̇(s−2) . (4.4)

An analogous decomposition holds true for the Fronsdal tensors Fm(s), (2.1),

f =
∑
s

1

s!s!
fα(s),α̇(s)y

α(s)ȳα̇(s) , f ′ =
∑
s

1

(s− 2)!(s− 2)!
f ′α(s−2),α̇(s−2)y

α(s−2)ȳα̇(s−2) . (4.5)

In what follows we will implicitly use the results of the σ−-analysis that sorts out pure gauge

and auxiliary components of ω, see [32, 33]. First of all, it is easy to see that the Fronsdal field is

embedded into the HS vielbeins e = ω0 as

e = hαα̇∂α∂α̇φ+ yαȳα̇hαα̇φ
′ +Q−(•) +Q+(•) , (4.6)

where the last two terms are pure gauge by virtue of the linearized gauge symmetry δω(2) = (∇+Q)ξ(2)

and we set them to zero by choosing the appropriate ξ(2). The equations for e = ω0 and ω+1 can be

easily obtained from (4.2) and read

R0 = ∇e+Q+ω−1 +Q−ω+1 = J0 , (4.7a)

R+1 = ∇ω+1 +Q+e+Q−ω+2 = J+1 , (4.7b)

where on the right-hand side one has to pick up the components J0 and J+1 of J with N = N̄ and

N = N̄ + 2, respectively. There is a similar expression for R−1, but it contains exactly the same

information as R+1.

In order to recover the Fronsdal equations one has to solve for ω±1 in terms of J0 − ∇e, then

plug the solution in R+1 and project onto the right component (for example, for the spin-two case in

addition to the Einstein equations the two-form R±1 contains also a Weyl tensor, which we do not
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need to recover (2.29)). By a simple index counting argument one can see how the Fronsdal tensor

is embedded into R+1:

R+1

∣∣∣
F

:= H α̇α̇∂α̇∂α̇f + yαyαHααf
′ , (4.8)

where |F tells that we ignore all components except for those indicated explicitly on the right-hand

side. As a result, one finds the Fronsdal operator for Φ
(2)
s with a source j, which we call the Fronsdal

current, expressed in terms of J as:[
−∇(Q−)−1∇e+Q+e

]
F

= j , j =
[
(I −∇(Q−)−1)J

]∣∣∣
+1,F

. (4.9)

Note that the combination ∇(Q−)−1∇e|F makes the two-derivative terms in the Fronsdal operator

while Q+e contributes to the mass-like term.9 Also, the term Q−ω+2 drops out because of the

|F projection. The Fronsdal current j has the same decomposition as Fm(s) and Φm(s), c.f. (4.4).

Eventually we will recover its traceless component j and its trace j′.

The first step is to invert Q. It is useful to expand ω into irreducible components. As any

one-form it can be decomposed as

ω(y, ȳ) = hαα∂α∂α̇ω
∂∂ +Q+ω

Q+ +Q−ω
Q− + yαȳα̇hαα̇ω

yȳ , (4.10)

where we wrote all possible terms that can make a one-form. Applying Q± to it we get

Q+ω =
N

2
H α̇α̇∂α̇∂α̇ω

∂∂ +
1

2

[
−NH α̇α̇ȳα̇∂α̇ + (N̄ + 2)Hααyα∂α

]
ωQ− − N̄ + 2

2
Hααyαyα ω

yȳ ,

Q−ω =
N̄

2
Hαα∂α∂αω

∂∂ +
1

2

[
−N̄Hααyα∂α + (N + 2)H α̇α̇ȳα̇∂α̇

]
ωQ+ − N + 2

2
H α̇α̇ȳα̇ȳα̇ ω

yȳ ,

(4.11)

where (Q±)2 = 0 was used as well as the identities for the vierbein one-form hαα̇ collected in Appendix

A. This expansion should be matched with the analogous expansion of J as a two-form

J = Hαα∂α∂αJ
∂∂ +Hααyα∂αJ

y∂ +HααyαyαJ
yy

+H α̇α̇∂α̇∂α̇J̄
∂∂ +H α̇α̇ȳα̇∂α̇J̄

y∂ +H α̇α̇ȳα̇ȳα̇J̄
yy .

(4.12)

Therefore, solving the torsion constraint corresponds to inverting some number operators:

ω∂∂+1 =
2

N̄
J∂∂ , ω

Q+

+1 =
1

N + N̄ + 2
(NJy∂ + (N̄ + 2)J̄y∂) , ωyȳ+1 =

−2

(N + 2)
J̄yy . (4.13)

It is important that the number operators never degenerate except for the case of spin-one where

there is no torsion constraint to be solved. Next, we need to apply ∇, which we cannot fully do

without knowing the structure of J, so we keep ∇ = hαα̇∇αα̇ as it is for a moment. Lastly, we need

to determine j from J as in (4.9) and project onto the components indicated on the right-hand side

of (4.8), which can be done with the help of the following identity

fα(y) ≡ ∂α[N−1yβfβ] + yα[(N + 2)−1∂βf
β] , (4.14)

9See Appendix C.2 for the derivation of the Fronsdal operator, which allows us to fix the normalization between

the spinorial and vectorial bases.
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that allows to split any fα into a gradient and y-parallel components. Moreover, given some

Hααgαα(y) one can apply (4.14) twice to get

Hααgαα(y) = Hαα
(
∂α∂α

1

N(N − 1)
yβyβgββ + yα∂α

2

N(N + 2)
yβ∂γgβ

γ

+ yαyα
1

(N + 2)(N + 3)
∂β∂βg

ββ
)
.

(4.15)

Finally, combining (4.9), (4.13) and (4.14) we get the expressions for the components j and j′ of the

Fronsdal current j = H α̇α̇∂α̇∂α̇j +Hααyαyαj
′ in terms of the unfolded backreaction J:

j = − 1

N̄(N̄ − 1)
∂ν∇νν̇ ȳν̇J

∂∂ − 1

2N̄(N̄ +N)
yν ȳν̇∇νν̇J� + J̄∂∂ , (4.16a)

j′ = − 1

(N + 2)(N + 3)
∂ν∇νν̇ ȳν̇ J̄

yy +
1

2(N + 2)(N̄ +N + 4)
∂ν∂ν̇∇νν̇J� + Jyy , (4.16b)

where J� := NJy∂ + (N̄ + 2)J̄y∂. As expected, all the six components (4.12) of J contribute to the

Fronsdal current. These expressions, when evaluated on the backreaction J obtained from Vasiliev

Equations, solve the problem of reconstructing corrections to the Fronsdal equations at the second

order, i.e. we determine (2.29). The explicit formulas are a bit involved and we put them in Appendix

C. In the sections below we discuss examples and general properties.

It is also useful to see how the conservation identity looks in terms of j. It has to be the consequence

of the Bianchi identity that the Fronsdal tensor (2.1) obeys:

Bm(s−1) := ∇nFnm(s−1) −
1

2
∇mFm(s−2)n

n ≡ 0 , (4.17)

where we used the symmetrization convention with a minimal number of terms necessary to make

an expression symmetric. Introducing a spinorial representation of Bm(s−1)

B =
∑
s

1

(s− 1)!(s− 1)!
Bα(s−1),α̇(s−1)y

α(s−1)ȳα̇(s−1) , (4.18)

we see by the index counting argument that the yαĥ
αα̇∂α̇B component10 of ∇R+1, which we denote

as ∇R+1|B, plays the role of the Bianchi identity for the Fronsdal tensor that is embedded into R+1.

Therefore, the conservation identity for j is

∇j
∣∣∣
B

= 0 , (4.19)

that holds provided DJ = 0, which in turn is true on the free mass-shell where D̃C = 0. It can be

rewritten in terms of the trace, j′, and the trace-free, j, components as

N̄∂ν∂ν̇∇νν̇ j + (N + 2)yν ȳν̇∇νν̇ j
′ = 0 . (4.20)

10ĥαα̇ = hαβ̇ ∧H β̇α̇, see Appendix A for more detail.
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4.2 Canonical Currents

It turns out that the Fronsdal currents can be split into many independent components, some of

which can be dropped, simplifying the expressions a lot. Any conserved current consists of three

parts: the trivial part called improvement, i.e. the part that is conserved without using the equations

of motion, the on-shell part that is proportional to the free equations of motion and the nontrivial

part that makes an on-shell conserved current. What we want to do is to decompose the stress-tensors

Js.t. (3.8) into nontrivial currents and improvements.

The minimalistic stress-tensors, which we call primary, contain the minimal number of derivatives

and give rise to a subset of the standard vertices that are known as current interactions. In particular,

the rank-s primary stress-tensor built out of the scalar field contains s-derivatives:

jcanm(s) = Φ
←→
∇ m...

←→
∇ mΦ +O(Λ) . (4.21)

It is also possible to built a rank-(2s+ k) conserved tensor that is bilinear in the spin-s Weyl tensors

and has k-derivatives. For example, there is the Bel-Robinson tensor Cα(4)Cα̇(4), which is bilinear in

the usual Weyl tensors. There also exist super-currents that are built from fields of different spins.

There is a simple generating function that encodes conserved currents with the minimal number of

derivatives [34]11

jcan = C(y, ȳ|x)C(−y, ȳ|x) =
∑
m,n,p,q

(−)p

n!m!p!q!
Cα(n),α̇(m)Cα(p),α̇(q) y

α(n+p)ȳα̇(m+q)

=
∑
l,k

1

l!k!
jcan
α(l),α̇(k) y

α(l)ȳα̇(k) .

(4.22)

There is also an associated two-form that can be used as a source for R±1 in the unfolded approach:

jcan = (Hαα∂α∂α +H α̇α̇∂α̇∂α̇)C(y, ȳ|x)C(−y, ȳ|x) . (4.23)

Conserved tensors jcan are in fact conformal primaries of so(4, 2), which explains our terminology.

The conformal symmetry is however broken in the 4d HS theory. One can extend the list of conserved

tensors by: (
∂

∂uα
∂

∂vα

∂

∂ūα̇
∂

∂v̄α̇

)l
C(u, ū|x)C(−v, v̄|x)

∣∣∣
U=V=Y

. (4.24)

In Minkowski space this corresponds to the fact that on top of the conserved tensor Φ
←→
∂ a...

←→
∂ aΦ

there is a family of conserved tensors ∂c(l)Φ
←→
∂ a...

←→
∂ a∂

c(l)Φ that have 2l derivatives contracted. We

will call such currents, i.e. those with l > 0, successors. The term improvement is reserved for

pure improvements, i.e. currents that are conserved without using the equations of motion. It is

important to stress that successors do have an overlap with primaries, i.e. any successor is a sum

11In [34] the generating function is written as C(y, ȳ|x)C(iy, iȳ|x), but for our purpose it is more convenient to

replace C(iy, iȳ|x) with C(−y, ȳ|x) that behaves in exactly the same way since the wave operator D̃ is bilinear in

spinors. Such form corresponds to Cπ(C).

20



of a primary and an improvement. Therefore, we combine primaries and successors into canonical

currents, each of those has a nonvanishing projection onto a primary and therefore can be used to

construct nontrivial interactions. Primary currents directly lead to standard Lagrangian vertices.

The Fronsdal currents that we derived from Vasiliev’s equations contain a sum over such families

with certain coefficients. In Fourier space the generating function for the primaries and successors

thereof (4.24) is very close to the Q1 function of Section 3

Qcan = exp i
(
βy(ξ − η) + γȳ(η̄ + ξ̄) + α1ξη + α2ξ̄η̄

)
C(ξ|x)C(η|x) , (4.25)

where α1, α2 count the number of contracted derivatives and β, γ count the spin of the current.

The presence of ξη and ξ̄η̄ in Q1 and hence in the Fronsdal currents indicates that the currents are

pseudo-local.

Also, there is a part of the Fronsdal currents that contains only pure improvements. While

improvements can contribute to exchange diagrams, they can be projected out for the purpose of

computing the simplest Witten diagram � that makes a three-point function. Such a decomposition

simplifies a lot the expressions: canonical currents, i.e. primaries and successors, are traceless and all

the traces can be attributed to pure improvements. In order to project onto the canonical sector we

note that the form of the generating function (4.25) implies that all the exponents that contribute

to Js.t., i.e. Q1 and P1, (3.6d), are already canonical. Therefore, we need to extract ξ − η and ξ̄ + η̄

from the prefactors in (3.8), which is done by12

(y + η)α(y + ξ)αQ1 = −1

4
(ξ − η)α(ξ − η)αQ1 + improvement = +

1

4
∂α∂αQ1 + improvement ,

η̄α̇ξ̄α̇Q1 = +
1

4
(ξ̄ + η̄)α̇(ξ̄ + η̄)α̇Q1 + improvement = −1

4
∂α̇∂α̇Q1 + improvement ,

where, for example, in the second formula we decomposed ξ̄α̇η̄α̇ as 1
4
(ξ̄+ η̄)α̇(ξ̄+ η̄)α̇− 1

4
(ξ̄− η̄)α̇(ξ̄− η̄)α̇

and the second term does not contribute to canonical currents since it is not purely holomorphic in

(ξ̄ + η̄) and (ξ − η), see [31]. Finally, the canonical part Jcan. of the stress-tensors Js.t. is

Jcan. =

∫ 1

0

dt

∫ 1

0

dq
[1

4
Hαα∂α∂αQ1

(
i+ (ξ̄η̄)

(1− qt)
2qt

)
+
i

8
H α̇α̇∂α̇∂α̇

(
Q1 − (1− t)P1

)
+ h.c.

]
.

(4.26)

4.3 Corrections to Fronsdal Equations: Examples

In this section we give an explicit form for the Fronsdal current built out of the scalar field Φ.13

Considering the spin-two example, the generic source reads:

�Φmm + ... = 2 cos 2θ
∑
l

(
ãl,1∇mn(l)Φ∇m

n(l) Φ + 2ãl,0∇mmn(l)Φ∇n(l)Φ + c̃l,0gmm∇n(l)Φ∇n(l)Φ
)
,

12In [35] the tensor product C ⊗ C was studied by decomposing it into irreducible components. Those correspond

to primaries together with successors thereof. Here, we rewrite everything in terms of the Fourier components that

are useful for the computations in the perturbation theory of Vasiliev’s equations, extending the analysis of [31].
13This expression was claimed to have been found in [16]. However, it is easy to see without comparing with the

coefficients we found that their result is inconsistent. Indeed, the asymptotic fall-off has to be faster than 1/(l!l!)

because of the homotopy integrals. See [31] for the 3d examples along the same lines.

21



where we introduced symmetrized and trace-projected derivatives that naturally appear upon trans-

ferring components of C to the language of world tensors:

∇m(s−k)n(l)Φ∇m(k)
n(l) Φ = hαα̇m ...hαα̇m Cα(s−k)ν(l),α̇(s−k)ν̇(l)Cα(k)

ν(l)
,α̇(k)

ν̇(l) . (4.27)

The coefficients we find take the form:14

al,0 =
1

l!l!

(
− 3

(2 + l)2
+

7

2(2 + l)
− 4

3 + l
+

1

2(4 + l)

)
, al,0l!l!

l→∞−−−→ − 2

l3
, (4.28)

al,1 =
1

l!l!

(
1

2(2 + l)2
− 1

4(2 + l)
+

1

4(4 + l)

)
, al,1l!l!

l→∞−−−→ 1

l3
, (4.29)

cl,0 =
1

l!l!

(
1

12(1 + l)2
− 3

8(1 + l)
+

1

2 + l
− 1

8(3 + l)

)
, cl,0l!l!

l→∞−−−→ 1

2l
, (4.30)

The canonical projection of the Fronsdal current above, i.e. (4.26), gives:

al,k =
4(−)k

(l + 2)2(l + 3)(k!)2(l!)2(2− k)!2
, k = 0, 1 , cl,0 = 0 . (4.31)

It makes no difficulty to extract the contributions of fields with other spins out of the generating

functions we derived, see Appendix C.3, but this simple example suffices to make important state-

ments about the locality properties of the theory as a whole. Moreover, we do not expect explicit

coefficients to be more efficient to work with than generating functions that allow us to deal with all

the fields at once. As for the spin-s current built of the two scalar fields, we find:

�Φm(s) + ... = 2 cos 2θ
∑
l,k

(
ãl,k∇m(s−k)n(l)Φ∇m(k)

n(l) Φ + c̃l,k gmm∇m(s−2−k)n(l)Φ∇m(k)n(l)Φ
)
, (4.32)

al,k =
(−)ks!s!

l!l!k!k!(s− k)!(s− k)!

(2k2 − 2ks+ s2)

2sl3
+O

( 1

l4l!l!

)
, (4.33)

cl,k =
(−)k(s− 2)!(s− 2)!

l!l!k!k!(s− k − 2)!(s− k − 2)!

(2s+ 3)

l(s+ 2)(s+ 3)
+O

( 1

l2l!l!

)
. (4.34)

The coefficients for the canonical part of the spin-s Fronsdal current, as extracted from Jcan., are

much simpler:

�Φm(s) + ... = 2 cos 2θ
∑
l,k

ãl,k∇m(s−k)n(l)Φ∇m(k)
n(l) Φ , (4.35)

al,k =
(−)ks!s!

l!l!k!k!(s− k)!(s− k)!

s(2l(s− 1) + s(2s− 1))

8(s− 1)(l + s)2(l + s+ 1)2
(4.36)

They have the same (l!l!l3)−1 decay at l→∞ as the full currents. The canonical currents are traceless

and the dependence on k is fully covered by factorials, which is the signature of the canonical currents.

14There is one step that we do not want to bother the reader with. The simplest normalization of the Fronsdal

field (4.4) and operator (4.5) in the spinorial language leads to certain spin-dependent rescalings that need to be done

in order to map j and j′ into the trace and trace-free components of the Fronsdal equation in the vectorial language.

While we give the coefficients a, c in the spinorial form, ã, c̃ denote the rescaled coefficients. The dictionary can be

found in Appendix C.2.

22



We would like to point out few features of the Fronsdal currents as displayed above.

(i) The full Fronsdal currents are not traceless, which can be cured by dropping improvements and

taking the canonical projection. Note that in 4d the equations for HS Weyl tensors are conformal,

but the Fronsdal equations are not, see [36, 37] and more recently [38]. The conformal symmetry

of the HS theory appears to be broken by the gauge-noninvariant part of the stress-tensors, i.e.

ω ? ω + V(Ω, ω, C), which involves ω;

(ii) The currents vanish for θ = π/4. Also, we note that the stress-tensor changes its sign at

θ = π/4. In particular, as it was already noticed in [17], the signs of the stress-tensor are the

opposite for type A, θ = 0, and type B, θ = π/2, models that are dual to the free boson and free

fermion, respectively [1, 2, 17]. Such θ-dependence looks puzzling in view of the slightly-broken HS

symmetry [39];

(iii) Obviously, the Fronsdal currents are pseudo-local expressions, while we know from the La-

grangian approach that the only nontrivial coupling 0 − 0 − s of two scalars with a HS field has

s-derivatives. A chain of redefinitions is needed to remove the improvements reducing everything to

the standard form.

Let us now comment on the pseudo-locality of the Fronsdal currents found from Vasiliev Theory.

As it was rigourously proven in 3d [40], the primary s-derivative stress-tensor built out of the scalar

field is formally exact, i.e. can be removed by a field-redefinition of the spin-s Fronsdal field. Such

redefinition, however, involves a pseudo-local series and has to be forbidden on physical grounds.

A more powerful result of [31] shows that in 3d any conserved two-form J that is bilinear in C,

which one can put on the right-hand side of Dω(2) = J + ..., is exact in the class of pseudo-local

expressions:

J = J(h, h, C,C) : DJ = 0 −→ J = DU , U = U(h,C,C) . (4.37)

This result is the AdS counterpart of [41] obtained in flat space. In the flat space limit indeed the

above improvements reconstruct �−1 singularities of the type considered in [42]. The same results

are expected to be true in any dimension. In particular, Js.t. and its canonical projection Jcan have

to be exact forms and it should be possible to redefine away jcan by a pseudo-local field redefinition.

Therefore a better understanding of allowed field redefinitions in the context of HS theories is of

paramount importance, see e.g. [27, 43].

Finally, let us note that in principle there can be a subtlety in how to relate the HS connection

ω to the Fronsdal fields. For example, one can take the vielbein component ω0 of ω and consider

trace-invariants Φ̃s = tr(ω0 ? ... ? ω0) as a possible different definition of the Fronsdal tensor that is

still compatible with (2.20) upon linearization. Beyond the free theory level one can also consider

sums of appropriate powers of such invariants with yet unknown coefficients, see e.g. [44, 45]. On

top of this one can involve the zero-form C into such expressions. This just results into certain

field-redefinitions for ω(2) which would be also pseudo-local when C is included. In this paper, we

have made the simplest choice as to identify Φ(2) with the same component of ω(2) as at the free

level, i.e. (2.20).

23



4.4 Weyl Tensors

The equations for the HS Weyl tensors are also of interest for the following reasons. First of all, the

equations for the s = 0 and s = 1 fields of the HS multiplet reside in D̃C(2) = ... equation, (3.1b).

Secondly, the equations for the Weyl tensors are much simpler. Thirdly, the equations for the Weyl

tensors bear the same amount of gauge-invariant information and can be used for the AdS/CFT

computation as in [5], where the boundary behavior of the Fronsdal fields was extracted from that

of the Weyl tensors. We warn the reader again that C(2) does not correspond to the linearized HS

Weyl tensors and it should be clarified whether this affects the AdS/CFT computations. At the end

of the section we discuss the corrections for the linearized Weyl tensors.

The reason why equations for HS Weyl tensors are expected to be simpler can be seen by applying

s curls to the Fronsdal equation, (2.1), with some current Fm(s) = jm(s)

∇m(s)Fn(s)|W = ∇m(s)jn(s)|W , (4.38)

where the projection onto the Weyl tensor, i.e. a traceless tensor with the symmetry of (s, s)-Young

diagram is denoted by |W . We see that all terms in Fm(s), (2.1), except for the Klein-Gordon part

are projected to zero:

(�−m2
W )∇m(s)Φn(s)|W = ∇m(s)jn(s)|W , (4.39)

where m2
W is the mass of the Weyl tensor, see e.g. [46]. At the same time, if the current is built out

of the scalar field only, it is easy to see that only one term can survive after the projection:

∇m(s)jn(s)|W = ∇m(s)

(
Φ
←→
∇ n...

←→
∇ nΦ +O(Λ)

)
|W = ∇m(s)Φ∇n(s)Φ|W . (4.40)

In free theory the Weyl tensors obey the Klein-Gordon equation with a specific mass-like term. For

example, the anti-holomorphic Weyl tensors obey

(�− 2(2 + N̄))C(0, ȳ|x) = 0 , (4.41)

which can be derived by computing gmn∇m∇nC where ∇m needs to be replaced with its on-shell

value in accordance with D̃C = 0, (2.24).

At the second order one finds a source on the right-hand side, which we gave in Section 3,

D̃C(2)(y, ȳ|x) = P(y, ȳ|x) , P = ω ? C − C ? π(ω) + V(Ω, C, C) . (4.42)

The procedure now is very similar to solving for torsion, but it is much simpler since P is a one-form

P = hγγ̇P
γγ̇. After using (4.14) to solve for hαα̇∂α∂α̇C in terms of P−∇C from (4.42), plugging the

solution back and projecting onto the Klein-Gordon equation we get

(�− 2(2 + N̄))C(2)(0, ȳ) =
2

N̄ + 2
(∂α∇αα̇∂α̇)(yγ ȳγ̇P

γγ̇)
∣∣∣
y=0

+
2i(N̄ + 1)

N̄ + 2
(∂γ∂γ̇P

γγ̇)
∣∣∣
y=0

, (4.43)

which computes the source for the HS Weyl tensors, including the scalar and the spin-one fields,

given any backreaction P.
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Let us consider the K = hγγ̇K
γγ̇ = V(Ω, C, C) part of the backreaction. For example, this is

the only part that contains the contribution of the scalar to the spin-s Weyl tensor equations, i.e.

contributes to 〈j0j0js〉 correlator. First of all, ∂γ∂γ̇K
γγ̇ = 0. Next, the first term of (4.43) can be

straightforwardly computed and simplified a bit by integrating it by parts:

(�− 2(2 + N̄))C(2)(0, ȳ) =

∫
F (ȳ, ξ, η)eiθ+iξ̄η̄C(ξ)C(η) , (4.44)

where the interaction kernel is

F (ȳ, ξ, η) =

∫ 1

0

dt
[
2(ȳ(ξ̄ + η̄))ei[tηξ+ȳ(η̄+ξ̄)] + 2(ξ̄η̄)ei[ȳ(η̄+ξ̄)] − 4t(ξ̄η̄)ei[tȳ(η̄+ξ̄)]

]
.

Let us note that there is no usual h.c. at the end of the last formula.

There are few remarks one can make by looking at (4.44). The source vanishes if we set ȳ = 0,

i.e. there are seemingly no corrections to the free propagation of the scalar field coming from K. In

particular, it implies the absence of the Φ3 coupling [17]. Therefore, correlator 〈js1js2j0〉 is accounted

for by the HS algebra structure constants via ω ? C − C ? π(ω) as observed in [5].

Also the vanishing of the pseudo-local part in the source for the scalar field can be confronted

with the currents in Section 4.1, which shows that Vasiliev’s equations in this gauge and field frame

are not Lagrangian. Indeed the source to the scalar and to the spin-s Fronsdal field come from the

same 0− 0− s coupling and hence should be related to each other, while we observe that one is local

and the other is pseudo-local.

Linearized Weyl tensors. Let us give more details on the fact that C(2) in (3.1) are not the

linearized HS Weyl tensors for Φ(2), i.e. they are not related via simple s-curls like in (2.18). Let us

first rewrite (3.1) by collecting all the vertices that are bilinear in the first order fields into a two-form

R for ω(2) and into a one-form P for C(2):

Dω(2) = R + V(Ω,Ω, C(2)) , D̃C(2) = P , (4.45)

where we remind that D = ∇+Q− +Q+ and:

V(Ω,Ω, C(2)) = −1

2
H α̇α̇∂yα̇∂

y
α̇C

(2)(0, ȳ)eiθ − 1

2
Hαα∂yα∂

y
αC

(2)(y, 0)e−iθ . (4.46)

It is not difficult to see that all the terms in the decomposition of R according to

R = Hαα∂α∂αR
∂∂ +Hααyα∂αR

y∂ +HααyαyαR
yy

+H α̇α̇∂α̇∂α̇R̄
∂∂ +H α̇α̇ȳα̇∂α̇R̄

y∂ +H α̇α̇ȳα̇ȳα̇R̄
yy .

(4.47)

are nonzero (we have already used this type of decomposition in Section 4.1 to derive the Fronsdal

currents from Js.t.). In particular, R∂∂ at ȳ = 0 contributes to exactly the same component as the

second term of (4.46) and analogously for R̄∂∂ at y = 0, but there are more contributions.

If we are, for example, interested in the holomorphic Weyl tensors C(2)(y, 0) we can extend the

same procedure as was used in Section 4.1 to solve the torsion constraint to higher levels, i.e. to ω
(2)
+k

with k ≥ 1. Indeed, the general formula for Q−1
− can be applied as:

ω
(2)
k = (Q−)−1(R|k−1 −∇ω(2)

k−1 −Q+ω
(2)
k−2) . (4.48)
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For the purpose of extracting the relation between the Fronsdal fields and C(2) we can drop the

Q+-term. Iterating the above formula we get[
G(∇ω(2)

0 ) = V(Ω,Ω, C(2)) + G R
]∣∣∣∂∂
ȳ=0

, (4.49)

where we define the resolvent G−1 = (I + ∇Q−1
− ). Also, taking the •∂∂-component of the above

expression and setting ȳ = 0 projects onto the C(2)(y, 0), c.f. (4.46). Indeed,[
V(Ω,Ω, C(2))

]∣∣∣∂∂
ȳ=0

= −1

2
C(2)(y, 0)e−iθ . (4.50)

On inspecting the action of Q− and ∇ on various components of (4.47)-like decomposition, we see

that it is sufficient to work out the action of (−∇Q−1
− ) on the •∂∂-components as it is only these

components that eventually contribute to C(2)(y, 0):

(−∇Q−1
− )Hαα∂α∂αf

∂∂ = Hαα∂α∂α

(
− 1

N(N̄ + 1)
(y∇∂̄)f∂∂

)
, (4.51)

where (y∇∂̄) = yν∇νν̇∂
ν̇ . Therefore, we can define the •∂∂-projection G∂∂ of G:

G∂∂ =

(
1 +

1

N(N̄ + 1)
(y∇∂̄)

)−1

. (4.52)

Also we need (∇ω(2)
0 )∂∂ = (2N)−1(y∇∂̄)φ. Finally, we get for (4.49)

G∂∂ 1

2N
(y∇∂̄)φ

∣∣∣
ȳ=0

= −1

2
C(2)(y, 0)e−iθ + Reff

∣∣∣
ȳ=0

, Reff = G∂∂ R∂∂ , (4.53)

where Reff accounts for the difference between C(2) and linearized HS Weyl tensors. If we drop Reff

and project onto the spin-s component then the free level relation is

(−)s−1

4(2s− 1)!
(y∇∂̄)sφs = −1

2
C(2)
s (y, 0)e−iθ , (4.54)

which, up to some factor, identifies Cα(2s) as the trace-free part of the order-s curl of the traceless

component φ of the Fronsdal field. In order to make the same rule work at the second order we have

to shift C(2) by Reff :

C(2) −→ C(2) + 2eiθR∂∂eff
∣∣
ȳ=0

+ 2e−iθR̄∂∂eff
∣∣
y=0

= C̃(2) , (4.55)

where we also added the anti-holomorphic component R̄∂∂eff , which is obtained analogously. Such a

redefinition produces an additional contribution to P:

P −→ P− 2D̃
(
eiθR∂∂eff

∣∣
ȳ=0

+ e−iθR̄∂∂eff
∣∣
y=0

)
. (4.56)

Notice that such redefinition cannot affect the scalar field of C(2). Now, P will contain new vertices

both of type V(Ω, C, C) and V(ω,C) starting from s = 1.

Lastly, let us stress here that the above contribution to the HS Weyl tensors must sum up, by

consistency of the unfolded equation (see Appendix B.4), in such a way that the equation for C(2)

becomes just a consequence of the equation for the Fronsdal fields. In particular, the analysis of the

C(2)-equation cannot alter our conclusions drawn directly from the Fronsdal equations. The only

cases in which C(2) contains nontrivial information on the dynamics are s = 0, 1. For example, we

found that the Fronsdal current built out of the scalar field vanishes at θ = π/4, which seems to be

in conflict with (4.44). This discrepancy has to be cured by new terms coming from (4.56).
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4.5 Purely Star-Product Vertices

In this section we consider the simplest example of the backreaction J that can be put on the right-

hand side of Dω(2) = J. As before we may ignore V(Ω,Ω, C(2)) since it does not contribute to the

Fronsdal current. If the right-hand side, J, was a zero-form, then the simplest option would be to

take C ? π(C), which transforms in the adjoint of the HS algebra and hence obeys D(C ? π(C)) = 0.

A small modification is needed to lift C ? π(C) to a two-form:

Dω(2) = Jsmp ,
Jsmp = (Hαα∂α∂α +H α̇α̇∂α̇∂α̇)Q ,

Q = exp i((y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄)) ,
(4.57)

where Q is the Fourier transform of C ? π(C), i.e. Q = eiY ξ ? π(eiY η), and we omit the Fourier

space integral along with C(ξ)C(η). Such a source is very close to the one that comes from Vasiliev’s

equations, but it is much simpler. Moreover, it can be thought of as the Lorentz-covariant analog of

the purely star-product vertex V(ω, ω, C,C) = ω ? ω ? C ? π(C) that is known to be consistent. Like

any D-conserved two-form that is bilinear in C, Jsmp is exact

Jsmp = −Dhαα̇∂α∂α̇Q . (4.58)

The general formula (4.16) for the Fronsdal current gives

jsmp = H α̇α̇∂α̇∂α̇j
smp , jsmp =

−1

(N̄ − 1)N̄
[−2i+ (y(ξ − η))](ȳ(ξ̄ + η̄))Q+Q , (4.59)

where the actual Fronsdal current is the N = N̄ component of jsmp. Note that the current is traceless

and hence canonical. The current is ∇-conserved, i.e. its AdS4-covariant divergence vanishes, which

follows from

∂ν∂ ν̇∇νν̇ j
smp = 0 . (4.60)

The coefficients can be easily extracted from the generating function of jsmp and read simply:

�Φm(s) + ... =
∑
l,k

ãl,k∇m(s−k)n(l)Φ∇m(k)
n(l) Φ ,

al,k =
(−)ks!s!

l!l!k!k!(s− k)!(s− k)

(1 + 2s)

s− 1
.

(4.61)

This example shows a slightly worse decay in the l → ∞ limit than the Fronsdal currents obtained

from Vasiliev Theory.

5 Resummation of Fronsdal Currents and Locality

In this section we extract the primary canonical current component of the HS equations as derived

from Vasiliev’s theory. We have already observed that the HS symmetry, which is embedded into

the unfolded equations, favors pseudo-local expressions arranged as primaries, which are canonical
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currents with the least number of derivatives, (4.22), with a tower of successors, (4.24). Considering

cubic and higher order ansatz for an action, or second and higher order terms for field equations,

one finds an infinite number of possible structures even if the spins of the three, four etc. fields

are fixed. In flat space many of these structures, which correspond to successors, do not overlap

with canonical currents and contribute only to improvements. On the contrary, in AdS space, they

contain a nonvanishing projection onto the primary canonical part. Whenever a pseudo-local tail,

called Born-Infeld tail in [22], can be resumed into a finite multiple of a primary, it is well-defined,

which is not the case for the unfolded equations discussed in Section 3 as we will explain now.

The simplest example is given by a Φ3-vertex, which can also be represented for any l > 0 as

al

∫
Φ∇m(l)Φ∇m(l)Φ ∼ alCl

∫
Φ3 . (5.1)

The reason is that a pair of contracted derivatives can be eaten by � and �Φ = m2
ΦΦ will produce

the same Φ3 vertex but with some overall coefficient Cl in front of it. The same result is obtained

by performing a field-redefinition directly in the equations of motion.15 Therefore, given a possibly

infinite number of terms (5.1) one can reduce them to the single Φ3 vertex with a =
∑

l alCl in front

of it and the question is whether a is finite or not.

While above we just gave the idea of the resummation let us now explain what one does in

practice. One takes the most general redefinition ω(2) → ω(2) + ∆ω(2) such that ∆ω(2) is bilinear in

C and it yields only canonical structures. It is easy to see that the most general such ∆ω(2) is

∆ω(2) = hαα̇∂α∂α̇Q
can , (5.2)

where Qcan is the generating function of canonical structures (4.25). After such a redefinition the

second-order equations read:

Dω(2) = Jcan. − D∆ω(2) , (5.3)

where Jcan. is the canonical projection (4.26) of the full backreaction. Note that we can ignore the

contribution of the Weyl tensors C(2) as it does not affect the Fronsdal equations. Also we can

drop any improvement pieces that are not relevant at this order. Moreover, we can omit ω ? ω

and V(Ω, ω, C) since they are explicitly local and cannot lead to any problems upon resummation,

although they are not written in the standard form.

Next one computes D∆ω(2) and then the corresponding Fronsdal current j(D∆ω(2)) according to

(4.16) with the aim of identifying all improvement contributions to Jcan.. Let us denote the successors

of the primary canonical currents that have l pairs of indices contracted as �l-terms. The �0-terms

are the primaries. In the Fourier space the �l terms (4.24) read:

j(y(ξ − η), ȳ(ξ̄ + η̄))[(ξη)(ξ̄η̄)]l ∼ �l . (5.4)

For any �l-term with coefficient 1 in front of it in a given Fronsdal current it is possible to find

a redefinition ∆ω(2) such that (i) it contains only the terms �0, ...,�l−1; (ii) it cancels the given

15Similar techniques to study current interactions have been developed in [35] in terms of Howe dual algebras.
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�l-term; (iii) the result of such redefinition has only certain �0-term left with a nontrivial coefficient

Cl in front of it:

�l − j(D∆ω(2)) = Cl�
0 . (5.5)

It is a property of the recurrent system that relates ∆ω(2) to j(D∆ω(2)) that such redefinition exists

and the coefficient Cl is a well-defined number that we find in Appendix D using more refined

generating function techniques. Knowing Cl allows one to project all �l-terms one by one, reducing

the pseudo-local tail to its primary canonical part, which has the least number of derivatives, plus

an improvement with no overlap on the latter.

There are at least three interpretations of the ideas described here-above. The first one is that

one can perform redefinitions in the equations as to reduce every successor to Cl times a primary.

It is equivalent to integrating by parts in the action, as in (5.1). Another interpretation is that we

simply project every successor onto its primary component, i.e.

〈�l-successor|primary〉 = Cl , (5.6)

i.e. we go to the orthogonal base of structures. The latter interpretation is more general since it does

not require an action — we extract the improvements from a given D-closed structure and read off

the coefficient in front of the only nontrivial part given by a primary canonical current. Therefore,

our result does not rely on any subtle choice of decomposition, etc. In this regard it is worth stressing

that there exists a basis of currents such that (i) each base vector is a local and conserved expression;

(ii) it diagonalizes the action of D. In particular, every pseudo-local current can be decomposed into

local independently conserved pieces and there exist no truly pseudo-local conserved expressions,

which allows us to deal with them term by term. An example of a non-orthogonal base is given by

primaries and successors.

Applying this algorithm to the spin-two current, the details being in Appendix D, the result of

resummation is the primary two-derivative current:

js=2 = − i

12
cos(2θ)

(
∞∑
l=1

l

)
(ȳ(ξ̄ + η̄))2(y(ξ − η))2

4
+ improvements , (5.7)

whose overall coefficient is given by a divergent series in l, each term of which comes from projecting

l contracted derivatives onto the primary current component, while improvements can be dropped

from the very beginning.

It was noted already in [17] that the Fronsdal currents are pseudo-local and we have obtained

them explicitly. In [22] it was noted that only a pseudo-local redefinition will bring the unfolded

equations into the standard form (i.e. with the least number of derivatives). The possibility that

the corresponding higher derivative tails could be divergent was also mentioned therein. That the

above couplings indeed require infinite resummations is one of the original results that we obtain in

the present paper.16 Since the equations for ω(2) and C(2) are related in a simple way, our result is

valid for the V(Ω, C, C)-vertex too, which explains the puzzles observed in [5, 6].

16Note that the divergences we observed are completely different from those considered e.g. in [46] that are caused

29



Generally, we can say that given a pseudo-local expression there are at least three equivalent ways

to find out if it can be redefined to a local one. Here-below we assume that the spins of the three

fields whose contribution to the pseudo-local expression we are looking at are fixed.

• Thinking of the source on the right-hand side of the Fronsdal equations as coming from a cubic

Lagrangian vertex, one can attempt to redefine the pseudo-local tail and reduce the successors

to the primary canonical structures, which have the minimal number of derivatives. In doing

so, the coefficients in the tail will be resummed into the factors in front of the few standard

cubic vertices, whose number is known to be finite and the order of derivatives is known to

be not greater than the sum of the three spins [21]. The same can be achieved by performing

redefinition directly in the equations of motion;

• One can compute the holographic correlation functions. Again, on the example of three-point

functions the number of different structures is finite (moreover, it coincides with that of cubic

vertices). Therefore, all the terms of the pseudo-local vertex will have to contribute to the

coefficients in front of the few three-point structures;

• One can perform the Fefferman-Graham analysis of the given equations to see if the corrections

due to the interactions in the pseudo-local non-linearities can destroy the asymptotic behavior.

The first and the second ways are essentially equivalent: thinking of the correlation functions, we can

either first reduce everything to the standard vertices in the bulk and then compute the correlators

or compute the correlators for each term in the pseudo-local expression individually since pure

improvements give no contribution. More details will be given elsewhere [27].

A marginal example of a pseudo-local expression is given by the HS algebra invariant [47, 48],

tr(C ? π(C) ? ...) , (5.8)

whose equation of motion counterpart was considered in Section 4.5. This expression gives the correct

answers for all the correlation functions of the free dual CFT’s when evaluated on the boundary-

to-bulk propagators, and makes sense as a bulk object. Moreover, it can be decomposed into the

components, the contractions of the derivatives of the Weyl tensors, each of those making sense as a

local bulk vertex (C is gauge invariant to lowest order). However, as a whole (5.8) is not only pseudo-

local, but is completely non-local since it does not depend on the bulk point at all.17 Remarkably,

this observation forbids the phase-function ambiguity θ = θ?(B) present in the Vasiliev theory [4] by

requiring locality in the bulk, see also [43] for the Fefferman-Graham type of argument.

by choosing elements outside the domain of the star-product. Indeed, while the exponential formula (2.9) works fine

for polynomials, the integral formula (2.10) has a larger domain of definition, but still one can easily find elements

C(Y ) such that C ? π(C) diverges.
17The proof is simple [48]. Any solution to D̃C = 0 has the form C(Y |x) = g ? C(Y ) ? π(g−1), where g = g(Y |x) is

an invertible element, i.e. the x-dependence comes solely from g(Y |x) while C(Y ) is a space-time constant. The trace

is by definition invariant under the adjoint transformations. Therefore, g drops out and the trace does not depend on

the point in the bulk.
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The vertices we derived from the Vasiliev equations are much closer to the marginal example

of the trace invariants (5.8) rather than to the standard local vertices. This is because the former

vertices are given by the star-products with some insertions of homotopy integrals that can only

slightly change the l → ∞ fall-off of the coefficients coming from the Moyal product. Indeed, the

difference is only l−3 as can be seen by comparing with Section 4.5.

From the thorough study of the 3d case [31] we know that solving the torsion constraint brings

successors of primary s-derivative currents, which can be canceled by introducing higher successors

and so on. There exists a pseudo-local backreaction [27, 31] that is fine-tuned in such a way that all

the successors cancel each other to only produce the primary canonical current as Fronsdal current.

That pseudo-local series is radically different from the one given by star-products and Vasiliev’s

equations. Star-products yield a spin-independent fall-off of the coefficients which is (l!l!)−1 for bare

star-products and (l!l!l−3) for the backreaction we obtained from Vasiliev’s equations. The pseudo-

local representative for a primary spin-s current has a faster fall-off, ((l + s)!(l + s)!)−1, which is

spin-dependent (see [31] for the 3d example and [27] for the 4d one). Therefore, the conclusion that

the backreaction collapses onto the primary currents with infinite coefficient can be reached quite

easily just by comparing the Fronsdal currents with the pseudo-local form of the canonical ones.

6 Solving Vasiliev Equations

In the present section we explain how to extract HS equations in the unfolded form. This requires a

good knowledge of Vasiliev’s equations. Some of the readers may wish to proceed to the Discussion

Section immediately. A gentle introduction in the perturbation theory of Vasiliev’s equations can be

found in Section 11 of [24].

The unfolded equations are folded into Vasiliev’s equations [3, 4, 49]. Once the Vasiliev’s equations

are partially solved with respect to the additional variables ZA, the initial data for the Z-evolution

are found to obey the unfolded equations (2.11). The idea behind Vasiliev’s equations is that the

unfolded equations (2.11) can be embedded into a flat connection of a bigger algebra plus constraints

that specify the embedding, which we need to solve for.

6.1 Vasiliev Equations

The algebra that all HS interactions can be embedded into as a flat connection is a twisted product

of two copies of the HS algebra [50]. The doubling is achieved via Y A → Y A, ZA and the twist is

encoded in the following star-product [25]

(f ? g)(Y, Z) =

∫
dUdV f(Y + U,Z + U)g(Y + V, Z − V )eiUAV

A

, (6.1)

which is not a usual product on the tensor product of the two copies and corresponds to normal

ordering for Y ±Z. In particular, [F (Y ), g(Z)]? 6= 0 while for Z-independent functions (6.1) reduces

to (2.10). All of the star-product computations with monomials can be done by applying the simple
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consequences of (6.1):

YA ? • = YA + i∂YA − i∂ZA , ZA ? • = ZA + i∂YA − i∂ZA , (6.2)

• ? YA = YA − i∂YA − i∂ZA , • ? ZA = ZA + i∂YA + i∂ZA . (6.3)

The field content of the theory is given by one-form connection W = Wm(Y, Z|x) dxm, an auxiliary

field SA = SA(Y, Z|x) that is an sp(4)-vector and a zero-form Φ = Φ(Y, Z|x). The 4d Vasiliev

equations in the sp(4)-covariant form read:

dW = W ?W , (6.4a)

d(Φ ? κ) = [W,Φ ? κ]? , (6.4b)

dSA = [W,SA]? , (6.4c)

[SA, SB]? = −2i(CAB + Φ ?ΥAB) , (6.4d)

SA ? Φ + Φ ? (Υ ? S ?Υ−1)A = 0 . (6.4e)

Here the sp(4) symmetry is broken by the so(3, 2)-compensator VAB via two projectors:18

ΥAB =

(
εαβe

iθκ 0

0 εα̇β̇e
−iθκ̄

)
= Π+

ABe
iθκ + Π−ABe

−iθκ̄ , Π±AB =
1

2
(CAB ± VAB) , (6.5)

whose crucial constituents are a free parameter θ and two Klein operators

κ = eizαy
α

, κ̄ = eiz̄α̇ȳ
α̇

. (6.6)

The fields need to obey kinematical constraints ensuring the theory to be bosonic:

[K,Φ]? = 0 , [K,W ]? = 0 , {K,SA}? = 0 , (6.7)

where K = κ ? κ̄ is the total Klein operator. Operator K behaves as (−)NY +NZ where NY and NZ

are the number operators for Y and Z, i.e. K ? Y ?K = −Y , etc. The holomorphic Klein operators

κ and κ̄ do the same for yα, zα and ȳα̇, z̄α̇, respectively. It is also useful to remember that

f(y, z) ? κ = f(−z,−y)κ , κ ? κ = 1 . (6.8)

In practice, it is convenient to decompose the sp(4)-covariant equations to the sl(2,C)-components:

dW = W ?W , (6.9a)

d(Φ ? κ) = [W,Φ ? κ]? , (6.9b)

dSα = [W,Sα]? , dS̄α̇ = [W, S̄α̇]? , (6.9c)

[Sα, Sβ]? = −2iεαβ(1 + eiθΦ ? κ) , [S̄α̇, S̄β̇]? = −2iεα̇β̇(1 + e−iθΦ ? κ̄) , (6.9d)

{Sα,Φ ? κ}? = 0 , {S̄α̇,Φ ? κ̄}? = 0 , (6.9e)

[Sα, S̄α̇]? = 0 . (6.9f)

The prescription on how to extract the unfolded equations for HS fields is to solve perturbatively for

the Z-dependence all but the first two equations, which we will do in the next section.

18For example, one can choose CAB =

(
ε 0

0 ε

)
and VAB =

(
ε 0

0 −ε

)
.
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6.2 Lorentz Covariant Perturbation Theory

Lorentz covariance imposes strong restrictions on the form of the vertices in the unfolded approach.

The background Lorentz covariant derivative is already inside D and D̃, (2.23)-(2.24), so we expect

not to find it anywhere else, for example, V(Ω,Ω, C, C) should depend on the background vierbein

h only, i.e. we have V(h, h, C,C). Notice that as in any nonlinear theory we are allowed to perform

field-redefinitions, which can result in equations where Lorentz covariance is no longer manifest.

Therefore, it is important to start in an appropriate, Lorentz covariant, frame. Within the Vasiliev

framework this requires some dedicated efforts, which we shall briefly discuss below. A detailed

exposition can be found in [4, 15, 24, 44, 51].

First of all, let us list various generators that the Vasiliev theory is equipped with:

sp(4) : TAB = − i
4
{YA, YB} , (6.10a)

sp(2)⊕ sp(2) : Lyαα = − i
4
{yα, yα} , L̄yα̇α̇ = − i

4
{ȳα̇, ȳα̇} , (6.10b)

sp(2)⊕ sp(2) : Lzαα = +
i

4
{zα, zα} , L̄zα̇α̇ = +

i

4
{z̄α̇, z̄α̇} , (6.10c)

sp(2)⊕ sp(2) : Kαα = +
i

4
{Sα, Sα} , K̄α̇α̇ = +

i

4
{Sα̇, Sα̇} . (6.10d)

The sp(4) generators TAB of the AdS4-algebra can be split into two copies19 sp(2) ⊕ sp(2) of the

Lorentz algebra generators Lyαα and L̄yα̇α̇. The complementary translation generators are

Pαα̇ = − i
4
{yα, ȳα̇} . (6.11)

There is another copy of sp(4) and hence sp(2) ⊕ sp(2) that is due to ZA. Moreover, a subset of

Vasiliev’s equations guarantees that Sα and Sα̇ form two copies of osp(1|2) algebra where Sα and Sα̇

play the role of the odd generators. Therefore, Kαα and K̄α̇α̇ deliver another sp(2)⊕ sp(2).

Given the kinematical, Ly, Lz, and dynamical, K, generators of the Lorentz algebra one can

identify the correct Lorentz generators with the help of the coset construction:

L̂αα = Lyαα + Lzαα −Kαα ,
̂̄Lα̇α̇ = L̄yα̇α̇ + L̄zα̇α̇ − K̄α̇α̇ . (6.12)

The Vasiliev equations are background independent and a vacuum solution to expand over is given

by empty AdS space that is realized as Φ = 0, W = Ω and, most importantly, SA = ZA. Here Ω is

an sp(4) flat connection

Ω = 1
2
$ααLyαα + hαα̇Pαα̇ + 1

2
$̄α̇α̇L̄yα̇α̇ , (6.13)

which looks exactly the same as (2.16), but it takes values in the extended algebra of Y and Z, which

results in [Ω, •]? having a form different from (2.23) by ∂zA-terms. These additional terms do not

spoil the consistency of the vacuum solution since it depends on Y only. The background fields hαα̇

19The reality conditions y†α = ȳα̇ makes two copies of sp(2) into sl(2,C), which is the 4d Lorentz algebra.
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and $αα, $α̇α̇ obey the same equations that followed from dΩ = Ω ? Ω:20

Rαα = d$αα −$α
γ ∧$γα − hαγ̇ ∧ hαγ̇ = 0 , (6.14a)

R̄α̇α̇ = d$̄α̇α̇ − $̄α̇
γ̇ ∧ $̄γ̇α̇ − hγα̇ ∧ hγα̇ = 0 , (6.14b)

Tαα̇ = dhαα̇ −$α
γ ∧ hγα̇ − $̄α̇

γ̇ ∧ hαγ̇ = 0 , (6.14c)

i.e. they are connections of the empty AdS4 space.

In accordance with the identification of the Lorentz generators in (6.12) the correct background

to yield a Lorentz-covariant perturbation theory is

Ω̂ = 1
2
$ααL̂αα + hαα̇Pαα̇ + 1

2
$̄α̇α̇ ̂̄Lα̇α̇ , (6.15)

which reduces to (6.13) for the vacuum solution since SA = ZA and hence K = Lz, i.e. L̂ = Ly at

the zeroth order. At higher orders, as we will see, Ω̂ receives corrections via L̂ = L̂(SA) in such a

way as to make the perturbation theory manifestly Lorentz-covariant.

Next, we shift the fields by the background values thereof and insert 2i sometimes as to avoid

cumbersome factors as much as possible:

SA −→ ZA + 2iAA , W −→ Ω +W , Φ −→ 2iB . (6.16)

Let us first present the equations that form a closed subsector of differential equations with respect

to auxiliary Z variables and do not involve any space-time derivatives:

∂AB = AA ? B +B ?

∣∣∣∣∣κ ?Aα ? κ
κ̄ ?Aα̇ ? κ̄

∣∣∣∣∣ , (6.17a)

∂AAB − ∂BAA = [AA,AB]? +

∣∣∣∣∣εαβe+iθB ? κ 0

0 εα̇β̇e
−iθB ? κ̄

∣∣∣∣∣ , (6.17b)

where ∂A = ∂ZA , which came out of [ZA, •]? = −2i∂A. The solutions can be obtained iteratively

from21

B = C(Y ) + zαΓ0 〈Aα ? B +B ? π(Aα)〉+ z̄α̇Γ0 〈Aα̇ ? B +B ? π̄(Aα̇)〉 , (6.18a)

Aα = zαΓ1 〈Aγ ?Aγ〉+ z̄β̇Γ1

〈
[Aβ̇,Aα]

〉
+ zαΓ1 〈B ? κ〉e+iθ + ∂αε , (6.18b)

Aα̇ = zα̇Γ1

〈
Aγ̇ ?Aγ̇

〉
+ zαΓ1 〈[Aα,Aα̇]〉+ z̄α̇Γ1 〈B ? κ̄〉e−iθ + ∂α̇ε , (6.18c)

with the initial condition B(1) = C(Y ). Above we defined π(f) = κ ? f ? κ and π̄(f) = κ̄ ? f ? κ̄,

which are the extensions of the π-map of (2.13) to the Y -Z space.

20Let us note that we consider the perturbation theory that is Lorentz-covariant with respect to the background

only, which is slightly different from [4, 15, 24, 51] where the spin-connection is taken to be the full spin-connection

rather than only the background part of it.
21Indeed, the equations are of the form ∂AB = FA and ∂AAB − ∂BAA = FAB , where the right-hand side obey

the Frobenius integrability constraints: ∂AFB − ∂BFA ≡ 0 and analogously for FAB . Therefore, we have a standard

problem of solving da = b, db = 0 for the exterior derivative d = dZA∂A in the ZA-space. The solution is given by

contracting homotopy, which is defined to be Γn 〈f〉 =
∫ 1

0
tn dt f(zt).
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Note that the pure gauge modes of AA are given by ε = ε(Y, Z). Any gauge choice gives a

consistent system of unfolded equations. The simplest one, which is implied in [4], is to kill ε by the

Schwinger-Fock gauge:

ZAAA = 0 . (6.19)

We impose the Schwinger-Fock gauge in all our analysis and it is crucial to reproduce the formulas

here-below. For the rest of the equations, those that do involve space-time d = dxm∂m, we get

DyzW = W ? ∧W − 1

2

[
hαγ̇ ∧ hαγ̇(Lzαα −Kαα) + h.c.

]
, (6.20a)

D̃yzB = W ? B −B ? π(W ) , (6.20b)

∂AW = −adhAA − [W,AA] + χA , ZAχA = 0 . (6.20c)

Here Dyz and D̃yz are the AdS covariant derivatives defined as

Dyzf = df − Ω ? f ± f ? Ω = ∇yzf − adhf , (6.21)

D̃yzf = df − Ω ? f ± f ? π(Ω) = ∇yzf − ãdhf , (6.22)

with respect to the effective connection

Ωyz = 1
2
$ααLyz

αα + hαα̇Pαα̇ + 1
2
$̄α̇α̇L̄yz

α̇α̇ (6.23)

in terms of the diagonal generators Lyz:

Lyz
αα = Lyαα + Lzαα , L̄yz

α̇α̇ = L̄yα̇α̇ + L̄zα̇α̇ . (6.24)

The h-part of Ωyz is the same as for Ω̂ and acts as follows:

[h, •]? = adh = hαα̇ ((yα − i∂zα)∂yα̇ + (yα̇ − i∂zα̇)∂yα)) , (6.25a)

{h, •}? = ãdh = −ihαα̇ ((yα − i∂zα)(yα̇ − i∂zα̇)− ∂yα∂
y
α̇) . (6.25b)

Both Dyz and D̃yz contain Y -Z Lorentz-covariant derivative ∇yz:

∇yz• = d+$αα(yα∂
y
α + zα∂

z
α) + $̄α̇α̇(ȳα̇∂

y
α̇ + z̄α̇∂

z
α̇) . (6.26)

Note that on the space of Z-independent function Dyz and D̃yz coincide with D, (2.23), and D̃, (2.24),

respectively.

In order to derive (6.20) one has to use the equations of motion several times as well as the

Schwinger-Fock gauge. There is one more Z-equation, (6.20c), which can be solved as

W = ω(Y )− zαΓ0 〈adhAα〉 − z̄α̇Γ0 〈adhAα〉 − zαΓ0 〈[W,Aα]〉 − z̄α̇Γ0 〈[W,Aα̇]〉 , (6.27)

where it was important that χA obeys ZAχA = 0 and hence disappears from the homotopy integrals.

Also note that the redefinition of the Lorentz generators yields the last term in (6.20a).

In order to get the unfolded equations (2.11) for HS fields out of the Vasiliev equations one

performs the following algorithm: one starts from (6.18a) with the initial condition B(1) = C(Y ),
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then one uses (6.18b)-(6.18c). Next one gets W from (6.27) and repeats the cycle to get to the

desirable order of perturbations. At every order, there are two integration constants, C(n)(Y ) and

ω(n)(Y ) that enter as dynamical variables in the perturbative expansion of (2.11). The last step to

get (2.11) is to plug the solutions for W and B to (6.20a)-(6.20b) and set Z = 0, which results in

the consistent unfolded equations in terms of C(n)(Y ) and ω(n)(Y ) only. We make two iterations of

this cycle in the next two sections.

6.3 First Order

The iterations begin with B(1) = C(Y ) and then using the algorithm we get:

B(1) = C(Y ) , (6.28a)

A(1)
µ = Aµ = zµΓ1 〈C ? κ〉eiθ = zµ

∫ 1

0

t dt C(−zt, ȳ)eityz+iθ , (6.28b)

A(1)
µ̇ = Aµ̇ = z̄µ̇Γ1 〈C ? κ̄〉e−iθ = zµ̇

∫ 1

0

t dt C(y,−tz̄)eitȳz̄−iθ , (6.28c)

W (1) = ω(Y ) +M , (6.28d)

where we defined

M = −zαΓ0 〈adhAα〉 − z̄α̇Γ0 〈adhAα̇〉 . (6.29)

It can be computed and simplified to22

M = −ihαα̇zα∂yα̇
∫ 1

0

(1− t) dtC(−zt, ȳ)eityz+iθ + h.c. , (6.30)

The space-time equations at the first order are simply:

DyzW (1)
∣∣
Z=0

= 0 , D̃yzB(1)
∣∣
Z=0

= 0 , (6.31)

which results in equations we quoted in (2.22):

Dω = V(Ω,Ω, C) , D̃C = 0 , (6.32)

where V(Ω,Ω, C), given at θ = 0 in (2.26), is

V(Ω,Ω, C) = adhM
∣∣
Z=0

= −1

2
H α̇α̇∂yα̇∂

y
α̇C(0, ȳ)eiθ + h.c. . (6.33)

Therefore, we correctly reproduced the free equations for HS fields in the unfolded form.

22For n 6= m the nested homotopy integrals can be resolved as Γn ◦ Γm = −(Γn − Γm)/(n−m).
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6.4 Second Order

Continuing iterations we get at the second order:

B(2) = C(2)(Y ) +B′(2) , (6.34a)

A(2)
µ = zµΓ1

〈
Aγ ?A(1)γ

〉
+ z̄µ̇Γ1 〈[Aµ̇,Aµ]〉+ zµΓ1

〈
B(2) ? κ

〉
eiθ , (6.34b)

A(2)
µ̇ = z̄µ̇Γ1

〈
Aγ̇ ?A(1)γ̇

〉
+ zµΓ1 〈[Aµ,Aµ̇]〉+ z̄µ̇Γ1

〈
B(2) ? κ̄

〉
e−iθ , (6.34c)

W (2) = ω(2)(Y ) +M (2) − zαΓ0 〈[ω,Aα]〉 − z̄α̇Γ0 〈[ω,Aα̇]〉 (6.34d)

− zαΓ0 〈[M,Aα]〉 − z̄α̇Γ0 〈[M,Aα̇]〉 , (6.34e)

where

M (2) = −zαΓ0

〈
adhA(2)

α

〉
− z̄α̇Γ0

〈
adhA(2)

α̇

〉
, (6.35a)

B′(2) = zνΓ0 〈Aν ? C + C ? π(Aν)〉+ z̄ν̇Γ0 〈Aν̇ ? C + C ? π̄(Aν̇)〉 . (6.35b)

At the second order the space-time equations become

DyzW (2) = (ω +M) ? (ω +M)− iHααA(1)
α ?A(1)

α − iH α̇α̇A(1)
α̇ ?A(1)

α̇ , (6.36a)

D̃yzB(2) = ω ? C − C ? π(ω) +M ? C − C ? π(M) , (6.36b)

where we assumed that Z = 0 is imposed after computing all star-products. The computations

can be considerably simplified if one notices that the Z-dependent terms resulting from homotopy

integrals are always proportional to Z. Therefore, only the part of Dyz or D̃yz that contains ∂ZA needs

to be taken into account:

Dyz(Zf(Y, Z))
∣∣∣
Z=0

= −adhZf(Y, Z)
∣∣∣
Z=0

, (6.37)

which can be expanded to (with analogous formulas with z̄)

adhz
νfν(y, z)

∣∣∣
z=0

= −ihνα̇∂yα̇fν(y, 0) , (6.38a)

ãdhzνf(y, z)
∣∣∣
z=0

= −hνα̇ (ȳα̇ − i∂zα̇) f(y, z)
∣∣∣
z=0

. (6.38b)

In this way one can extract various vertices:

V(Ω, C, C) = M ? C − C ? π(M) + ãdh(B
′(2)) , (6.39a)

V(Ω, ω, C) = {ω,M}? − adhz
νΓ0 〈[ω,Aν ]?〉 − adhz̄

ν̇Γ0 〈[ω,Aν̇ ]〉 , (6.39b)

V(Ω,Ω, C, C) = M ?M + iHααAα ?Aα + iH α̇α̇Aα̇ ?Aα̇ (6.39c)

− adhz
νΓ0 〈[M,Aν ]?〉 − adhz̄

ν̇Γ0 〈[M,Aν̇ ]?〉+ adhM
(2) ,

where again Z = 0 at the end. The expressions here-above provide all the information about the

unfolded equations for HS fields at the second order. Details can be found in Appendix B, where we

computed, simplified and verified them, while the final expressions are collected in Section 3.

37



7 Conclusions and Discussion

In this paper we worked out the second order equations for HS fields as they come out of the Vasiliev

theory, i.e. in the unfolded form (2.11), which can be considered as a follow-up on [31] where the 3d

HS theory was studied. A dictionary between the unfolded equations and the Fronsdal equations was

established and the corrections to the free propagation were explicitly found. The general feature of

such corrections is that they are arranged in infinite sums of derivatives. The most important result

of our study was to quantify the degree of non-locality that the HS equations exhibit: it is too high

to enable one to interpret the equations as providing a local field theory in AdS4.

A considerable part of the problem is about giving a precise definition of what HS theories are.

At present, there seem to be two different definitions.

The first definition is that the HS equations are the unfolded equations of type (2.11). The

boundary condition is to reproduce free HS fields dynamics when linearized around AdS background.

An additional constraint is on the classes of functions that the vertices V(ω, ω, C, ..., C) belong to

and on the redefinitions that preserve such a class. The old definition of what constitutes a good

functional class can be found in [19]. It states that V(ω, ω, C, ..., C) should yield a polynomial once

the arguments are polynomials in the HS algebra generating element Y .

The second definition, inspired by the AdS/CFT correspondence and specific conjectures relating

HS theories to certain CFT’s [1, 2, 17, 52, 53], is that HS theories should reproduce the correlation

functions of these CFT’s. There seem to be no obstructions in reconstructing HS theories this way,

see [54] for some results in this direction. While the problem of redefinitions that do not change the

holographic S-matrix still remains, the holographic reconstruction can provide at least an example

of the dual HS theory.

We would like to separate the two definitions from Vasiliev Equations that provide a tool to gen-

erate unfolded HS equations upon solving for the Z-dependence. The map from Vasiliev’s equations

to the unfolded HS equations is not unique: the ambiguity is due to the gauge choice that needs to

be made when solving for the Z-dependence. The only choice available at present in the literature

that reproduces the free dynamics around AdS is the Schwinger-Fock gauge (6.19).

The important point is to distinguish between the two definitions given above. As our results

show, well-defined unfolded equations may lead to problems when standard field theory methods are

applied. Since the zero-form C encodes all the on-shell nontrivial derivatives of the fields, it contains

an unbounded number of derivatives. As a result, an expression that is seemingly well-behaved in

the formal expansion scheme, for example, C ? C, turns out to be pseudo-local even after fixing the

spins. Moreover, it is not guaranteed that it can be reduced to the standard interaction with a finite

coefficient in front of it.

We would like to add another definition of what is a HS theory in AdS that relates the above two:

There should exist a well-defined action principle or equations of motion formulated in terms of the

minimal base of structures so as to avoid any infinities. The infinity we found is due to the usage of

non-orthogonal base of structures: primaries and successors, where successors have a nonvanishing
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overlap with the primaries. The simplest example is that while the equations (Φ and Φ′ are two

different scalar fields)

�Φ′ =
∑
l

al∇m(l)Φ∇m(l)Φ (7.1)

are seemingly well-defined for any al, an attempt to derive them from the cubic vertex∑
l

al

∫
Φ′∇m(l)Φ∇m(l)Φ ∼

∑
l

alCl

∫
Φ′Φ2 (7.2)

tells us that all the terms are proportional to each other, and the question is whether a =
∑

l alCl

is convergent or not, where Cl are the numbers produced by integrations by parts and commuting

covariant derivatives. The same result can be obtained by redefinitions Φ′ → Φ′+
∑

l bl∇m(l)Φ∇m(l)Φ

directly in the equations of motion, resulting in the same resummed coupling a =
∑

l alCl. While it

is easy to imagine a pseudo-local coupling such that a is finite, our result (5.7) shows that it is not

the case for the HS equations obtained from Vasiliev’s equations in the Schwinger-Fock gauge.

Therefore, we see that the first definition is broader than the other two. There are unfolded

equations for HS fields that yield naked infinities whenever one tries to bring them into a standard

form by redefining higher derivatives or to compute correlation functions.23

As we mentioned, there is a freedom in Vasiliev Equations that should allow one to resolve the

problem: a gauge choice that needs to be made when solving for the Z-dependence and that would

restore the locality in the unfolded equations. So far we have blindly followed the prescription to

impose the Schwinger-Fock gauge. This choice leads to the simplest form of the free equations, but it

allows for an ambiguity already at the second order. Unfortunately, the ambiguity is a functional one

— one can set ε in (6.18b)-(6.18c) to be any function that is bilinear in C. Different gauge choices

in the Vasiliev equations would lead to different, possibly inequivalent, unfolded equations.

Despite the functional ambiguity hidden in the map from Vasiliev’s equations to unfolded ones, the

problem of fixing the gauge as to match the required correlation functions seems to be more tractable

than that of writing down the most general ansatz for the Lagrangian and imposing agreement with

AdS/CFT. The reason is that the HS symmetry is more easily taken into account by the unfolded

equations.

Another possible resolution would be to find a regularization that preserves HS symmetries and

relates the standard frame with the minimal number of derivatives to a pseudo-local one via some

regularization scheme. An indication that such a scheme does exist comes from [6] where the correct

correlation functions were obtained via a simple contour prescription after certain ill-defined changes

of variables in the vertices, see also [47] for the details and a generalization of the prescription.

It would, of course, be much better to have a frame in which the HS theory experiences no

problems in trying to interpret it as a field-theory in AdS space. To this end the gauge function ε(C)

that defines such a frame has to be found.

23In the flat space limit one would reconstruct 1
� ∼

1
0 singularities discussed in [42].
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One of the general lessons we have learned by studying locality in the unfolded approach is that

whenever the interaction vertices in the unfolded form are very close to the HS algebra structure

constants and are at least bilinear in C (an example is V = ω?ω ?C ?π(C) or the vertices we derived

from the Vasiliev equations in the Schwinger-Fock gauge) they do not have any straightforward

field-theoretical interpretation. We expect this to be a generic phenomenon of the HS algebra. The

divergences we observed will appear as nested subdivergences at higher orders. It may well be that

resolving the paradox at the second order will eliminate the divergences at higher orders as well.

A conservative viewpoint is to expect HS theory to be a meaningful field-theory in AdS since

there seems to be no conceptual problem in writing down the ansatz for the Lagrangian and fixing

the coefficients by requiring it to reproduce the correct correlation functions24 [54] or by directly

using the HS symmetry [31]. The frame without higher derivative tails has to be unique (up to terms

that vanish when going from the unfolded frame to the Fronsdal one).

A perhaps less conservative approach that we mentioned before is to try to regularize Vasiliev’s

theory. This appears as a rather natural procedure, if one entertains the idea that Vasiliev’s theory

emerges upon quantization of a microscopical topological open string, as was proposed in [55, 56].
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A Notation and Conventions

The indices m,n, ... = 0, ..., d are those of AdSd in some local coordinates. The indices a, b, c, ... =

0, ..., d are those of the tangent space at a point. For most of the paper we have d = 4, but formulas

written with a, b, ... or m,n, ... work in any dimension. The indices α, β, ... = 1, 2 and α̇, β̇, ... = 1, 2

are those of the fundamental and anti-fundamental representation of the 4d Lorentz algebra sl(2,C).

24It has been suggested in [47] that Vasiliev’s theory is actually not dual to the free O(N) model, but instead to a

deformed version thereof, where additional nonlinear terms in the sources are present.
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Lastly, the indices A,B, ...,= 1, ..., 4 are those of the vector representation of sp(4,R) ∼ so(3, 2). We

adopt a symmetrization convention such that all the indices in which a tensor is symmetric or to be

symmetrized are denoted by the same letter with the number of indices indicated in brackets, e.g.

∂mξm(s−1) ≡ ∂m1
ξm2...ms

+ (s− 1) permutations; ξm2...ms
is already symmetric . (A.1)

All the symplectic indices, i.e. A,B, ..., α, β, ... and α̇, β̇, ... are raised and lowered according to

yα = εαβyβ , yβ = yαεαβ , (A.2)

where εαβ = −εβα, ε12 = 1 and ε = iσ2 with σαα̇i , i = 1, 2, 3 being the Pauli matrices. Often we omit

the indices in the scalar products, e.g. yξ ≡ yαξα. The background vierbein hαα̇ = hαα̇m dxm and its

inverse hm
ββ̇

are defined as to obey

hαα̇m hm
ββ̇

= εβ
α εβ̇

α̇ , hαα̇m hnαα̇ = δnm . (A.3)

For example, in Poincare coordinates one can take

hαα̇m dxm =
1

2z
σαα̇m dxm , hmαα̇ = zσmαα̇ , gmn =

1

2z2
ηmndx

mdxn . (A.4)

The extra factor of 2 in gmn explains the appearance of 2 in front of all the mass-like terms that we

derived in the spinorial language. We prefer to work with such a non-canonical normalization of the

cosmological constant as to avoid cumbersome factors in (6.14). The background vierbein can be

used to define the base of two-, three- and four-forms:

H α̇α̇ = hν
α̇ ∧ hνα̇ , Hαα = hαν̇ ∧ hαν̇ , hαν̇ ∧H β̇ν̇ = ĥαβ̇ , (A.5)

which obey certain useful identities:

hαα̇ ∧ hββ̇ =
1

2
Hαβεα̇β̇ +

1

2
H α̇β̇εαβ , Hαα ∧H α̇α̇ = 0 ,

hαα̇ ∧Hββ = −1

3
εαβĥβα̇ , hαα̇ ∧ H̄ β̇β̇ = +

1

3
εα̇β̇ĥαβ̇ ,

hαα̇ ∧ ĥββ̇ = −1

4
εαβεα̇β̇Hαα ∧Hαα ,

Hαα ∧Hαα = −Hα̇α̇ ∧H α̇α̇ , Hαα ∧Hαα = −hαα̇ ∧ ĥαα̇ .

(A.6)

We make extensive use of the so-called homotopy integrals in the paper which are integrals from

0 to 1, see footnote 21 and the formulas nearby. In most cases the integrals are implicit and the

names we reserve for the integration variables are t, q and τ, p. All homotopy integrals correspond

to inverted number operators:

(N + k)−1f(y) =

∫ 1

0

tk−1 dt f(yt) (A.7)

and they slightly improve the asymptotic of the Taylor coefficients of f(y). Our convention for the

Fourier transformed fields in their twistor variables is:

C(y, ȳ|x) =

∫
d2ξd2ξ̄ eiy

αξα+iȳα̇ξ̄α̇ C(ξ, ξ̄|x) =

∫
d4ξ eiY ξC(ξ|x) . (A.8)

where in the last expression we used full sp(4)-vectors Y A and ξA. The x-dependence is usually

implicit.

41



B HS Vertices

B.1 Exponents

Let us give some details of the second-order computations of Section 6. At the second order one

finds terms of the form C ? C, A ?C, C ?A and A ?A with simple prefactors which are polynomials

in y’s and z’s possibly followed by a differentiation that comes from adh. The star-products of these

type are easy to evaluate. For example, given two polynomials p1,2(y, z),

p1(y, z)ei(ya+zb) ? p2(y, z)ei(yc+zd) =

=

∫
p1(y + u, z + u)p2(y + v, z − v)ei((y+u)a+(z+u)b+(y+v)c+(z−v)d+vu) =

=

∫
f(u, v)ei(uA+vB+vu) ,

where in the last line we only highlighted the general structure of the integral over u, v. By shifting

the variables appropriately we get∫
f(u, v)ei(uA+vB+vu) = e−iAB

∫
f(u+B, v − A)eivu . (B.1)

Bearing in mind that in our computations f(u, v) is a simple polynomial, we can quickly integrate

over u and v using ∫
eivu uα..uα︸ ︷︷ ︸

n

vβ...vβ︸ ︷︷ ︸
m

= δm,n i
nn! εαβ...εαβ . (B.2)

Let’s collect various exponents that appear at the first and second order. At the first order we

have just two (apart from pure eiY ξ = eiyξ+iȳξ̄ that is the image of C(Y ))

χξ = eiY ξ ? κ e+iθ = exp i
(
t(y + ξ)z + ȳξ̄ + θ

)
, (B.3)

χ̄ξ = eiY ξ ? κ̄ e−iθ = exp i
(
yξ + t(ȳ + ξ̄)z̄ − θ

)
, (B.4)

where there is one homotopy parameter t and we always drop out for ease of notation the integral

signs over the homotopy parameters. At the second order we find several exponents:

R1 = exp i
(
(y(1− t)− tη)ξ + (ȳ − η̄)(ȳ + ξ̄) + θ

)
= eiY ξ ? χη ,

R2 = exp i
(
(y(1− t)− tξ)η + (ȳ − η̄)(ȳ + ξ̄) + θ

)
= χξ ? e

iY η ,

S1 = exp i
(
(y(1− t) + tη)ξ + (ȳ − η̄)(ȳ + ξ̄) + θ

)
= eiY ξ ? π(χη) ,

Q1 = exp i
(
(qt(y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
= χξ ? χη ,

Q2 = exp i
(
(y(1− q)− qη)ξ + (ȳ(1− t)− tξ̄)η̄

)
= χ̄ξ ? χη ,

P1 = exp i
(
(t(y + η)(y + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
= Q1|q=1 ,

K = exp i
(
t(qy + η)(qy + ξ) + (ȳ − η̄)(ȳ + ξ̄) + 2θ

)
= eiθΓ0 〈R2〉 ? κ|Z=0 = eiθΓ0 〈S1〉 ? κ|Z=0 ,
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where we have set Z = 0 after evaluating the star-products above, as it is this Z-slice that we want

to extract the unfolded equations from. There are at most two homotopy parameters q and t. All

the exponents listed here-above will be accompanied by the conjugate partners thereof, e.g.,

Q̄1 = exp i
(
(y − η)(y + ξ) + qt(ȳ + η̄)(ȳ + ξ̄)− 2θ

)
= χ̄ξ ? χ̄η , (B.5)

and the rule is to exchange barred and unbarred variables as well as to flip the sign of θ. The first

order fields are easily found to be

Aα(ξ) = zαt χξ , C(ξ) = eiY ξ , (B.6a)

Aα̇(ξ) = zα̇t χ̄ξ , M(ξ) = hαα̇(1− t)zαξ̄α̇χξ + hαα̇(1− t)z̄α̇ξαχ̄ξ , (B.6b)

which are the Fourier images of the formulas in Section 6.3.

B.2 Raw Vertices

Applying (B.2) and (6.38) repeatedly to (6.39) we easily derive all the components of various vertices.

Here-below, the integration over the homotopy parameters t and q as well as the Fourier space

integrals are implicit.

V(Ω, C, C):

M ? C − C ? π(M) = hαα̇(1− t)
[
−ηαξ̄α̇R2 − ξαη̄α̇S1

]
C(ξ)C(η) + h.c. , (B.7)

ãdhz
γΓ0 〈Aγ ? C + C ? π(Aγ)〉+ h.c. = −hαα̇ȳα̇t(−ηαR2 + ξαS1)C(ξ)C(η) + h.c. . (B.8)

V(Ω, ω, C):

ω ?M = hαα̇(1− t)(ξαη̄α̇R1 + h.c.)ω(ξ)C(η) , (B.9)

M ? ω = hαα̇(1− t)(−ηαξ̄α̇R2 + h.c.)C(ξ)ω(η) , (B.10)

−adhz
CΓ0

〈
[ω,A(1)

C ]
〉

= −hαα̇t(ξ̄ + η̄)α̇(−ξαR1ω(ξ)C(η) + ηαR2C(ξ)ω(η)) + h.c. . (B.11)

V(Ω,Ω, C, C): The Fourier space integrals for C(ξ)C(η) is implied here-below:

M ?M =
1

2
(1− t)(1− q)qtQ1(ξ̄η̄)Hαα(y + η)α(y + ξ)α

+ (1− t)(1− q)Q1H
α̇α̇ξ̄α̇η̄α̇

[
− i+

1

2
qt(y + η)(y + ξ)

]
+ h.c. ,

(B.12)

iHααAα ?Aα + iH α̇α̇Aα̇ ?Aα̇ = iHαα q2t2(y + η)α(y + ξ)αQ1C + h.c. , (B.13)

−adhz
CΓ0 〈[M,AC ]〉 =

1

2
HααQ1(y + ξ)α(y + η)α(ξ̄η̄)(q(1− t) + t(1− q))qt

+H α̇α̇Q1(ξ̄ + η̄)α̇[q(1− t)ξ̄α̇ + t(1− q)η̄α̇][−i+
1

2
qt(y + η)(y + ξ)] + h.c. ,

(B.14)

−adhM
(2) = H α̇α̇(ξ̄ + η̄)α̇(ξ̄ + η̄)α̇Q1tq[−i+

1

2
qt(y + η)(y + ξ)]

− 1

2
H α̇α̇(ξ̄ + η̄)α̇(ξ̄ + η̄)α̇(y(ξ − η))tK + h.c. .

(B.15)
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Let us note that all Q2-terms, which should seemingly be present (for example, they are produced

by Aα ? Aα̇-terms and M ? A-terms), disappeared from the raw expressions. This is due to a sort

of holomorphic factorization that takes place at the second order in the theory, i.e. only purely

(anti)holomorphic structures, e.g. Aα ? Aβ, contribute to the final expressions.

B.3 Simplified Vertices

The vertices V(Ω,Ω, C), V(Ω, ω, C) and V(Ω, C, C) are already simple enough. The raw expressions

for V(Ω,Ω, C, C) can be considerably simplified by integrating by parts over t, q and then collecting

similar terms. Indeed, all (y + η)(y + ξ)Q1-terms make a total derivative. However, since Q1 is

symmetric with respect to t↔ q, there is an ambiguity on how to integrate by parts: either represent

it as −it−1∂qQ1 or as −iq−1∂tQ1. We choose either of the two forms as to collapse everything onto

the boundary terms. This strategy is successful for (B.15) and (B.14), while a small boundary term

remains for (B.12). The K-term in (B.15) is a total derivative since (y(ξ − η))tK = −i∂qK, which

results in two boundary terms proportional to K
∣∣∣
q=1

= Q1

∣∣∣
q=1

= P1 and K
∣∣∣
q=0

. The simplest form

of the cocyles can be found in Section 3.

B.4 Checking Consistency

It still useful to check the consistency of the vertices found and it is instructive to see the unfolded

approach at work. In 4d due to propagating nature of HS fields, various vertices are related to each

other via the Frobenius integrability condition, (2.5), which does not happen in 3d, [31], where all

vertices are just D-conserved DV(...) = 0.

First of all, the Vasiliev equations are consistent when all the fields are taken to be matrix-valued.

Therefore, terms of the form ωC should cancel independently of Cω-terms. More precisely, there

are different functions, e.g. R1, S1, etc., that enter the expressions for the vertices. These functions

are independent except possibly for boundary terms, i.e. some of the functions coincide at t = 0

or t = 1. Therefore, the bulk contributions should cancel independently for each of the functions,

while there can appear some total derivatives in the homotopy parameters t and q that can yield

boundary terms that should also cancel independently. In addition, each expression appears in the

form X + h.c. and it is sufficient to check the consistency for one half of any given vertex.

In what follows we omit the integral over the Fourier space of ξ and/or η as well as integrals over

the homotopy parameters t, q. We will also need the adjoint and twisted-adjoint covariant derivatives:

D = ∇− hαα̇Oαα̇(y) , Oαα̇(y) = ȳα̇∂
y
α + yα∂

y
α̇ , (B.16)

D̃ = ∇+ ihαα̇Õαα̇(y) , Õαα̇(y) = yαȳα̇ − ∂yα∂
y
α̇ . (B.17)

The Fourier images of these operators coincide with themselves, i.e. when acting, for example, on

C(ξ) one should use ∇+ ihαα̇Õαα̇(ξ). The vertices are multi-linear maps and the action of D or D̃ is

the usual action on the tensor product.
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Vertex V(Ω,Ω, C). It is the simplest vertex to check the consistency of:

DV(Ω,Ω, C) = −hαα̇(Oαα̇(y) + iÕαα̇(ξ))1
2
H β̇β̇ ξ̄β̇ ξ̄β̇e

i(ȳξ̄+θ)C(ξ) + h.c. (B.18)

= −hαα̇(yα∂
y
α̇ + ȳα̇∂

y
α + i(ξαξ̄α̇ − ∂ξα∂

ξ
α̇))1

2
H β̇β̇ ξ̄β̇ ξ̄β̇e

i(ȳξ̄+θ)C(ξ) + h.c. . (B.19)

In the last line, the second term does not contribute because the expression it acts on is y-independent,

the last term is a total derivative, the rest gives

DV(Ω,Ω, C) = −hαα̇(iyαξ̄α̇ξ̄β̇ ξ̄β̇ + iξαξ̄α̇ξ̄β̇ ξ̄β̇)1
2
H β̇β̇ ξ̄β̇ ξ̄β̇e

i(ȳξ̄+θ)C(ξ) + h.c. . (B.20)

Each of the terms above vanishes thanks to identities (A.6) for the vierbeins that bring εα̇β̇.

Vertex V(Ω, C, C). The consistency condition follows by applying D̃ to

D̃C(2) = ω ? C − C ? π(ω) + V(Ω, C, C) , (B.21)

which after some algebra gives

0 = (Dω) ? C − C ? π(Dω) + D̃V(Ω, C, C) . (B.22)

Substituting V(Ω,Ω, C) in place of Dω and noticing its invariance under π, we get

0 = V(Ω,Ω, C) ? C − C ? V(Ω,Ω, C) + D̃V(Ω, C, C) . (B.23)

In the first two terms it is easy to compute the star-products:

V(Ω,Ω, C) ? C =
1

2
H α̇α̇ξ̄α̇ξ̄α̇e

i(ȳξ̄+θ)C(ξ) ? eiY ηC(η) + h.c. (B.24)

=
1

2
H α̇α̇ξ̄α̇ξ̄α̇ exp i

(
yη + (ȳ − η̄)(ȳ + ξ̄) + θ

)
C(ξ)C(η) + h.c. (B.25)

=
1

2
H α̇α̇ξ̄α̇ξ̄α̇ R2

∣∣∣
t=0

C(ξ)C(η) + h.c. , (B.26)

where in the last line we anticipated the cancelation with the boundary terms that should be produced

by D̃V(Ω, C, C) and identified the exponent as R2 at t = 0. Analogously,

−C ? V(Ω,Ω, C) = −1

2
H α̇α̇η̄α̇η̄α̇ S1

∣∣∣
t=0

C(ξ)C(η) + h.c. . (B.27)

With the help of the Fourier space images of the equations of motion the third term of (B.23) reads:

ihαα̇hββ̇
(
Õαα̇(y)− Õαα̇(ξ)− Õαα̇(η)

)
Kββ̇(Y, ξ, η)C(ξ)C(η) . (B.28)

The cocycle Kββ̇ consists of two terms, the one with R2 and another one with S1, and the conjugates

thereof. As it was discussed, these should cancel independently up to some boundary terms. Ap-

plying (B.28) to the R2 terms one gets a term proportional to ∂tR2 and a bare R2 term after some

straightforward algebra. Integrating by parts everything cancels except for the boundary terms:

1

2
H α̇α̇

(
ȳα̇ȳα̇ R2

∣∣∣
t=1
− ξ̄α̇ξ̄α̇ R2

∣∣∣
t=0

)
C(ξ)C(η) . (B.29)

The same story is with the S1 terms, the boundary remnant being

−1

2
H α̇α̇

(
ȳα̇ȳα̇ S1

∣∣∣
t=1
− η̄α̇η̄α̇ S1

∣∣∣
t=0

)
C(ξ)C(η) . (B.30)

Now, taking into account that R2

∣∣∣
t=1

= S1

∣∣∣
t=1

, we see that everything cancels.
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Vertex V(Ω, ω, C) and V(Ω,Ω, C, C). The two vertices are related and cannot be considered

separately. The Frobenius integrability condition is found by applying D to

Dω(2) = V(Ω,Ω, C(2)) + V(ω, ω) + V(Ω, ω, C) + V(Ω,Ω, C, C) , (B.31)

which results in

0 = DV(Ω,Ω, C(2)) + Dω ? ω − ω ? Dω + DV(Ω, ω, C) + DV(Ω,Ω, C, C) . (B.32)

The zero-form C(2) disappears since it enters exactly the same way as C at the linear level, but it

leaves some aftertaste since D̃C(2) 6= 0. With the right-hand side of D̃C(2) plugged in we get

0 = V(Ω,Ω, ω ? C − C ? π(ω)) + V(Ω,Ω,V(Ω, C, C)) + V(Ω,Ω, C) ? ω − ω ? V(Ω,Ω, C)+

+ DV(Ω, ω, C) + DV(Ω,Ω, C, C) .

There are two groups of terms that should cancel independently: ΩΩωC and ΩΩΩCC. Let us first

have a look at ΩΩωC, which themselves split into ΩΩωC and ΩΩCω since fields can be matrix-valued.

This part of the integrability constraint reads:

0 = V(Ω,Ω, ω ? C − C ? π(ω)) + V(Ω,Ω, C) ? ω − ω ? V(Ω,Ω, C) + DV(Ω, ω, C) +O(C2) , (B.33)

where we assumed that any C2-terms resulting from the last term need to be dropped. It is easy to

see that

V(Ω,Ω, ω ? C − C ? π(ω)) = −1

2
H α̇α̇eiθ∂yα̇∂

y
α̇(ω ? C − C ? π(ω)) + h.c. (B.34)

=
1

2
H α̇α̇(ξ̄α̇ + η̄α̇)(ξ̄α̇ + η̄α̇)

(
R1

∣∣∣
t=1

ω(ξ)C(η)− R2

∣∣∣
t=1

C(ξ)ω(η)
)
.

The second and the third terms are similar to the one computed in checking V(Ω, C, C):

V(Ω,Ω, C) ? ω − ω ? V(Ω,Ω, C) = −1

2
H α̇α̇η̄α̇η̄α̇ R1

∣∣∣
t=0

ω(ξ)C(η) +
1

2
H α̇α̇ξ̄α̇ξ̄α̇ R2

∣∣∣
t=0

C(ξ)ω(η) .

The most tedious is the last term, for which the Fourier space image of D is

−hαα̇
(
Oαα̇(y) +Oαα̇(ξ) + iÕαα̇(η)

)
hββ̇Lββ̇(Y, ξ, η)ω(ξ)C(η) , (B.35)

−hαα̇
(
Oαα̇(y) + iÕαα̇(ξ) +Oαα̇(η)

)
hββ̇L̄ββ̇(Y, ξ, η)C(ξ)ω(η) . (B.36)

The rest works the same way as for V(Ω, C, C), i.e. there are terms that combine together to form

a ∂t-derivative of the functions involved and some other term. After integrating by parts the bulk

contribution cancels and only the boundary terms remain, which are, respectively,

Ω2ωC : − 1

2
H α̇α̇(ξ̄α̇ + η̄α̇)(ξ̄α̇ + η̄α̇) R1

∣∣∣
t=1

+
1

2
H α̇α̇η̄α̇η̄α̇ R1

∣∣∣
t=0

+ h.c. , (B.37)

Ω2Cω : +
1

2
H α̇α̇(ξ̄α̇ + η̄α̇)(ξ̄α̇ + η̄α̇) R2

∣∣∣
t=1
− 1

2
H α̇α̇ξ̄α̇ξ̄α̇ R2

∣∣∣
t=0

+ h.c. . (B.38)
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Now, everything cancels. Coming back to the Ω3C2-terms, the integrability implies

0 = V(Ω,Ω,V(Ω, C, C))− V(Ω,V(Ω,Ω, C), C) + DV(Ω,Ω, C, C) , (B.39)

where we used the ω equations of motion to simplify the second term. The third term should

vanish up to some boundary terms that are then canceled by the first and the second terms. The

Fourier-space image of D for the third term is

D = −hαα̇
(
Oαα̇(y) + iÕαα̇(ξ) + iÕαα̇(η)

)
. (B.40)

The following identities are useful (Fαα̇ = (y + η)αη̄α̇ − (y + ξ)αξ̄α̇)

DHββ(y + ξ)β(y + η)βQ1 = ĥαα̇Fαα̇Q1

(
1− i(1− qt)

3
(y + η)(y + ξ)

)
,

DHββ(y + ξ)β(y + η)βQ1(ξ̄η̄) = ĥαα̇Fαα̇Q1

((
1− i(1− qt)

3
(y + η)(y + ξ)

)
(ξ̄η̄)− i+

qt

3
(y + η)(y + ξ)

)
,

DH β̇β̇ ξ̄β̇ η̄β̇Q1 = ĥαα̇Fαα̇Q1

(
qt− i(1− qt)

3
(ξ̄η̄)

)
.

The same identities can be applied to the boundary term P1 upon setting q = 1 since it equals Q1

at q = 1. Denoting the structures on the left-hand side of the above identities as A, B and C,

respectively, and taking the coefficients from (3.6), the cancelation amounts to

D

(
iq2t2A+

qt(1− qt)
2

B − i

2
C +

i

2
(1− t) C

∣∣∣
q=1

)
= 0 , (B.41)

which is indeed satisfied, but in order to see this one has to integrate some of the terms by parts

using (y+η)(y+ξ) = −it−1∂qQ1. Then, the bulk terms cancel while the boundary terms so produced

cancel with the boundary term that is already present.

In V(Ω,Ω, C, C) there is also another type of boundary term, K
∣∣∣
q=0

. This one cancels with the

first term of (B.39). Indeed, one observes that

K
∣∣∣
q=0

= eiθ R2

∣∣∣
y=0

= eiθ S1

∣∣∣
y=0

. (B.42)

The straightforward algebra yields for the nested vertices (each of the two vertices can be written in

the form X + h.c., which after nesting gives four terms and those that are not (anti)-holomorphic

vanish identically thanks to hαα̇ ∧Hββηαηβηβ ≡ 0-like identities):

V(Ω,Ω,V(Ω, C, C)) = ĥαα̇(ξ − η)α(ξ̄ + η̄)α̇ K
∣∣∣
q=0

(
− i

2
t+

1

3
(−(ξ̄η̄) + t(ȳ − η̄)(ȳ + ξ̄))

)
, (B.43)

while the Fourier-space image of D applied to the K-term of V(Ω,Ω, C, C) yields

DH β̇β̇(ξ̄ + η̄)β̇(ξ̄ + η̄)β̇ K
∣∣∣
q=0

= −2i(B.43) . (B.44)

The last expression with the coefficient − i
2

cancels the last but one.

The second nested vertex of (B.39) vanishes identically. To see this, we need to rewrite V(Ω,Ω, C)

in Fourier space:

Dω(ξ|x) =
1

2
H α̇α̇ξ̄α̇ξ̄α̇e

iθδ2(ξ)

∫
d2χC(χ, ξ̄|x) + h.c. . (B.45)

Substituting this in place of ω into V(Ω, ω, C)-cocyle we see that all terms vanish either because of

δ2(ξ)ξα ≡ 0 or due to hαα̇ ∧Hββηαηβηβ ≡ 0.
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C Fronsdal Currents

In this section we provide more technical details on the evaluation of the Fronsdal currents. The

recipe how to obtain Fronsdal currents from the unfolded equation can be found in Section 4.1.

C.1 Fierz-Invariant Form

There is an ambiguity in writing expressions in terms of spinorial variables due to Fierz identities25.

In order to solve the torsion constraint (4.7a) we need to rewrite Js.t. as

Js.t.(Y, ξ, η) = Hαα∂α∂αJ
∂∂ + yαHα

β ∂βJ
y∂ + yαyαHααJ

yy+

+H α̇α̇∂α̇∂α̇J̄
∂∂ + yα̇H α̇

β̇ ∂β̇J̄
y∂ + ȳα̇ȳα̇Hα̇α̇J̄

yy + h.c. .
(C.1)

This form has an advantage of having all the Fierz transformations fixed. Actually, it is expressed in

terms of invariants of the Fierz transformations. To put expression in such a form we apply (4.15).

Finally, the Fierz-invariant form of Js.t. is

J∂∂ =
[
(yξ)(yη)τGqt

]
Te2iθ ,

Jy∂ =
[
− iqtGqtτ

2(ηξ)(y(ξ + η)) +
i

qt
Mqt − 2Hqt(yη)

]
Te2iθ ,

Jyy =
[
− q2t2Gqt(ηξ)

2τ 2p+Mqt + 2iqtHqt(ηξ)τ
]
Te2iθ ,

J̄∂∂ =
[
(ȳξ̄)(ȳη̄)Fτ

]
T̄ e2iθ ,

J̄y∂ =
[
− iFτ 2(η̄ξ̄)(ȳ(ξ̄ − η̄))

]
T̄ e2iθ ,

J̄yy =
[
F (η̄ξ̄)2τ 2p

]
T̄ e2iθ ,

(C.2)

where

T = L
(
iq2t2 + (ξ̄η̄)

qt(1− qt)
2

)
, L = exp i

(
(ȳ − η̄)(ȳ + ξ̄)

)
,

T̄ =
i

2

(
−Mqt + (1− t)Mt

)
, Mx = exp ix ((y + η)(y + ξ)) ,

Gx = exp ix
(
pτy(ξ − η) + ηξ

)
, F = exp i

(
pτ ȳ(η̄ + ξ̄)− η̄ξ̄

)
,

Hx = exp ix
(
τy(ξ − η) + ηξ

)
.

(C.3)

and we have to introduce two more homotopy parameters τ and p, the integral left implicit as well

as C(ξ)C(η). To make contact with Section B we note that Q1 = MqtLe
2iθ and P1 = MtLe

2iθ. Note

that h.c. in (C.1) means adding the usual h.c. tail with barred and unbarred variables exchanged

(this may be confusing since the second line seems to be h.c. of the first, but the actual expressions

for the second line cannot be obtained via h.c. from the first line, see here-above).

25See Section C.1.4 of [31] for the detailed discussion of Fierz transformations. The only difference with 3d is that

we have two independent actions of the Fierz transformations on dotted and undotted indices.
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The canonical projection leads immediately to the required form:

Jcan,∂∂ =
1

4
Q1

(
i+ (ξ̄η̄)

(1− qt)
2qt

)
, J̄can,∂∂ =

i

8

(
Q1 − (1− t)P1

)
, (C.4)

where again everything needs to be supplemented with the h.c. part.

One may also be interested in the pure improvement terms that account for the difference between

the full backreaction (C.2) and its canonical part (C.4). These read:

J impr.,yy = f1

[
Q1 + (ζ+∂y)Qτ

1 + 4
τ
(ζ+∂y)2Qτσ

1

]
, J̄ impr.,yy =

1

4τ
f2(ζ̄− · ∂ ȳ)2Qτσ

1 , (C.5a)

J impr.,y∂ = f1 (yζ+)
[
Qτ

1 + 1+τ2

4τ
(ζ+∂y)Qστ

1

]
, J̄ impr.,y∂ = f2

1+τ2

4τ
(ȳζ̄−)(ζ̄−∂ ȳ)Qσ̄τ̄

1 , (C.5b)

J impr.∂∂ = τ
4
f1(y · ζ+)2Qστ

1 , J̄ impr.,∂∂ = τ
4
f2(ȳ · ζ̄−)2Qσ̄τ̄

1 , (C.5c)

where: ϑ = δ(q − 1),

Qx
1 = exp i[qt(xyζ− − ξη) + (ȳζ̄+ + ξ̄η̄) + 2θ] , f1 =

(
i(qt)2 + (ξ̄η̄)

qt(1− qt)
2

)
, (C.6a)

Qx̄
1 = exp i[qt(yζ− − ξη) + (xȳζ̄+ + ξ̄η̄) + 2θ] , f2 = − i

2
[1− (1− t)ϑ(q − 1)] , (C.6b)

and

ζ± = ξ ± η , ζ̄± = ξ̄ ± η̄ , (C.7)

ζ−∂yQx
1 = −2iqtxξη , ζ̄−∂ ȳQx̄

1 = 2ixξ̄η̄ . (C.8)

Note that the maximal power of ζ+, which measures how far the improvement is from the canonical

current, is two, which is different from the 3d case [31], where all possible improvements contribute

to the full Fronsdal current.

C.2 Fronsdal Equations in Spinorial Language

There is a nontrivial dictionary between the Fronsdal equations in vectorial and spinorial languages.

We need to fix the normalization as to be able to translate the formulas for the Fronsdal currents in

the language of tensors. Following the same algorithm as was used to derive the Fronsdal currents

(4.16) but for ∇e and adding the mass-like terms that are seen in (4.9) we get for (4.8)

f = Zs

(
�φ+ 2(s2 − 2s− 2)φ− 1

s
(y∇ȳ)(∂∇∂̄)φ+

1

s
(y∇ȳ)(y∇ȳ)φ′

)
, (C.9a)

f ′ = Z ′s

(
�φ′ + 2s2φ′ +

1

2s− 1
(y∇ȳ)(∂∇∂̄)φ′ − 1

2s− 1
(∂∇∂̄)(∂∇∂̄)φ

)
, (C.9b)

where (y∇ȳ) = yν∇νν̇ ȳ
ν̇ , (∂∇∂̄) = ∂ν∇νν̇ ∂̄

ν̇ . The mass-like terms are twice the expected in 4d due

to the normalization of the cosmological constant we use. The normalization factors Zs and Z ′s are:

Zs =
1

4(s− 1)
, Z ′s = − (2s− 1)

4s(s+ 1)
. (C.10)
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The Bianchi identity (4.20), which is a spinorial counterpart of (4.18), reads:

(s− 1)(∂∇∂̄)f + (s+ 1)(y∇ȳ)f ′ ≡ 0 . (C.11)

These formulas we need to compare with the Fronsdal operator F , (2.1), that we decompose as

Fs = fs + 1
γ
gf ′s and rewrite in terms of Φs = φs + 1

γ
gφ′s, where φ′ and φ are trace and trace-free

components of Φs and γ = d+ 2s− 4. Next, we translate it in the spinorial language

f =

(
�φ+ 2(s2 − 2s− 2)φ− 1

s
(y∇ȳ)(∂∇∂̄)φ+

1

2s2
(y∇ȳ)(y∇ȳ)φ′

)
, (C.12a)

f ′ =
(2s− 1)

s

(
�φ′ + 2s2φ′ +

1

2s− 1
(y∇ȳ)(∂∇∂̄)φ′ − 2s

2s− 1
(∂∇∂̄)(∂∇∂̄)φ

)
. (C.12b)

Also, we keep in mind that ∇mTm(s−1) in vectorial base corresponds to 1
s
(y∇ȳ)T (y, ȳ) in the spinorial

one. Analogously, the Bianchi identity (4.17) is:

(∂∇∂̄)f − 1

2s
(y∇ȳ)f ′ ≡ 0 . (C.13)

In order for the two sets of formulas to match we should rescale fields φ→ αsφs, φ
′
s → α′sφ

′
s as well as

the components of the Fronsdal operator f → βsfs, f
′
s → β′sf

′
s because the spinorial Bianchi identity

(C.11) is different from the vectorial one (C.13). The matching of the Fronsdal operators (C.9) and

(C.12) requires α′s/αs = 2s. The overall rescaling can be fixed as αs = Z−1
s so that the Fronsdal

operator starts canonically f = �φ+ .... Then, the rescaling of j and j′ can be found by requiring f

and f ′ to obey the canonical Bianchi identity, which gives αs/βs = Zs and (2s−1)
s

α′s
β′s

= Z ′s. Finally,

ãs =
as
βs

=
1

4(s− 1)αs
as , c̃s =

a′s
β′s

= − 1

8s(s+ 1)αs
cs . (C.14)

C.3 Coefficients of the Fronsdal Current

In this section we will write some explicit coefficients for the Fronsdal currents. Contrary to the 3d

case considered in [31], in the 4d HS theory it is relatively simple to write the contribution of the

scalar fields to the spin-s field’s equations of motion. The rules are almost identical to those of [31].

We need to extract coefficients from Fourier space expressions whose general form is

(yξ)A
′
(yη)B

′
(ξη)C

′
exp i[(yξ)a+ (yη)b+ (ξη)c]P (t, q, ...)C(ξ)C(η) , (C.15)

where a, b, c are possibly functions of homotopy parameters, constants or zero and A′, B′, C ′ are

integers. Analogous decomposition is true for the anti-holomorphic sector. Obviously, both sectors

are completely independent for the problem at hand. Then, with the help of[
eiyξ
∣∣
ξ=∂u

C(−iu)
] ∣∣∣

u=0
= C(y) (C.16)

the coefficient of

1

(n+m)!
Cα(n)ν(l)C

ν(l)
α(m) y

α(n+m) (C.17)
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can be found to be

fn,m,lA′,B′,C′ =
il−A

′−B′−C′(m+ n)!

(n− A′)!(m−B′)!(l − C ′)!
×
∫
dt dq ... an−A

′
bm−B

′
cl−C

′
P (t, q, ...) . (C.18)

There is an alternative formulation to encode the relative coefficients in the backreaction in terms

of a contour integral representation. The idea is based on the following identity:∫
dt dq f(q, t)ex(q,t)ξη =

∮
dτF (α)

∣∣
α=τ−1e

τξη , F (α) =

∫
dt dq

αf(q, t)

1− x(q, t)α
, (C.19)

where the F (α) must be considered as a formal series in α = 0 and when performing the contour

integration in τ one should use α = τ−1. It turns out to be convenient to work in terms of the

generating functions F (α) upon performing all homotopy integrals since many operations and the

covariant derivative translate into ordinary differential operators in the variable α.

The canonical current sector is particularly easy to deal with since it is specified by two functions

of four variables:

J2form
can = −

∮
dτ1 dτ2 ds dr

[
β2 g∂∂1 (α1, α2, β, γ)Hαα∂α∂α

+ γ2 g∂∂2 (α1, α2, β, γ)H α̇α̇∂α̇∂α̇
]
ei(syζ

−+τ1ξη+rȳζ̄++τ2ξ̄η̄) ,

(C.20)

that we will represent as a 2d vector:

~g ∂∂ =

(
g∂∂1

g∂∂2

)
. (C.21)

Here:

α1 = τ−1
1 , α2 = τ−1

2 , β = s−1 , γ = r−1 . (C.22)

Finally, the contour integration can be performed monomial by monomial using the following dictio-

nary:

αm+1
2 αn+1

1 βs1+1γs2+1 → (iξ̄η̄)m(iξη)n(iȳζ̄+)s2(iyζ−)s1

m!n!s1!s2!
. (C.23)

As an example, the whole Fronsdal current of spin-s that is bilinear in two scalar fields is

jm(s) = 2 cos 2θ
∑
k

ãs,k,l∇m(s−k)n(l)Φ∇n(l)
m(k) Φ , (C.24)

j′m(s−2) = 2 cos 2θ
∑
k

c̃s,k,l∇m(s−k−2)n(l)Φ∇n(l)
m(k) Φ , (C.25)

where the coefficients are found to be

as,l,k =
s!s!

l!l!k!k!(s− k)!(s− k)!

i(−1)k
(
2rk(s− 1)(k − s) + s2 (2s2(l + s)(l + s+ 1)− r)

)
4(s− 1)s2(l + s)2(l + s+ 1)2(l + s+ 2)

,

r = 2s3 + (4l − 1)s2 + l(2l − 1)s+ 2l ,

(C.26)

cs,l,k =
(s− 2)!(s− 2)!

l!l!k!k!(s− k − 2)!(s− k − 2)!

i(−1)kr′

2s2(s+ 1)(l + s− 1)2(l + s)(l + s+ 1)
,

r′ = 3s5 + (10l − 6)s4 +
(
11l2 − 15l + 3

)
s3 + l

(
4l2 − 11l + 8

)
s2 + l

(
−2l2 + 7l − 5

)
s− 2(l − 1)l .
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The data completely determines the contribution to the 〈00s〉 correlator. The canonical projection

of the formulas here-above can be found in Section 4.3. Moreover, as was explained in Section 4.2

for every spins s there exists a conserved current of rank 2s + k that is built with k derivatives

of the Weyl tensor Cs for Φs, for the example the Bel-Robinson tensor. Since Weyl tensors in the

vectorial language have a symmetry of the two-row rectangular Young diagram, the expressions for

the currents are simpler in the spinorial language, where we find

j =
∑
s,k,j

as,l
i(−1)k

j!(k − j)!l!l!(2s+ k − j)!(2s+ j)!
Cα(2s+k−j)ν(l),α̇(k−j)ν̇(l)Cα(j)

ν(l)
,α̇(2s+j)

ν̇(l) yα(2s+k)ȳα̇(2s+k)

and the canonical projection gives (C.33), which results in

as,l = 2 cos 2θ
S(2l(S − 1) + S(2S − 1))

8(S − 1)(l + S)2(l + S + 1)2
, (C.27)

where S = 2s + k is the total spin of the current. In principle, it is easy to give the full coefficients

of the canonical projection by Taylor expanding (C.33). Other components correspond to various

”super-currents” built of fields with different spins.

C.4 Details on Canonical Sector

For one-forms there is only one function that upon applying D produces just the canonical structure

above and it is given by:

J1form
can = −

∮
τi,s,r

(βγ) g∂∂̄(α1, α1, β, γ)hαα̇∂α∂α̇e
i(syζ−+τ1ξη+rȳζ̄++τ2ξ̄η̄) . (C.28)

Other tensor structures are not relevant to study improvements in the canonical current sector. We

can then obtain the action of D on the above ansatz in closed form:

Dg∂∂̄ =

(
1

4α1β
[γ(α1γ + β)∂γ + α2β(α1α2 + 1)∂α2 ]

1
4α2γ

[β(α2β − γ)∂β − α1γ(α1α2 + 1)∂α1 ]

)
g∂∂̄ , (C.29)

and

D~g ∂∂ = − 1

2α1α2

[
α1(α1α2 + 1)(α1∂α1)g

∂∂
1 + α1γ

−1(γ − α2β)(β∂β)g∂∂1 + α1g
∂∂
1

+ α2(α1α2 + 1)(α2∂α2)g
∂∂
2 + α2β

−1(α1γ + β)(γ∂γ)g
∂∂
2 + α2g

∂∂
2

]
. (C.30)

One can explicitly check that the above representation squares to zero. Furthermore, it is easy to

compute the source to the Fronsdal tensor sitting in R+1. One can check that the above produces

conserved currents. For later convenience we give below the operator that computes the Fronsdal

current on the canonical sector:

JFr.
+1 = +

(βγ)s+1

s− 1
α−1

2 [α1(α1α2 + 1)∂α1k1(α1, α2) + (s+ 1)k1(α1, α2) + α2(s− 1)k2(α1, α2)] , (C.31)
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where k1 and k2 are certain components of the backreaction J0 and J+1 defined as:

~J0 = (βγ)s

(
k1(α1, α2)

· · ·

)
, ~J+1 = (βγ)s

(
β

γ

)(
· · ·

k2(α1, α2)

)
. (C.32)

and · · · correspond to the components that have no effect no the result. Note that prefactor (βγ)s+1,

when expanded, gives canonical currents involving fields of different spins.

C.5 Generating Function of the Fronsdal Currents

The expressions for the full Fronsdal current are quite involved. Instead, let us present the generating

function for the canonical projection, which follows from (4.16) and (4.26),

j = J∂∂ +
1

N̄ + 1
f , (C.33)

where J∂∂ is the corresponding component of the canonical backreaction (C.4) and f is:

f = − i
4

[1
4
(1− ϑ(3t− 1))− 1

2
iqt(ξη) + 1

4
i(ξ̄η̄)(−4qt+ ϑ(t− 1) + 3) + 1

4
(ξ̄η̄)(ξη)(qt− 1)

]
Q1

+
[

1
2
(ϑ(t− 1) + 1)

(
1− i(ξη)

2qt
+ i

2
(y − η)(y + ξ)

) ]
Q̄1

 .

Recall that ϑ = δ(q − 1).

D Resummation of Fronsdal Currents

Let us consider the spin-two case and decompose all terms with contracted derivatives, i.e. successors,

into their primary component and improvements, reducing thereby a pseudo-local canonical current

to a local one without any contracted derivative plus an improvement. In the spin-two case the

one-form canonical ansatz from which we can build the most general exact two-form via (C.29)

reads:

α1α2

[
(βγ)2k(α1α2) + α2β

3γk2(α1α2) + α1βγ
3k3(α1α2)

]
. (D.1)

Note that k2 and k3 do not affect the Fronsdal current. The most general form of the spin-two

improvement in the canonical sector that can be obtained by solving torsion from (D.1) via (C.30)

reads:

δj ∼ (βγ)2

4

[
τ(τ + 1) (τ(τ + 1)k′′(τ) + (3τ + 7)k′(τ)) + (τ + 3)2k(τ)

]
, (D.2)

where τ = (α1α2) and τ l corresponds to �l−1. The redefinition that removes higher-powers of 2 from

the source to the Fronsdal tensor can then be found by requiring that each single 2 term is removed

independently by a local redefinition. This boils down to fixing the coefficient Cl by requiring the

particular solutions of the following ODE:

τ(τ + 1) [τ(τ + 1)k′′(τ) + (3τ + 7)k′(τ)] + (τ + 3)2k(τ) = Clτ + α− τ l , (D.3)
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to be polynomial. Using standard techniques in ODE we can set to zero the leading singularity of

the solution given by a dilog. Furthermore we can show that it is always possible to find Cl and26 α

such that the corresponding solution is polynomial. The corresponding value of Cl, that corresponds

to the projection of a term of the type 2l in the current to its primary part, is given by:

Cl =
1

12
(−1)l(l + 1)(l + 2)2(l + 3) . (D.4)

Combining the above result with the explicit coefficient detailed above, we conclude that the 4d theory

produces results that are divergent upon resummation and require regularization. The corresponding

divergent coefficient of the primary current reads:

js=2 = − i

12
cos(2θ)

(
∞∑
l=1

l

)
ȳζ̄+2yζ−2

4
+ improvements , (D.5)

where the improvements can be removed by a field redefinition making the current local.
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