
J
H
E
P
1
1
(
2
0
1
5
)
0
6
3

Published for SISSA by Springer

Received: August 18, 2015

Accepted: October 21, 2015

Published: November 9, 2015

Holographic description of non-supersymmetric

orbifolded D1-D5-P solutions

Bidisha Chakrabarty,a David Turtonb and Amitabh Virmania,c

aInstitute of Physics, Sachivalaya Marg,

Bhubaneshwar, 751005 India
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1 Introduction

The black hole information paradox [1] is a profound and long-standing problem in quan-

tum gravity. String theory has had many successes in black hole physics, including the

microscopic derivation of the entropy of the large supersymmetric D1-D5-P black hole [2].

The evidence from constructions of black hole microstates in string theory points to a res-

olution of the information paradox whereby the true quantum bound state has a size of

order the event horizon of the naive classical solution, and so the black hole event horizon

and interior are replaced by quantum degrees of freedom. This is known as the fuzzball

conjecture [3–10].
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To probe the quantum degrees of freedom of the black hole, one often studies semi-

classical microstates, which may be described within supergravity. There has been signifi-

cant progress in the study of three-charge BPS black hole microstates [11–23], culminating

in the recent first explicit construction of a ‘superstratum’ [24].

Given a supergravity solution with the same charges as a black hole, it is important to

establish whether the solution describes a bound state. In an AdS/CFT setup [25–27], one

can do this by identifying a state in the holographically dual CFT. At present, there are

many more such supergravity solutions than there are solutions with identified CFT duals.

In the case of the superstratum, there is a proposal for the dual CFT states, evidence for

which has recently been obtained [28] using precision holography techniques [29, 30].

Non-supersymmetric black hole microstate solutions are technically much more de-

manding; relatively few families have been explicitly constructed, and fewer still have

known dual CFT states. The first non-supersymmetric black hole microstate solutions to

be discovered were the solutions found by Jejjala, Madden, Ross and Titchener (often ab-

breviated to JMaRT) [31]. For other studies of non-supersymmetric black hole microstate

solutions, see [32–43].

The JMaRT family of solutions includes a positive integer parameter k; the solutions

with k > 1 can be thought of as orbifolds of the k = 1 solutions, the orbifold acting on

the asymptotic S1 coordinate y. It is important to note that the k = 1 solutions, while

all smooth, do not exhaust the smooth solutions within this family, and that a significant

parameter space of k > 1 solutions are also smooth [31]. In addition to the smooth

solutions, there are also solutions with a rich possible structure of orbifold singularities; we

will discuss this in detail in due course.

In this paper we identify the CFT duals of the general class of orbifolded JMaRT

solutions. Physically, the k > 1 states are of particular interest; although the whole family

of CFT states we study are atypical, states with larger k are closer to typical states than

states with smaller k. This is because the typical three-charge state is in the maximally

twisted sector, k = n1n5, so states with higher k are closer to typicality.

We work in the D1-D5 system on T4. In the holographically dual orbifold CFT [2,

25, 44], it has been proposed that semiclassical states obtained by the action of the su-

perconformal algebra generators on Ramond-Ramond (R-R) ground states are dual to

bulk solutions involving diffeomorphisms that do not vanish at the boundary of the AdS

throat [45–47]. Similarly, solutions involving non-trivial deformations (with respect to a

reference R-R ground state) in the region deep inside the AdS throat known as the ‘cap’

should be dual to CFT states that cannot be expressed in terms of superconformal alge-

bra generators acting on R-R ground states; examples of three-charge BPS states which

support this proposal were found in [48].

The CFT states studied in [48] involve fractional spectral flow in the left-moving sector,

starting from the twisted R-R ground states studied in [49, 50]. The dual geometries are

the BPS orbifold solutions found in [13, 31]. It was anticipated in [48] that applying

fractional spectral flow in both left- and right-moving sectors of the CFT, one should

obtain states dual to the general orbifolded JMaRT geometries. In this paper we confirm

this expectation, make precise the map between gravity and CFT, and provide strong
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evidence for the identification by studying the emission spectrum and emission rates of the

states in both gravity and CFT. Although our main interest is in R-R states, the general

class of CFT states we study also contains NS-NS states.

Since non-BPS, non-extremal states may be expected to be generically unstable, it

is far from clear how many states might be described by stationary supergravity solu-

tions. However the decay of such states is an opportunity to gain insight into the unitary

mechanism that should replace Hawking radiation for generic states. In the case of the

k = 1 JMaRT solutions, soon after the discovery of these solutions it was shown that these

geometries decay via a classical ergoregion instability [51].

A microscopic dual CFT explanation of the instability was proposed in [52]: the unitary

CFT process of Hawking radiation is enhanced for the atypical CFT states dual to the

JMaRT solutions, such that it manifests in the bulk as the ergoregion instability. Certain

aspects of the CFT arguments were somewhat heuristic at the time, but were later made

more precise in a series of papers [53–56]. The spectrum and emission rate of minimal

scalars from the microscopic considerations were found to be in exact agreement with the

instability found on the gravity side. In this paper we extend these studies to the general

k > 1 case.

Finally, we explore the physical picture of ergoregion emission as pair creation [57, 58].

This picture was investigated in reference [53] for the two-charge k = 1 JMaRT solutions.

It was shown that to a good approximation, radiation from these solutions can be split

into two distinct parts. One part escapes to infinity, and the other remains deep inside the

AdS region, at the cap. In the present work, we generalize this picture to include all three

charges and the orbifolding parameter k, and consider the most general form of the probe

scalar wavefunction. We confirm that also in this more elaborate set-up, the radiation

splits into two distinct parts: one part escapes to infinity and the other part remains deep

inside in the AdS region.

Our results generalize various previous studies (already mentioned above) of both BPS

and non-BPS states arising from spectral flow of R-R ground states. We comment in detail

on the relation of our work to these previous works after we have introduced the CFT

states in full detail in section 3.

There has been a resurgence of interest in the black hole information paradox in recent

years, in particular with regard to the experience of an infalling observer; see [59–66] and

references within. Our results develop further the AdS/CFT dictionary for non-BPS black

hole microstates, and such technical progress may ultimately shed light on these questions.

The remainder of this paper is organized as follows. In section 2 we study the general

family of orbifolded JMaRT solutions and solve the wave equation on these backgrounds.

In section 3 we identify the CFT description of these geometries. The emission spectrum

and rates obtained from the CFT are shown to be in perfect agreement with the gravity

computation. In section 4 we analyze the pair creation picture of ergoregion emission for

these orbifolds. We close with a brief discussion in section 5.
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2 Orbifolded JMaRT solutions

After a brief review of the supergravity solutions in section 2.1, we study the near-

decoupling limit in section 2.2 in which the geometries have a large AdS inner region,

weakly coupled to flat asymptotics. In section 2.3 we analyze the smoothness properties

and categorize the possible orbifold singularities of the solutions. In section 2.4 we study

the scalar wave equation on these orbifolds. We obtain the real and imaginary parts of the

instability eigen-frequencies in the near-decoupling limit.

2.1 Supergravity solutions

The JMaRT solutions [31] are special cases of the non-extremal rotating three-charge

Cvetič-Youm [67] solutions. In general, Cvetič-Youm geometries can have singularities,

horizons, and closed timelike curves. Reference [31] derived the conditions that need to

be imposed on the parameter space of the Cvetič-Youm geometries so that we get smooth

solitonic solutions, possibly with orbifold singularities.

We consider type IIB string theory compactified on

M4,1 × S1 × T4 . (2.1)

We consider the S1 to be macroscopic, and consider the T4 to be string-scale. We consider

n1 D1-branes wrapped on S1, n5 D5-branes wrapped on S1×T4, and np units of momentum

P along the S1. We parameterize the S1 with coordinate y and the T4 with coordinates zi.

Our supergravity analysis begins with the general non-extremal three-charge Cvetič-

Youm metric, lifted to type IIB supergravity [67, 68]. The 10D string frame metric is [31]

ds2 = − f√
H̃1H̃5

(dt2 − dy2) +
M√
H̃1H̃5

(spdy − cpdt)2

+

√
H̃1H̃5

(
r2dr2

(r2 + a2
1)(r2 + a2

2)−Mr2
+ dθ2

)
+

(√
H̃1H̃5 − (a2

2 − a2
1)

(H̃1 + H̃5 − f) cos2 θ√
H̃1H̃5

)
cos2 θdψ2

+

(√
H̃1H̃5 + (a2

2 − a2
1)

(H̃1 + H̃5 − f) sin2 θ√
H̃1H̃5

)
sin2 θdφ2

+
M√
H̃1H̃5

(a1 cos2 θdψ + a2 sin2 θdφ)2

+
2M cos2 θ√

H̃1H̃5

[(a1c1c5cp − a2s1s5sp)dt+ (a2s1s5cp − a1c1c5sp)dy]dψ

+
2M sin2 θ√
H̃1H̃5

[(a2c1c5cp − a1s1s5sp)dt+ (a1s1s5cp − a2c1c5sp)dy]dφ

+

√
H̃1

H̃5

4∑
i=1

dz2
i , (2.2)
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where we use the shorthand notation ci = cosh δi, si = sinh δi, for i = 1, 5, p, and where

f = r2 +a2
1 sin2 θ+a2

2 cos2 θ , H̃1 = f+M sinh2 δ1 , H̃5 = f+M sinh2 δ5 . (2.3)

Explicit expressions for the six-dimensional dilaton and Ramond-Ramond two-form field

can be found, e.g., in [31]; we will not need those details in our discussion below. Upon

compactification to five dimensions, one obtains asymptotically flat configurations carrying

three U(1) charges, corresponding to D1, D5, and P. These charges are given by Qi = Msici.

The y circle will play a key role in the following; we take it to have radius R at spacelike

infinity, y ∼ y + 2πR. In addition, we take the volume of T4 to be (2π)4V at spacelike

infinity. The integer quantization of the three charges is then given by

Q1 =
gsα
′3

V
n1, Q5 = gsα

′n5, Qp =
g2
sα
′4

V R2
np. (2.4)

The ADM mass and angular momenta of the five-dimensional asymptotically flat con-

figurations are

MADM =
πM

4G5

(
s2

1 + s2
5 + s2

p +
3

2

)
, (2.5)

Jψ = −πM
4G5

(a1c1c5cp − a2s1s5sp), (2.6)

Jφ = −πM
4G5

(a2c1c5cp − a1s1s5sp), (2.7)

where G5 is the five-dimensional Newton constant. The ten-dimensional Newton constant

is as usual G10 = 8π6g2
sα
′4, so we have G5 = πg2

sα
′4

4V R . To have positive ADM mass we take

M ≥ 0, and without loss of generality we take δ1, δ5, δp ≥ 0 and a1 ≥ a2 ≥ 0.

The singularities H1 = 0 and H5 = 0 in metric (2.2) are curvature singularities, and

there are also singularities where the function

g(r) ≡ (r2 + a2
1)(r2 + a2

2)−Mr2 (2.8)

has roots, i.e. at

r2
± =

1

2

[
(M − a2

1 − a2
2)±

√
(M − a2

1 − a2
2)2 − 4a2

1a
2
2

]
. (2.9)

Smooth geometries without horizons are obtained by demanding that at r = r+ an S1

should shrink smoothly, with the singularity at r = r+ being that of polar coordinates at

the origin of a two-dimensional factor of the metric [31]. The parameter analysis is slightly

different for the two-charge (Qp = 0) and three-charge cases; in this paper we focus on the

general case of three non-vanishing charges. In this case four conditions on the parameters

must be satisfied for the geometries to be smooth (up to possible orbifold singularities).

We now present a brief summary of the analysis of [31]; for further details we refer the

reader to that reference.

The function g(r) has real roots if and only if M > (a1 + a2)2 or M < (a1 − a2)2.

For r = r+ to be an origin, rather than a horizon, the determinant of the metric in the
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constant t and r subspace must vanish at r = r+. This rules out the case M > (a1 + a2)2

and gives the first condition on the parameters,

M = a2
1 + a2

2 − a1a2

c2
1c

2
5c

2
p + s2

1s
2
5s

2
p

s1c1s5c5spcp
. (2.10)

In order that r = r+ be an origin, a spacelike Killing vector with closed orbits must

smoothly degenerate there. The most general Killing vector with closed orbits is

ξKilling = ∂y − α∂ψ − β∂φ, (2.11)

and the one that degenerates at r = r+, given the condition (2.10), is given by

α = − spcp
(a1c1c5cp − a2s1s5sp)

, β = − spcp
(a2c1c5cp − a1s1s5sp)

. (2.12)

We introduce new coordinates appropriate to the neighborhood of r = r+,

ψ̄ ≡ ψ − spcp
(a1c1c5cp − a2s1s5sp)

y, φ̄ ≡ φ− spcp
(a2c1c5cp − a1s1s5sp)

y. (2.13)

Then the coordinate which shrinks at r = r+ is y at constant ψ̄, φ̄.

In order to find the most general smooth solutions and to allow for the possibility

of orbifold singularities at r = r+, we introduce a positive integer k and impose that

y → y + 2πkR at constant ψ̄, φ̄, is a closed orbit. This gives two further conditions,

spcp
(a1c1c5cp − a2s1s5sp)

(kR) = n ∈ Z , − spcp
(a2c1c5cp − a1s1s5sp)

(kR) = m ∈ Z . (2.14)

Furthermore, demanding regularity at the origin r = r+ under y → y+ 2πkR fixes the size

of the y-circle at infinity,

R =
1

k

Ms1c1s5c5(s1c1s5c5spcp)
1/2

√
a1a2(c2

1c
2
5c

2
p − s2

1s
2
5s

2
p)

. (2.15)

To summarize, the full regularity conditions for the three-charge orbifolded case are

(a) a1a2 =
Q1Q5

k2R2

s2
1c

2
1s

2
5c

2
5spcp

(c2
1c

2
5c

2
p − s2

1s
2
5s

2
p)

2
, (2.16)

(b) M = a2
1 + a2

2 − a1a2

c2
1c

2
5c

2
p + s2

1s
2
5s

2
p

s1c1s5c5spcp
, (2.17)

(c)
spcp

(a1c1c5cp − a2s1s5sp)
(kR) = n ∈ Z, (2.18)

(d) − spcp
(a2c1c5cp − a1s1s5sp)

(kR) = m ∈ Z. (2.19)

Using these conditions we record here some relations between the parameters which

will be useful in what follows,

r2
+ = −a1a2

s1s5sp
c1c5cp

, r2
− = −a1a2

c1c5cp
s1s5sp

, M = a1a2nm

(
c1c5cp
s1s5sp

− s1s5sp
c1c5cp

)2

. (2.20)

The ADM angular momenta, in terms of the parameters introduced above, take the fol-

lowing simple form,

Jψ = −m
k
n1n5, Jφ =

n

k
n1n5. (2.21)

– 6 –
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2.2 The near-decoupling limit

In order to study AdS/CFT in this system one must isolate low-energy excitations of

the D1-D5 bound state, which is achieved by taking the large R limit. In the gravity

description, this corresponds to taking the near-decoupling limit in which one obtains a

large inner region involving an AdS3×S3×T4 throat, weakly coupled to the flat asymptotics.

The large R limit is defined by keeping Q1, Q5 fixed and taking R� (Q1Q5)
1
4 , which

makes R the largest scale in the problem. We then have the small dimensionless parameter

ε =
(Q1Q5)

1
4

R
� 1. (2.22)

In the Cvetic-Youm metric, the near-decoupling limit is obtained by taking

a2
1, a

2
2,M � Q1, Q5 ⇒ s1 ' c1 � 1 , s5 ' c5 � 1. (2.23)

We refer to the limit (2.22), (2.23) as the large R limit or the near-decoupling limit.

In this limit we can identify the region r2 � Q1, Q5 as an asymptotically AdS region.

This amounts to taking H̃1 ≈ Q1 and H̃5 ≈ Q5 and using approximations (2.23) in the

metric (2.2). We thus obtain an asymptotically AdS3 × S3 metric,

ds2 = −
(
ρ2 −M3 +

J2
3

4ρ2

)
dτ2 +

(
ρ2 −M3 +

J2
3

4ρ2

)−1

dρ2 + ρ2

(
dϕ− J3

2ρ2
dτ

)2

+
√
Q1Q5

{
dθ2+sin2 θ

[
dφ+

R√
Q1Q5

(a1cp−a2sp)dϕ+
R√
Q1Q5

(a2cp−a1sp)dτ

]2

+ cos2 θ

[
dψ +

R√
Q1Q5

(a2cp − a1sp)dϕ+
R√
Q1Q5

(a1cp − a2sp)dτ

]2
}

(2.24)

where we have defined new coordinates

ϕ =
y

R
, τ =

t

R
, (2.25)

ρ2 =
R2

Q1Q5
[r2 + (M − a2

1 − a2
2) sinh2 δp + a1a2 sinh 2δp]. (2.26)

The AdS length and the size of the S3 is (Q1Q5)
1
4 . In writing the above expressions we

have also defined

M3 =
R2

Q1Q5
[(M − a2

1 − a2
2) cosh 2δp + 2a1a2 sinh 2δp], (2.27)

J3 =
R2

Q1Q5
[(M − a2

1 − a2
2) sinh 2δp + 2a1a2 cosh 2δp]. (2.28)

– 7 –
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The regularity conditions (2.16)–(2.19) simplify in the large R limit as follows,

(a′) a1a2 '
Q1Q5

k2R2
spcp, (2.29)

(b′) M ' a2
1 + a2

2 − a1a2

c2
p + s2

p

spcp
, (2.30)

(c′)
spcp

c1c5(a1cp − a2sp)
(kR) ' n ∈ Z, (2.31)

(d′) − spcp
c1c5(a2cp − a1sp)

(kR) ' m ∈ Z. (2.32)

A useful form of condition (2.30) via (2.20) is

M ' Q1Q5

(kR)2

nm

spcp
, (2.33)

and another expression that will be useful later is

r2
+ − r2

− '
Q1Q5

k2R2
. (2.34)

Substituting conditions (2.29)–(2.32) into (2.24) we find that the geometry is an orbifold

of AdS3 × S3,

ds2 =
√
Q1Q5

[
−
(

1

k2
+ ρ2

)
dτ2 + dρ2

(
1

k2
+ ρ2

)−1

+ ρ2dϕ2 (2.35)

+dθ2 + sin2 θ

(
dφ+

m

k
dϕ− n

k
dτ

)2

+ cos2 θ

(
dψ − n

k
dϕ+

m

k
dτ

)2
]
.

We will analyze the smoothness properties of these orbifold geometries in the next

subsection.

Let us now look at how various physical quantities behave in the large R limit. It

is only in this limit that we expect physical parameters in the gravity description to be

reproduced by a dual CFT analysis. In this limit the mass above the mass of the D1 and

D5 branes is

∆MADM '
πM

4G5

(
s2
p +

1

2

)
' n1n5

R

m2 + n2 − 1

2k2
, (2.36)

and the 6D ADM linear momentum PADM is

PADM =
np
R

=
πM

4G5
spcp '

n1n5

R

mn

k2
. (2.37)

In section 3 we will observe agreement between the gravity quantities (2.21), (2.36),

and (2.37) from the CFT description.

2.3 Smoothness analysis

As observed above, the decoupling limit of the general JMaRT orbifolded solution is an

orbifold of AdS3× S3, with metric (2.36). These orbifolds were briefly discussed in [31]; here

– 8 –
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we present a detailed smoothness analysis following [48]. For convenience let us introduce

the coordinates

ψ̃ ≡ ψ − n

k
ϕ+

m

k
τ, φ̃ ≡ φ+

m

k
ϕ− n

k
τ. (2.38)

Working in the covering space for coordinates (ϕ, ψ̃, φ̃), the periodicities of (ϕ,ψ, φ) trans-

late into the following identifications:

A : (ϕ, ψ̃, φ̃)→ (ϕ, ψ̃, φ̃) + 2π
(

1,−n
k
,
m

k

)
, (2.39)

B : (ϕ, ψ̃, φ̃)→ (ϕ, ψ̃, φ̃) + 2π(0, 1, 0), (2.40)

C : (ϕ, ψ̃, φ̃)→ (ϕ, ψ̃, φ̃) + 2π(0, 0, 1). (2.41)

Note that the coordinate ϕ in the metric (2.36) is ill-defined at ρ = 0, where a conical

singularity can occur; the periodicity required for smoothness is ϕ→ ϕ+2πk at fixed ψ̃, φ̃.

Conical singularities only occur at points that remain invariant under the operation

AmABmBCmC (2.42)

for some mI ∈ Z. The conical singularities all arise at ρ = 0 and may be localized at θ = 0

and/or θ = π
2 , or may occur everywhere in θ. We will continue to focus on the case of three

non-zero charges; the two-charge case is discussed in [31].

Case 1: gcd(k,m) = gcd(k, n) = 1: if there are no common divisors between the

pairs (m, k) and (n, k), then there are no conical singularities and the spacetime is com-

pletely smooth.

To see this, we first examine the possibility of having a fixed point where φ̃ has a

non-zero size, i.e., at ρ = 0, θ 6= 0. For a fixed point to occur here, φ̃ must remain invariant

under (2.42). This implies that m
kmA +mC = 0. Since mC is an integer this requires mA

k

to be an integer; we write mA = km′A. The periodic identifications of ϕ and ψ̃ are then

ϕ → ϕ+ 2πkm′A , ψ̃ → ψ̃ + 2π
(
mB − nm′A

)
. (2.43)

In the range 0 < θ < π
2 , ψ̃ also has a finite size. So for a fixed point to occur

there, ψ̃ must also remain invariant. This fixes mB = nm′A, and as a result the above

identification becomes

ϕ → ϕ+ 2πkm′A , (2.44)

which, being an integer multiple of 2πk, is the correct identification for smoothness.

At θ = π
2 , ψ̃ has zero size. Thus, under the diffeomorphism (2.43) the point ρ = 0, θ = π

2

is a fixed point. The relevant identification is simply (2.44) and we again have smoothness.

It remains to examine ρ = 0, θ = 0. Here φ̃ has zero size but ψ̃ has non-zero size.

Requiring ψ̃ to be invariant fixes −n
kmA + mB = 0. Since mB is an integer, this implies

mA should be an integer multiple of k; we again write it as mA = km′A. The relevant
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identification is again (2.44). This shows that the spacetime is free of conical singularity

here also.

In summary, there are no conical singularities anywhere, and so the spacetime is com-

pletely smooth. From the point of view of the k = 1 JMaRT solitons, one can say that the

Zk quotient is freely acting in this case [31].

Case 2: gcd(k,m) > 1, gcd(k, n) = 1: if gcd(k,m) ≡ l1 > 1 and gcd(k, n) = 1, there

is a Zl1 orbifold singularity at ρ = 0, θ = π
2 and the spacetime is otherwise smooth.

To see this, we first note that at ρ = 0, θ = 0, the analysis is the same as in Case 1,

and there is no orbifold singularity at these points.

Next, let us write k = l1k̂ , m = l1m̂. For a fixed point at ρ = 0, θ 6= 0, φ̃ must remain

invariant. This fixes mA = k̂m′A , mC = −m̂m′A. At points θ 6= π
2 , ψ̃ also has a non-zero

size, so it must also remain invariant. This fixes −n
k (k̂m′A) + mB = 0, i.e, mB = n

l1
m′A.

Since mB is an integer, m′A must be an integer multiple of l1, i.e., m′A = l1m
′′
A. Then the

ϕ identification ϕ→ ϕ+ 2πmA becomes ϕ→ ϕ+ (2πk)m′′A since we have

mA = k̂m′A = k̂l1m
′′
A = km′′A. (2.45)

Hence we have smoothness at ρ = 0, 0 < θ < π
2 .

For ρ = 0, θ = π
2 , ψ̃ has zero size. Invariance of φ̃ gives mA = k̂m′A. So the ϕ

identification ϕ→ ϕ+ 2πmA becomes ϕ→ ϕ+ 2π(k̂m′A), i.e.,

ϕ → ϕ+ (2πk)
m′A
l1
. (2.46)

Since m′A is a general integer, there is a Zl1 orbifold singularity at ρ = 0, θ = π
2 .

Case 3: gcd(k,m) = 1, gcd(k, n) > 1: if gcd(k,m) = 1 and gcd(k, n) ≡ l2 > 1, there

is a Zl2 orbifold singularity at ρ = 0, θ = 0 and the spacetime is otherwise smooth.

To see this, firstly an analysis similar to Case 2 shows that there are no conical singu-

larities at ρ = 0, θ = π
2 or at ρ = 0, 0 < θ < π

2 .

Next, let us write k = l2k̂, n = l2n̂. For ρ = 0, θ = 0 to be a fixed point ψ̃ must remain

invariant. This fixes mA = k̂m′A,mB = n̂m′A. The ϕ identification ϕ → ϕ + 2πmA then

becomes ϕ→ ϕ+ 2πk̂m′A, which is

ϕ → ϕ+ (2πk)
m′A
l2
. (2.47)

This results in a Zl2 orbifold singularity at ρ = 0, θ = 0.

Case 4: gcd(k,m) > 1, gcd(k, n) > 1, gcd(k,m, n) = 1: when both gcd(k,m) ≡
l1 > 1 and gcd(k, n) ≡ l2 > 1, the spacetime has both a Zl1 orbifold singularity at

ρ = 0, θ = π
2 and a Zl2 orbifold singularity at ρ = 0, θ = 0. Away from these points

the metric is smooth. The analysis is similar to the previous two cases.
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Case 5: gcd(k,m) > 1, gcd(k, n) > 1 gcd(k,m, n) > 1: when gcd(k,m) ≡ l1 > 1,

gcd(k, n) ≡ l2 > 1, and gcd(k,m, n) ≡ l3 > 1, then the orbifold has a rich singularity

structure with

• Zl1 orbifold singularity at ρ = 0, θ = π
2 ,

• Zl2 orbifold singularity at ρ = 0, θ = 0, and

• Zl3 orbifold singularity at ρ = 0, 0 < θ < π
2 .

Thus at ρ = 0 there is at least a Zl3 orbifold singularity all over the three-sphere,1 which

may be enhanced to a singularity of higher degree at the poles if l1 and/or l2 are greater

than l3.

To see this, we first observe that an analysis similar to Cases 2 and 3 shows that there

is a Zl1 orbifold singularity at ρ = 0, θ = π
2 and a Zl2 orbifold singularity at ρ = 0, θ = 0.

To see the orbifold singularity at ρ = 0, 0 < θ < π
2 we introduce the following notation,

m = l1m̂, n = l2n̂, l1 = l3 l̂1, l2 = l3 l̂2, k = l3 l̂1 l̂2k̂. (2.48)

To have a fixed point at ρ = 0, 0 < θ < π
2 , both ψ̃ and φ̃ must remain invariant. From the

invariance of φ̃ we get

m

k
mA +mC = 0 ⇒ m̂

l̂2k̂
mA +mC = 0 . (2.49)

Since mC is an integer, mA must be a multiple of l̂2k̂, so we write mA = l̂2k̂m
′
A. This gives

mC = −m̂m′A.
Similarly, from the invariance of ψ̃ we get

−n
k
mA +mB = 0 ⇒ − n̂l̂2

l̂1
m′A +mB = 0. (2.50)

Since mB is an integer, m′A must be a multiple of l̂1, i.e., m′A = l̂1m
′′
A. This implies

mA = l̂1 l̂2k̂m
′′
A, and mB = n̂l̂2m

′′
A. The ϕ identification now becomes

ϕ → ϕ+ 2πl̂1 l̂2k̂m
′′
A = ϕ+ (2πk)

m′′A
l3
. (2.51)

Hence there is a Zl3 orbifold at ρ = 0 and θ 6= 0, θ 6= π
2 .

We finally note that although we presented the above analysis for the decoupled asymp-

totically AdS3×S3 geometries, it applies equally well to the asymptotically flat geometries

before taking the decoupling limit using (2.13).

1Note that the orbifold singularity at ρ = 0, 0 < θ < π
2

only arises in the non-BPS case, since in the

BPS limit we have m = n+ 1 and so m and n have no common divisors.
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2.4 Scalar wave equation

We next study a minimally coupled scalar in six dimensions on the general orbifolded

JMaRT solutions. For the k = 1 solutions, such a computation showed that these geome-

tries suffer from a classical ergoregion instability [51]. We extend this study to the case of

general k,m, n, obtaining the real and imaginary parts of the instability eigen-frequencies

in the large R limit. We will later reproduce these results from the CFT.

Let us consider a minimally coupled complex scalar Ψ in six dimensions, on the back-

ground of the dimensionally reduced 6D Einstein frame metric. If one takes the 10D string

frame metric written in (2.2) and discards the T4 directions, one obtains exactly the 6D

Einstein frame metric, and so we will not rewrite it here. Such a minimal scalar arises for

example from the dimensional reduction of the ten-dimensional IIB graviton having both

its indices along the four-torus. We can separate variables using the ansatz,

Ψ = exp

[
−iωt+ imψψ + imφφ+ i

λ

R
y

]
χ(θ)h(r), (2.52)

which gives equation for the angular part

1

sin 2θ

d

dθ

(
sin 2θ

d

dθ
χ

)
+

[(
ω2 − λ2

R2

)
(a2

1 sin2 θ + a2
2 cos2 θ)−

m2
ψ

cos2 θ
−

m2
φ

sin2 θ

]
χ = −Λχ.

(2.53)

We are looking for wave functions with frequency ω ∼ 1
R . In the large R limit, in terms of

ε defined in (2.22), we observe that(
ω2 − λ2

R2

)
a2
i ∼ ε4 (2.54)

and so we find

Λ = l(l + 2) +O(ε4) . (2.55)

The radial equation takes the form

1

r

d

dr

(
g(r)

r

d

dr
h

)
− Λh+

[(
ω2 − λ2

R2

)
(r2 +Ms2

1 +Ms2
5) +

(
ωcp −

λ

R
sp

)2

M

]
h

−k2 r
2
+ − r2

−
r2 − r2

+

(
− λ−n

k
mψ+

m

k
mφ

)2

h+ k2 r
2
+ − r2

−
r2 − r2

−

(
ω%R−λϑ−n

k
mφ+

m

k
mψ

)2

h = 0,

(2.56)

where g(r) = (r2 − r2
+)(r2 − r2

−). Introducing the dimensionless variable x for the radial

coordinate via

x =
1

k2

(
r2 − r2

+

r2
+ − r2

−

)
, (2.57)

we can write the radial equation in the form

∂x

[
x

(
x+

1

k2

)
∂xh

]
+

1

4

[
κ2x+ 1− ν2 +

ξ2

x+ k−2
− ζ2

x

]
h = 0, (2.58)
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with

κ2 =

(
ω2 − λ2

R2

)
(r2

+ − r2
−)k2, (2.59)

ξ = ω%R− λϑ−mφ
n

k
+mψ

m

k
, (2.60)

ζ = −λ−mψ
n

k
+mφ

m

k
, (2.61)

% =
c2

1c
2
5c

2
p − s2

1s
2
5s

2
p

s1c1s5c5
, (2.62)

ϑ =
c2

1c
2
5 − s2

1s
2
5

s1c1s5c5
spcp, (2.63)

ν2 = 1 + Λ−
(
ω2 − λ2

R2

)
(r2

+ +Ms2
1 +Ms2

5)−
(
ωcp −

λ

R
sp

)2

M. (2.64)

For later use, we note from (2.64) that the correction to ν is O(ε2),

ν = l + 1 +O(ε2) . (2.65)

The radial differential equation (2.58) cannot be solved exactly. It can however be solved

via matched asymptotic expansion. This is done in detail in appendix A. The instability

frequencies are given by solutions to the transcendental equation (A.16). To the leading

order in the large R expansion, we let one of the Γ functions in the denominator of (A.16)

develop a pole,
1

2
(1 + ν + k|ζ|+ kξ) ' −N, (2.66)

with N a non-negative integer. From equations (2.62) and (2.63) we see that in the large

R limit %→ 1 and ϑ ∼ ε2. Hence to leading order one obtains

ξ ' ωR−mφ
n

k
+mψ

m

k
. (2.67)

Substituting this relation along with (2.65) into equation (2.66), we get the real part ωR
of the instability frequencies to leading order, which are given by

ωR '
1

kR

(
−l −mψm+mφn− |−kλ−mψn+mφm| − 2(N + 1)

)
. (2.68)

For certain values of the parameters, ωR can become negative or zero. For those cases

there is no emission.

One obtains the imaginary part ωI of the instability frequencies to leading order by it-

erating the above approximation to the next order, setting N → N+δN . This computation

is discussed in detail in appendix A. The result is

ωI '
1

kR

π

22l+1(l!)2

[(
ω2 − λ2

R2

)
Q1Q5

k2R2

]l+1(
N + l + 1

l + 1

)(
N + k|ζ|+ l + 1

l + 1

)
. (2.69)

Since ωI > 0, we have an instability: i.e., an exponentially growing perturbation. In the

following section we reproduce (2.68) and (2.69) from the dual CFT.
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3 CFT description of orbifolded JMaRT solutions

3.1 The D1-D5 system on T4 and the orbifold CFT

In order to discuss the CFT interpretation of the general orbifolded JMaRT solutions, we

next review some properties of the D1-D5 system on T4 and the corresponding orbifold

CFT. We follow in places the presentations of [69] and [48].

As mentioned in the previous section, we work in type IIB string theory compactified

on M4,1×S1×T4, with n1 D1-branes wrapped on S1 and n5 D5-branes wrapped on S1×T4.

We work in the limit of large R, which corresponds to the low-energy limit of the gauge

theory on the D-brane bound state.

At low energies, the gauge theory on the bound state flows to a (4, 4) SCFT. It is

conjectured that there is a point in moduli space where this SCFT is a symmetric product

orbifold theory, consisting of n1n5 symmetrized copies of a free (4, 4) SCFT with target

space T4 [2, 44].

Each copy of T4 gives 4 bosonic fields X1, X2, X3, X4, along with 4 left-moving

fermionic excitations ψ1, ψ2, ψ3, ψ4 and the corresponding right-moving excitations, which

we denote with a bar (ψ̄1, etc.). The total central charge of the CFT is c = 6n1n5.

The CFT has a (small) N = 4 superconformal symmetry in both the left and right-

moving sectors. Each superconformal algebra contains an R-symmetry SU(2). Therefore

we have the global symmetry SU(2)L × SU(2)R, whose quantum numbers we denote as

SU(2)L : (jL,mL); SU(2)R : (jR,mR). (3.1)

In addition there is a broken SO(4) ' SU(2)×SU(2) symmetry, corresponding to rotations

in the four directions of the T4. We label this symmetry by

SU(2)1 × SU(2)2. (3.2)

We use indices α, α̇ for SU(2)L and SU(2)R respectively, and indices A, Ȧ for SU(2)1 and

SU(2)2 respectively. The 4 real fermion fields of the left sector are grouped into complex

fermions ψαA. The right fermions are grouped into fermions ψ̄α̇A. The boson fields Xi

are a vector in T4 and have no charge under SU(2)L or SU(2)R, so are grouped as XAȦ.

Different copies of the c = 6 CFT are denoted with a copy label in brackets, e.g.,

X(1) , X(2) , · · · , X(n1n5) . (3.3)

It will be convenient to describe the states of interest in terms of spectral flow [70].

Under a spectral flow transformation on the left-moving sector with parameter α, the

dimensions and charges of states change as follows:

h′ = h+ αmL + α2 c

24
, m′L = mL + α

c

12
. (3.4)

An independent spectral flow operation exists in the right-moving sector, with parameter ᾱ.
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3.2 Twisted Ramond sector ground states

We next briefly review the construction of twist operators and twisted Ramond sector

ground states by mapping to a local covering space [69, 71]. Let us consider the permutation

(123 . . . k). The bare twist operator σk corresponding to this permutation imposes the

following periodicity conditions on the cylinder:

X(1) → X(2) → · · · → X(k) → X(1) (3.5)

ψ(1) → ψ(2) → · · · → ψ(k) → −ψ(1). (3.6)

Note that the last sign in the second line above is minus, and is the only physically mean-

ingful sign, as the intermediate signs can be absorbed by field redefinitions.2 This state

is then in the NS sector in the covering space, which we will sometimes refer to simply as

the NS sector. A similar expression holds for the right-moving fermions; for ease of pre-

sentation we will write only the left-moving expressions in various places in the following.

It is convenient to describe these k twisted copies of the CFT as a ‘component string’ of

length k.

One defines the bare twist operator σk by mapping first to the plane with coordinate

z = ew and then to a local covering plane with coordinate t via a map of the local form

z − z∗ ≈ b∗ (t− t∗)k , (3.7)

where z∗ and t∗ are the respective images of w∗ in the z plane and the t plane. The k bosonic

fields in (3.5) map to one single-valued bosonic field X(t) in the t plane, and similarly for

the fermions. In the t plane, one inserts the identity operator at the point t∗, obtaining the

lowest-dimension operator in the k-twisted sector. If we take t∗ = 0, we obtain the NS-NS

vacuum in the covering space. We thus refer to it as the “k-twisted NS-NS vacuum”, and

denote it by |0k〉
(r)
NS, where r is an index labelling the different component strings. The

quantum numbers of this state are

h = h̄ =
1

4

(
k − 1

k

)
, mL = mR = 0 . (3.8)

We next define an excited (spin-)twist operator σαk as follows. Follow the procedure

used to define the bare twist σk, but in the covering t plane, insert a spin field3 Sα at t∗.

If we take t∗ = 0, we obtain the (left-moving) R vacuum |0±R〉t of the t plane. We write

σαk = Sαk σk , α = +,− . (3.9)

Back on the original cylinder, with coordinate w, as the fields circle the operator σ±k , they

transform as

X(1) → X(2) → · · · → X(k) → X(1) (3.10)

ψ(1) → ψ(2) → · · · → ψ(k) → +ψ(1). (3.11)

2One of the authors (DT) thanks Oleg Lunin for a discussion on this point.
3If b∗ 6= 1 in (3.7), one must also include an appropriate normalization factor [71].
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The fields are thus in the Ramond sector in the covering space; as before, we will sometimes

refer to this simply as the Ramond sector. We write the corresponding state on the original

cylinder (with coordinate w) as |0±k 〉
(r)
R .

Adding in the right-moving sector, we obtain the full spin-twist field

σαα̇k = Sαk S̄
α̇
k σk (3.12)

and we denote the corresponding twisted R-R ground state by |0αα̇k 〉
(r)
R .

3.3 Non-BPS states generated by general fractional spectral flow

We now consider spectral flow operations in the k-fold covering space. Spectral flow by

αc units in the k-fold covering space corresponds to an effective spectral flow in the base

space by an amount [48]

α =
αc
k
. (3.13)

On the base space, this may then be described as ‘fractional spectral flow’; for previous

discussions of fractional spectral flow, see [56, 72, 73].

Using this operation we now describe the general AdS/CFT dictionary for the k > 1

JMaRT solutions. All of the states we consider consist of nc = N1N5/k component strings

of length k, with each component string in the same state;4 spectral flow acts simultaneously

on all component strings. On a component string of length k, excitations are spaced in

units of 1/k. Fractional spectral flow generates states with filled Fermi seas with this

fractional moding, as we will see explicitly shortly.

Let us first define the reference state from which we will perform the fractional spectral

flows. This state has all of its component strings in the k-twisted NS-NS vacuum:

|0k〉NS = |0k〉
(1)
NS ⊗ |0k〉

(2)
NS ⊗ · · · ⊗ |0k〉

(nc)
NS . (3.14)

The quantum numbers of this state are (here c = 6n1n5 for the full CFT)

h = h̄ =
c

24

(
1− 1

k2

)
, mL = mR = 0 . (3.15)

The AdS dual of this state is the decoupled orbifolded AdS solution (2.36) with m = n = 0.

The full asymptotically flat JMaRT solitonic solutions exist only when |m| 6= |n| (if one

works with a1 ≥ a2 ≥ 0, this becomes m > n ≥ 0), so this solution does not directly come

from the decoupling limit of an asymptotically flat JMaRT solution.5

The states we are interested in are obtained by general fractional spectral flow from

|0k〉NS. The map to the JMaRT solutions is that the spectral flow parameters are given by

α =
m+ n

k
, ᾱ =

m− n
k

. (3.16)

4In this paper we consider parameters such that nc is an integer.
5It is however related to the other decoupled JMaRT solutions by (fractional) spectral flow coordinate

transformations, which do not go to zero at the boundary of AdS.
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Using (3.4), the quantum numbers of the spectral flowed states are

h =
c

24

[
1 +

(m+ n)2 − 1

k2

]
, mL =

c

12

m+ n

k
, (3.17)

h̄ =
c

24

[
1 +

(m− n)2 − 1

k2

]
, mR =

c

12

m− n
k

. (3.18)

Therefore the CFT energy above the R-R ground state and momentum are

∆E =
∆h+ ∆h̄

R
=
n1n5

R

m2 + n2 − 1

2k2
, P =

h− h̄
R

=
n1n5

R

mn

k2
. (3.19)

Note that in the orbifold CFT, the momentum on each component string must be an integer

(see e.g. [74]), so in the orbifold CFT one has mn/k ∈ Z.

Using the map between CFT and gravity SU(2) quantum numbers,

mψ = −(mL +mR) , mφ = (mL −mR) , (3.20)

these parameters exactly match those computed on the gravity side in (2.21), (2.36)

and (2.37), providing a first check on our proposed identification.

The above states are R-R in the covering space when m + n is odd, and NS-NS in

the covering space when m + n is even. Our main interest is in the R-R states; in order

to connect with the discussion in [48], let us present the free fermion description of these

states, focussing on the states with positive mL and mR.

Let us first consider a single component string. Recall that on a component string of

length k, excitations are spaced in units of 1/k. The state on the component string involves

Fermi seas filled to a general fractional level s/k in both species of fermions, ψ+1 and ψ+2,

and similarly to a level s̄/k for the right-movers:

|Φs,s̄,k〉(r) =

[(
ψ+1
− s
k
ψ+2
− s
k

)
. . .

(
ψ+1
− 2
k

ψ+2
− 2
k

)(
ψ+1
− 1
k

ψ+2
− 1
k

)]

×
[(
ψ̄+1
− s̄
k

ψ̄+2
− s̄
k

)
. . .

(
ψ̄+1
− 2
k

ψ̄+2
− 2
k

)(
ψ̄+1
− 1
k

ψ̄+2
− 1
k

)]
|0++
k 〉

(r)
R . (3.21)

Then as before the state of the full CFT is obtained by taking all nc = N1N5/k component

strings to be in the same state:

|Ψs,s̄,k〉 = |Φs,s̄,k〉(1) ⊗ |Φs,s̄,k〉(2) ⊗ · · · ⊗ |Φs,s̄,k〉(nc) . (3.22)

The twisted R-R ground state |0++
k 〉

(r)
R may be obtained from the twisted NS-NS

vacuum |0k〉NS by performing fractional spectral flow with parameters α = 1/k, ᾱ = 1/k.

The above state |Ψs,s̄,k〉 is generated by a further fractional spectral flow with parameters

α = 2s/k, ᾱ = 2s/k. So in total, |Ψs,s̄,k〉 is generated by starting with the state |0k〉NS and

performing fractional spectral flow with parameters

α =
2s+ 1

k
, ᾱ =

2s̄+ 1

k
. (3.23)
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We then have the relations

m+ n = 2s+ 1 , m− n = 2s̄+ 1 . (3.24)

The NS-NS states obtained for even m+n have analogous Fermi sea representations, built

on the twisted NS-NS vacuum |0k〉NS.

We now return to our main discussion. For general k,m, n, we have observed the

agreement of conserved charges above. As was noted in [48] in the BPS case however,

generically these states are degenerate and so further evidence is required to support the

identification. In principle, one could compute the one-point functions of operators follow-

ing [29, 30], however the states we are considering are R-charge eigenstates, and therefore

all one-point functions of R-charged operators vanish [29]. Instead, we provide further ev-

idence for our proposed identification by matching the scalar excitation spectrum between

gravity and CFT.

3.4 Emission spectrum and emission rates from CFT

The vertex operator for emission (or absorption) of a minimal scalar of angular momentum l

has the following form [55]. It involves a chiral primary in the twisted sector of degree (l+1),

σ̃l+1, dressed with fermion and supercurrent excitations G+Ȧ
− 1

2

ψ−A− 1
2

Ḡ+̇Ḃ
− 1

2

ψ̄−B−̇ 1
2

which add the

T4 polarization indices, and further dressed with powers of SU(2) current zero modes J0,

J̄0 which fill out the SU(2) representation. There is also a non-trivial normalization factor;

the explicit form can be found in [55].

Since the vertex operator involves a twisted chiral primary σ̃l+1, when it acts on a

state it introduces new fractionated degrees of freedom. It is thus capable of lowering the

energy of the state, with the remainder energy being carried away by the emitted particle.

Our initial state (3.21) is composed of component strings which are all of length k. In

the limit of a large number of component strings, nc = n1n5/k � 1, the process which

dominates is that in which σ̃l+1 acts on l + 1 distinct component strings, combining them

into a component string of length k(l + 1). There is a family of resulting final states

labelled by left- and right-moving excitation numbers NL, NR, which correspond to acting

with the Virasoro generators L−1, L̄−1 in the form LNL−1 L̄
NR
−1 on the final state of lowest

possible energy.

This CFT amplitude, corresponding to emission of a minimal scalar, can be mapped to

a technically simpler amplitude by spectral flow and hermitian conjugation. This technique

has been employed in the special case of excited R-R states arising from integer spectral

flow of the state |0++
k 〉R, i.e., when s and s̄ are multiples of k. This was first done for k = 1

in [55] and then for k > 1 in [56]. For the k > 1 case, the calculation involved mapping

the amplitude to a covering space, and using the method of [71, 75].6 In each case one

observes a Bose enhancement effect: the probability for emission of the Nth quantum is N

times the probability for emission of the first quantum [52]. Since the CFT is a symmetric

product orbifold, one must also take care of various combinatorial factors in computing

the amplitude.

6For a recent application of this method in a different context, see [69, 76].
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Having proposed the identification of the general orbifolded JMaRT solutions with

the general fractional spectral flowed CFT states, we can now make a straightforward

generalization of the results of [56] to fractional spectral flowed CFT states. We do this

by simply taking the emission spectrum, expressed in terms of α, ᾱ, and substituting the

values appropriate for the general fractional spectral flowed states that we study. This

technique works because all of the states under consideration are fractional spectral flows

of the twisted NS-NS vacuum |0k〉NS.

The emission spectrum computed in [56] for the integer spectral flowed k > 1 JMaRT

states, translated into our conventions,7 is

ω =
1

kR

[
1

2
αk(mφ −mψ)− 1

2
ᾱk(mφ +mψ)− (l + 2 +NL +NR)

]
,

λ =
1

kR

[
1

2
αk(mφ −mψ) +

1

2
ᾱk(mφ +mψ) +NR −NL

]
. (3.25)

We now generalize this by substituting the parameters appropriate to fractional spectral

flow from the twisted NS vacuum |0k〉NS,

α =
m+ n

k
, ᾱ =

m− n
k

, (3.26)

which yields the spectrum

ω =
1

kR
[−mψm+mφn− (l + 2 +NL +NR)]

λ =
1

k
[mφm−mψn+NR −NL] . (3.27)

Now, generalizing the discussion in [52], note that ζ = (NL −NR)/k. If ζ > 0, ω may be

written as

ω =
1

kR
[−l −mψm+mφn− 2− kζ − 2NR] (3.28)

and if ζ < 0, ω may be written as

ω =
1

kR
[−l −mψm+mφn− 2 + kζ − 2NL] . (3.29)

In either case, ω has the form

ω =
1

kR
(−l −mψm+mφn− |−kλ−mψn+mφm| − 2(N + 1)) (3.30)

for some N ≥ 0, which exactly matches the real part of the instability frequencies computed

from the gravity side, given in eq. (2.68).

The CFT emission rate computed in [56] for the Nth particle, writing δ(ω;λ) as a

schematic delta function which imposes that ω and λ must take their specific allowed

values, in our conventions takes the form

dΓ

dω
= N

1

kR

2π

22l+1(l!)2

[(
ω2 − λ2

R2

)
Q1Q5

k2R2

]l+1(
NL + l + 1

l + 1

)(
NR + l + 1

l + 1

)
δ(ω;λ) . (3.31)

7The map between conventions is given in appendix C.
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In this form, the expression for the emission rate immediately generalizes to the present

situation of fractional spectral flowed states, with the allowed frequencies and wavelengths

given in (3.27).

Treating separately the cases for ζ > 0 and ζ < 0 as above, one finds(
NL + l + 1

l + 1

)(
NR + l + 1

l + 1

)
=

(
N + l + 1

l + 1

)(
N + k|ζ|+ l + 1

l + 1

)
. (3.32)

The imaginary part of the frequency ωI is given by 1/2 the value of the emission rate

for the first quantum, as discussed in [52]. Thus we have

ωI '
1

kR

π

22l+1(l!)2

[(
ω2 − λ2

R2

)
Q1Q5

k2R2

]l+1(
N + l + 1

l + 1

)(
N + k|ζ|+ l + 1

l + 1

)
, (3.33)

in exact agreement with the value (2.69) obtained from the gravity calculation.

Relation to previous work. We pause here to comment on the relation of our results

to previous literature.

The class of states generated by (3.16) is the general set of R-R and NS-NS states

obtained by fractional spectral flow from the twisted NS-NS vacuum |0k〉NS. Various special

cases of this class of CFT states have been studied previously in the literature, as we

now describe.

For BPS states, the two-charge states (k ∈ Z+,m = 1, n = 0) were studied in [49, 50].

The three-charge family (k = 1; s ∈ Z; s̄ = 0) was studied in [11, 12]. The family (k ∈
Z+; s = nk, n ∈ Z; s̄ = 0) was studied in [13]. Such values of s correspond to integer

spectral flow of the states |0αα̇k 〉R. The general BPS family obtained from fractional spectral

flow, (k ∈ Z+ s ∈ Z; s̄ = 0) was studied in [48].

For non-BPS states, the CFT states obtained by setting k = 1 in (3.14)–(3.16) were

proposed to be the dual CFT states of the k = 1 JMaRT solutions in the original paper [31]

and the CFT emission was studied in [52, 55]. The two-charge family (k ∈ Z+; s = s̄ =

n̂k, n̂ ∈ Z) was studied in [54]. The family (k ∈ Z+; s = n̂k, n̂ ∈ Z; s̄ = n̄k, n̄ ∈ Z) was

studied in [56]. Again, such values of s, s̄ correspond to integer spectral flow of the states

|0αα̇k 〉R. The general non-BPS family of R-R and NS-NS states arising from fractional

spectral flow of |0k〉NS (or |0αα̇k 〉R) is the subject of the present work.

Regarding the wave equation calculation on the gravity side, for k = 1 the instability

was first derived in [51], and was revisited in slightly different forms in [52, 53]. The two-

charge case with k > 1 was studied in [54]. In the present work we have analyzed the

general three-charge case with arbitrary k,m, n.

4 Ergoregion emission as pair creation

Having demonstrated that the general class of orbifolded JMaRT solutions decay via an

ergoregion instability, with emission spectrum and emission rate in agreement with the

dual CFT, we now examine more explicitly some features of the produced radiation. In

particular we investigate the physical picture of ergoregion emission as pair creation [57, 58].
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The ergoregion contains negative energy excitations as measured by the Killing vector

that generates time translations at spatial infinity. The pair creation picture involves a

positive energy excitation that escapes to infinity and a negative energy excitation that

remains in the ergoregion. The two excitations also carry equal and opposite values of

other conserved charges.

For two-charge, k = 1 JMaRT solutions, this picture was investigated in [53] for the

simplest form of the probe scalar wavefunction. It was shown that to a good approximation,

the radiation from these solutions can be split into two distinct parts. One part escapes

to infinity and the other remains deep inside in the AdS region. The two parts carry

equal and opposite energy and angular momentum. For large angular momenta, when the

wavefunctions can be thought of as approximately localized, it was argued that the inner

region part has its main support in the ergoregion.

In this section we generalize this discussion to include three non-zero charges, two

non-zero angular momenta, the orbifolding parameter k, and the most general form of the

wavefunction. We start with a summary of the solutions of the scalar wave equation in

section 4.1. We then compute the contributions to angular momenta (section 4.2) and

energy (section 4.3) from the inner and asymptotic regions due to the scalar perturbation.

4.1 Solutions of the wave equation

In order to calculate the contributions to conserved charges from the inner and asymptotic

regions (which are defined in appendix A), we need the explicit form of the wavefunctions

in these regions. We work exclusively in the large R limit, as only in this limit is there a

clear separation between the inner and asymptotic regions.

Let us start by relating the different radial coordinates so that we can easily change

from one to the other. The coordinate transformation (2.26) upon using (2.20) and (2.30)

is simply

ρ2 =
R2

Q1Q5
(r2 − r2

+) . (4.1)

In terms of the dimensionless radial variable x used in section 2.4, this relation is x = ρ2.

The metric in the inner region is (2.36), and from (A.6) the wavefunction in the inner

region is

Ψin = exp

[
−iωt+ i

λ

R
y + imψψ + imφφ

]
χ(θ)

(
ρ2 +

1

k2

) kξ
2

ρk|ζ|
[
2F1(a, b, c,−k2ρ2)

]
,

(4.2)

where

a =
1

2
(1 + ν + k|ζ|+ kξ), b =

1

2
(1− ν + k|ζ|+ kξ), c = 1 + k|ζ|, (4.3)

with ξ, ζ, ν defined in (2.60), (2.61), (2.64). Recall also from (2.65), (2.66) that to leading

order in ε we have

ν ' l + 1, 1 + ν + k|ζ|+ kξ ' − 2N. (4.4)

– 21 –



J
H
E
P
1
1
(
2
0
1
5
)
0
6
3

For small ρ, we have Ψin ∼ ρk|ζ|, and for large ρ, using (A.8) and (4.4) we have

Ψin ∼ ρ−(l+2). The norm of the wavefunction is

(ΨΨ∗)in = ρ2k|ζ|
(
ρ2 +

1

k2

)kξ
|χ(θ)|2e2ωI t

(
2F1(−N,−N − l − 1, 1 + k|ζ|,−k2ρ2)

)2
, (4.5)

where as before ωI is the imaginary part of the frequency ω.

In the asymptotic region the metric is flat spacetime to leading order. Using the

asymptotic region wavefunction (A.12) together with the requirement of only outgoing

waves (A.15), in terms of a normalization constant C2 and the quantity κ defined in (2.59),

the wavefunction is

Ψout = C2 exp

[
−iωt+ imψψ + imφφ+ i

λ

R
y

]
χ(θ)

1√
2πκ

1

ρ
3
2

eiκρe−i
π
4

(
ei
πν
2 − e−i

3πν
2

)
.

(4.6)

Therefore the norm of the wavefunction is

(ΨΨ∗)out = |C2|2|χ(θ)|2e2ωI t
2

π|κ|
1

ρ3
ei(κ−κ

∗)ρ sin2(πν) . (4.7)

We next fix the normalization of Ψ in the asymptotic region given its form in the inner

region.This is done in detail in appendix B. For our purposes we do not need an expression

for C2 itself, but only its norm. From (B.7) we have

|C2|2 sin2(πν) =
π

2
k4N+2ν(kR)ωI

Γ(1 + k|ζ|)2 Γ(N + 1) Γ(N + ν + 1)

Γ(N + ν + 1 + k|ζ|) Γ(N + 1 + k|ζ|)
, (4.8)

where ωI takes the value given in (2.69). Finally we note that in the asymptotic region

ρ2 ' R2

Q1Q5
r2, and as a result the exponent in (4.7) can be written as

i(κ− κ∗)ρ ' − 2ωRωI√
ω2
R −

λ2

R2

r , (4.9)

where as before ωR is the real part of the frequency ω and takes the value given in (2.68).

In the neck region, the exponent (4.9) is very small, |(κ− κ∗)ρ| ∼ ωI(Q1Q5)1/4 ∼ ε4l+5.

4.2 Angular momenta of the perturbation

The general JMaRT solution has four Killing vectors, namely ∂t, ∂y, ∂φ, ∂ψ. In general the

geometries carry angular momentum in both φ and ψ directions and momentum in the y

direction. As in the previous sections, we consider scalar perturbations that also carry all

these charges. The conserved quantities for the scalar perturbation associated to the two

angular momenta are

Lψ =

∫
Tψ

νdSν , Lφ =

∫
Tψ

νdSν , (4.10)

where Tµ
ν is the energy momentum tensor of the (complex) scalar field,

Tµν = ∂µΨ∂νΨ∗ + ∂νΨ∂µΨ∗ − gµν∂αΨ∂αΨ∗. (4.11)
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The integrals in (4.10) extend over a spacelike hypersurface in the spacetime. We choose

the surface to be simply given by t = constant. It was shown in reference [31] that gtt < 0

everywhere, therefore the t = constant surface is everywhere spacelike.

Substituting the separation ansatz (2.52) in (4.11), we find the following expressions

for angular momenta of the scalar perturbation,

Lψ = 2mψ

∫ √
−gdrdA

(
−gttωR + gtψmψ + gtφmφ + gty

λ

R

)
ΨΨ∗, (4.12)

Lφ = 2mφ

∫ √
−gdrdA

(
−gttωR + gtψmψ + gtφmφ + gty

λ

R

)
ΨΨ∗, (4.13)

where dA = dθdψdφdy. Note that the integrals involved in computing Lψ and Lφ are the

same. For this reason we focus on Lψ; the discussion for Lφ is entirely analogous.

In the asymptotic region the metric is flat spacetime to leading order. We have
√
−g =

r3 cos θ sin θ. There are no cross terms in the metric, so the integral (4.12) simply becomes

(Lψ)out = 2mψωR

∫
out

drdA(r3 cos θ sin θ)(ΨΨ∗)out,

= 4πmψωRRCe
2ωI t

∫
out

dr(r3h(r)h(r)∗)out, (4.14)

where C =
∫

S3 dθdφdψ cos θ sin θ|χ(θ)|2. Using relations (4.7) and (4.9) expression (4.14)

becomes

(Lψ)out =
8Q1Q5mψωRC

R
√
ω2
R −

λ2

R2

e2ωI t|C2|2 sin2(πν)

∫ ∞
(Q1Q5)

1
4

dr exp

− 2ωRωI√
ω2
R −

λ2

R2

r

 . (4.15)

To leading order in the large R limit this integral gives

(Lψ)out ' 2πmψQ1Q5Ce
2ωI tk4N+2l+3 Γ(1 + k|ζ|)2 Γ(N + 1) Γ(N + l + 2)

Γ(N + k|ζ|+ l + 2) Γ(N + k|ζ|+ 1)
, (4.16)

where we have used the normalization (4.8). This is our final expression for the angular

momentum Lψ of the scalar perturbation that flows off to infinity. For N = 0, k = 1, and

|ζ| = 0 this expression reduces to the corresponding expression of reference [53].

Exactly the same expression but with opposite sign is obtained from the inner region.

Using the coordinate definitions (4.1) and (2.25), and the metric in the inner region (2.36),

the integral (4.12) in the inner region becomes

(Lψ)in = 2mψQ1Q5

(
ωRR+

m

k
mψ−

n

k
mφ

)∫ 1/ε

0
ρdρ

∫
dA cos θ sin θ

(
ρ2 +

1

k2

)−1

(ΨΨ∗)in.

Substituting the norm (4.5) of the inner region wavefunction, we observe that the integrand

falls off in the large ρ limit as ρ−2l−5. Thus to leading order in ε we can set the upper limit

of the ρ integration to infinity. Thus we obtain

(Lψ)in ' 4πmψQ1Q5Ce
2ωI t

(
ωRR+

m

k
mψ −

n

k
mφ

)
×
∫ ∞

0
dρρ2k|ζ|+1

(
ρ2 +

1

k2

)kξ−1 (
2F1(−N,−N − l − 1, 1 + k|ζ|,−k2ρ2)

)2
.
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Making the substitution ρ̃ = kρ and using the integer relations (4.4), this expression can

be converted to the form

(Lψ)in ' 4πmψQ1Q5Ce
2ωI t

(
ωRR+

m

k
mψ −

n

k
mφ

)
k4N+2l+4

×
∫ ∞

0
dρ̃ρ̃2k|ζ|+1

(
ρ̃2 + 1

)−2N−l−k|ζ|−3
(

2F1(−N,−N − l − 1, 1 + k|ζ|,−ρ̃2)
)2
.

This integral can be calculated using the hypergeometric function identity (B.8). We get

(Lψ)in ' 4πmψQ1Q5Ce
2ωI t

(
ωRR+

m

k
mψ −

n

k
mφ

)
k4N+2l+4

× 1

2(2N + k|ζ|+ l + 2)

Γ(1 + k|ζ|)2 Γ(N + 1) Γ(N + l + 2)

Γ(N + k|ζ|+ l + 2) Γ(N + k|ζ|+ 1)
. (4.17)

Using the definition of ξ from (2.60) and the integer relations (4.4), we obtain a contribution

that is exactly the opposite of (4.16),

(Lψ)in ' −2πmψQ1Q5Ce
2ωI tk4N+2l+3 Γ(1 + k|ζ|)2 Γ(N + 1) Γ(N + l + 2)

Γ(N + k|ζ|+ l + 2) Γ(N + k|ζ|+ 1)
. (4.18)

At a technical level the analysis presented above is significantly more involved compared

to that of [53], however various technical pieces precisely fit together to give exactly equal

and opposite contributions to Lψ (and hence Lφ) from the inner and asymptotic regions.

4.3 Energy and linear momentum of the perturbation

A similar set of considerations applies to energy and linear momentum along y. Let us

start with linear momentum along y. The conserved linear momentum associated to the

scalar perturbation is

Py =

∫
t=const

√
−gdrdA T ty. (4.19)

Using the separation ansatz (2.52) in the scalar stress tensor (4.11), the linear momentum

expression reduces to

Py =
2λ

R

∫ √
−gdrdA

(
−gttωR + gtψmψ + gtφmφ + gty

λ

R

)
ΨΨ∗. (4.20)

Since the integral involved is exactly what we discussed above, it follows that the inner

and asymptotic region wavefunctions give equal and opposite contributions to the linear

momentum.

The conserved energy of the scalar field Ψ is

H = −
∫
t=const

√
−gdrdA T tt . (4.21)

It is convenient to write this expression as a part which involves the integral already

computed for the angular momentum, plus a remainder which is a total derivative [53].

We denote these as the bulk and boundary terms respectively,

H = Hbulk +Hbdy , (4.22)

– 24 –



J
H
E
P
1
1
(
2
0
1
5
)
0
6
3

where

Hbulk = −
∫ √

−gdrdA
[
gtt∂tΨ∂tΨ

∗
]

−1

2

∫
drdA

[
Ψ∂i

(√
−ggij∂jΨ∗

)
+ Ψ∗∂i

(√
−ggij∂jΨ

)]
,

Hbdy =
1

2

∫
drdA ∂i

[√
−ggij∂j (ΨΨ∗)

]
. (4.23)

Using the equation of motion for the scalar ∂µ(
√
−g∂µΨ) = 0 and the ansatz (2.52), the

bulk term simplifies to

Hbulk = − 2ωR

∫ √
−gdrdA

(
gttωR − gtφmφ − gtψmψ − gty

λ

R

)
ΨΨ∗ . (4.24)

We now apply the decomposition into Hbulk and Hbdy separately in the inner and

asymptotic regions. For this purpose, we approximate both the outer boundary of the

inner region and the inner boundary of the outer region by the surface r = (Q1Q5)
1
4 . Since

the integral involved in Hbulk is exactly the one discussed above, it follows that the inner

and asymptotic region wavefunctions give equal and opposite contributions to Hbulk. We

need only be concerned with the boundary terms. The only non-zero boundary terms arise

from the terms with radial derivatives. We have

H in
bdy =

1

2

∫
dA
[√
−ggrr∂r(ΨΨ∗)

] ∣∣∣∣r=(Q1Q5)
1
4

r=r+

= H in,neck
bdy +H

in,r=r+
bdy , (4.25)

Hout
bdy =

1

2

∫
dA
[√
−ggrr∂r(ΨΨ∗)

] ∣∣∣∣r=∞
r=(Q1Q5)

1
4

= Hout,r=∞
bdy +Hout,neck

bdy . (4.26)

We observe that

H in,neck
bdy = −Hout,neck

bdy . (4.27)

Let us now estimate the various boundary terms. Firstly, for H
in,r=r+
bdy , counting powers

of ρ we see that as ρ→ 0,

√
−ggrr∂r(ΨΨ∗) =

√
−g
[
gρρ
(
dr

dρ

)
∂ρ(ΨΨ∗)

]
∼ ρ2∂ρ(ΨΨ∗) ∼ ρ2k|ζ|+1, (4.28)

which vanishes at ρ = 0 (i.e. at r = r+) and so we have H
in,r=r+
bdy = 0.

Next, for Hout,r=∞
bdy we observe that ΨΨ∗ falls off exponentially with exponent (4.9) in

the r →∞ limit. Therefore, in the limit r →∞ it also vanishes.

Since we have observed in (4.27) that the neck terms are equal and opposite, it is

not necessary to evaluate them to conclude that the contribution to the energy from the

asymptotic region and the inner region are equal and opposite. Nevertheless, out of in-

terest we now observe that these terms are parametrically subleading with respect to the

contributions from Hbulk.
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At the neck, we have ρ ∼ ε−1, so for H in,neck
bdy we find the parametric dependence

H in,neck
bdy ∼ R

√
−g
[
gρρ
(
dr

dρ

)
∂ρ(ΨΨ∗)

] ∣∣∣∣
ρ=1/ε

∼ R (Q1Q5)
3
4 · ρ2

(Q1Q5)
1
2

· ρ

(Q1Q5)
1
4

Q1Q5

R2
· ∂ρρ−2l−4

∣∣∣∣
ρ=1/ε

∼ (Q1Q5)
3
4 ε2l+3 , (4.29)

and therefore H in,neck
bdy is subleading with respect to H in

bulk.

Again it is not necessary to separately estimate Hout,neck
bdy , however it is straightforward

to observe that as a result of the matching of solutions at the neck, the asymptotic region

wavefunction also behaves as ρ−l−2 in the neck, and with the same coefficient as the inner

solution, giving precisely (4.29).

To summarize, we have seen explicitly that the inner and asymptotic region wave-

functions give equal and opposite contributions to the conserved angular momenta, linear

momentum along y and energy of the scalar field. Since the inner part of the wavefunction

carries negative energy with respect to the Killing vector ∂t, it has its main support in the

ergoregion. One can also see this fact explicitly by plotting a selection of examples. Thus

we see explicitly in this setup the physical picture of ergoregion emission as pair creation.

5 Discussion

In this paper we have proposed the holographic description of the general family of orb-

ifolded JMaRT solutions, with orbifolding parameter k. The k > 1 states are of significant

physical interest since states with larger k are closer to typical states than states with

smaller k. We have proposed that the dual CFT states are the general set of R-R and

NS-NS states obtained by fractional spectral flow in both left- and right-moving sectors

from the twisted NS-NS vacuum |0k〉NS. We reviewed the fact that the orbifolded JMaRT

solutions are completely smooth when the integer parameters m, n, and k have no common

divisors, and presented a full analysis of the orbifold singularities which arise depending

on the common divisors between these parameters.

To support our proposed identification, we matched the minimal scalar emission spec-

trum and emission rate between gravity and CFT. On the gravity side, this involved solving

the wave equation on the general orbifolded solution, generalizing previous studies [51, 54].

On the CFT side, our results were obtained via a straightforward generalization of the

results of [56].

We also investigated the physical picture of ergoregion emission as pair creation, gener-

alizing the results of [53] to include three non-zero charges, two non-zero angular momenta,

the orbifolding parameter k, and the most general form of the probe scalar wavefunction.

We showed that radiation from the general orbifolded JMaRT solutions can be split into

two distinct parts, one escaping to infinity and the other remaining deep inside the AdS

region. Since the inner part of the wavefunction carries negative energy with respect to
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the Killing vector ∂t which generates time translations at spatial infinity, it has its main

support in the ergoregion.

The states we have studied are non-BPS, and there is no known non-renormalization

theorem protecting the quantities we have studied. Thus the fact that the orbifold CFT

and gravity calculations agree exactly is quite non-trivial and better than might have been

naively expected of the orbifold CFT. Naturally, the agreement observed in the k = 1

solutions was reason for optimism on this point. The fact that our proposed dual states

are related to BPS states by fractional spectral flow may perhaps be the feature which

enables this non-trivial agreement.

It would be interesting to study string theory in the subset of these backgrounds that

have orbifold singularities. String theory on orbifolds of AdS3 × S3 has previously been

studied in [72, 73]. In the presence of orbifold singularities, twisted sectors of closed strings

typically give rise to light (or tachyonic) degrees of freedom that are not taken into account

by supergravity [77–79]. Furthermore, non-supersymmetric orbifolds are expected to decay

to a region of smooth spacetime together with an expanding pulse of excitations [80, 81] (see

also [82, 83]).8 If such a mechanism is present here, one can ask whether it interacts with the

pair creation mechanism; for example one might imagine that the pair creation excitation

that remains deep in the cap might interact with the orbifold and/or its decay products.

Indeed one might wonder whether such additional modes could affect the matching of

emission frequencies and rates between the supergravity and CFT for the solutions with

orbifold singularities. We did not find any such discrepancy; the calculations agree exactly

between gravity and CFT regardless of the presence or absence of orbifold singularities.

This strongly suggests that the ergoregion emission spectrum and rates are unaffected by

such light degrees of freedom. It would be interesting to investigate this physics in more

detail in the future.
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A Solving the wave equation via matched asymptotic expansion

In this appendix we solve the wave equation in a matched asymptotic expansion analysis.

We obtain the instability frequencies and also fix the normalization of the wavefunction in

the asymptotic region given its form in the inner region.

8One of the authors (DT) thanks Emil Martinec for a discussion on this point.
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We define the following regions of the geometry, in which we set up the matched

asymptotic expansion. In section 2.2 we specified that when studying AdS/CFT on the

JMaRT solutions, one works in the regime of parameters

ε =
(Q1Q5)

1
4

R
� 1. (A.1)

In terms of the dimensionless radial variable x defined in eq. (2.57), we define the ‘inner

region’ to be the range 0 ≤ x� ε−2; to be more specific, let us introduce another parameter

δ � 1 and define the inner region to be given by9

0 ≤ x . δ
1

ε2
. (A.2)

We then define the ‘asymptotic region’ to be given by the range

x &
1

δ

1

ε2
. (A.3)

The inner and asymptotic regions do not overlap. We will match solutions in the ‘neck’

region x ∼ 1
ε2

, or more specifically

δ
1

ε2
. x .

1

δ

1

ε2
(A.4)

where solutions to the radial wave equation are power law in x [68]. Solutions from the

inner and asymptotic regions match on to these power law solutions from the two sides.10

Inner region. In the inner region one can neglect κ2x relative to the other terms, and

so the radial wave equation (2.58) simplifies to

4∂x

[
x

(
x+

1

k2

)
∂xh

]
+

(
1− ν2 +

ξ2

x+ k−2
− ζ2

x

)
h = 0. (A.5)

Demanding regularity at the origin we get the solution for this equation

h =

(
x+

1

k2

) kξ
2

x
k|ζ|

2
[
2F1(a, b, c,−k2x)

]
, (A.6)

where

a =
1

2
(1 + ν + k|ζ|+ kξ), b =

1

2
(1− ν + k|ζ|+ kξ), c = 1 + k|ζ|. (A.7)

In writing this solution we have chosen to normalize the wavefunction (A.6) by setting

its overall normalization constant to unity. The behaviour of the inner solution near x→ 0

9While one must consider ε to be exponentially small in order to get a large AdS inner region (see for

example the discussion in [45]), here δ is simply a bookkeeping device. The important point is that the

inner and asymptotic regions do not overlap, and must be matched onto the neck region.
10Note that the regions involved in the present matched asymptotic expansion analysis are different to

those employed, e.g., in [45].
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is simply h ∼ k−kξx
k|ζ|

2 , and its expansion for large x is

h ' Γ(1 + k|ζ|)

[
k−1−ν−k|ζ|−kξΓ(−ν)

Γ
(

1
2(1− ν + k|ζ|+ kξ)

)
Γ
(

1
2(1− ν + k|ζ| − kξ))

)x− ν+1
2

+
k−1+ν−k|ζ|−kξΓ(ν)

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)
Γ
(

1
2(1 + ν + k|ζ| − kξ)

)x ν−1
2

]
. (A.8)

We will match this onto the power law behaviour in the neck region below.

Asymptotic region. In the asymptotic region, one can neglect ξ2

x+k−2 − ζ2

x relative to

the other terms, and so the radial wave equation simplifies to

∂2
x(xh) +

[
κ2

4x
+

1− ν2

4x2

]
(xh) = 0. (A.9)

The most general solution to this equation is a linear combination of Bessel functions

h =
1√
x

[
C1Jν(κ

√
x) + C2J−ν(κ

√
x)
]
. (A.10)

For κ
√
x� 1, its behaviour is

h ∼ C1

Γ(1 + ν)

(κ
2

)ν
x
ν−1

2 +
C2

Γ(1− ν)

(κ
2

)−ν
x−

ν+1
2 , (A.11)

and its large κ
√
x behaviour is

h ∼ 1

x
3
4

1√
2πκ

[
eiκ
√
xe−i

π
4 (C1e

−iν π
2 + C2e

iν π
2 ) + e−iκ

√
xei

π
4 (C1e

iν π
2 + C2e

−iν π
2 )
]
. (A.12)

Neck region. In the neck region, both κ2x and ξ2

x+k−2 − ζ2

x can be neglected, and the

wave equation approximates to

∂2
x(xh) +

[
1− ν2

4x2

]
(xh) = 0. (A.13)

The general solution is

h = Ax
ν−1

2 +B x−
ν+1

2 . (A.14)

Matching the solutions. We can now match the solutions at each end of the neck

region, and thereby patch together the three matching regions.

We are interested in instability of the geometry where there are no incoming waves,

yet we have outgoing waves carrying energy and other charges to infinity. The requirement

of no incoming waves gives the relation

C1 + C2e
−iνπ = 0. (A.15)

Matching the two asymptotic expansions (A.8) and (A.11) to the solutions in the neck

region, we obtain

− e−iπν Γ(1− ν)

Γ(1 + ν)

( κ
2k

)2ν
=

Γ(ν)

Γ(−ν)

Γ
(

1
2(1− ν + k|ζ|+ kξ)

)
Γ
(

1
2(1− ν + k|ζ| − kξ)

)
Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)
Γ
(

1
2(1 + ν + k|ζ| − kξ)

) .
(A.16)

The emission frequencies are given by the solutions to this transcendental equation.
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Instability frequencies. Let us now analyze equation (A.16). Recall that we work in

the large R limit, ε � 1. In this limit, taking ω ∼ 1/R and λ ∼ 1, one finds κ2 ∼ ε4, as

can be seen from eqs. (2.59), (2.34), and (2.22). Therefore the l.h.s. of equation (A.16) is

parametrically small. The r.h.s. is parametrically small when one of the Γ functions in the

denominator is parametrically close to developing a pole. To leading order, the values of

the parameters will be those which give poles. Let us set11

1

2
(1 + ν + k|ζ|+ kξ) ' −N, (A.17)

with N a non-negative integer. From equations (2.62) and (2.63) we see that in the large

R limit %→ 1 and ϑ ∼ ε2. Hence to leading order one obtains

ξ ' ωR−mφ
n

k
+mψ

m

k
, (A.18)

ν ' l + 1. (A.19)

Replacing these relations in equation (A.17) gives the leading order instability frequencies.

To leading order, the instability frequencies are real; we define ωR to be the real part of ω,

thus obtaining

ωR '
1

kR

(
−l −mψm+mφn− |−kλ−mψn+mφm| − 2(N + 1)

)
. (A.20)

At next-to-leading order, we will obtain the leading imaginary part of ω. To do this,

we replace N → N + δN and eliminate ξ in favour of N . From equation (2.67) we have

δξ = Rδω, which upon using (A.17) gives the change in ω due to shifting N to be

δω = − 2

kR
δN . (A.21)

There are also contributions to the subleading part of ω from corrections to ν and ξ at order

ε2, however these affect only the real part of ω. Therefore, denoting by ωI the imaginary

part of ω, to leading order in ε we have

ωI ' −
2

kR
Im(δN). (A.22)

The small deformation δN controls the pole of the divergent Γ function. We assume

that δN � ε, so that to leading order in ε it can be neglected in the argument of all the

other Γ functions. In what follows we shall verify the consistency of this assumption. The

residue at the pole of the Γ function is given by

Γ(−N − δN) =
(−1)N+1

N !

1

δN
. (A.23)

Using the relations

Γ(n+ 1 + x) = xn![x]nΓ(x), Γ(−n− x) =
Γ(−x)

(−1)nn![x]n
, (A.24)

11Taking parameters for which the other Gamma function in the denominator of (A.16) develops a pole

leads to an exponentially decaying mode, rather than an exponentially growing mode.
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where [x]n =
n∏
i=1

(
1 + x

i

)
, we obtain

δN = −e−iπν
(
νΓ(−ν)

Γ(ν)

)( κ
2k

)2ν
[ν]N [ν]N+k|ζ|. (A.25)

For p and q integers, we have [p]q = p+qCp =
(
p+q
p

)
.

The identity

Γ(ν)Γ(−ν) =
−π

ν sin(πν)
(A.26)

allows us to extract Im(δN). From (A.25) we obtain

ωI '
2

kR

π

Γ(ν)2

( κ
2k

)2ν
[ν]N [ν]N+k|ζ| . (A.27)

Recalling that ν = l+1+O(ε2), we observe that Im(δN) ∼ ε4l+4, and that Re(δN) ∼ ε4l+2,

which demonstrates the consistency of our approach. Then to leading order the imaginary

part of the frequency is

ωI '
1

kR

π

22l+1(l!)2

[(
ω2 − λ2

R2

)
Q1Q5

k2R2

]l+1(
N + l + 1

l + 1

)(
N + k|ζ|+ l + 1

l + 1

)
. (A.28)

B Details of pair creation calculation

B.1 Normalization of the asymptotic region wavefunction

In this appendix we fix the normalization of the asymptotic region wavefunction, for use

in section 4.

Using the asymptotic region wavefunction (A.12) together with the requirement of

only outgoing waves (A.15), we obtain

hout(x) = C2
1√
2πκ

1

x
3
4

eiκ
√
xe−i

π
4

(
ei
πν
2 − e−i

3πν
2

)
, (B.1)

and thus

hout(x)h∗out(x) = |C2|2
2

π|κ|
1

x
3
2

ei(κ−κ
∗)
√
x sin2(πν). (B.2)

Matching the two asymptotic expansions — (A.11) and (A.8) — say by comparing coeffi-

cients of x
ν−1

2 , we get an equation that determines C2,

k−1+ν−k|ζ|−kξΓ(1 + k|ζ|)Γ(ν)

Γ
(

1
2(1 + ν + k|ζ|+ kξ)

)
Γ
(

1
2(1 + ν + k|ζ| − kξ)

) = (−C2e
−iπν)

1

Γ(1 + ν)

(κ
2

)ν
. (B.3)

To find the real and imaginary frequencies we matched the solution using

Γ

(
1

2
(1 + ν + k|ζ|+ kξ)

)
= Γ(−N − δN) =

(−1)N+1

N !δN
. (B.4)

Replacing this expression in (B.3) we get

k2N+2νΓ(1 + k|ζ|)Γ(ν)

Γ(N + ν + 1 + k|ζ|)
(−1)N+1N !δN = (−C2e

−iπν)
1

Γ(1 + ν)

(κ
2

)ν
. (B.5)
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Taking modulus of the above relation allows us to extract |C2|2. We get,

k4N+4νΓ(1 + k|ζ|)2Γ(ν)2Γ(N + 1)2

Γ(N + ν + 1 + k|ζ|)2
(δN)(δN)∗ = |C2|2

1

Γ(1 + ν)2

(
|κ|
2

)2ν

. (B.6)

We now use (A.25), and working to leading order in ε, we approximate |κ|2 ' κ2. For use

in the main text, it is convenient to extract one power of ωI using (A.27). We thus obtain

|C2|2 sin2(πν) =
π

2
k4N+2ν(kR)ωI

Γ(1 + k|ζ|)2 Γ(N + 1) Γ(N + ν + 1)

Γ(N + ν + 1 + k|ζ|) Γ(N + 1 + k|ζ|)
. (B.7)

B.2 A hypergeometric function identity

Identity: for positive γ and for arbitrary positive integers N and l,∫ ∞
0

dρρ2γ+1(1 + ρ2)−2N−l−3−γ(2F1(−N,−N − l − 1, 1 + γ,−ρ2))2

=
1

2(2N + γ + l + 2)

Γ(1 + γ)2 Γ(N + 1) Γ(N + l + 2)

Γ(N + γ + l + 2) Γ(N + γ + 1)
. (B.8)

Proof: a proof of the above identity can be given by relating hypergeometric functions in

the integral to Jacobi polynomials. From identity 8.962.1 (third line) of Gradshteyn and

Ryzhik [84], page 999, we have

P
(γ,l+1)
N (y) =

Γ(N + 1 + γ)

Γ(N + 1)Γ(1 + γ)

(
1 + y

2

)N
2F1

(
−N,−N − l − 1, 1 + γ,

y − 1

y + 1

)
. (B.9)

Defining
y − 1

y + 1
= −ρ2, (B.10)

the integral can be converted into

1

2γ+l+3

(
Γ(N + 1)Γ(1 + γ)

Γ(N + 1 + γ)

)2 ∫ 1

−1
dy(1− y)γ(1 + y)l+1

(
P

(γ,l+1)
N (y)

)2
, (B.11)

which simply gives the right hand side of (B.8) upon using identity 7.391.1 (second line)

on page 806 of [84].

C Conventions

In this appendix we record our conventions and their relation to those of ref. [56], which

we use to obtain eq. (3.25) of the main text.

Our conventions are that

left−moving ↔ holomorphic ↔ positive Py, (C.1)

where Py is momentum along y. So the holomorphic coordinate in the CFT is related to

the null coordinate v = (t− y) in the spacetime.
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Our map between CFT and gravity SU(2) quantum numbers is given in (3.20),

mψ = −(m+ m̄) , mφ = (m− m̄) . (C.2)

Let us compare our conventions to those of Avery-Chowdhury [56], whose quantities we

denote with a superscript AC. In that paper, the anti-holomorphic coordinate corresponds

to positive y. Therefore we interchange L and R in mapping between the two papers, so

the spectral flow parameters are

α = ᾱAC , ᾱ = αAC . (C.3)

Next, the parameter controlling the twist is

κAC = k . (C.4)

In the conventions of [56], the emission of a scalar with gravity quantum numbers

(l,mAC
ψ ,mAC

φ ) corresponds to the CFT vertex

Vl,−mACψ ,−mACφ
(C.5)

where

−mAC
ψ = l − kAC − k̄AC , −mAC

φ = kAC − k̄AC . (C.6)

In addition, similarly to our conventions we have the relation

mAC
ψ = −(mAC + m̄AC) , mAC

φ = mAC − m̄AC . (C.7)

Since L and R are interchanged between the two papers, we have

mL = m̄AC , mR = mAC ⇒ mψ = mAC
ψ , mφ = −mAC

φ . (C.8)

Therefore we obtain

kAC =
1

2
(l +mψ +mφ) , k̄AC =

1

2
(l +mψ −mφ) . (C.9)

Using these relations in eq. (10.3) of [56], we arrive at (3.25).
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