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Representing statistical information in terms of natural frequencies rather than

probabilities improves performance in Bayesian inference tasks. This beneficial effect

of natural frequencies has been demonstrated in a variety of applied domains such

as medicine, law, and education. Yet all the research and applications so far have

been limited to situations where one dichotomous cue is used to infer which of two

hypotheses is true. Real-life applications, however, often involve situations where cues

(e.g., medical tests) have more than one value, where more than two hypotheses (e.g.,

diseases) are considered, or where more than one cue is available. In Study 1, we

show that natural frequencies, compared to information stated in terms of probabilities,

consistently increase the proportion of Bayesian inferences made by medical students

in four conditions—three cue values, three hypotheses, two cues, or three cues—by an

average of 37 percentage points. In Study 2, we show that teaching natural frequencies

for simple tasks with one dichotomous cue and two hypotheses leads to a transfer of

learning to complex tasks with three cue values and two cues, with a proportion of 40

and 81% correct inferences, respectively. Thus, natural frequencies facilitate Bayesian

reasoning in a much broader class of situations than previously thought.

Keywords: Bayesian inference, representation of information, natural frequencies, task complexity, instruction,

fast-and-frugal trees, visualization

Introduction

After a positive hemoccult screening test, which signals hidden blood in the stool, a patient asks
his doctor: “What does a positive result mean? Do I definitely have colon cancer? If not, how likely
is it?” When 24 experienced physicians, including heads of departments, were asked this, their
answers to the third question ranged between 1 and 99% (Hoffrage and Gigerenzer, 1998). All
these physicians had the same information: a prevalence of 0.3%, a sensitivity of 50%, and a false
positive rate of 3%. Bayes’ rule shows that the actual probability of colon cancer given a positive
result is about 5%. As this and subsequent studies have documented, most physicians do not know
how to estimate the probability of cancer given the prevalence, sensitivity, and false positive rate
of a test (Gigerenzer, 2014). This difficulty has also been observed in laypeople and attributed to
some internal mental flaw, such as a general base rate neglect, the representative heuristic, or a
general inability to reason the Bayesian way (e.g., Kahneman, 2011). Yet the experimental evidence
has made it clear that the problem is not simply in our minds, but in the way the information
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is presented. When Hoffrage and Gigerenzer (1998) gave
another group of 24 physicians the same information in natural
frequencies (see below), 16 of these could find the Bayesian
answer, namely that a patient actually has cancer in only 1
out of 20 positive screening results. When given conditional
probabilities, that is, the sensitivity and false alarm rate, only 1
out of 24 physicians could find the Bayesian answer, or anything
close to it.

The positive effect of natural frequencies on Bayesian
reasoning was first documented by Gigerenzer and Hoffrage
(1995, 1999) and has since been confirmed in both numerous
laboratory studies (e.g., Cosmides and Tooby, 1996; Brase,
2002, 2008) and applied research, including screening for Down
syndrome (Bramwell et al., 2006), the interpretation of DNA
evidence in court (Lindsey et al., 2003), and teaching children
to reason the Bayesian way (Zhu and Gigerenzer, 2006). Thus,
the earlier claim that people’s cognitive limitations make them
poor Bayesians (e.g., Kahneman and Tversky, 1972, repeated in
Kahneman, 2011, and Thaler and Sunstein, 2008) is now known
to be incorrect; it holds only when information is presented in
probabilities.When presented in natural frequencies, by contrast,
Bayesian performance increases substantially.

Yet there is a limitation to virtually all of these studies.
Whether using conditional probabilities or natural frequencies,
the experimental studies that have been conducted so far
incorporated solely the simplest version of a Bayesian task—
henceforth referred to as the basic task—which involves two
hypotheses (such as colon cancer or no colon cancer) and a
single cue (such as the hemoccult test) with two cue values (a
positive or negative result). In 1998, Massaro questioned whether
the facilitating effect of natural frequencies extends to more
complex tasks that involve two or more cues. He conjectured
that even in the case of two cues, “a frequency algorithm will
not work” (p. 178). Although he did not test this claim, if
true, it would severely limit the range of applications of natural
frequencies. In this article, we experimentally test Massaro’s
claim, as well as whether the effect of natural frequencies
generalizes to tasks involving three cues, three cue values, and
three hypotheses.

This article has two parts. In the first, we outline the
two paradigms for studying Bayesian reasoning, which use
two different methodologies and have arrived at apparently
contradicting conclusions concerning people’s ability to reason
the Bayesian way. One is a learning paradigm where probabilities
are learned by sequentially observing events; the other is the
classical textbook paradigm where people are assigned problems
with specified conditional probabilities. We show that natural
frequency representations are a kind of missing link between the
two paradigms. In the second part, we report two studies. The
first study tests whether the beneficial effect of natural frequencies
generalizes to more complex Bayesian inferences, that is, to tasks
containing more than two hypotheses, more than one cue, or
cues with more than two values. The second study tests whether a
short instruction in natural frequencies for a basic task (involving
one dichotomous cue and two hypotheses) facilitates applying
Bayesian reasoning to complex tasks. In the discussion we relate
the present work to the fast-and-frugal heuristics program and to

other interventions to boost performance in Bayesian inference
tasks.

Paradigms to Study Bayesian Inferences:
Probability Learning and Textbook Tasks

A Bayesian inference task is a task in which the probability
p(H|D) of some hypothesis H (e.g., cancer) given data D (e.g.,
a test result) has to be estimated. Two types of Bayesian inference
tasks can be distinguished (Gigerenzer, 2015; Mandel, 2015;
Sirota et al., 2015b): probability learning and textbook tasks.

Let us first consider probability learning tasks. Organisms
learn the consequences of various behavioral responses in a
probabilistic environment with multiple cues. Note that such
a task ultimately requires behavioral responses in a specific
situation. For instance, what should a bird do when it sees
a movement in the grass? This situation can be conceived as
a Bayesian inference task in which the behavioral response is
based on a comparison of the probability that the movement
of the grass (data, D) is caused by something that is dangerous
(hypothesis, H) or by something that is not dangerous (–H). In
the laboratory, a probability learning task involves the sequential
encounter of pairs of events. In the case of two hypotheses (H
and its complement –H) and two possible states of the world
(data D observed or not), there are four possible pairs: H&D,
H&–D, –H&D, –H&–D. To answer the Bayesian question “what
is p(H|D)?” one needs to compare the two possibilities D&H
and D&–H with respect to their probabilities. How likely is
“grass movement due to dangerous cause (e.g., cat)” compared
to “grass movement for some other non-dangerous reason (e.g.,
wind)”? How likely is “hemoccult test positive and patient has
colon cancer” compared to “test positive for some other reason”?
Transforming the odds of the two possibilities—one probability
compared to the other—into a ratio amounts to dividing the first
probability by the sum of both:

p(H|D) =
p(D&H)

p(D)
=

p(D&H)

p(D&H) + p(D&−H)
(1)

where p(H|D) stands for the posterior probability that the
hypothesis H is true given the observed data D. Equation (1) is
one form of Bayes’ rule.

The probabilities relevant for Bayesian inferences can be
learned via three paths: phylogenetic learning (natural selection
of inherited instincts, i.e., evolutionary preparedness; Harlow,
1958), ontogenetic learning (e.g., classical and instrumental
conditioning; Pearce, 1997), and, for some species, social
learning (Richerson and Boyd, 2008). A major conclusion of the
probability learning paradigm is that humans and animals are
approximate Bayesians (Anderson, 1990; Gallistel, 1990; Chater
et al., 2006; Chater and Oaksford, 2008).

Let us now turn to the second type of Bayesian inference
tasks, textbook tasks. In their evolutionary history, humans have
developed skills that other species have in some rudimentary
form, but which humans master at a far superior level: social
learning, instruction, and reasoning (Richerson and Boyd, 2008).
These skills enable culture, civilization, science, and textbooks.
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Moreover, they facilitate communication of probabilities, one of
the many examples of how ontogenetic learning of probabilities
can be supported by social learning (McElreath et al., 2013).
Last but not least, they allow for the development of probability
theory, which, in turn, offers a formal framework for evaluating
hypotheses in light of empirical evidence. Even though the
question of how this should be done is an ancient one, only
since the Enlightenment have hypotheses been evaluated in terms
of mathematical probability (Daston, 1988). Specifically, when
evaluating an uncertain claim (i.e., hypothesis), the posterior
probability of the claim can be estimated after new data have
been obtained. One rigorous method for doing so was established
by Thomas Bayes and, later, Pierre Simon de Laplace. The
mathematical expression for updating hypotheses in light of new
data is given in Equation (2):

p(H|D) =
p (H) p(D|H)

p (H) p (D|H) + p(−H)p (D |−H)
(2)

where p(H) and p(–H) stand for the prior probabilities that the
hypothesis (H) and its complement (–H), are true, and where
p(D|H) and p(D|–H) stand for the likelihood of observing the
data under these two different conditions. In signal detection
theory, these two likelihoods are referred to as hit rate and false-
alarm rate. In medical terms, the hit rate is the sensitivity of
a diagnostic test and the false-alarm rate is the complement of
the specificity of the test. Equation (2) formalizes how prior
probabilities and likelihoods should be combined to compute
the Bayesian posterior probability. Note that this equation is a
variant of Equation (1) in which the two conjunctions, p(D&H)
and p(D&–H), are broken into components. Strictly speaking,
Equation (1), albeit a form of Bayes’ rule, is not an equation
that captures the updating of probabilities. Unlike Equation (2),
Equation (1) does not describe the relationship between p(H) and
p(H|D), simply because it does not include the term p(H).

Social learning, probability theory, and Bayes’ rule in the
form of Equation (2) offer a new opportunity: to study Bayesian
reasoning using textbook tasks with specified probabilities that
do not need to be learned from experience. In contrast to
the probability learning paradigm with its sequential input of
observations, the textbook paradigm provides the information
as a final tally (usually in numerical form). Whereas the most
important cognitive ability required to solve a Bayesian task in
the probability learning paradigm is frequency encoding (and
memory), the most useful cognitive abilities in the textbook
task paradigm are reasoning and calculation (for a discussion
of Bayesian reasoning in textbox tasks adopting a problem-
solving approach, see Johnson and Tubau, 2015). Note that the
distinction between (Bayesian) behavior in the context of the
probability learning paradigm and (Bayesian) reasoning in the
context of the textbook paradigm is akin to Hertwig et al.’s (2004)
distinction between decisions-from-experience and decisions-
from-descriptions. But there are two kinds of descriptions within
the textbook task paradigm: The statistical information can be
presented in terms of either conditional probabilities or natural
frequencies, which, as the introductory example illustrated, has
quite opposite effects on reasoning.

Performance in Bayesian Textbook
Problem Solving Depends on the
Representation Format

It is striking to see the differences obtained by the two research
paradigms (Gigerenzer, 2015; Mandel, 2015; Sirota et al., 2015b).
Whereas the probability learning paradigm depicts humans
and animals as approximate Bayesians (at least in the simple
tasks studied), early research using the textbook paradigm
arrived at a different conclusion. This discrepancy went mostly
unnoticed because cross-references between the researchers in
both paradigms have been rare. In their introductory note to the
present special issue, Navarrete and Mandel (2015) distinguish
three waves in the history of this research using the textbook
paradigm. The first wave was marked by Edwards (1968) with
his urns-and-balls problems. In the vignettes of these problems,
prior probabilities [i.e., p(H) and p(–H)] were communicated
but no likelihoods [i.e., p(D|H) and p(D|–H)]—although the
sample information that was given instead (e.g., 4 blue balls and
1 red ball) potentially allowed for calculating the corresponding
likelihoods. Edwards (1968) found that if people have to update
their opinions, they change their view in the direction proposed
by Bayes’ rule. However, he also reported that people are
“conservative Bayesians” in the sense that they do not update
their prior beliefs as strongly as required by Bayes’ rule.

A study by Eddy (1982) illustrates the second wave of research.
The question he asked was: Do experts reason the Bayesian way?
Eddy found that physicians’ judgments did not follow Bayes’ rule
when solving the following type of task (a prototypical Bayesian
situation):

The probability of breast cancer is 1% for a woman at age 40 who
participates in routine screening. If a woman has breast cancer, the
probability is 80% that she will get a positive mammography. If a
woman does not have breast cancer, the probability is 9.6% that she
will also get a positive mammography. A woman in this age group
had a positive mammography in a routine screening. What is the
probability that she actually has breast cancer?

According to Bayes’s rule, the answer is 7.8%, which can be
obtained by inserting the given information into Equation (2).
Yet Eddy (1982) reported that 95 out of 100 physicians estimated
this probability to be between 70 and 80%. He argued that
these physicians confused the conditional probability of breast
cancer given a positive mammogram with that of a positive
mammogram given breast cancer. To explain the failure of
Bayesian reasoning, Kahneman and Tversky (1972) suggested
the “representativeness heuristic,” although it remains unclear
whether the heuristic concurs with Eddy’s explanation because
this “one-word explanation” (Gigerenzer, 1996, p. 594) has never
been defined and formalized (see Gigerenzer and Murray, 1987).
Be that as it may, Kahneman and Tversky (1972) concluded: “In
his evaluation of evidence man is apparently not a conservative
Bayesian: he is not Bayesian at all” (p. 450).

Whereas the second wave attributed failure in Bayesian
reasoning to flawed mental processes, a third wave starting in
the mid-1990s (Gigerenzer and Hoffrage, 1995, 1999; Cosmides
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and Tooby, 1996) showed experimentally that much of the
problem lies in how risk is represented. Specifically, Gigerenzer
and Hoffrage established that it is not Bayesian reasoning per se
that is difficult but rather the format of information provided to
the participants. In Eddy’s (1982) task, quantitative information
was provided in conditional probabilities. Gigerenzer and
Hoffrage (1995) showed that such a representation format makes
the computation of the Bayesian posterior probability more
complicated than with natural frequencies. Natural frequencies
result from natural sampling and have historically been the
“natural” input format for the human mind (Kleiter, 1994;
Gigerenzer and Hoffrage, 1999, pp. 425–426). Presenting the
information in Eddy’s mammography task in terms of natural
frequencies yields the following description:

10 out of every 1000 women at age 40 who participate in routine
screening have breast cancer. 8 out of every 10 women with breast
cancer will get a positive mammography. 95 out of every 990 women
without breast cancer will also get a positive mammography. Here is
a new representative sample of women at age 40 who got a positive
mammography in a routine screening. How many of these women
do you expect to actually have breast cancer?

Answering this question amounts to solving Equation (3):

p(H|D) =
f (D&H)

f (D)
=

f (D&H)

f (D&H) + f (D&−H)
(3)

where f(D&H) stands for the natural frequency of joint
occurrences of D and H, f(D&–H) stands for the natural
frequency of joint occurrences of D and –H, and f(D) for their
sum. In the mammography problem, these two joint occurrences
are 8 and 95 (out of 1000 women), respectively, and hence there
are, in sum, 103 women who get a positive mammogram. Of
103 women who get a positive mammogram, 8 actually have
breast cancer. This relative frequency of 8/103 corresponds to
a posterior probability of 7.8%, the number that we already
computed using Equation (2). Note that natural frequencies
result from drawing N objects (e.g., 1000 in the above example)
at random from a larger population (or from taking the entire
population). Any decomposition of this sample of size N contains
natural frequencies, which can be interpreted only in relation to
each other and in relation to the total sample size N. Attempts
to illustrate what natural frequencies are by simply naming “1 of
10” as an example and in isolation from any other number of a
natural frequency tree misses this important point.

When information has been presented in terms of natural
frequencies, almost half of Gigerenzer and Hoffrage’s (1995)
student participants found the Bayesian answer. Among 160
gynecologists, the proportion of Bayesian answers increased from
21 to 87% for probabilities and natural frequencies, respectively
(Gigerenzer et al., 2007). The beneficial effect of natural
frequency representations has been replicated with experienced
physicians (Hoffrage and Gigerenzer, 1998; Bramwell et al.,
2006), patients (Garcia-Retamero and Hoffrage, 2013), judges
(Hoffrage et al., 2000), and managers (Hoffrage et al., 2015),
and has been used to design tutorials on Bayesian reasoning

(Sedlmeier and Gigerenzer, 2001; Kurzenhäuser and Hoffrage,
2002).

Textbook problems with information provided in terms of
natural frequencies are in fact close to the probability learning
paradigm [see the similarity between Equations (1) and (3)].
In contrast, textbook problems with information provided in
terms of probabilities do not bear much resemblance to this
paradigm [note the difference between Equation (2), with its
three pieces of information, and Equation (1), with its two pieces
of information]. Natural frequencies are related to the probability
learning paradigm because they are the final tally that result from
what has been called “natural sampling” (Kleiter, 1994) which, in
turn, can be conceived as the process of sequentially observing
one event after the other in a natural environment. In other
words, natural sampling is the process underlying experiential
learning—the paradigm in which humans and animals tend to
perform well (Hasher and Zacks, 1979; Gallistel, 1990). Thus,
it is no surprise that the beneficial effect of natural frequency
representations could be found even for 4th and 5th graders (Zhu
and Gigerenzer, 2006; Gigerenzer, 2014; Multmeier, unpublished
manuscript; see also Till, 2013). The comparison between
Equations (2) and (3) shows why natural frequencies facilitate
Bayesian inference. It simplifies computation of the posterior
probability: The representation does part of the computation
(Gigerenzer and Hoffrage, 2007; Hill and Brase, 2012; Brase and
Hill, 2015).

In subsequent work, the power of representation formats has
been discussed in a wider context that also embraces important
issues such as trust, transparency, or institutional design, to
name a few (see Gigerenzer, 2002, 2014; Gigerenzer et al., 2007;
Gigerenzer and Gray, 2011). As a consequence of all this research,
of various activities to propagate it, and of the desire and
pressure to improve Bayesian inference in several domains, the
use of natural frequencies is recommended by major evidence-
based medical societies, including the Cochrane Collaboration
(Rosenbaum et al., 2010), the International Patient Decision Aid
Standards Collaboration (Trevena et al., 2012), the Medicine and
Healthcare Products Regulatory Agency (the United Kingdom’s
equivalent to the Food and Drug Administration; see Woloshin
and Schwartz, 2011), and the Royal College of Obstetricians and
Gynecologists (2008). Moreover, natural frequencies are used in
some of themost important school textbooks and in textbooks for
future teachers of stochastics in school in the German speaking
countries (Martignon, 2011), and they are already part of the
school syllabus in the United Kingdom (Spiegelhalter and Gage,
2014).

Yet, as mentioned in the introduction, these developments are
severely limited by the fact that up to now, the studies on which
they are based used only simple versions of Bayesian tasks with
one dichotomous cue and two hypotheses.

Types of Bayesian Inference Tasks: The
Basic Task and Complex Tasks

There is one important difference between real-life probability
learning tasks and textbook problem solving. Compared to most
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real-life situations, the textbook problems in the literature on
Bayesian reasoning are relatively simple. The vast majority of
them involve two hypotheses and one dichotomous cue. As
mentioned before, we refer to such a task as a basic task. Many
real-life situations, in contrast, are more complex. We see three
ways in which the basic task can be extended; Figure 1 depicts
the basic task (Figure 1A) and these extensions (Figures 1B–E).

One extension involves a situation with a cue having
more than two levels (Figure 1B). In fact, many variables are
polychotomous. Others may even be continuous and have been
divided, for various reasons, into several categories by using
cutoffs. For instance, mammograms obtained in a screening

A B

C

E

D

FIGURE 1 | Generalization of the basic Bayesian inference task (with

two hypotheses and one dichotomous cue; A) to more complex tasks

(B–E). The layers below the hypotheses depict the cue values (or data).

Unknown cue values are denoted as “?” (B). For a pair of two hypotheses (one

being the complement of the other), these are denoted as H and –H (A,B,D,E),

and for a triple of hypotheses, they are denoted as H1, H2, and H3 (C).

program are not simply positive or negative but depict breast
cancers that vary in size, shape, or density, the fact of which
led to the BI-RADS classification that distinguishes multiple
categories. Generally speaking, for polychotomous cues, there is
not only one hit rate, p(D|H), and one false-alarm rate, p(D|–H),
but there are, both for H and for –H, as many likelihoods
as there are categories for the data: p(D1|H), p(D2|H),...,
p(Dn|H) and p(D1| –H), p(D2| –H),..., p(Dn|–H), respectively.
Correspondingly, there are as many posterior probabilities
(with their complements) as there are data categories: p(H|D1),
p(H|D2),..., p(H|Dn). Figure 1B, illustrates a situation used in the
studies reported below, namely a cue that has either a positive, a
negative, or an unknown value.

Figure 1C depicts a situation with three hypotheses. For
instance, a fever may have many different causes, so no physician
will prescribe a drug on the basis of fever alone but will
ask further questions to assess the probabilities for multiple
candidate reasons. Accordingly, while there are two likelihoods
in the basic task—the hit rate, p(D|H), and the false-alarm rate,
p(D|–H)—there are now as many conditional probabilities for
the complex task as there are hypotheses: p(D|H1), p(D|H2),...,
p(D|Hm). The same applies for the posterior probability, where
there are no longer just two, p(H|D) and p(–H|D), but rather as
many probabilities as there are hypotheses, p(H1|D), p(H2|D),...,
p(Hm|D).

Finally, Figures 1D,E depict a situation with more than one
cue. Asking for more information after the doctor has learned
that the patient has fever amounts to inspecting more cues or
performing additional tests.

How do natural frequencies affect Bayesian performance in
these three complex tasks? Whereas Gigerenzer and Hoffrage
(1995) left open whether the beneficial effect of natural
frequencies can be generalized to more complex tasks, Massaro
(1998) questioned, as mentioned before, this possibility for
situations with more than one cue. Unlike in Figure 1D, he
did not add one layer per cue but instead arranged the
possible combinations of cue values—for a situation with two
cues—in one single layer. That is, directly under the node
depicting that “hypothesis H is true,” he placed four branches
depicting the four possible combinations of two dichotomous
cues: +C1&+C2,+C1&–C2, –C1&+C2, and –C1&–C2 (where +
and – denote positive and negative cue values for the two cues
C1and C2). Moreover, he argued that “it might not be reasonable
to assume that people can maintain exemplars of all possible
symptom configurations” (p. 178). However, he did not provide
any empirical evidence for this claim.We fill this gap by analyzing
how participants perform in complex Bayesian tasks dependent
on whether information is provided in terms of probabilities or
natural frequencies.

Study 1: Bayesian Inferences in Complex
Tasks

Method
Participants were advanced medical students (N = 64) of
the Free University of Berlin. Each of them was asked to
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work on four medical diagnostic tasks. Task 1 was a Bayesian
task corresponding to Figure 1B, in which we extended Eddy’s
mammography task by adding unclear test results. Task 2 was
a Bayesian task corresponding to Figure 1C, where a test could
detect two diseases, namely Hepatitis A and Hepatitis B. Tasks 3
and 4 were Bayesian tasks with two and three cues, corresponding
to Figure 1D and Figure 1E, respectively. In Task 3, breast cancer
had to be diagnosed based on a mammogram and an ultrasound
test. In Task 4, an unnamed disease had to be diagnosed on the
basis of three medical tests, simply named Test 1, Test 2, and Test
3. The participants could work on the four tasks at their own pace,
which took them, on average, about 1 h in total.

Each participant received the statistical information for two
of the four tasks in probabilities and the other two in natural
frequencies. As an illustration, Table 1 displays the two different
versions (probability version vs. natural frequency version) of
Task 3. The exact formulations of Tasks 1, 2, and 4 can be seen
in Appendix I (Supplementary Material). Note that for Tasks 3
and 4, not all natural frequencies on the lowest layer (i.e., for all
combinations of the two and three cues, respectively) were stated,
but only those for which all tests were positive. Besides requesting
a numerical answer to each of these four tasks, we also asked
the participants to make notes and to justify their answers so
that we could better understand their reasoning processes. Pocket
calculators were not allowed. Following Gigerenzer and Hoffrage
(1995), we classified a response as Bayesian if it was either the
exact Bayesian solution or rounded to the next full percentage
point.

Figure 2 illustrates the frequency tree for the information
provided in Task 3. Note, however, that the participants in Study
1 were neither presented with trees nor told to construct them;
rather, they had to solve the task based on the wording alone1.

1Note that the wording of the probability version of Task 3 is mute on the question

of whether or not the two tests are independent of each other. Even though each

of the two tests is dependent on the disease, they are indeed independent of each

other for any level of the variable disease, and we anticipated that our participants

(advanced medical students) knew this. An analysis of the participants’ protocols

revealed that all of them implicitly made this assumption. Participants’ intuitive

assumption of independence was also found in Task 4, where information on three

unnamed tests was provided. This finding is in accordance with the finding of

Waldmann and Martignon (1998) that people assume conditional independence

between cues as long as there is no explicit evidence suggesting dependency.

Results
Figure 3 displays the percentage of correct Bayesian inferences
for each of the four tasks. In all of the tasks, replacing probabilities
with natural frequencies helped the medical students make
better inferences. The percentage of correct Bayesian inferences
averaged across the probability versions of the four tasks was
7%; across the natural frequency versions it was 45%. Natural
frequencies were most effective in Task 1, where the difference in
terms of participants’ performance between the natural frequency
and the probability version was 59% – 1%= 58 percentage points.
In the other three tasks, the increase in participants’ performance
from the probability versions to the natural frequency versions
was about 30 percentage points. A comparison of Tasks 3 and 4
suggests that, for both the probability and the natural frequency
versions, it did not matter whether information was provided
on two or on three cues or whether this information referred to
named or unnamed tests and diseases.

Discussion
Study 1 showed that natural frequencies facilitate Bayesian
reasoning in four complex tasks, relative to probabilities. How
does the effect of natural frequencies on solving complex tasks
compare to their effect on solving a basic task? One might
expect that Bayesian performance in complex tasks decreases
in both formats and—due to bottom effects for the probability
format—that the facilitating effect of natural frequencies is less
pronounced for complex tasks. However, that does not seem to
be the case. Both in the present Study 1 and in Gigerenzer and
Hoffrage (1995, Study 1), who used the same kind of problems,
albeit for basic tasks, the average increase in performance when
given natural frequencies rather than probabilities was similar,
38 percentage points in the present study (averaged across
the 4 tasks) and 30 percentage points in their study. Thus,
the comparison between these studies suggests the surprising
conclusion that increased complexity may not decrease the effect
of natural frequencies much. Whether that also holds for levels of
complexity that go beyond those studied here is unknown.

Study 2: Transfer Learning

Sedlmeier and Gigerenzer (2001) and Kurzenhäuser and
Hoffrage (2002) have shown that the beneficial effect of

TABLE 1 | Study 1, Task 3: A generalization of the basic Bayesian task to a more complex task with two cues (corresponding to Figure 1D).

Probability version Natural frequency version

The probability of breast cancer is 1% for a woman at age 40 who participates in

routine screening. If a woman has breast cancer, the probability is 80% that she will

have a positive mammogram. If a woman does not have breast cancer, the

probability is 9.6% that she will also have a positive mammogram. If a woman has

breast cancer, the probability is 95% that she will have a positive ultrasound test. If a

woman does not have breast cancer, the probability is 4% that she will also have a

positive ultrasound test.

100 out of every 10,000 women at age 40 who participate in routine

screening have breast cancer. 80 out of every 100 women with breast

cancer will receive a positive mammogram. 950 out of every 9900 women

without breast cancer will also receive a positive mammogram. 76 out of 80

women who had a positive mammogram and have cancer also have a

positive ultrasound test. 38 out of 950 women who had a positive

mammogram, although they do not have cancer, also have a positive

ultrasound test.

What is the probability that a woman at age 40 who participates in routine screening

has breast cancer, given that she has a positive mammogram and a positive

ultrasound test?

How many of the women who receive a positive mammogram and a

positive ultrasound test do you expect to actually have breast

cancer?
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FIGURE 2 | Visual representation of the information provided in the

natural frequency version of Task 3 of Study 1. “M” and “U” denote

mammography and ultrasound Test, and “+” and “−” denote positive and

negative test results, respectively.

FIGURE 3 | Percentage of correct inferences in the four tasks used in

Study 1. The bars display standard errors.

presenting information in natural frequencies can be enhanced
by teaching people to use this representation. In one of
their studies, Sedlmeier and Gigerenzer gave two groups of
participants a computerized tutorial: One group was taught
how to represent probabilities in terms of natural frequencies,
supported by two visual aids—frequency grid and frequency tree
(representation training); the other was taught Bayes’ rule for
probabilities (rule training). After training, participants in each
group were tested on tasks in which the statistical information
was always provided in terms of probabilities. The immediate
learning success for the representation training group was an
improvement from 10 to 90% Bayesian answers, compared to an
improvement from 0% to about 65% for the rule training group.

More important, the improvement in the representation training
condition was stable over time. Even 5 weeks after training, the
performance of the participants who had learned to use natural
frequencies remained a high 90%, whereas the performance of
the group with rule training dropped to about 20%. These results
were obtained for basic Bayesian tasks.

In Study 2 we addressed the question of whether in place of
a computerized training program, a simple written instruction
on how to solve a basic task could improve participants’ ability
to solve complex tasks. Extending Study 1, which investigated
whether the beneficial effect of presenting information in terms
of natural frequencies could also be observed for complex
Bayesian tasks, Study 2 investigated whether the beneficial effect
of teaching Bayesian reasoning by training representations with a
basic task can also be observed when participants are later tested
with complex Bayesian tasks (for which they did not receive any
training).

Method
We recruited advanced medical students (N = 78) from Berlin
universities (none of them was a participant in Study 1). In the
first step, each participant received a two-page instruction sheet
on how to solve the mammography task, that is, a basic task
with two hypotheses and one dichotomous cue. There were three
different instructions, and participants were randomly assigned
to one of them [all three instructions are shown in Appendix
II (Supplementary Material)]. For Group 1, the mammography
task was presented in terms of probabilities, and participants were
shown how they could solve it by inserting the probabilities into
Bayes’ rule. For Group 2, the mammography task was presented
in terms of probabilities, but here participants were instructed
how to translate the probabilities into natural frequencies, how
to place these frequencies into a tree, and how to determine the
answer from this tree. For Group 3, the mammography task was
presented in terms of natural frequencies (but no probabilities
were provided), and these participants also received instructions
on how to solve it by means of the frequency tree.

After studying their instruction sheet, participants were given
two test tasks—the same that were used in Task 1 (one cue with
three cue values) and Task 3 (two cues with two cue values each)
in Study 1. Participants of Group 1 and 2 received probability
versions of these tasks, and participants of Group 3 received
the natural frequency version. The instruction sheet was at their
disposal while working on the complex tasks.Table 2 summarizes
the design of Study 2.

Results
Figure 4 displays the percentages of Bayesian inferences in Tasks
1 and 3 separately for the three experimental groups. In both
tasks, participants’ performance was about the same, which
suggests that the differences found in Study 1 disappear when
there is an instruction on the basic task.

For the basic task, participants in Group 1 learned how to
insert probabilities into Bayes’ rule. Then they were tested on
whether this training generalizes to applying Bayes’ rule to more
complex tasks in which information is presented in probabilities.
Compared to Groups 2 and 3, this group performed worst when
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TABLE 2 | Experimental design in Study 2: Three ways to instruct participants to solve the mammography task.

Group 1 (N = 27) Group 2 (N = 25) Group 3 (N = 26)

Basic task used for

instruction

Mammography task,

formulated in terms of

probabilities

Mammography task, formulated in terms of

probabilities

Mammography task, formulated in terms of

natural frequencies

Solution explained in

instruction

How to insert probabilities

into Bayes’ rule

(a) How to translate probabilities into natural

frequencies

How to place these natural frequencies into a

frequency tree and to extract the correct

answer

(b) How to place these natural frequencies into

a frequency tree and to extract the correct

answer

Complex tasks tested Tasks 1 and 3 of Study 1

(both tasks in probabilities)

Tasks 1 and 3 of Study 1 (both tasks in

probabilities)

Tasks 1 and 3 of Study 1 (both tasks in natural

frequencies)

For details, see Appendix II in Supplementary Marerial.

FIGURE 4 | Percentage of correct inferences for Tasks 1 and 3,

depending on how participants were instructed to solve Bayesian

inference tasks in Study 2. The bars display standard errors. Tasks 1 and 3

are the same test tasks as those that were used for Study 1. The three

instruction conditions are summarized in Table 2 and can be seen in full length

in Appendix II (Supplementary Material).

confronted with complex Bayesian tasks (18% for Task 1 and 22%
for Task 3). Nonetheless, their percentage of Bayesian inferences
was substantially higher compared to that of participants of
Study 1 for the same tasks (1% for Task 1 and 6% for Task 3;
see Figure 3). Hence, we can conclude that the instruction had
a positive effect: At least some of the participants managed to
extend Bayes’ rule to a more complex task involving an unclear
test result (which amounts to adding a corresponding term to
the denominator of Equation 2) and to a more complex task
involving the results of two different tests (which amounts to
applying Bayes’ rule twice, that is, first computing the posterior
probability after the first test result became known, and then
using this probability as a prior probability to compute the
posterior probability after the result of the second test became
known).

Participants in Group 2 had learned, for the basic task, how
to translate probabilities into natural frequencies. In spite of

also being tested on tasks with information presented in terms
of probabilities, 40% of participants in Group 2 obtained the
correct solutions (this percentage happened to be identical for
Tasks 1 and 3). These participants arrived at these solutions by
performing the following steps: First, they correctly translated
five probabilities (rather than three, as was the case for the basic
task) into natural frequencies. To construct a corresponding tree
they added nodes to the tree they had seen in the instruction.
For Task 1 they had to add two nodes on the lowest layer (as
can be seen when comparing Figure 1A and Figure 1B), and for
Task 3 they had to add an additional layer for the outcomes of
the ultrasound test (as can be seen when comparing Figure 1A

and Figure 1D). From these modified trees they finally extracted
the frequencies needed for the Bayesian solutions in the form of
“Laplacian proportions,” that is, the ratio of relevant cases divided
by the total number of cases.

The participants of Group 3 were the only ones who were
trained and tested with natural frequencies. This instruction
method led to a high performance rate of 73% (Task 1) and
81% (Task 3). In contrast to Group 2, participants of Group
3 only needed to extend frequency trees; no translation of
probabilities into frequencies was required. Recall that without
prior instruction on the basic task, performance on the same
two tasks was lower, 59 and 38%, respectively (Study 1).
When comparing the performance gain for Task 1 (from 59%
in Study 1, without instruction, to 73% in Study 2, with
instruction) with the corresponding performance gain for Task
3 (a rise from 38 to 81%), it becomes obvious that instructions
based on frequency representations affected the two types of
generalizations differentially. Analyzing participants’ protocols
confirmed this pattern: Participants found it easier to take the
tree from the basic task and to add another layer than to add
nodes within a layer. In other words, generalizing the basic task
(Figure 1A) to Task 3 (Figure 1D) seemed to be more intuitive
for the participants than generalizing it to Task 1 (Figure 1B).

Discussion
Previous studies have established the usefulness of teaching
how to represent probability information in terms of natural
frequencies (Kurzenhäuser and Hoffrage, 2002; Sedlmeier and
Gigerenzer, 2001; Ruscio, 2003; Sirota et al., 2015a). Study 2
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extends these findings by showing that a simple instruction on
how to solve a basic Bayesian task can amplify performance in
complex tasks. The highest levels were obtained when both the
trained task and the tested task were consistently formulated in
terms of natural frequencies. That is, it is largely sufficient to
instruct people in using natural frequencies in the basic task in
order to ensure a generalization to and solution of complex tasks,
as long as the information in both cases is in natural frequencies.

General Discussion

This paper has two results, one conceptual and one empirical.
Figure 1 shows how the natural frequency tree for the basic
task (Figure 1A) can be generalized to various complex Bayesian
tasks. As these trees (displayed in Figures 1B–E) demonstrate,
the possibility of communicating statistical information in terms
of natural frequencies is not restricted to the basic task with one
dichotomous cue for inferring which of two hypotheses is true.
Being able to generalize from these trees is important because in
many real-life situations such as medical diagnosis or court trials,
information is not dichotomous, several (rather than only one)
pieces of evidence are available, and/ormore than two hypotheses
are considered.

With Study 1, we have empirically shown that, despite the
trees for complex tasks having more branches than in the tree
for the basic task, the facilitating effect of natural frequencies is
essentially in the same order of magnitude as in previous studies
using the basic task. Study 2 showed that instructing people how
to use natural frequencies to solve the basic task was helpful for
solving complex Bayesian tasks. Apparently, the best method is to
instruct directly how to reason with natural frequencies and also
to test people on natural frequencies. Instruction adds to themere
effect of representation demonstrated in Study 1. In contrast
to claims made in the literature (Massaro, 1998), each of our
studies show that the power of natural frequencies generalizes to
complex tasks. In the remainder of this paper, we will discuss the
power (and limits) of natural frequencies and that of instructions.

Power (and Limits) of Natural Frequencies
in Complex Tasks

This study has shown that the natural frequency approach
to Bayesian reasoning is powerful enough to be generalized
to complex tasks and to allow for good performance despite
increasing numbers of cues and cue values. How do natural
frequencies support reasoning? Gigerenzer and Hoffrage (1995)
demonstrated in detail that natural frequencies reduce the
number of computational steps necessary for Bayesian inference
and derived seven specific results, including that relative
frequencies do not simplify the computation. Subsequent work
has used different terms for the same explanation: the subset
principle, set inclusion, or the nested-set hypothesis (for a
discussion of these terms and their relationship to natural
frequencies, seeHoffrage et al., 2002; Brase, 2007; Ayal and Beyth-
Marom, 2014). Moreover, Ayal and Beyth-Marom also quantified
the computational simplification and counted the mental steps or

elementary information processes as a measure of the cognitive
effort required to complete the task (for a similar analysis, see
Johnson and Tubau, 2015).

Extending this analysis to complex tasks is straightforward
and reveals that natural frequencies require less cognitive effort
not only for basic tasks but also for complex tasks. However,
even natural frequencies require computation and effort. Hence
it does not come as a surprise (1) that for tasks using natural
frequencies, the proportion of Bayesian inferences is less than
100% and (2) that variables related to participants’ computational
abilities can account for variance in Bayesian performance. For
instance, performance in Bayesian inference tasks—both for
probability and natural frequency representations—is correlated
with numeracy (Chapman and Liu, 2009; Johnson and Tubau,
2015), numerical skills (Tubau, 2008), and fluid cognitive ability
and thinking disposition (Sirota et al., 2014) (for a discussion of
individual differences in Bayesian reasoning, see Brase and Hill,
2015).

At the same time, natural frequency representations have
their limits. As mentioned earlier, Massaro (1998) argued that
“a frequency algorithm will not work” because “it might not be
reasonable to assume that people can maintain exemplars of all
possible symptom configurations” (p. 178). We have meanwhile
seen that in a textbook task, half (and with instruction, three
quarters) of our participants were able to process the statistical
properties of three cues in a Bayesian way when this information
was represented in terms of natural frequencies. Notwithstanding
this result, we shareMassaro’s concern that at some point humans
are no longer able to store the frequencies for all possible
conjunctions of cues in memory. In fact, in a situation with 10
dichotomous cues, the corresponding frequency tree would carry
2048 natural frequencies on the lowest layer, and with 20 cues this
number would be over 2 million. It may nonetheless be possible
to learn the statistical relationships between hypotheses and cues
as the number of cues grow larger—after all, for two hypotheses
and a dichotomous cue there are only four proportions (or
probabilities) that are relevant and need to be learned: p(D|H),
p(D|–H), p(H|D), p(H|–D). Learning the statistical relationships
for conjunctions of cues, however, is a huge challenge because the
number of relevant proportions would no longer grow linearly
with the number of cues (four per cue) but instead exponentially.

As the number of cues grows larger, the difference between
real-life settings and textbook tasks becomes increasingly
important. Whereas it is difficult, if not impossible, to memorize
and manage the relevant information in a real-life setting, which
corresponds to a probability learning paradigm, it is possible
to represent the natural frequencies required for Bayesian
inferences in a textbook task. But even natural frequency
representations in textbook tasks have their limits. These may
not yet be reached for three cues, as our empirical findings
reported above suggest, but draw nearer as the tree grows larger.
The two major limits are practical feasibility and robustness.
First, practical feasibility is hampered by the sheer amount
of information that needs to be communicated—recall that a
frequency tree for two hypotheses and 10 (20) dichotomous cues
would have 2048 (>2,000,000) natural frequencies on the lowest
layer. Second, and relatedly, for many real-life applications the
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number of observations for a particular combination of cues will
most likely be relatively small. Because of the resulting estimation
error, the Bayesian inferences may have fairly wide confidence
intervals and may thus not be very robust.

Fast-and-frugal Trees

What tools remain for the boundedly rational human mind
(and for animals) in complex situations with a vast number of
cues? We assume that the human mind is equipped with an
adaptive toolbox containing simple heuristics that allow “fast-
and-frugal” decisions, even in highly complex environments
(Gigerenzer et al., 1999, 2011; Gigerenzer and Selten, 2001;
Todd et al., 2012; Hertwig et al., 2013). These simple heuristics
are helpful when making inferences in situations under limited
time, with limited knowledge, and within our cognitive and
computational constraints. One of the characteristics of these
simple heuristics is that they reduce information intake and
processing. Complexity—and note that this is the direction in
which we extended the basic task—can be reduced tremendously
by assuming conditional independence between cues, which is
exactly what participants seem to do unless they have strong
evidence speaking against this assumption (Waldmann and
Martignon, 1998; Martignon and Krauss, 2003). To the extent
that this assumption is justified, it is no longer necessary to store
the millions of possible conjunctions of 20 dichotomous cues in
memory, but it would be sufficient to represent the predictive
power of a cue independent of the other cues.

The reduction of complexity can be achieved in many ways.
Radically pruning a natural frequency tree for many cues while
maintaining all cue information converts it into a so called

fast-and-frugal tree—which is one of the heuristics analyzed by
the Center for Adaptive Behavior and Cognition at the Max-
Planck Institute for Human Development in Berlin (Martignon
et al., 2003). Figure 5 shows an example of such a classification
tree, based on Green and Mehr (1997), for classifying patients
as at high or low risk for heart disease. In Figure 5A, the
full natural frequency tree for three cues is exhibited. Note
that this tree displays the hypotheses (high risk vs. low risk
of heart attack) no longer at the second layer, as the trees in
Figure 1 do, but at the very lowest layer. Whereas the trees in
Figure 1 are the usual natural frequency trees that communicate
data given a hypothesis, the tree in Figure 5A displays natural
frequencies after Bayesian updating, which, in turn, enables
the classification of patients based on symptoms. Note that
the trees in Figure 1 and Figure 5 carry natural frequencies
(for a direct comparison of these two forms of grouping a
given set of natural frequencies, see Hoffrage et al., 2015,
Figures 1B,C).

The tree in Figure 5A can be radically pruned. The resulting
fast-and-frugal tree, exhibited in Figure 5B, is “fast and frugal”
according to the definition given in Martignon et al. (2008):
At each node of the tree, the choice is either to stop further
information acquisition and make a diagnosis or to collect
more information. Specifically, in a first step, all 89 patients
are checked for elevated ST segment in their electrocardiogram.
If the answer is positive (ST+), they (n = 33) are classified
as high risk, without considering any further information. The
remaining 56 patients are checked for chest pain as the main
symptom. If the answer is no (CP–), they (n = 29) are
classified as low risk. The remaining 27 patients are checked
for whether any other symptom is present. If the answer is

A B

FIGURE 5 | (A) Full natural frequency tree for the Green and Mehr (1997) data on 89 patients with severe chest pain. The goal is to determine whether these patients

are at high or low risk for heart disease. ST denotes a particular pattern in the electro cardiogram, CP denotes chest pain, OS denotes “at least one other symptom,”

“+” denotes present, and “–” denotes absent. Numbers in circles denote number of patients. (B) Fast-and-frugal classification tree obtained by pruning the natural

frequency tree. The ranking of cues and the exit structure are determined by the ZigZag method (in the present case, ZigZag-val and ZigZag-sens, as explained in the

text, lead to the same trees). Questions in rectangles specify which cues are looked up at this level for each of the patients in the corresponding circles in (A).

Depending on whether this cue value is positive or negative, either a new question is asked or the tree in (B) is exited and a classification decision is made (oval). The

accuracy of these classification decisions is shown by the number of patients below these oval exit nodes: The number of patients who actually had a heart attack is

displayed in the left of the two adjacent end nodes in the lowest layer, and the number of those who did not have one is displayed in the corresponding end node on

the right. All patients to the left of the vertical bar in Figure 1B are classified as high risk, and all patients to its right are classified as low risk.
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yes (OS+), they (n = 17) are classified as high risk; the
others (OS–) are classified as low risk (n = 10). Each tree
level corresponds to one cue, and the ranking of cues can
follow simple heuristic procedures. Green and Mehr reported
that diagnosis according to this fast-and-frugal tree was more
accurate than both physicians’ clinical judgment and logistic
regression.

Two important features of the construction of a fast-and-
frugal tree are the ranking of cues and its exit structure, that is,
whether an exit is to the left or to the right (with the convention
that branches defined by positive cue values will always be
displayed at the left). One possible ranking, called the ZigZag-
val method, is achieved by using the predictive values of the cues.
The positive predictive value of a cue is the proportion of cases
with a positive outcome among all cases with a positive cue value
[i.e., p(H|D)] and the negative predictive value is the proportion of
cases with a negative outcome among all cases with a negative cue
value [i.e., p(–H| –D)]. The ZigZag-val tree has a left exit for levels
1 to k, where k is the smallest natural number so that 1/2k is less
than the ratio of the base rate of the disease divided by the base
rate of healthy patients. For the levels after the kth level, the tree
alternates between “yes” and “no” exits at each level, and a choice
is made according to the cue with the greatest positive (for “yes”)
or negative (for “no”) predictive value among the remaining cues
(Martignon et al., 2008). A second method for tree construction,
ZigZag-sens, has a left exit for levels 1 to k. For the levels after the
kth level, the tree alternates between “yes” and “no” exits at each
level, and a choice is made according to the cue with the greatest
positive sensitivity [i.e., the greatest p(D|H)] or specificity [i.e.,
the greatest p(–D| –H)] among the remaining ones. Ties in the
process are broken randomly.

Fast-and-frugal trees—those ranked according to positive
and negative predictive value or according to sensitivity and
specificity—radically reduce the complexity of full natural
frequency trees. Their performance can be impressive. In the tree
displayed in Figure 5, the lowest layer in Figure 5A displays the
number of patients who after classification actually had a heart
attack (left end nodes) and those who did not (the corresponding
end nodes to the right). The vertical bar in the lowest layer
can be seen as cutoff. The fast-and-frugal tree in Figure 5B is
arranged so that all nodes to its left (n = 50) are classified
as high risk (yielding 15 hits and 35 false alarms), and every
one of the 39 cases to right of the bar are classified as low
risk (yielding 0 misses and 39 correct rejections). In particular,
fast-and-frugal trees ranked by sensitivity and specificity yield
ROC curves with large areas underneath. Such properties are
fundamental for medical doctors to reduce costly errors, in
particular, misses (for ROC curves and fast-and-frugal trees,
see Luan et al., 2011).

Another class of trees that reduce complexity is that based
on CART (Breiman et al., 1984); these trees are simple in
execution but often require complicated computations for their
construction. To reduce complexity while maintaining the tenets
of the Bayesian attitude, the strategy is to adopt the Naïve Bayes
approach. Its simplification consists of assuming that cues are
independent conditional on presence or absence of the disease,
so that the probability of disease given cues can be estimated as

the product of the conditional probabilities of disease given each
one of the cues.

However, the tradition among practitioners has been to make
use of classification strategies based on some type of regression.
For binary classification, logistic regression is the standard model
used by practitioners. When using logistic regression one assigns
a value of 0 to the “low” state of Hk and a value of 1 to the “high”
state of Hk. The logistic regression equation is:

p (D|H1, . . . ,Hn)

1− p (D|H1, . . . ,Hn)
= eβ0+

∑
k βkHk (4)

where the parameters are typically estimated from data.
Laskey and Martignon (2014) compared the predictive

accuracy of these five classification methods using 11 data sets
taken frommedical domains. When the models were constructed
based on 90% of the data set, Naïve Bayes performed best,
achieving 80% accuracy, while Logistic Regression achieved 79%.
CART, like the ZigZag-val tree, achieved 74% accuracy, while
the ZigZag-sens tree achieved 72% accuracy (note that in Laskey
and Martignon, ZigZag-val is labeled ZigZag tree and ZigZag-
sens was computed but not reported). When the models were
constructed based on 50% of the data, CART, ZigZag-val, and
ZigZag-sens performed at the same level as when being fitted
to 90% of the data, whereas Logistic Regression and Naïve
Bayes lost one percentage point each. Even more surprising,
when the training set amounted to only 15% of the data set,
ZigZag-val outperformed logistic regression and CART. In an
uncertain world, where large numbers of correlations need to
be estimated, fast-and-frugal trees can reduce estimation error
and can have a competitive advantage over more complex
strategies, in particular for small learning samples (Luan et al.,
2011).

Predictive accuracy is not the only important criterion in
medical diagnosis. It is often essential to make a diagnosis
quickly or with limited diagnostic information. All in all, fast-
and-frugal trees make it possible to act on limited information,
and by reducing estimation error, they can perform competitively
in situations entailing high complexity and uncertainty. They
accomplish this by inverting natural frequency trees, so that the
outcome (or hypothesis) is no longer displayed at the top of the
tree (as in Figure 1) but at the lowest layer (as in Figure 5A).
Subsequently, they can be pruned by cutting off branches, that
is, by introducing an exit at every layer of the tree (as in
Figure 5B).

Cue Merging

We will now discuss another way of reducing tree complexity,
which amounts to merging multiple cues into one single cue.
It has been studied in a probability learning task by Garcia-
Retamero et al. (2007a) and Garcia-Retamero et al. (2007b).
Participants had to make pair comparisons based on three cues,
C1, C2, and C3, with a validity (i.e., proportion of correct
inferences) of 80, 60, and 60%, respectively. The cues were not
independent. Specifically, although the cues C2 and C3 had a
relatively low validity, they could be merged—by applying simple
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Boolean algebra—into one cue that had a validity of 100%. For
instance, if C2 ANDC3 was present, then the alternative to which
the cue pointed was correct in 100% of the cases (in two other
conditions, we constructed environments in which merging two
cues with the OR combination and the XOR combination created
a new cue with a validity of 100% as well). Participants were
not informed about this structure, but they were told that the
three cues represent whether some drugs have been given to
two patients. Their task was to predict which of two patients
had the higher blood pressure. In these studies, the mental
models of the participants were manipulated. In one condition,
participants were informed that the three drugs operate in three
different systems (hormonal, nervous, blood) and in the other
condition that they operated within the same system. Those
participants who had been told that the three drugs operated via
different systems assumed independence and did not detect the
hidden cue structure. By contrast, a majority of those participants
who had been informed that the drugs operated via the same
system could not safely exclude independence and did detect
the structure. In a mouselab task, they immediately clicked C2

and C3, inspected both values, and only if the merged cue was
not present did they request C1 (note that they started with
C2 and C3 even though each of these had a lower validity
than C1).

As this study demonstrates, participants assume
independence by default but can detect dependencies if
these exist. Such detection is easy with a natural frequency
representation, which obviously can be constructed even in a
probability learning task. Once participants have learned that
cues can be merged, they treat this new cue as a single one, even
though it is composed of two (similar to the term bachelor, which
requires the presence of two features, male and unmarried).
This empirical demonstration brings to mind Green and Mehr’s
(1997) fast-and-frugal tree, in which one of the nodes also
contains a merged cue—in that case, an OR conjunction of five
cues (labeled “other symptom”; Figure 5B).

The common denominator between fast-and-frugal trees
and cue merging is that both can simplify the structure
of a complex natural frequency tree. Both exploit certain
structures of information (such as conditional dependence)
and are “ecologically rational” if these structures are present.
Constructing fast-and-frugal trees amounts to inverting complex
natural frequency trees (with a hypothesis at the top layer) into
simple classification trees (with data at the top) that implement
one-reason decision making. Such trees perform well if some
cues are so informative that less predictive cues no longer add
substantial predictive value and can hence be ignored. Cue
merging amounts to combining several cues into one; these
merged cues can lead to better inferences than any of the single
cues used separately. In general, fast-and-frugal heuristics—
including fast-and-frugal trees and simple heuristics for pair
comparison, with or without merged cues—are ecologically
rational if they are adapted to the structure of information in
the environment (Martignon and Hoffrage, 1999, 2002; Todd
et al., 2012). Future research has to address the question of
what the crucial variables (e.g., number of cues) are that trigger
switching from being a Bayesian to being fast and frugal.

For a first step in this direction, see Martignon and Krauss
(2003), and for an exploration of Bayesian inferences as a
function of task characteristics, see Hafenbrädl and Hoffrage
(2015).

The Effect of Natural Frequencies Can Be
Amplified by Visual Representations

In Study 2, we used natural frequencies to instruct participants
how to reason the Bayesian way. In this context, we also
presented the frequency tree to participants (see Appendix II
in Supplementary Material). Such a tree supports any text in
explaining natural frequencies through a visualization of the
information structure relevant to solve a Bayesian inference
task. But trees are not the only tool that can serve this
function. Others are icon arrays, Euler diagrams, frequency grids,
unit squares, and roulette wheel diagrams (for an overview
see Binder et al., 2015; Mandel, 2015). Garcia-Retamero and
Hoffrage (2013) demonstrated that patients’ performance in a
basic Bayesian inference task could be improved through a
frequency grid whose effect is above and beyond that of natural
frequency representation in the written text. The most common
visualizations used in teaching statistics in schools, however, tend
to be 2×2 tables and tree diagrams, both of which explicitly
contain numbers. Note that these visual aids can make use of
natural frequencies or probabilities and improve participants’
performance when natural frequencies are used: In a study
by Steckelberg et al. (2004), the beneficial effect of natural
frequencies was about the same in both conditions. By contrast,
tree diagrams and 2×2 tables using probabilities (or relative
frequencies) do not improve participants’ performance—yet are
omnipresent in textbooks on probability theory (for an empirical
study on the effect of these visualizations beyond pure format
effects, see Binder et al., 2015).

With respect to visualization of Bayesian reasoning situations
with two hypotheses and more than two cue values, both trees
and tables can be easily extended to illustrate such situations (e.g.,
for three cue values, see the tree in Figure 1B, and imagine a 2×3
table). Likewise, a situation with more than two hypotheses and
a dichotomous cue can easily be represented by a tree (e.g., for
three hypotheses, see the tree in Figure 1C, and imagine a 3×2
table). However, situations with more than two cues appear to be
easier to represent by trees (e.g., Figure 1D) than by tables. The
ease of constructing and generalizing tree diagrams containing
natural frequencies was the reason for choosing this visual aid in
Study 2.

All in all, the available evidence shows that natural frequencies
can facilitate Bayesian reasoning in situations of risk, that is,
where probabilities are (assumed to be) known, as in textbook
problems. The novel insights of this article are that this power
extends to complex Bayesian tasks and that teaching natural
frequencies in basic tasks generalizes to complex tasks. These
insights correct the widespread claim that people are not built
to reason the Bayesian way, and, more important, they provide
an efficient tool to teach Bayesian reasoning even in complex
situations.
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