MAX-PLANCK-INSTITUT FUR PLASMAPHYSIK

GARCHING BEI MUNCHEN

GALE Programmer's Handbook

Erich Miiller
Robert Lathe
Klaus Kottmann

IPP R/2L October 1977

Die nachstebende Arbeit wurde im Rabmen desVertrages zwischen dem
Max-Planck-Institut fiir Plasmaphysik und der Europiischen Atomgemeinschafl iiber die
Zusammenarbeit auf dem Gebiete der Plasmaphysik durchgefiibrt.

R/ 24

GALE Programmer's Handbook
E. Mueller

R. Lathe
K. Kottmann

Abstract

This manual is intended
the applications pro-

grammer, who wishes to use

supported services 1in
tasks. These services
implemented as additions
the programming language

being used in the form of su-
broutine calls (FORTRAN and
MACRO-11) or Macro expansions
(MACRO-11) .

Table of Contents

Preface

0.1 Manual Objectives
0.2 Structure of the Manual
Chapter 1 Introduction
Chapter 2 Data File I/0 Interface
2l Introduction
242 GALE Data Files
2:2¢1 File Naming Convention
2:2:2 File Structure
2.3 General Requirements
2.4 Open GALE Data File (OPFIL)
2.5 Close GALE Data File (CLFIL)
2.6 Get data from GALE Data File (GETDAT)
2.7 Get Header Block (GETHDR)
2.8 Get Diagnostic Descriptor Block (GETDDB)
2:9 Get Module Control Block (GETMCB)
2.10 Get Next Blocks (GETNXT)
2.11 Get Shot Number (GETSHT)
2.12 Error Return Codes
2:13 Programming Hints
2.13.1 Using GETSHT
2.13.2 Specifying the DID and MID
Chapeter 3 Graphic Terminal Display

Introduction

General Requirements

Runtime Package

FRAME - Define a Plot Page
ENDFRA - Finish a Plot Page
PLOTL - Plot a Continuous Line
PLOTS - Plot a Dashed Line
PLOTP - Plot a Point Line
PLOTSY - Plot Text

SCALE - Define Scale Factors
NEWPAG - Erase the Terminal
URSPR - Set Cursor Home

.10 ICON - Convert Integer to ASCII
.11 CRTO011 - Interactive Plot System
.12 CRT021 - Auto-scale an Axis

.13 CRTO031 - Scale an Axis

WO JdJAhU & Wk

e & 2 s @

WWWWWWwWwWwWwWwWwwWwWwwWwwWww
. L] L] . L L . L] L
WWwWwWwWwWwwwwWwwwwwwwN -

Chapter 4

.

.

.

o - - e
- - . . @ .
WWwWwwprhhoN

w

Chapter

LUt o
. LI - . o
AU bW

[=)]

Chapter

e e o

AT AT O OO
e o s s e s s e @ . .
DDLU U S bl W NN -

Appendix A

L] L
(TSI I

. &
(WO 8 I

N = N =

W N~

Command Line Input

Introduction

Get Command Line (GCML)

Input Requirements

Output from GCML

Error Conditions

Command String Interpreter (CSI)
Input Requirements

Output from CSI

Error Conditions

Namelist Input/Output

Introduction

General Requirements
Namelist Input/Output
Namelist Controlblock (NCB)
NCB Macro

Error Conditions

Message Output (MO)

Introduction

User Task Interface to MO Task
Format String Descriptor
Parameter List

MO Task Operation

Message Construction
Message Files

Programming Hints

Message Macro Description
MOUTSS

MOUTS

MOOPSS

MOCLSS

Message DPB Format

Error Conditions

MO Status Return Codes

Recommended Logical Unit Assignments

Preface

0.1 Manual Objectives

This manual 1is intended for the applications pro-
grammer, who wishes to use GALE supported services in user
tasks. These services are implemented as additions to the
programming language being used in the form of subroutine
calls (FORTRAN and MACRO-11) or Macro expansions (MACRO-11).

0.2 Structure of the Manual

This manual is organized into chapters. All chapters
describe data Input/Output in any form. The first two
chapters are concerned with data retrieval and graphic data
display, and the remaining chapters are provided to describe
terminal I/0.

CHAPTER 1

Introduction

As outlined in the "Terminal User's Guide" GALE (Gener-
al Acquisition system for Labratory Experiments) is under-
stood as a functional and logical extension of the RSX-11M
Operating System. Besides the capability of data acquisi-
tion and preservation and of monitoring and control, some
facilities are offered, for use by the GALE application pro-
grammer, but which may also be of interest for any other

programming.

The programmer using these facilities must of course be
familiar with the programming language and compiler being
used, and also the Task Builder. Familiarity with the GALE
Terminal commands as described in the "Terminal User's
Guide" is required as well as in certain instances further

aspects of the GALE system, in which case the appropriate
document will be referred to as needed.

Subroutines called from FORTRAN or MACRO are kept ei-
ther in the system object library or in object libraries
containing the appropriate package of utility subroutines.
In the latter case, the user task must be built with the
proper object libraries in the source specifications. Macro
definitions required for assembler programming are without
exception contained in the System Macro Library RSXMAC.SML,
and thus may simply be defined by invoking the .MCALL assem-
bler directive.

The GALE system provides program support in the follow-
ing areas:
Retrieval of data from data files generated

by the GALE acquisition process.

Graphic terminal display with a palette of
options and features.

General input from the user terminal.

Printing messages and user-formatted data on
the users terminal and console log device.

CHAPTER 2

Data File I/O Interface

2.1 Introduction

The I/0 interface to GALE data files 1is comprised of
several subroutines, which allow the user in a simple way to
access all the logical blocks contained in the data files.
All these subroutines are supplied to the user in the libra-
ry DASLIB.OLB. In addition to the reader assumptions made
in the introduction of this manual, the reader should be
familiar with the GALE data file structure described below
when using the GALE data file I/O interface. This chapter
contains descriptions of the following routines:

OPFIL Open GALE data file.

CLFIL Close GALE data file.

GETDAT Get data from GALE data file.

GETHDR Get Header Block (HDR).

GETDDB Get Diagnostic Descriptor Block (DDB).

GETMCB Get Module Control Block (MCB).

GETNXT Get ID codes of the next dependent and independent
CNF-block of a given CNF-block.

GETSHT Get shot number of last GALE data file.

Data File I/0 Interface Page 2-2

2.2 GALE Data Files

One of the basic assumptions made in the GALE design,
is that the administration effort associated with data files
can be greatly reduced if all of the data acquired from one
experiment 1is contained in one data file and if the result-
ing files are named in such a way that they can be conveni-
ently identified.

2.2.1 File Naming Convention

As discussed in the GALE Terminal User's Guide, all
files are designated with names of the format:

name.extension;version

This is also true of GALE data files. It should be noted
that the files originally created by the ACQ task all have
the version number 1. In the naming of a data file, the ex-
tension element 1is set to the short-form (3-character) ex-
periment name. The name element always consists of a single
letter (at present "B") followed by five digits. The letter
indicates the file structure level of the file in question.
The following digits give the sequential experiment number
associated with the file.

NOTE

The name of a file 1is also
held in the file header record
so that the file name can be
re—constructed if the data
file is inadvertently renamed.

2.2.2 File Structure

It has been implied above, that all of the data derived
from one experiment are stored in one data file. Data files
must therefore contain adequate information to enable the
Data File I/0 Interface to locate the data requested by user
tasks. This has been achieved by imposing the local system
configuration onto the structure of the data file. A system
configuration may be viewed as a binary tree structure, an

Data File I/O Interface Page 2-3

example of which is given in Figure 2-1. The various nodes
in the structure represent diagnostics and their modules.
In Figure 2-2, the structure of a corresponding data file is
shown; it is evident that the nodes containing the data are
linked to the module nodes from which the data was obtained.
The actual layout of the resulting file is shown 1in Figure
2-3.,

In a system such as GALE, where many tasks simultane-
ously access a given data file, the amount of I/O needed to
obtain a given datum should be minimized. An expediant
means for achieving this, given the structure used in GALE
data files, is through the use of random access methods.
GALE data files consist of nodes made up of one or more 64
byte records. (Eight such records may be read with one read
access). The data file 1I/0 interface takes advantage of
this structure and therefore is able to skip large portions
of the file when a piece of data is requested. For example,
if a task requests data from diagnostic 2, module 3 in the
file depicted in Figqure 2-3, the following steps would be
carried out:

1. Read the "Header" node and obtain the pointer to
the "Diagnostic 1" node.

2. Read the "Diagnostic 1" node. This is not the re-
quested diagnostic, so obtain the pointer to the
next diagnostic node.

3. Read the next diagnostic node. This 1is the re-
quested diagnostic, so obtain the pointer to the
first associated module node.

4. Read the module node. 1If this is not the required
node, obtain the pointer to the next module node
and retry this step. If this 1is the "Module 3"
node, then go to the next step.

5. Read the requested data and return them to the re-
guesting task.

Data File I/O Interface

| HEADER |
I |
—
_—-———v———-—-
| = 3 |
| DIAG 1 | | DIAG 2 |
| | | |
I |
. v
| ==—=>] I |
| MoD 1 | | MOD 2 | | MoD 1 |
l | | | | |
-1 -1 -1
| v v
Mop 3		m™MoD 4		MoD 2
	I I [
...._.—v____.				
MoD 3				

Figure 2-1

Example System Confiuration

Page 2-4

Data File I/0 Interface

| HEADER |
| |
—_—
_v———

[= e e B |
| DIAG 1 | | DIAG 2 |
| l | I

l |
	====>			
MOD 1		MOD 2		MOD 1
			= I	
-1 -1 | T

v v | v
I | I | | |
| MOD 3 | | MoD 4 | | | MOD 2 |
I I | | | |
1T i | 1
v v I v
DATA		DATA			
FROM		FROM [™MOD 3		
MOD 3		MOoD 4			

I | | | : I

v
\Y |7 DATA |
DATA		FROM
FROM		MOD 3
MOD 2		

| |
Figure 2-2

Data File Block Linkage

Page 2-5

Page 2-6

Data File I/0 Interface

8 — — — — — — — — — — e

Figure 2-3

Data File Structure

Data File I/O Interface Page 2-7

2.3 General Regquirements

Before any GALE data file may be accessed via the rou-
tines listed above, the user should consider the following:

1'

s

All routines forming the I/0 interface to GALE data
files are callable from FORTRAN programs.

All interface routines are gathered in the library
DASLIB.OLB. Usage of these routines therefore re-
quires at task build time the input file specifica-
tion DASLIB/LB or DASLIB/LB:routinel:routine2:...
respectively.

The GALE data and sytem devices DDO: and DS0O: must
be assigned globally to physical devices, e.g.:

ASN DK1:=DDO0:/GBL
ASN DK2:=DS0:/GBL

GALE data files are accessed by the interface rou-
tines for record I/0. It is the users responsibil-
ity to provide a sufficiently 1large File Storage
Region (FSR). FSRs may be allocated and extended
via the FSRSZS$-Macro or by issuing the EXTSCT or
ACTFIL statements in the optional keyword input to
the Task Builder (TKB). The procedures are des-
cribed in the "RSX-11M 1I/0 Operations Reference
Manual" and the "RSX-11M Task Builder Reference
Manual". Note that the GALE data file I/0 inter-
face routines allow access of one file at a time
only.

The routines described below use some subsidiary
routines, also contained in DASLIB.OLB. In order
to speed up access time in overlay structures the
user should have these utilities in his root seg-
ment. This is accomplished by specifying

DASLIB/LB:GETCOM

in the root-segment specification of the Overlay
Descriptor Language (ODL) file.

A task using the GALE data file interface routines
must 1link to the common area DASCOM.OBJ, which is
accomplished via the task builder (TKB) input:

DS: [SYSUIC]DASCOM.OBJ

e ImIm—m————..,

Data File I/0 Interface Page 2-8

7. The interface routines use Logical Unit Number
(LUN) 2 1in accessing GALE data files. Therefore
LUN 2 is not free for other usage until CLFIL has
been called.

8. To use the interface routines there must of course
be at least one GALE data file resident on the
specified data storage medium.

The first call in accessing a GALE data file has to be
the call for routine OPFIL. The last one may be the call
for CLFIL, although it is not mandatory (open files are
closed automatically on task exit). The order in which all
other routines are called is not restricted.

2.4 Open GALE Data File (OPFIL)

This routine assigns LUN 2 to the specified data device
and opens a GALE data file. Before accessing a data file
with any other interface routines OPFIL must be called:

CALL OPFIL (SHT,IOSB[,DEV])

SHT Shot number of the data file to be opened.

I0SB I/0 status block. This is a vector of 2 Integer*2,
which 1is set by OPFIL. Upon return, a value of +1
indicates successful completion; any other wvalue

indicates an error. Error codes and their meaning
are listed further below.
The second Integer of the I/O status block is set to
the number of bytes transferred to the callers
buffer. Because OPFIL does not transfer any data
this argument is not used.

DEV Optional vector of 4 Logical*1l values containing the
device name string of the device where the data file
resides. If this arqument is omitted the GALE data
device DD0: is used by default.

Data File I/0 Interface Page 2-9

2.5 Close GALE Data File (CLFIL)

CLFIL closes a GALE data file previously opened by
OPFIL. In addition LUN 2 is freed for other usage. The
calling sequence is of the form shown below, where the same
argument description applies as with routine OPFIL.

CALL CLFIL(SHT,IOSB[,DEV])

2.6 Get Data from GALE Data File (GETDAT)

The GETDAT routine is designed to access logical blocks
of data delivered by the associated experiment. Data to be
read are considered to be a sequentially ordered vector like
a FORTRAN singly dimensioned array. Any amount of data may
be requested starting at any point in the logical block.
The call is as follows:

CALL GETDAT (DAT, LEN, STRT, FMT, IOSB,DID,MID)
DAT Address of the user buffer.
LEN Length of user buffer in data items.
STRT Starting data item in the logical block (STRT>=1).

This parameter is incremented each time a data item
is transfered to the user buffer and must be set
equal to or greater than 1, for the first of succes-
sive calls to GETDAT.

FMT Transfer control argument, where the low byte serves
as the buffer and conversion descriptor and the high
byte serves as the MUX data descriptor.

Bit 00 Request for byte data.

Bit 01 Request for Integer*2 data.

Bit 02 Request for 4 byte data.

Bit 03 1In addition to Bit 02 above this kit indi-
cates, whether the request is for Real*4
(bit set) or for Integer*4 (bit clear).

Bit 08 Request for MUX data.

Bit 12

. Channel number of requested MUX data

BiE 15

Bits not listed above are not used, but must be set
to zero.

Data File I/O0 Interface Page 2-10

I0SB

DID

MID

sl

in

I1/0 status block. This is a vector of 2 Integer*2,
which is set by GETDAT. Upon return, a value of +1
indicates successful completion; any other wvalue
indicates an error. Error codes and their meaning
are listed further below.

The second Integer of the I/0O status block is set to
the number of bytes transferred to the callers
buffer. This is true, even in case the first word
indicates an error.

Diagnostic ID code of the data block requested.

Module ID code of the data block reguested.

Get Header Block (GETHDR)

GETHDR enables the user to retrieve all data contained

Header block of the GALE data file currently open.

The calling sequence is as follows:

BLK

PAR

PLN

IOSB

CALL GETHDR([BLK], [PAR], [PLN],IOSB,DID)

Optional user buffer address for the fixed part of
the Header. The 1length of the buffer must be at
least 40 bytes. If this argument is not specified
the fixed part of the Header will not be returned.

Optional user buffer address for the system parame-
ters contained 1in the Header block. If this argqu-
ment is not specified no system parameters will be
returned.

Length in bytes of the buffer PAR. PLN must be
specified 1if PAR is specified and may be omitted if
PAR is not specified.

I1/0 status block. This is a vector of 2 Integer*2,
which is set by GETHDR. Upon return, a value of +1
indicates successful completion; any other wvalue
indicates an error. Error codes and their meaning
are listed further below.

The second Integer of the I/O status block is set to
the number of bytes transferred to the callers sys-
tem parameter buffer PAR. This is true, even in
case the first word indicates an error.

Data File I/0 Interface Page 2-11

2.8 Get Diagnostic Descriptor Block (GETDDB)

GETDDB returns to the callers buffer all data contained
in a Diagnostic Descriptor Block given by its ID number.
The call is as shown below:

CALL GETDDB ((BLK], [PAR], [PLN],IOSB,DID)

BLK Optional user buffer address for the fixed part of
the DDB. The size of the buffer must be at least 48
bytes. If this argument is not specified the fixed
part of the DDB will not be returned.

PAR Optional user buffer address for the user parameter
portion of the DDB. If this argument is not speci-
fied user parameters are not returned.

PLN Length of the user buffer PAR in bytes. PLN must be
specified if PAR is specified and may be omitted if
PAR is not specified.

IOSB I/0 status block. This is a vector of 2 Integer*2,

which is set by GETDDB. Upon return, a value of +1
indicates successful completion; any other wvalue
indicates an error. Error codes and their meaning
are listed further below.
The second Integer of the I/0 status block is set to
the number of bytes transferred to the callers
buffers. This is true, even in case the first word
indicates an error.

DID Diagnostic ID code of the DDB requested.

2.9 Get Module Control Block (GETMCB)

GETMCB returns to the callers buffer all data contained
in a MCB given by its Diagnostic and Module ID number. The
call is as shown below:

CALL GETMCB([BLK], [PAR], [PLN],IOSB,DID,MID)

BLK Optional user buffer address for the fixed part of
the MCB. The size of the buffer must be at least 40
bytes. If this argument is not specified the fixed
part of the MCB will not be returned.

Data File I/O Interface Page 2-12

PAR Optional user buffer address for the device depen-
dent parameter portion of the MCB. If this argument
is not specified user parameters are not returned.

PLN Length of the user buffer PAR in bytes. PLN must be
specified 1if PAR is specified and may be omitted if
PAR is not specified.

10SB I/0 status block. This is a vector of 2 Integer*2,
which is set by GETMCB. Upon return, a value of +1
indicates successful completion; any other wvalue
indicates an error. Error codes and their meaning
are listed further below.
The second Integer of the I/O status block is set to
the number of bytes transferred to the callers
buffers. This is true, even in case the first word
indicates an error.

DID Diagnostic ID code of the MCB requested.

MID Module ID code of the MCB requested.

2.10 Get Next Blocks (GETNXT)

GETNXT is useful in getting information about the diag-
nostic configuration of the experiment as it was at data
taking time. This routine returns at each call the ID codes
of the next dependent and independent CNF-block of a given
CNF-block, specified by its Diagnostic and Module ID codes.
The call is of the form:

CALL GETNXT([DID],[MID],DEP,INDP,IOSB)

DID Optional Diagnostic ID code. If this argument is
not specified the links of the Header are returned.

MID Optional Module ID code. If this argument 1is not
specified the 1links of DDB given by DID are re-
turned.

DEP ID code of the dependent block. If DID was not

specified, DEP contains upon return the ID code of
the first DDB in the structure. If MID was not
specified, DEP 1is set to the ID code of the first
MCB in the Diagnostic given by DID. If DID and MID
were given the ID code of the MCB which is linked
through B.LK2 to the current MCB is returned in DEP.

Data File I/0 Interface Page 2-13

INDP ID code of the independent block. If DID was not
specified INDP 1is set to zero, because the Header
block has no independent link at present. If MID
was not specified, INDP is set to the ID code of the
next DDB linked to the present DDB. If DID and MID
were specified, INDP holds upon return the ID code
of the MCB, which is linked through B.LK1l to the
current MCB.

IOSB I/0 status block. This is a vector of 2 Integer*2,
which 1is set by GETNXT. Upon return, a value of +1
indicates successful completion; any other value
indicates an error. Error codes and their meaning
are listed further below.

The second Integer of the I/O status block 1is not
used.

2.11 Get Shot Number (GETSHT)

GETSHT returns to the caller the shot number of the
last allocated GALE data file. This is done by reading the
value at offset H.LST in the Header block of the GALE confi-
guration file (CNF). The call is of the form:

CALL GETSHT (I0SB)

I0SB I/0 status block. This is an vector of 2 Integer*2,
which 1is set by GETSHT. A value of +1 indicates
successful completion; any other value indicates an
error condition. Possible error codes and their me-
aning are listed below. The second Integer*2 is set
to the requested shot number.

NOTE

GETSHT does not access any data file and may
be <called only if no data file is currently
open. This is true through the fact, that
GETSHT uses LUN 2 in accessing the GALE con-
figuration file.

Data File I/0 Interface Page 2-14

2.12 Error Return Codes

The routines forming the I/0 interface to GALE data
files use the following error codes, which differ from stan-
dard RSX-11M interpretation. All other error codes returned
have standard RSX-11M meaning.

NOTE

The error codes are returned
as Integer*2 values.

Module Error Code Meaning
OPFIL IE.BNM Invalid shot number
CLFIL IE.BAD Either the shot number or the device

name string do not reflect the par-
ameters of the open GALE data file.

GETDAT IE.BAD Invalid starting data item or
transfer control argument specified,
or Real conversion error.

IE.SPC Illegal user buffer or data buffer
address not specified.

IE.EOF End of logical data block.

IE.BYT Byte request for data which do not
fit into a byte.

IE.NSF Logical data block not found.

IE.WAT Format argument erroneously speci-
fied.

IE.BTP Unprocessable length of data item in
associated MCB.

IE.NFI Bad DID or MID specified.

IE.BCC MUX data sequence error, e.g. datum

of channel n not followed by datum
of channel n+l.

GETHDR

GETDDB

GETMCB IE.EOF End of block detected.
IE.NFI Bad DID or MID specified.

Data File I/0 Interface Page 2-15

2.13 Programming Hints

Due to the very generalized structure of the GALE data
files and the associated file handling routines, there are a
large number of ways for locating the data desired - and
also a number of possibilities where the programmer can make
errors. The following points give some suggestions which
have proven useful to beginning programmers.

2.13.1 Using GETSHT

The GETSHT routine, in addition to providing the se-
guential number of the latest data file, also provides a
convienient means for synchronizing data taking and data
processing when used in conjunction with the OPFILE routine.
An experimentalist may thus start a processing program util-
izing this facility and then automatically process and view
the results of an experiment immediately after the data has
been taken. Such a program might incorporate statements
like the following:

FORTRAN PROGRAM SECTION FOR SYNCHRONIZING
DATA ACQUISITION AND DATA PROCESSING

'@ 1 W o o

DIMENSION ISTB (2)
NXTSHT=0

LSTSHT=0

GOTO 101

WAIT 5 SECONDS IF THERE IS NO NEW DATA
OR IF THE CURRENT DATA ACQUISITION PHASE
IS NOT YET COMPLETED.

=OOOOOn

o
o

CALL MARK (10,5, 2)
CALL WAITFR (10)

GET THE NEW FILE NUMBER
CALL GETSHT (ISTB)

IF THERE IS AN ERROR, THEN STOP

OO0~ OO0
o
p—

IF (ISTB(1l) .NE. 1) STOP

DETERMINE THAT THIS IS REALLY A NEW FILE.
IF NOT, WAIT A WHILE AND TRY LATER.

QOO0

NXTSHT=ISTB (2)

Data File I/O Interface Page 2-16

IF (NXTSHT .EQ. LSTSHT) GOTO 100

TRY TO OPEN THE FILE.

oNeNe!

CALL OPFILE (NXTSHT,ISTB)

IF SUCCESSFUL, GO PROCESS THE DATA.

IF (ISTB(I) .EQ. 1) GOTO 102

THE ACQUIRE TASK MAY STILL BE WRITING DATA INTO
THE FILE (SHOWN BY ERROR CODE = -29). IF SO,

RELEASE ACCESS AND TRY AGAIN LATER. IF NOT, THEN
THERE HAS BEEN A FILE SYSTEM ERROR, SO STOP HERE.

nNnOoOOOnn nnon

IF (ISTB(l) .NE. =-29) STOP

CALL CLFILE (NXTSHT)

GOTO 100

SET THE LAST FILE NUMBER TO THE CURRENT FILE NUMBER.
02 LSTSHT=NXTSHT

READ AND PROCESS DATA HERE !!!

CLOSE THE FILE

OO0 OOONOn

CALL CLFILE (NXTSHT)

AND TRY TO GET NEW DATA.

O00n

GOTO 101

2.13.2 Specifying the DID and MID

A number of the routines described in this chapter re-
quire the specification of the Diagnostic and Module Iden-
tification Codes (DID and MID, respectively). The methods
available for determining the proper DID and MID range from
elementary to very sophisticated.

In the simplest case, the DID and MID may be fixed into
the data processing program. This is often the best techni-
que for special purpose data processing where the processing
is always applied to data from a specific diagnostic and mo-
dule. After the experiment configuration has been speci=-
fied, any priveleged user may obtain the DID and MID values

desired by simply listing the diagnostic using the DLG task.

Data File I/0O Interface Page 2-17

More sophisticated programmers may take advantage of
the fact that GALE data files are structured as linked bina-
ry lists. A program might be written which asks the termi-
nal user to input the diagnostic name and module designation
whose data are to be processed. If the diagnostic is called
LASER and the module QD2 delivers the data, then the com-
bined use of the routines GETNXT, GETDDB and GETMCB in a bi-
nary tree search would provide a means for obtaining the de-
sired DID and MID. The following steps would be required:

1. Use GETNXT with the DID and MID unspecified to ob-
tain the DID of the first diagnostic in the system.

2. Use GETDDB specifying the DID previously obtained
to read the contents of the DDB.

3. Determine if this is the diagnostic LASER by check-
ing the contents of the diagnostic name entry. If
not, go to step 4, otherwise the diagnostic has
been found so go to step 5.

4, Use GETNXT specifying the DID obtained previously
to obtain the DID of the next diagnostic, then go
to step 2.

5. Use GETMCB specifying the previously obtained DID
and MID to read the current MCB.

6. Determine if this is the module QD2 by checking the
contents of the MCB device and unit entries. If
this is the desired MCB, then data may now be read
since the DID and MID are identified. If not, go
to step 7.

7. Use GETNXT with the current DID and MID to get the
next MID, then go to step 5.

CHAPTER 3

Graphic Display

3.1 Introduction

A graphic display facility is provided which enables
the user to plot data on a terminal. Plot data are produced
by a run-time package, which is designed for interactive or
frame by frame usage, and are output by the Plot Task (PLT).
Frame by frame usage requires each plot sequence to be en-
closed in a CALL FRAME and CALL ENDFRA respectively, whereas
interactive usage requires only one call. The following
routines of the run-time package are available:

FRAME Define scale of the page.

ENDFRA Ends plot data production.

PLOTL Draw a curve connecting points with a line.

PLOTLS Draw a curve connecting points with a dashed line.
PLOTP Display predefined characters at given coordinates.
PLOTSY Plot text at a given coordinate.

SCALE Define new scale.

CRT011 Do interactive plot.

CRT021 Round a given range for scaling.

CRT031 Scale and subdivide a given range.

ICON Convert Integer to ASCII representation.

NEWPAG Erase screen.

URSPR Home cursor.

Graphic Display Page 3-2

3.2 General Requirements

Before producing any plots with the graphic display fa-
cility the user should consider the following:

1.

The run-time package produces an intermediate data
set (a- disc file) containing the plot data which
are interpreted and output by the Interpreter Task
(PLT) . The UFD associated with the plot system,
UIC[1l,7], must have Read, Write, Extend and Delete
priveleges for all users. This may be accomplished
by establishing the UFD with a command such as

UFD DKO:/PRO=[RWED, RWED, RWED, RWED]

To function properly, PLT must be task built as
shown below:

TKB>SY:[1,7]PLT/PR:0=0D:[1,101]) INTHPT
TKB>OD:[1,101] INTER/LB, IORLIB/LB
TKB>/

ENTER OPTIONS:

TKB>ASG=DKO:1

TKB>ASG=TI:2:4:5

TKB>ASG=C0:6

TKB>TASK=...PLT

TKB>//

where SY: denotes the RSX-11M system disk and OD:
denotes the disk where the objects, supplied by
PDE, reside.

After PLT is built as outlined above it must be in-
stalled and started:

INS [1,7]PLT<CR>
PLT<CR>

A user task producing plot output via the graphic
display facility must 1link to the respective
run—time routines. All these routines are conta-
ined in the 1library RUN.OLB which is supplied by
PDE. Furthermore Logical Unit Number 5 is used by
the run—-time routines for terminal output, hence
the user task must assign LUN 5 to the terminal
(TIs):

The intermediate data set produced by the run-time
routines and interpreted by PLT is bit-compatible
with the Micro Fiche intermediate plot data set
handled at the IPP Computer Center (IBM360/91 and
AMDAHL460/V6). This fact allows the user to pro-
duce the data set at the computer center and, after
transmitting the data set to the PDP11l, to inter-
pret and output the plot data at the local instal-
lation.

A

Graphic Display Page 3-3

3.3 Run-Time Package

The run-time package computes all the data needed for
the required plot and stores them into a disk file. Disk
files are named PLT.DAT;ver, where ver is the version number
which is the sum of 100 plus the physical unit number of the
terminal from which the requesting task was started. When
the plot data file is ready to be processed by the inter-
preter, the run-time package sends a message to PLT and sus-
pends the requesting task, which is resumed by PLT when all
plot data are output. The following gives a description of
how to use the various routines forming the run-time pack-
age. Arquments enclosed in brackets ([and]) are optional
and may be omitted. The defaults, which apply if such arqu-
ments are not specified, are given 1in the description of
each routine.

3.3.1 FRAME - Define a Plot Page

This routine defines the scale of the page and erases
the screen before a plot. A CALL FRAME must be the first
call in a sequence of plotting routines, when using the
run-time package on a frame by frame basis. The call is of
the following format:

CALL FRAME (XMIN,YMIN, XMAX,YMAX[,CTRL[,REP]])

XMIN Minimum value for X-coordinates (Real*4).
YMIN Minimum value for Y-coordinates (Real*4).
XMAX Maximum value for X-coordinates (Real*4).
YMAX Maximum value for Y-coordinates (Real*4).
CTRL Page format control parameter (Integer*2), where the

following values are acceptable:

0 Broad page format (default value).

1 Upright page format.

2 Quadratic page format.-

10 For use in interactive mode only (no screen

erase, but possible operator answers are
displayed on top of the screen).

Graphic Display Page 3-4

REP Repetition factor (Integer*2) specifying the number
of copies of the plot. (The default value is zero).

3.3.2 ENDFRA - Finish a Plot Page

This routine ends the production of plot data, closes
the plot data file on disc, sends a message to the Inter-
preter Task (PLT), thus requesting plot output, and suspends
its associated task. A CALL ENDFRA must be the last call in
the sequence of plotting routines. The call takes the form
shown below, where no parameters are required.

CALL ENDFRA

3.3.3 PLOTL - Plot a Continuous Line

This routine draws a curve and connects the points with
a line (linear interpolation). The call is of the form:

CALL PLOTL(X,Y,N[,INT])

X X-coordinates of the curve to be drawn (Real*4).

Y Y-coordinates of the curve to be drawn (Real*4).

N Number of coordinate pairs (Integer*2).

INT Integer*2 value defining the intensity of the wolot

(0<=INT<=28). The default value for INT is 15 and
should be used for screen plotting.

Graphic Display Page 3-5

3.3.4 PLOTLS - Plot a Dashed Line

This routine draws a curve and connects points with a
dashed line (linear interpolation). The call is of the form:

CALL PLOTLS(X,Y,N[,INT])

X X—coordinates of the curve to be drawn (Real*4).

Y Y-coordinates of the curve to be drawn (Real*4).

N Number of coordinate pairs (Integer*2).

INT Integer*2 value defining the intensity of the plot

(0<=INT<=28). The default value for INT is 15 and
should be used for screen plotting.

3.3.5 PLOTP - Point Plot a Line

PLOTP displays a predefined character at the given
coordinates without connecting them. The call has the for-
mat:

CALL PLOTP(X,Y,N[,CHAR[,SIZE[,ALPHA[,INT]]]])

X X-coordinates of the curve to be drawn (Real*4).

Y Y-coordinates of the curve to be drawn (Real*4).

N Number of coordinate pairs (Integer*2).

CHAR Integer*2 value containing the ASCII character in

the high byte. This character is automatically cen-—
tered at the given coordinates. The default char-
acter is a dot ".".

SIZE Size of the character in mm (Real*4). Any size from
zero up to 180 mm is possible, where the default
value is 1 mm.

ALPHA Inclination of the specified character in degrees
(Real*4). Any inclination from zero to 360 degrees
is allowed, where the default value is zero.

INT Integer*2 value defining the intensity of the plot
(0<=INT<=28). The default value for INT is 15 and
should be used for screen plotting.

Graphic Display Page 3-6

3.3.6 PLOTSY - Plot Text

This routine plots a text string starting at a given
coordinate. The call is of the form:

CALL PLOTSY(TXT,X,Y([,SIZE[,ALPHA[,BETA[,R[,INT]]]]])

TXT ASCITI string with max. 256 characters. The last
character of the text has to be a $-sign. During
plot execution the $-sign will be melted away.

X X-coordinate (REAL*4) of the lower left point of the
first character of the text.

h'{ Y-coordinate (REAL*4) of the lower left point of the
first character of the text.

SIZE Size of the characters in mm (Real*4). Any size
from 2zero up to 180 mm is possible, where the de-
fault value is 1 mm.

ALPHA Inclination of the specified text 1line in degrees
(Real*4). Any inclination from zero to 360 degrees
is allowed, where the default value is zero.

BETA Inclination of each character within the text 1line
(cursive) in degrees (Real*4). BETA defaults to
zero, where legal values range from zero to 30 de-
grees.

R Ratio of the width to the heigth of the characters

in the text 1line (Real*4). This value must be in
the range of 0.5 <= R <= 1, where the default wvalue
is 1.

INT Integer*2 value defining the intensity of the plot

(0<=INT<=28). The default value for INT is 15 and
should be used for screen plotting.

3.3.7 SCALE - Define Scale Factors

This subroutine may be used to define a new scale. The
call is of the following form, where the parameters have the
same meanings as described in FRAME above.

CALL SCALE(XMIN,YMIN, XMAX, YMAX)

B -

% Graphic Display Page 3-7

3.3.8 NEWPAG - Erase the Terminal

This routines performes a page erase for terminal plot-
ting. The call is of the following form, where no parame-
ters are required.

CALL NEWPAG

3.3.9 URSPR - Set Cursor Home

This routine is of interest only for terminal plotting.
It places the cursor in the upper left corner (home posi-
tion). The call is of the form:

CALL URSPR

3.3.10 ICON - Convert Integer to ASCII

This routine converts a given Integer to a signed ASCII
string, which is a decimal representation of the integer.
Each converted digit string consists of five characters
which are sign, three digits and a trailing $-sign. For ex-
ample the binary value -123 will be converted by ICON to the
ASCII string "-123S".

CALL ICON(INT,TXT)

INT Integer*2 to be converted.

TXT Pointer to buffer where the converted ASCII string
is to be stored.

3.3.11 CRTO011 - Interactive Plot System

Interactive usage of the plot system may be invoked
through a call to routine CRT01l. A curve will then be
drawn in the specified mode. Only those points are displa-
ved which are inside the window specified. Also a title and
the X- and Y-scale will be written, and a box will be drawn
around the curve. The box has 750 steps in the X-direction
and 500 steps in the Y-direction. For example, this will be
a rectangle of 124.5 * 95 mm on a TEK4006.

-

Graphic Display Page 3-8

The plot is terminated with a prompt for one of the follow-
ing responses: '

for automatic Y-axis scaling

for new scaling

for hardcopy

for exit (return to the calling program)

moOn P

The format of the call is as follows:

CALL CTRO11(CODE,TLEN,TITLE, XTLEN, XTIT, YTLEN, YTIT,

* XMIN, XMAX,YMIN, YMAX, VLEN, XVECT, YVECT)
CODE Integer*2 value defining the plotmode, where
Bit 00 = 0 Erase screen before plot
=1 Overwrite old plot
Bit 01 =0 Plot with linear X-axis
=1 Plot with logarithmic X-axis
Bit 02 =0 Connect points with a line
=1 Display only given points
TLEN Length of the title in bytes including $-sign (In-
teger*2).

TITLE ASCII string displayed as title of the plot.

XTLEN Length of the X-axis title in bytes including $-sign
(Integer*2).

XTIT ASCII string representing the X-axis title.

YTLEN Length of the Y-—-axis title in bytes including S$-sign
(Integer*2).

YTIT ASCII string representing the Y-axis title.
XMIN Minimum value for X-coordinates (Real*4).
YMIN Minimum value for Y-coordinates (Real*4).
XMAX Maximum value for X-coordinates (Real*4).
YMAX Maximum value for Y-coordinates (Real*4).
VLEN Number of coordinate pairs (Integer*2).

XVECT Real*4 array containing the X-coordinates.

YVECT Real*4 array containing the Y-coordinates.

Graphic Display Page 3-9

3.3.12 CRT021 Auto-scale an Axis

This routine replaces the input parameters with rounded
values suitable for scaling of diagrams. The difference of
the input parameters is rounded, so that it can be expressed
with 1, 2.5 or 5 times a power of ten. The upper and lower
limits are the rounded to zero or a value which is a multi-
ple of 1/5 of the computed difference and returned to the
caller.

CALL CRTO021 (AMIN, AMAX)

AMIN Minimum value (Real¥*4).

AMAX Maximum value (Real*4).

3.3.13 CRTO031 Scale an Axis

This routine computes a scale factor, so that a given
minimum and maximum value can be expressed as a value
between =999 and +999, i.e. as a value with three signifi-
cant digits. From that range 6 equally spaced TIC mark va-
lues are computed. The call is of the form:

CALL CRTO31(AMIN,AMAX,ITIC,IEXP)

AMIN Minimum value (Real*4).
AMAX Maximum value (Real?*4).
ITIC Vector of 6 Integers*2 which is filled with -equally

spaced TIC mark values.

IEXP Power of ten by which the TIC mark values are consi-
dered to be multiplied to conform to AMIN and AMAX.

CHAPTER 4

Command Line Input

4.1 Introduction

The Command Line Input facilities accomplish all the
logical functions required to enter 80 byte command lines
dynamically during programm execution for the MACRO-11 pro-
grammer. Input is accepted from the users terminal as well
as from indirect command files. Command lines may be ana-
lyzed and parsed, if input is expected in standard RSX com-
mand syntax. These facilities serve as a standarized inter-
face for obtaining and interpreting dynamic Command Line
Input.

4.2 Get Command Line (GCML)

The Get Command Line routine (GCML) embodies all the
logical capabilities required to enter 80-byte command lines
dynamically during program execution. Before command lines
may be input using the GCML routine, the user must consider
the following:

1. The pseudo device MO: must be known to the system
and must be mounted.

2. LUN 5 must be assigned to the wusers terminal TI:
and LUN 1 must be assigned to the pseudo device
MO:. Assignments may be done dynamically using the
ALUNS Macro, or at task build time via the ASN op-
tion.

3. The user must link the object module of GCML to his
task. This is accomplished by specifying IOLIB/LB
as an input file at task build time.

Command Line Input Page 4.3

4. As outlined in the RSX11M manual) OPERATIONg"
at any given time there must be an FSR block buffe;
available for each file currently open for recorgd
I/0 operations. The block buffer requirements of
GCML must be considered when issuing the FSRSz g
macro for additional record I/0.

4.2.1 Input Requirements

GCML may be called directly from MACRO-11 routines
only. To request command line input the user must issue the
following statement:

CALL GCML

Registers Rl and R2 are used as parameter registers.
They are provided to enable the user to have a prompt string
by which GCML indicates its readiness to accept input, where

R1 gives the length in bytes of a user defined prompt
string, and
R2 holds the pointer to the user defined prompt string.

If the user does not wish to have a special prompt,
both registers should be cleared, which causes GCML to use

GCM>

as default prompt string.

4.2.2 Output from GCML

After GCML has been called as outlined above, it tries
to get command lines from either the user's terminal or an
indirect command file. A command line found is returned to
the user with

R1 set to the length of the string read in
R2 set to point to the string read in

where the carry bit in the Processor Status Register is
cleared.

e

Command Line Input Page 4-3

For example, if the user executes the following code

10$: CLR R1 : INDICATE DEFAULT
: CLR R2 ;: PROMPT STRING
CALL GCML +:GET DATA FILE NAME
BCS EXIT :END INPUT, SO EXIT
CALL PROC : PROCESS DATA FILE
BR 10$; LOOP

GCML prompts to solicitate the users input:

GCM>B00321.PDE<KCR>

After return R1 gives the length of the string input and R2
holds the pointer to it. On receiving a ""Z" input GCML re-
turns with carry set, to indicate end of input to the cal-
ling program, which then may take the appropriate actions.
In the example above, the data file names may also be stored
in a disk file. 1In this case, instead of typing in a new
data file name each time GCML is called, the user specifies
the file containing the data file names as an indirect com-
mand file:

GCM>@DK1: FILNAM.PDE<KCR>

GCML in response will return the first record contained 1in
the file FILNAM.PDE residing on DKl:. Successive calls
cause GCML to read successive records of the file until one
of the following occurs:

1. The end-of-file (EOF) is detected on the current
indirect file. In this case the current indirect
file is closed, the command input level count 1is
decremented by 1, and the previous command file is
re—opened. If the command input level count is al-
ready 0 when EOF is detected, GCML returns with the
carry bit set.

2. An indirect file specifier is encountered in a com-
mand line. In this case, the current indirect com-
mand file is closed, and the new indirect file is
opened. The first command 1line therein is then
read and returned to the user.

Command Line Invout Page 4-4

4.2.3 Error Conditions

An error condition detected during execution of command
line 1input 1is reported to the user via the message output

(MO) and causes GCML to reguest another command line. As
stated above, a carry set condition upon return indicates
end of input or end of file respectively, rather than an

error condition.

4.3 Command String Interpreter (CSI)

The CSI routine analyzes command lines, which may be
input by the Command Line Input routine (GCML) and parses
them into their component data set descriptors which are re-
quired by the File Control System (FCS) for accessing files.
The user, who wishes to analyze and parse command lines via
the CSI routine must link the object module to his task by
specifying IOLIB/LB as an input file at task build time.

4.3.1 TInput Requirements

CSI processes command lines in the following formats
only:

1. dev:[g,m]Joutput filename.type;version/switch

More than one such file specification can be speci-
fied by semerating them with commas.

2. dev:[g,m]output filename.type;version/switch,...=
dev:[g,m]input filename.type;version/switch,...

Registers R1, R2, R3 and R4 are used as parameter registers
and must be preset as described below.

R1 length of command line

R2 address of command line

R3 indicates whether an input file specifier (R3=0) or
an output file specifier (R3<0) is to be parsed next

R4 address of the associated switch descriptor table.

If no switches are to be ©processed R4 must be
cleared. The format of the switch descriptor table
is described in the RSX11M manual "I/0 OPERATIONS".

'lIII--'-_______————————————————————————————____________447

Command Line Input Page 4-5

4.3.2 Output from CSI

After CSI has been called, it removes non-significant
characters from the input string and checks it for syntactic
validity. During execution Rl and R2 will be overwritten to
contain the following values:

R1 address of the dataset descriptor of the current
file specifier.

R2 flag bits indicating the status of the current CSI
operation. The following expressions are defined

globally and may be used to determine the status of
operation.

CS.EQU indicates that an equal sign has been de-
tected during the check of the command line,
signifying that both, output and input file
specifiers where present.

CS.NMF indicates that the current file specifier
contains a file name string.

CS.DIF indicates that the current file specifier
contains a directory string.

CS.DVF indicates that the current file specifier
contains a device name string.

CS.WLD indicates that the current file specifier
contains an asterisk(*), signalling the
presence of wild card specifications.

CS.MOR indicates that the current file specifier is
terminated by a comma and that more file
specifiers are to follow.

CS.ERR indicates that an irrecoverable syntax error
has been Adetected during validation of the
command line.

Command Line Input Page 4-6

4.3.3 Error Conditions

An error condition detected during execution of command
string interpretation 1is indicated by the carry bit in the
Programm Status Register (PS). Carry clear indicates suc-
cessful completion, where carry set means that one of the
following error conditions has occured:

l. A switch was given with a file specifier, but the
address of the switch descriptor table has not been
supplied by R4, or the switch descriptor table does
not contain a corresponding entry for the switch.

2. An invalid switch value has been specified.

3. More values accompany a given switch in the file
specifier than there are corresponding entries in
the switch descriptor table for decoding those va-
lues.

4. A negative switch is present in the file specifier,
but the corresponding entry in the switch descrip-
tor table does not allow the switch to be negated.

CHAPTER 5

Namelist Input/Output

5.1 Introduction

A facility is provided which allows user modifications
of data at run-time 1in a most comfortable fashion, where
users are not concerned with the various types of variables,
i.e. Integers, Floating-point, Logical or Strings. For more
detailed information see IPP Report R/19 "Beschreibung einer
Namelist Routine unter FSX-11M".

5.2 General Requirements

Before using the Namelist facility (NML) the user
should consider the following:

1. NML uses the Message Output Task described in
chapter 6. Therefore the pseudo device MO: must
be known to the system and must be mounted.

2. If the Help function (see below) is required the
user is responsible for mounting MO: with the
proper User Message File.

3. Namelist routines also use the Command Line Input
(CLI) facility described in chapter 4. As outlined
there, CLI does record I/0, so that in the event
that the user intends to do other record I1/0, the
File Storage Region must be defined accordingly.

4, In order to use NML, a task must link to the proper
object modules, which are contained in the librar-
ies NML.OLB and IOLIB.OLB. Furthermore, Logical
Unit Number (LUN) 1 must be assigned to the pseudo
device MO: and LUN's 5 and 6 must reflect the
standard assignment to the task's terminal TI:.

Namelist Input/Output Page 5-2

5.3 Namelist Input/Output

Activation of Namelist I/0 is achieved via a call to
the main routine of the NML facility, which takes the fol-
lowing format:

CALL NMLIST (NCB, IOF,ARO)

NCB Pointer to any one of the NCBs forming a list asso-
ciated with the data to be modified by this call
(Integer*2),

I0F Integer*2 variable which is set to ASCII "I if
input and output are desired, or set to ASCII "O" if
only output is wanted.

ABO This parameter contains upon return a value of -1 if
a ""Z" input was detected. In all other cases it is
cleared. ABO is an Integer*2,

5.4 Namelist Control Rlock (NCB)

In order to enable NML to dynamically modify data, each
variable must be describe’d by a Namelist Control Block
(NCB) . All NCBs associated with variables which are to be
modified by a single call to routine NMLIST are linked into
a circular list as shown below:

|=>| NCB1l |=~====—=>| NCB?2 [==...==>| NCBn =1

| m——————— e e |

Each NCB contains the name of its associated variable,
format and length of the data associated with the variable,
Some control information and a pointer to the data area or
the data themselves. NCBs are constructed conforming to the
following format:

.

Namelist Input/Output Page 5-3

N.NXT

N.HLP

N.NAM

N.FLG

N.TYP

| N.LEN or |
| N.LEN | N.MSK |

| Pointer to data area |
or
Data area

Pointer to next NCB (Integer*2).

Starting record number of a format string in the
User Message File, which holds an explanatory text
for the variable associated with this NCB
(Integer*2).

Name by which the data of the associated wvariable
are referred to by NML (4 bytes RADS50 notation).

Logical*1 control variable, which is set to NS.RMT
(=1) if the NCB contains a pointer to the data (res
mote) or set to NS.LCL (=0) if data are located
within the NCB (local). Additionally NS.HLP (=2)
must be set if N.HLP contains a meaningful record
number. For example if data are remote and a Help
function is available N.FLG is set to 3
(NS.RMT!NS.HLP).

ASCIT data format code (Logical*1l), where the codes
A (ASCII string), D (decimal Integer*2), E (Real*4),
I (decimal Integer*1l), O (octal Integer*2), Y (octal
Integer*1l) and B (bit variable) are defined.

Namelist Input/Output Page 5-4

N.LEN Associated variable data reqion length in bytes,
This 1is an Tnteger*2 value, except for N.TYP set to
"B". TIn this case N.LEN is a Logical*] set to 1 or
2 respectively depending upon whether the bit is to
be modified in a byte- or word- variable.

N.MSK Logical*! bit indicator, which is required only if
N.TYP 1is set to "B". N.MSK gives the position of
the bit to be turned on or off (0<¢=N,MSK<=15).

N.OFS Pointer to the associated data region if NS.RMT is
set or start of the data area if NS.LCL is set.

5.5 NCB Macro

An NCB as described above may be simply allocated and
initialized via the NCB macro. 2All symbolic offsets and cx-
pressions concerned with an NCB are defined in the macro
BLKDFS, which is exopanded before operating on any NCE. The
NCB macro call is of the form:

label: NCB nxt,hlp,nam,flqg,typ,ofs,len,msk

label Label which defines the entry to the NCBR and which
1s used by another NCB as a linkage pointer.

nxt Pointer to next NCB (see N.NXT).

hlp Help function starting record number (see N.HLP).
If not specified a comma must be given as a place
holder.

nam Variable name used by NML (up to 6 ASCII char-
acters).

flg Control flag (see N.FLG).

typ Data type format code (see N.TYP).

ofs Pointer to data area if data are remote. Otherwise

not specified (comma must be given as place holder).
len Length of data area in bytes (see N.LEN).

msk Bit indicator for B-type data (see N.MSK).

e

Namelist Input/Output Page 55

In the example below an NCB is shown which refers to an
Integer*2 variable named HEIGHT (not labeled!) which immedi-
ately follows the NCB:

NCB1: NCB NCB2, ,<HEIGHT>,NS.LCL,D,,2
.WORD 0
NCB2: NCB

If the data area of the variable is remote and 1is an
Integer*2 vector with 10 elements the macro call is as fol-

lows:
NCB1: NCB NCB2, ,<HEIGHT>,NS.RMT,D,H, 20.
H: . BLKW 10

5.6 Error Conditions

The Namelist routines report errors via the Message
Output facility rather than returning an error code. Error
messages have the format:

NML -- text

Possible errors are listed in the GALE Terminal Users's
Guide.

CHAPTER 6

Message Output ACP

6.1 Introduction

A facility is provided for outputting formatted mes-
sages. Its goals are:

1. To provide a system wide standard for message out-
put with emphasis on error reporting.

2. To keep the code per task as small as possible and
provide coherent information.

Besides the construction of messages, the following
considerations should be noted:

1. The MO task (task name = MO....), has two message
destinations: the console log device (CL:) and the
terminal associated with the requesting task (TI:).

2. Output from the MO task to the destinations is as-
ynchronous; requests to the MO task may be syn-
chronized via a WAIT Directive.

4*—————————————————t:----IIIIIIIlllll..ll...............l.l.lll

Message Output ACP Page 6-2

6.2 User Task Interface to MO Task

Message output is initiated via a QIO Directive to the
device MO:. The MO task 1is considered to be a device
handler, and as such it is a privileged task, with access to
system data bases.

As with all handlers, a requesting task must assign a
LUN to device MO: in order to use it. The LUN can be as-
signed in two ways.

1. The user task can execute the ALUN Directive to
device MO:,

2. The user can assign the LUN via the task builder
command, as:

ASG=MO:n

where n is specified as the LUN value.

Several macros have been supplied in the system macro
file (RSXMAC.SML) to simplify the user task QIO initiation
to the MO task. These macros are descibed below.

6.2.1 Format String Descriptor

The format string, from which a message is constructed
using MO, is described by a pointer to it and the length of
that format string, if included in the user program (Fig 6-1
and 6-2). However, if the format is in a disk file, the
format string descriptor is not significant (Fig 6-3).

6.2.2 Paramter List

The message handler has the capability of inserting
user arguments in a predefined message. A pointer to the
parameter list is therefore provided in the macro calls and
is the address of a table of sequential arguments to be used
in constructing the message. The format of the table de-
Pends on the code used in the message format string and is
described below.

F..-II-I--------------------————————————————______________________________1
Message Output ACP Page 6-3

6.3 MO Task Operation

After the MO task has dequeued the request node set up
by the user QIO Directive, message processing proceeds as
follows.

1. The format string is moved from the user task or
specified file to the MO task area.

2. The message string is created in portions of 64
bytes (see message construction below).

3. The output portion is queued to one or both of the
destination devices.

4. The request node is released declaring I/0 done,
when the 1last portion is output on the requestor
terminal, or the console log device, 1if this was
the only destination.

NOTE

1f output is to be sent to both destina-
tions, 1I/0 done is declared after complet-—
ing the request for the user task's termi-
nal. Output to the console log device on
behalf of the user task, for this case, 1is
always asynchronous to that task's execu-
tion.

Message Output ACP Page 6-4

6.4 Message Construction

Messages are constructed from formatted strings that
can be stored either in the user task space or in a disk
file, with a fixed record length of 64 bytes. The format
string consists of fixed and variable characters. 1In order
to construct a message, the user must supply wvalues to be
substituted for the wvariables. An example for a format
string is:

ALPHA:%8A

The format string is scanned and each character is co-
pied 1into a message buffer until an escape (%) character is
encountered. This triggers an interpretation of the next
few characters according to the fellowing syntax:

gcount code
or

¢V code

where:

count is a numeric ASCII string that 1is converted
into a positive decimal integer indicating
how many times the action indicated by the
code character 1is to be performed. If not
specified, 1 is assumed.

\Y% is used to indicate that the count is wvari-
able and the next word in the parameter list
is interpreted as the count.

code is a single letter indicating the action to
be performed. The code values are summarized
in Table 6-1.

In the example, %8A is interpreted to mean:

Move 8 characters from the buffer whose address is the
next item in the parameter list.

k.

Message Output ACP Page 6-5

In the example %VA, the interpretation is:

Get the count, a variable number, from the current po-
sition of the parameter list pointer. Increment the
pointer and move the variable number of bytes or char-
acters as stated above.

In the example below LN1 is the format string address
and PAR] is the address of the parameter list. To pass for-
mat string information to the MO task, the user task
proceeds as follows:

1. Assume the formatted message was assembled as:
LN1: .ASCIZ /ALPHA:%8A/ : FORMAT STRING

2. During program execution a parmeter list contains
the pointer to the ASCII string.

PAR1: .WORD ASTR : PARAMETER LIST

ASTR: LASCIT /ABCDEFGH/
3. The user task issues a macro call:
MOUTSS #LUN,#FLG,#IOSB,#LNl,#lOO,#PARl

4. MO responds to the macro call and outputs the fol-
lowing message to the requesting task's terminal:

ALPHA : ABCDEFGH

Figures 6-1 and 6-2 show more complex format strings,
the macro calls to format them, and the resulting output
string. The following sections give a description of the
macros used to initiate message output and describe default
values that are used to construct the DPB when parameters
are omitted.

Message Output ACP Page 6-6

Code

$nA

&nS

gnD

$nE

$nl

£3¢10]

Table 6-1

Meaning

Move n ASCII bytes from the buffer whose pointer is
taken from the current location of the parameter
list.

Insert n blanks (spaces) at the current position 1in
the output buffer.

Convert n words beginning at the current location in
the parameter 1list. Each word produces a signed
zero-suppressed ASCII string (maximum sign and five
digits) that 1is a decimal representation of the
word.

Convert 2*n words beginning at the current 1location
in the parameter 1list. Each word-pair produces a
signed zero-surpressed ASCII string (in FORTRAN for-
mat 1PE12.4) that is a floating point representation
of the word-pair.

Convert n bytes beginning at the current location in
the parameter 1list. Each byte produces a signed
zero-suppressed ASCII string (maximum sign and three
digits) that is a decimal representation of the
byte.

Convert n words beginning at the current location in
the parameter list. Each word produces a signed,
zero-suppressed ASCII string (maximum six digits)
that is an octal representation of the word.

Message Output ACP Page 6-7

$nY

$nP

nN

&nR

gnT

Convert n bytes beginning at the current location in
the parameter list. Each byte produces a signed,
zero-suppressed ASCII string (maximum three digits)
that is an octal representation of the byte.

Each converted digit string consists of seven char-
acters including leading blanks. Omitting the sign,
implies +.

Erase screen. There is always only one page erase,
even if n is greater than one.

Insert n line terminators (CR,LF) 1in the output
string.

Convert n words in RADIX-50 notation to ASCII repre-
sentation beginning at the current location in the
parameter list. Each word produces an ASCII string
of three characters.

Get the current time parameters and convert them
into ASCII where hours, minutes and seconds are re-
presented in decimal (hh:mm:ss). Time is always
shown only once, even if n is greater than one.

NOTE

After byte conversions triggered by format
codes I or Y, the parameter list is always
accessed on an even address for the next
conversion by MO. For example, if a format
string specifies:

«coe%31,23Y,...
both, the first byte for decimal and also

the first byte for octal conversion is taken
from a word boundary.

Message Output ACP

MOUTSS #LUN,#4FLG, #I0SB,#LN1,#100, #PAR]

°
i

; FORMAT STRING

LN1: .ASCIZ

.
'

; PARAMETER LIST

PAR1: .WORD
.WORD
.WORD
.WORD
.WORD
.WORD

ASTR: .ASCII

/ALPHA:%GA,%N,DEC:,%2D,%2N,OCT:%30/

ASTR ;STRING POINTER
123. :ARGUMENTS FOR

456. ;DECIMAL CONVERSION
111 ;ARGUMENTS FOR

222 ;OCTAL CONVERSION
333

/ABCDEF/

The resulting message is as follows:

ALPHA:ABCDEF

DEC: 123 456
OCT: 13.] 222

333

Figure 6-1

Example Using Counts in the Format String

Message Output ACP Page 6-9

The

the
time

"

ated

MOUTSS #LUN,#FLG,#I0SB,#LN2,#100, #PAR2,,#1

.

; FORMAT STRING

;

LN2: .ASCI?Z /ALPHA:%VA,%N,OCT:,%VY,%N,DEC:%VD/

i

; PARAMETER LIST

PAR2: .WORD 6 ; STRING LENGTH
.WORD ASTR ; STRING POINTER
.WORD 3 ;NUMBER OF OCTALS
.BYTE 111 ; ARGUMENTS FOR
.BYTE 177 ;OCTAL CONVERSION
.BYTE -1
. EVEN
.WORD 2 :NUMBER OF INTEGERS
.WORD 123. ; ARGUMENTS FOR
.WORD 456. :DECIMAL CONVERSION

ASTR: .ASCII /ABCDEF/

resulting message is as follows:

ALPHA:ABCDEF
OCT: kLl 177)
DEC: 123 456

Because the destination parameter was set greater zero
message is also shown on the system log device, where
and task name preceed the message:

13:24:51 SEN2> ALPHA:ABCDEF
OCT: 14 177 371
DEC: 123 456

SEN is the first part of the task name not equal to

." and the appendix 2 means that the user task is associ-

with terminal 2.

Figure 6-2
Example Using V in the Format String and
Output to both Destinations

Message Output ACP Page 6-10

6.4.1 Message Files

Format strings (e.g. error messages) can be stored in a
file. In this case the format string descriptor is irrele-
vant and the record parameter is used to obtain the format
string for message construction. Formats from message files
are not limited in length, but must start at the beginning
of a record and must be terminated by a binary zero.
Records are taken from two different files given at MOUNT
time via the switch

MOU: /SMSG=file descriptorl,/UMSG=file descriptor?

where file descriptorl denotes the System Message File and
file descriptor2 denotes a file containing user defined mes-—
sages. (See also message macro description, GALE Terminal
Users's Guide and GALE System Programmers Handbook).

In the examples below, Rl contains the address of the
parameter 1list. The absolute value of the next parameter
gives the starting record number of the format string within
the file, where a positive number selects the System Message
File and a negative number selects the User Message File.

MOUTSS #LUN, #FLG, #I0SB,,,R]1,#2 ;SYSMSG

MOUTSS #LUN, #FLG, #I0SB,,,R1,#-17 ;USER MSG

Figure 6-3
Examples of Formats from Disk Files

i

Message Output ACP Page 6-11

6.4.2 Programming Hints

As outlined above the parameter 1list contains values
and pointers to be used in formatting the message string. A
non-privileged task must have its parameter 1list and also
strings pointed to by it entirely in its task address space,
whereas a privileged task may additionally address the first
28K of physically existent memory and the I/O-page. The MO
task accepts addresses supplied by the parameter 1list po-
inter or within the parameter list as follows:

1. Each address is considered to be virtual

2. 1If a given address does not lie within any of the
task's address windows, it is only valid if that
task is privileged.

3. Addresses not within the privileged task address
windows are considered to be physical addresses.

4. BAddresses beyond 160000(8) supplied by privileged
tasks are considered to address the 1/0-page rather
than the physical locations beyond 28K.

Format strings are address-checked by the system
Q10-processor. The device data base of MO triggers the sys-—
tem to allow format strings to be byte aligned.

444___——————————————————t:3------.-.-...-..............!

Message Output ACP Page 6-12

6.5 Message Macro Description

This section contains an explanation for each of the
macros that are supplied for the users of MO. The macros
are listed below.

MOUTSS
MOUTS

MOOPSS
MOCLSS

Message Output ACP Page 6-13

6.5.1 MOUTSS

This macro generates a DPB for initiating output with
the MO task, pushes it onto the stack and executes it.
Macro call:

MOUTSS 1un,f1g,iosb,fmt,flen,Drm,rec,dst

Argument Meaning
lun Logical unit number used for pseudo device MO:.
flg Event flag number; may be used to synchronize mes-

sage output with the issuing task's execution.

iosb Pointer to the issuing task's TI/0 status block,
which is set on QIO completion to indicate success
or failure.

fmt Pointer to the format string; not relevant if the
format string is taken from a message file.

flen Length of format string; legal format strings range
from 1 byte up to 128 bytes. The length given must
be greater than or equal to the actual format string
length. If the format string is ended with a binary
zero, i.e., generated with a .ASCIZ directive, flen
may be greater than the actual string 1length;
otherwise, flen must be equal to the actual format

string 1length. This parameter is not relevant if
the format string is taken from a message file.

prm Pointer to the parameter list. The parameter 1ist
is a sequential list of arguments that are used in
constructing the message format string.

rec This parameter, if set non-zero, causes the MO task
to get the format string from a disk file starting
with the record given by the value of "rec"

rec > 0 get the format string starting at the
rec'th record of the System Message File

rec < 0 get the format string starting at the
rec'th record of the User Message File

dst The value of dst determines where output is to be
directed:

dst = 0 output to issuing task's terminal
dst < 0 output to system log device
dst > 0 output to both destination devices

Message Output ACP Page 6-14

Arguments not specified are assumed to be zero. Commas
must be given as place holders, however they may be omitted
right of the last specified arqument.

6.5.2 MOUTS
This macro causes a DPB to be generated for initiating
output with the MO task.
Macro call:
MOUTS lun,flg,iosb,fmt,flen,prm,rec,dst
The same argument description applies as given with
macro MOUTS$S. The example given below constructs output by

interpreting the the format string starting at the 7th re-
cord of the System Message File.

MODPB: MOUTS £v.2 10SBy.; 5.4 1 ;7'TH RECORD TO TI:
DIRS MODPB

6.5.3 MOOPSS

This macro performs an OPEN for the issuing task on
pseudo device MO:. It must be called before producing any
output with the MO task.

Macro call:

MOOPSS 1lun,flg,iosb

i

Message Output ACP Page 6-15

6.5.4 MOCLSS

MOCLSS performs a CLOSE for the issuing task on pseudo
device MO:. Because a CLOSE is performed automatically for
each open file at task termination time this macro call is
not mandatory.

Macro call:

MOCLS$S 1lun,flg,iosb

6.6 Message DPB Format

The DPB format for message output is the same as for
the QIOS macro. The following rules apply:

WORD 2: I/0 FUNCTION :fixed to IO.WVB
:for MOUTS$ and MOUTSS
:fixed to IO.ACW for MOOPSS
:fixed to T0.DAC for MOCLSS

WORD 4: EVENT FLAG, PRIORITY spriority fixed to zero

WORD 6: AST ;fixed to no AST entry

Message Output ACP Page 6-16

6.7 Error Conditions

The MO task is designed to inform the user of error
conditions that may arise. Error conditions are accommodat-—
ed as follows:

1.

25

If destination is not specified, TI: is assumed.

If a format string descriptor (format pointer and
format length) is given with a record parameter not
equal zero, the format string descriptor is ig-
nored.

If a format string is to be taken from a file and
there is not enough dynamic memory to read one file
block (512 bytes) MO notifies the user by printing
the following string on the destinations:

*** MO: INSUFFICIENT DYNAMIC STORAGE nnn

where nnn gives the record number which has been
given at the time the error occurs. Note, that the
return code in the I/0 status block, if present, is
set to indicate success.

Other errors detected before the processing of a
format string, e.qg. during reading of a format
string of a file, cause an error code to be set in
the user status block, if present.

Errors detected during the processing of a format
string cause the part of the message already con-
structed to be output immediately. An error code
1s set in the wuser status block, if present.
Possible errors are:

1. 1Invalid format directive or illegal format
length.

2. 1Illegal record number.

3. Illegal access to parameter list.

An error condition is indicated by a status return
code less than zero. If such a return code is ne-
gated and then is used as the record argument in a
MOUTS or MOUTSS macro call, it produces a message
explaining the error that has occured.

Message Output ACP Page 6-17

6.8 MO Status Return Codes

The following I/O status returns are made by MO:

IS.

IE.

IE

IE.

IE.

1E.

IE.

suc

BAD

.BYT

ADP

ALN

NLN

PRI

Successful MO request

Invalid format directive encountered, or
illegal format string length (e.qg.
flen > 128), or illegal record number, Or
any FCS error in accessing a message file

Byte address for word parameter

Argument out of users address space, nonex-
istent memory or I/0 page address. Note
that a privileged task may address all phy-
sically existent memory up to 28K and even
the I/O-page.

OPEN already performed

No CPEN performed

MO: not mounted

In addition, directive errors are reported via setting
the Directive
System directive error return codes.

Status Word S$DSW with the standard RSX-11M

APPENDIX A

Recommended Logical Unit Assignments

The routines described in this manual may reguire up to
four Logical Units. It is recommend that the applications
programmer assign Logical Units as given below.

LUN 1 MO: This assignment is mandatory for tasks which
utilize the Data File interface, and is re-
commended for other tasks in order to avoid
possible conflicts.

LUN 2 DD: This assignment is recommended for tasks
which use the Data File interface; it must
be at least reserved in such cases. The OP-
FILE routine does a dynamic LUN assignment
to the device specified, if any, or defaults

to DD:.

LUN 3 B¥: This assignment is required only for user
tasks utilizing the Plot system.

LUN 5 T+ This is the default Task Builder assignment.

It is required for the proper functioning of
all routines involving terminal operations.

Pf—

GALE Programmer's Handbook
READER'S COMMENTS
NOTE: THIS FORM IS FOR DOCUMENT COMMENTS ONLY.

Did you find errors in this manual? 1f so, specify by page.

Did you find this manual understandable, usable and well
organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system
programs required for use of the software described in
this manual? If not, what material is missing and where

should it be placed?

Please turn over

Please indicate the type of user/reader that you most nearly
represent.

[1 Assembly language programmer

[] Higher-level language programmer

[] Occasional programmer (experienced)

[] User with little programming experience
[] Student programmer

[1 Non-programmer

If you desire to have your name put on the PDE documentation
mailing list, please indicate so here......
[]

NAME DATE

ORGANIZATION

STREET

CITY

STATE ZIP CODE

COUNTRY

RETURN TO:

PDE PROJEKT DATENERFASSUNG

INSTITUTE FOR PLASMAPHYSICS
D-8046 GARCHING

WEST GERMANY

