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We present a theory for the recombination of (charged) holons and doublons in one-dimensional organic

Mott insulators, which is responsible for the decay of the photoexcited state. Due to the charge-spin separation,
the dominant mechanism for recombination at low density of charges involves a multiphonon emission. We
show that a reasonable coupling to phonons is sufficient to explain the fast recombination observed by pump-
probe experiments in ET-F,TCNQ, whereby we can also account for the measured pressure dependence of the

recombination rate.
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Introduction. Femtosecond pump-probe spectroscopy is a
powerful probe for the charge relaxation and thermalization
phenomena in complex materials. These measurements can
directly address and unveil the role of strong electron correla-
tions, as well as the coupling to phonon degrees of freedom.
Materials that behave as Mott insulators due to strong electron
Coulomb repulsion contain all the latter physics, and are
therefore of high theoretical and experimental interest. It has
been observed that photoinduced charges decay within the
picosecond range, i.e., well within the experimental resolution,
but on the other hand orders of magnitude faster than in clean
semiconductors with similar energy gaps.

So far two classes of Mott insulators, investigated by pump-
probe spectroscopy, revealed similar behavior. These are the
layered undoped cuprates La,CuQO,4 and Nd,CuQO4 [1-3], and
the quasi-one-dimensional (1D) organic Mott insulators of the
tetracyanoquinodimethane (TCNQ) family [4], in particular,
ET-F,TCNQ [4-7], which will be the focus of our study. Both
undoped cuprates and ET-F, TCNQ reveal ultrafast picosecond
charge recombination with some similarities: (a) The charged
carriers created by the pump pulse above the Mott-Hubbard
(MH) gap are holons and doublons, and their recombination
requires the distribution of a large energy quantum (the MH
gap A ~ 1eV) into several final excitations with smaller
energy €. At low density of charges candidates for recipient
bosons can be spin or phonon excitations. (b) The decay is
exponential in time. This excludes bi- and higher-molecular
processes involving inelastic collision of several “free” charge
carriers, and implicitly reveals the existence of an intermediate
bound state of a holon and a doublon (the MH exciton).
In this respect a different observation has been obtained
on Cay;CuOj from the 1D cuprate family, which is known
to have negligible excitonic effects [8] and thus shows a
nonexponential decay [9].

From a theoretical viewpoint the challenge of under-
standing the charge recombination has analogies with the
decay of the double occupancy in ultracold bosons [10] and
fermions [11,12] in optical lattices, where the decay rate
I' exhibits an exponential dependence on the ratio of the
Coulomb repulsion U and the typical excitation’s energy
scale €. In the latter case the system can be described by
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a high-temperature state with a sufficient density of excited
charges, so that the creation of particle-hole pairs in the
compressible background [12] is the dominant decay channel,
and € is set by the kinetic energy of recipient excitations, as
observed also within dynamical mean-field theory [13]. On the
other hand, in real materials the final effective temperature is
low, T <« U. For the case of two-dimensional (2D) undoped
cuprates, which are antiferromagnets at low 7, a theory has
been presented [14,15] where the fast charge recombination
is explained via emission of spin excitations with the spin
exchange energy, €y ~ J, as the relevant excitation scale.
Strong correlations and large J at the same time lead to
a nontrivial origin of the s-type bound state of holon and
doublon [16], i.e., the MH exciton, being the intermediate
state essential for the exponential decay.

In spite of similarities with 2D Mott insulators, in quasi-
1D Mott insulators the scenario involving spin excitations
cannot be effective either for the MH exciton formation
or for the multiboson emission due to the phenomenon
of charge-spin separation. In the following we will show
that a multiphonon emission can be a viable recombination
mechanism in 1D organic Mott insulators, somewhat specific
to organic materials with energetic intramolecular vibrations
and strong electron-phonon coupling [17,18]. The mechanism
bears similarity with recently proposed multiphonon exciton
decay in semiconducting carbon nanotubes [19], while in
standard semiconductors such a scenario seems to be ineffi-
cient [20]. The prerequisite is again the existence of the 1D MH
exciton [21], which can be stable in the case of longer range
Coulomb repulsion. Since the photoexcited exciton is of the
odd symmetry we will show that its decay becomes allowed
only due to the electron-phonon coupling. Finally we show
that our scenario can explain the pressure dependence of the
recombination rate established recently for ET-F,TCNQ [7].

The problem is tackled as follows. Treating the recom-
bination as a perturbation, we first neglect it and compute
the exciton, i.e., the lowest bound state in the sector with
one doublon and one holon. We then use Fermi’s golden
rule in order to compute the decay of the exciton |W;)
into the manifold of states |\W{') that consists of the charge
ground state with additional phonon excitations, which in the
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process of recombination receive the energy of the exciton.
In principle, virtual hoppings give rise to the spin exchange
J = 42 /U; however, we shall neglect it in our calculation.
Such approximation is justified by the charge-spin separation
specific for 1D, which makes the scattering of charges on spins
ineffective (since the hopping of holons and doublons only
shifts the spin background), and by the hierarchy of energy
scales J < wy,t,U,V for typical organic materials, where wy
is the relevant phonon frequency, ¢t hopping, and U,V the
dominant interaction parameters.

If the Mott gap A is of the order of several phonon fre-
quencies wg, A & nwy, the n-phonon contribution determines
the matrix element in the Fermi’s golden rule expression. The
electron-phonon problem is controlled by two dimensionless
parameters: the coupling strength & = A2/ a)g (where A is the
typical electron-phonon coupling) and the adiabaticity #/wy.
In the most general case, computing the exciton in the presence
of electron-phonon interaction is not possible analytically. To
generate the admixture of n > 1 phonons to the exciton,
the coupling strength & must be treated to higher orders.
On the other hand, at least the limit ¢#/wy < 1 is a valid
starting point for molecular vibrations in organic crystals. In
this case it is convenient to rewrite the Hamiltonian using a
unitary Lang-Firsov transformation e5, which measures the
phonon coordinate with respect to the equilibrium position
for a given charge configuration. If the transformed exciton
state |W;) is expanded in phonon number states, |¥) =
|\IJ§O)) + |\ili1)) + |‘~Tl§2)> + , the zero-phonon state |‘~TJ§0))
is already the leading contribution in #/wy so that additional
phonon dressing can be neglected. Using this approximation
we will derive a compact expression for the recombination rate

I:
I = 47 l_zL 27
2 Aa)o

oGl -G) ] o
X exp aTo“<2eswo) (5) O

which can easily be compared with the experiments, taking
the hopping 7 and the nearest-neighbor interaction V from
independent measurements.

The model. As a model for the charge recombination in
organic Mott insulators we consider the 1D extended Hubbard
model, where in addition to the local Hubbard repulsion U
and the nearest-neighbor electron hopping, a nearest-neighbor
Coulomb repulsion V > 0isincluded. The latter is essential to
stabilize the exciton state in 1D [21]. The Hamiltonian is split
in the hopping H; of doublons and holons, the recombination
term H,., and the interaction term Hy;, which are written as

Hy=—tY (dd;,—h] hj,+Hc), 2)
(ij).s
Hie=—t Y (hisdj+hjsdis +He), 3)
(ij),s
nld + n? o
HUzuZTwZnin,, 4)
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with holon and doublon creation operators hjé =cis(1—

nis), dis = czgn;’x, holon and doublon density operators nl’.’ =

S0 ki nd =5 Y dl di g and i = nf — n]'. Here (ij)
denotes nearest-neighbor pairs and 5 the spin opposite to s. In
addition, a generally nonlocal coupling between the charge
density and dispersive phonons is introduced:

oh = qua;aq. (5)
q

We use i = ag = 1, ag being the intersite distance.

Lang-Firsov transformation. The derivation of the standard
Lang-Firsov transformation for the present case follows
Ref. [15] and is presented in the Supplemental Material [22].
The exact transformed Hamiltonian is given by

Hy= -1 (ddjere?
(ij).s

Hyp =Y " hge ' (a) +a_g)n;,
Jq

— hl hjeierr + Hee)

ottt
+UZ ! j+VZfliﬁj+qua;aq, (6)
j (i) q
Hye = =7 (higdjse™ e + hjdiseie™ + He, (7)
(ij).s
where AT Z (k /a)q)(e"’“ — e"‘”)a is a phonon cre-

ation term and U, V, and 7 are renormalized interaction and
hopping parameters. As shown in the Supplemental Material,
corrections to the bare U,V,t are glven by U = U — &, and
V =V — & withé,_ = ZZ (|2g|*/wy) coslq(i — j)], while
longer range interaction shall be neglected. Bare hopping ¢ is
rescaled as 7 = te™, & = Zq(Mqu/wj)[l — cos(q)].

Below we will express all results in terms of the renor-
malized parameters U, V, and 7, which are determined
experimentally by a fit to the linear absorption spectrum and
for materials considered satisfy the condition U > 7.

Exciton ground state. We now construct the ground state for
the Hamiltonian Hj. To neglect additional phonon dressing,
as explained above valid for 7/wy < 1, Hy is projected to
the phonon vacuum, H(O) |Op,,)(01,h|ﬁo|0ph) (Opn|. We first
construct a basis of all holon doublon states with an arbitrary
spin configuration of the remaining sites, analogous to the
squeezed spin state [23]. For a given spin configuration ¢ =
{o1,...,00-2} (witho; =1, |), we define |c™/) as the state
obtained by distributing the spins ¢ on lattice sites {1,...,L} \
{m,j}. Form < j

|g j> - Cl,o'] T Cmfl,am_l X Cerl,a,,, T ijl,aj_g
T T
XCitlo; "'CL,(;L72|O), (8)

and for j < m analogous. We then define the holon-doublon
state |o}') by placing a doublon at site J,

T T m,j : :
my _ J€jq€y la™)) ifm # 9
o) {0 ifm=j. ©)
These are used to define the state with a holon-doublon pair
|<I>;f’> and the state with two holons |®"/) on an arbitrary

spin background which is a superposition or mixture of
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configurations o,
qu Z CD ‘U

One can see that the Hamiltonian I:Iéo) does not mix different
configurations o, because nearest-neighbor hopping of a holon
or doublon implies a shift of the spin background, which is
implicit in the definition (9) for |o’,) — |o/*") or |o/) —

|@"7) =) dla™).  (10)

lo ’j +1)- The action of the Hamiltonian is thus obtained by

j+ot>)'

an

To determine the ground state we start from a partial Fourier
transform with respect to the average position,

1 o .
W)= 5= Y ewBel ) ad
J

(Hy = U +8;_jaV)|@l) = =7 > (|o'F) -
a==+1

With this the action of the Hamiltonian becomes

(A = U+ 8u.4 V) |wh) = =27, > alylt). (13)
a==%1
where 7, = 7 sin(g/2). There is a continuum of states in the
energy window E € [U — 4f,,0 + 4i,]. For H\”, parity-even
and odd bound states are degenerate. We can restrict the
analysis to the odd states, which can be created by the optical
dipolar transition, and thus make the ansatz

Y oB(ve) = [ N0, Br=Boe ™. (14)

>0

e

The ground state is found for ¢ = 7 with f; = B,(27/V) and
E, =U—-V —4f2 / V, which lies below the continuum for
V > 2f. Without the electron magnon coupling, the exciton is
decoupled from the spin background, i.e., excitons for different
spin wave functions are degenerate.

Exciton decay. Similarly to the problem of exciton decay in
2D [14,15], we establish the recombination rate using Fermi’s
golden rule

F=21 Y (WA s(Ey — 1), (15)

m

for transitions from previously determined exciton |\TJ§O)),
Eq. (14), into the charge ground state with additional phonon
excitations |W{') via the recombination operator H,., Eq. (7).
If written in an integral form [15], Eq. (15) becomes

I =2Re (®§°)|H,CP0/O dr AT po A, | ), (16)

where A is the charge gap, P, is the projection to the zero
charge sector, and H ), is the only part of H, which is active
in the zero charge sector.

We first evaluate the application of H,. on the exciton.
Starting from the expression |‘~Tl§0)), Eq. (14), we can restrict
the application of H,. to nearest-neighbor terms / = 1,

~ ; - .. f
PoH, | @), )10,0) = =7 ;1077 e110,),  (17)
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where §; = c)LT ]; 1y~ t ic 414 Creates a spin singlet on sites
Jj+1 prev10usly occupied by aholon doublon pair. Similar,

POH,C|d>j N0) = = §;|D7it) e Al |0,,). In summary,

ﬁ% Zz( 1)/ S| 77+

J

Pof 8 =

x (e — eM11)[0,). (18)

When this is inserted into Eq. (16), recombination rate is
expressed as

=7B7Y 2 TH' (D), (19)

d

with a spin structure factor
1 - _ L
g0 = (=12 (@IS |97 - (20)
J
and a phonon emission factor
o0

Fj?f (A)=2Re / dt e 87(0,[(eM+1 — i)
0

A1) 0p1). @)

Spin structure factor. From Egs. (20) and (8) one can
see that go =2 and g, =g_; =1 for an arbitrary spin
configuration. For d > 2, Eq. (8) implies that for any spin
configuration o, (—1)d(gf'j+1|S}Sj+d|gf+d’j+d+l) equals 1if
the spins (o}, . . .,0j4+4—1) form an antiferromagnetic sequence
.41, 4,000y, 1,1,1,...),and0else. We thus
have g;0 = 1 for a perfect Néel antiferromagnet, and g; = 0
for |d| > 2 for a spin-polarized background. For a general
finite temperature state we expect an exponential decay of the
correlations with distance.

Boson emission factor. The matrix element in the boson
factor (21) can be evaluated straightforwardly, which is done
in the Supplemental Material [22]. We obtain

xe HmT (A — ¢

o0
r?"A) = 8Re[ dr e's"
0

A |? 4
x sinh (2 Z | "2| cos(dq)(1 — cos q)e""'ﬂ).
w

q q
(22)
The argument of the sinh may be written in a convenient

way as an integral 2 [ dw e ™' f,(w), with the boson coupling
function

2
= 32 1 costdq )1 ~ cosgrio — ). 23)
q q

Ja(w)

The zeroth and first moment n; = f dofi(w), Qns =
f do wf;(w) of these functions are related to the phonon-
mediated long-range interaction parameters €; via 2Q,n, =
(€4 — %gd_l — %€d+1). The time integration in Eq. (22) can
be performed numerically for any kind of dispersions A,,w,;
however, for a fixed function f; and A/w, — 00, one can
use an argument related to the central limit theorem to show
that in the lowest order the result depends only on the zeroth
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FIG. 1. (Color online) Comparison of boson emission factors
Ffl’h for different d, obtained by numerical integration of Eq. (22)
for dispersions w, = wg + dw cos(q), Ay = A/«/Z (dashed lines) and
from Eq. (24) (solid lines). Parameters wy = 1, o = 0.1wp, § = 0.3
are used.

moment 1y, as presented in the Supplemental Material [22].
The integral (22) can then be approximated with

A —A/a)g
— ; (24)
2€|?7d|w0>

A nal | 27w
rg’(A)zzn—d v

where wy is the typical phonon frequency. Expression (24) is
obtained also by the saddle-point approximation for a Gaussian
fa(w) with the same zeroth moment 7, [15].

Typically, phonons are weakly dispersive and electron
phonon interactions not long ranged, so that |&y| > |&| >
|&] . ... Then it suffices to take into account only the |d| < 1
contributions, as demonstrated in Fig. 1 for dispersions A, =

A/ \/Z,a)q = wy + dwcos(q), showing results of numerical
integration of Eq. (22) (dashed lines). To boost the con-
vergence an additional smoothening e i®7 — ¢=i®sT o1’ T’/2
with 7 = 0.2wy has been used in Eq. (22), which can
physically correspond to higher dimensionality of phonons
or a distribution of several vibrational modes. The final
expression for the recombination rate, Eq. (1), which is relevant
for the comparison with experiments, is thus obtained by
restricting Eq. (19) to the |d| = 0,1 contributions with spin
structure factor gop = 2, g+; = 1, and using approximations
Qo ~ Q) &~ wy, 2wong X €, 2won; ~ —€y/2 in Eq. (24)
with & ~ 2wp& expressed via coupling strength & = A?/w;.
Dependence I' h(A), Eq. (24), with n, approximated as above
is for relevant terms d = 0,1 shown in Fig. 1 (solid lines),
displaying agreement with numerical integration. Note that
a nonzero dw is necessary for smooth variation of Ffl’h(A)
(otherwise recombination is possible only for discrete energies
A = nwy), but after taking the asymptotic limit A /wy > 1,
corrections in dw/wqy to the analytical expression Eq. (24)
are small at least for the dominant |d| = 0,1, so that the
latter expression is applicable for sufficient but not too large
dispersion amplitudes. The prefactor (1/2 — 272/V?)inEq. (1)
comes from 7.

Comparison with experiment. Finally we compare the
recombination times 7, = I'~! obtained from Eq. (1) with
experimentally measured ones [7]. All quantities but the
strength of charge-phonon coupling & are set by the experi-
mental data: wy = 0.23 eV [24], U = 0.845 eV, while 7,V are
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FIG. 2. (Color online) Recombination time 7, as a function of
pressure p calculated from the Eq. (1) using the experimen-
tal parameters [7,24]: wo = 0.23 eV, U = 0.845¢V, and i(p) €
[0,04,0.06] eV, V(p) € [0.12,0.16] eV for coupling strengths £ =
0.25,0.27,0.3.

specified functions of pressure p, p € [0,1] GPa, with linear
dependence within intervals 7(p) € [0,04,0.06] eV, V(p) €
[0.12,0.16] eV [7],and A ~ U — V — 4%/ V.

Figure 2 displays 7, as a function of pressure p for three
different values & = 0.25,0.27,0.30, showing that & ~ 0.27
is consistent with the experimentally measured recombination
times [7], yielding the electron-phonon coupling A = wo/& =
0.12 eV. The latter has been measured and calculated for a
similar organic material, finding A € [0.05 eV,0.1 eV] [17],
confirming that the electron-phonon coupling needed to
reproduce the experimental results is indeed realistic.

Conclusions and discussion. The central result of our
study is that the fast charge recombination observed recently
in quasi-1D organic Mott insulators [7] can be explained
via creation of phonon excitations, which can be for the
material considered (ET-F,TCNQ) identified as molecular
vibrations. Due to the charge-spin separation in 1D systems
and hierarchy of energies J < wp in materials addressed,
spin excitations are in contrast to 2D systems an inefficient
decay channel and were neglected in our analysis by setting
J — 0. Motivated by the experimentally observed exponential
decay of charge density we derive the recombination rate
based on the assumption that a holon and a doublon initially
form a bound state—exciton, which is odd under the par-
ity transformation (therefore optically accessible). Still, the
transition into the charge ground state with even parity is
allowed due to the coupling to phonons. We established the
charge recombination rate using Fermi’s golden rule, showing
approximately exponential suppression with the number of
phonons emitted in the process; an observation common to
several doublon decay processes with different recipients of
doublon energy [11-15,25].

To understand the pressure dependence of the decay
rate, not only the modulation of gap A(p) but also the
prefactor in Eq. (1) coming from the exciton wave function
should be considered. By applying the pressure the exciton
is delocalized, leading to a reduction of decay rate, as
recognized in Ref. [7]. While the latter reference proposed
a phenomenological treatment of the decay in terms of a
spin-boson model, our aim is to establish the microscopic
origin of the decay mechanism, based on a more realistic

201104-4



EXCITON RECOMBINATION IN ONE-DIMENSIONAL ...

spectral function describing coupling to vibrations that have
indeed been observed in this material [24].

The experimentally established frequency of the relevant
vibrations [24] is much larger than that of typical lattice
phonons, making the recombination mechanism somewhat
specific for organic insulators. To explain recent experiments
on 1D cuprates (Ca,CuO3) [9] with smaller typical phonon
frequencies and negligible excitonic effect some modification
of the mechanism might be needed and remains as a future
challenge. One should note that to assist a proper dissipation
of energy in the case considered the vibrations must be at least
partially dispersive or coupled to other modes. Even though
our derivation focuses on 1D phonons, it is straightforward
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to generalize it to more realistic three-dimensional electron-
phonon coupling. Recognizing the role of the electron-
phonon coupling in the recombination mechanism, we see
the recombination measurements as an indirect way to es-
tablish its typically elusive strength at least for this class of
materials.
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