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Abstract Plants can tolerate leaf-herbivore attack through metabolic reconfigurations that allow for the rapid

regrowth of lost leaves. Several studies indicate that root-attacked plants can re-allocate resources to

the aboveground parts. However, the connection between tolerance and root regrowth remains

poorly understood. We investigated the timing and extent of root regrowth of tolerant and suscepti-

ble lines ofmaize, Zeamays L. (Poaceae), attacked by the western corn rootworm,Diabrotica virgifera

virgifera LeConte (Coleoptera: Chrysomelidae), in the laboratory and the field. Infested tolerant

maize plants produced more root biomass and even overcompensated for the lost roots, whereas this

effect was absent in susceptible lines. Furthermore, the tolerant plants slowed growth of new roots in

the greenhouse and in the field 4–8 days after infestation, whereas susceptible plants slowed growth

of new roots only in the field and only after 12 days of infestation. The quick response of tolerant

lines may have enabled them to escape root attack by starving the herbivores and by saving resources

for regrowth after the attack had ceased. We conclude that both timing and the extent of regrowth

may determine plant tolerance to root herbivory.

Introduction

The capacity of crops to maintain high yields under

adverse environmental conditions is of central importance

for sustainable farming. Under herbivore attack, yields can

be protected through resistance and tolerance mecha-

nisms. Resistance refers to the capacity of plants to reduce

herbivore injury (Howe & Jander, 2008), whereas toler-

ance refers to the capacity of plants to maintain productiv-

ity upon sustained damage (Strauss & Agrawal, 1999).

One advantage of plant tolerance could be that it would

reduce selection pressure on the herbivores and thereby

lowers the risk of counteradaptations (Stowe et al., 2000).

On the other hand, tolerance mechanisms per se can have

a physiological cost to the plant, as they would need to

compensate for the herbivore-imposed loss of biomass

(Pilson, 2000; Stinchcombe, 2002; Fornoni et al., 2004;

but see Mauricio et al., 1997; Agrawal et al., 1999; Boege

et al., 2007). Plant tolerance to leaf-herbivore attack has

been studied widely. Tolerance responses include the acti-

vation of meristematic growth, which can be supported by

an increase in photosynthesis (Strauss & Agrawal, 1999;

Schultz et al., 2013). Photoassimilates can also be reallo-

cated to non-attacked tissues for future regrowth (Holland

et al., 1996; Babst et al., 2005, 2008; Schwachtje et al.,

2006; Henkes et al., 2008; G�omez et al., 2010; Hanik et al.,

2010). In many cases, however, leaf attack by small herbi-

vores triggers a decrease in photosynthesis and leads to a

depletion of photoassimilates (Machado et al., 2013).

Grazing by larger browsers, on the other hand, can lead to

overcompensatory growth, in which case plants accumu-

late more biomass than without herbivory (Paige &

Whitham, 1996). The regular cutting of grasslands for

maximal hay production can be seen as an extreme grazing

regime that takes advantage of the plant’s capacity to
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tolerate tissue removal (Hawkes & Sullivan, 2001; Borer

et al., 2014).

Relatively little is known about the mechanisms that

may enable plants to tolerate root-feeding insects. Root

herbivores are among the most important pests in a num-

ber of crops. Due to their secluded life style, they often

remain difficult to combat with traditional means and

have been studied in much less detail than their leaf coun-

terparts (Hunter, 2001; Erb et al., 2013). Field studies of

maize and its most devastating root pest, the western corn

rootworm, Diabrotica virgifera virgifera LeConte (Coleo-

ptera: Chrysomelidae), have documented that certain

maize varieties are able to maintain high productivity after

being injured by D. virgifera (Prischmann et al., 2007),

pointing to the presence of effective tolerance mecha-

nisms. A 13C-labeling approach revealed marginally

increased allocation of photosynthates to the aboveground

parts of D. virgifera-attacked maize (Xue et al., 2012).

Using 11C as a tracer revealed that attackedmaize seedlings

allocated significantly more carbon to the stems, an effect

which was associated with an increase in stem thickness

and increased crown root growth (Robert et al., 2014). It

is, therefore, conceivable that maize tolerates D. virgifera

attack through carbon reallocation followed by compen-

satory growth. Furthermore, a study on Centaurea macu-

losa Lamarck showed that the plant increases nitrogen (N)

allocation to the shoot when attacked by the root feeder

Agapeta zoegana L. (Newingham et al., 2007), which indi-

cates that N reallocation may also help plants to cope with

root attack.

For root herbivore tolerance, the timing of regrowth

may be an important parameter. Diabrotica virgifera for

instance has a strong preference for young crown roots

(Robert et al., 2012a,b), and often prunes them directly

after they penetrate the soil surface. Hence, immediate

regrowth following attack may backfire on the plant by

improving D. virgifera larval survival and vigor. A desir-

able regrowth program could instead involve a delay that

saves the resources for root reestablishment until the larvae

have died or pupated. To date, little is known about the

importance of regrowth timing for root herbivore toler-

ance.

In this study, we investigated the regrowth patterns of

susceptible and tolerant maize lines following D. virgifera

attack in the field and the glasshouse. Using segregating

genetic populations that were enriched in tolerance or sus-

ceptibility alleles, we tested three phenological hypotheses

regarding the potential mechanisms of tolerance. We

tested whether (1) tolerant maize lines compensate for

root loss by regrowing more strongly below ground; (2)

the differences in regrowth are associated with morpho-

logical changes in the stems as potential carbohydrate

storage organs; and (3) there are differences in the timing

of regrowth between tolerant and susceptible lines.

Together, our experiments paint a detailed picture of the

phenotypical traits that are involved in root herbivore tol-

erance and reveal that both timing and extent of regrowth

are associated with the maintenance of crop productivity

under root herbivore attack.

Materials and methods

Plants and insects

We used maize plants of the CRW17 population. The

intent of the CRW17 population was to conduct a recur-

rent selection maize breeding program by selecting the

ears from least damaged lines, bulk pollinating nursery

rows (Ball, 1969) of the selected ears, and evaluating again

in a new cycle of selection as was done for CRW3 by Hib-

bard et al. (2007). Development of this population began

in 2007 by using 17 of the lines least damaged by D. vir-

gifera (based on 15 years of evaluating thousands of

maize lines) in a diallel scheme. The 17 lines (‘founders’)

originated from several germplasm groups, most of which

had more than one representative. Parental materials of

the diallel included selections derived from the CRW3

population (Hibbard et al., 2007), from Germplasm

Enhancement of Maize materials (Salhuana & Pollak,

2006), and from BS19 and BS20 (Ball, 1969; Russell et al.,

1976). A balanced bulk set of seed from the diallel cross

was planted in 2008 for initial recombination. Delayed

plantings of this bulk insured that the variable flowering

crosses were combined. A second balanced bulk seed set

was created and recombined a second time in 2009.

Finally, 300 selfed ears from the 2009–2010 winter nurs-

ery were selected as CRW17(C0). Nine kernels from each

ear were planted in 1.5-m plots in two locations near

Columbia (MO, USA) as well as one location near Brook-

ings (SD, USA) in 2010 (BE Hibbard, J Barry & S Flint-

Garcia, unpubl.). Four roots from each plot were consid-

ered as one replication and each was evaluated for plant

injury (Oleson et al., 2005) as well as root regrowth and

root size (Rogers et al., 1975). Plant injury is a linear rat-

ing scale and uses the following criteria: 0 = no root

injury, 1 = one node of roots eaten, 2 = two nodes eaten,

3 = three nodes eaten (Oleson et al., 2005). Root size and

compensatory root growth were evaluated using six rating

scales (1 = largest, 6 = smallest; Rogers et al., 1977). Ears

chosen for the current work were made with selections

based upon consistent regrowth ratings. Three tolerant

lines (significant regrowth after herbivory) CRW17-096,

CRW17-101, and CRW209, as well as two susceptible

lines (no regrowth after herbivory) CRW17-057 and

CRW17-069 were used.
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Diabrotica virgifera eggs were kindly provided by the

USDA-ARS Columbia (MO, USA) and USDA-ARS-

NACRL Brookings (SD, USA). Eggs were maintained in

their oviposition dishes and stored in a growth chamber at

25 °C and 60% r.h. until needed. For greenhouse experi-

ments, eggs were allowed to hatch and larvae reared on

freshly germinated maize seedlings until use. Hatching of

the eggs in the field was determined by keeping eggs in the

laboratory and larval development was traced using soil

temperatures as described in Jackson & Elliott (1988) and

Hibbard et al. (2008).

Greenhouse experiment

Maize seeds were sown in 1-l plastic pots (P€oppelmann,

Lohne, Germany) containing a layer of moist washed sand

(0–4 mm grain size; Hagebaumarkt Leipzig, Leipzig, Ger-

many) covered with 2 cm of commercial soil (Tonsub-

strat, Geeste, Germany; Ricoter Aussaaterde, Aarberg,

Switzerland). Seedlings were grown in a greenhouse at

23 � 12 °C, 60% r.h., and L16:D8 h photoperiod. Fertil-

izer (Ferty 3; Ferty, Regenstauf, Germany) was added twice

a week after seed germination. Three-week-old plants were

infested with 6-s instars for 8 days. The infestation was

performed bymaking two 5-cm deep and 0.5-cm diameter

holes in the soil, at 2 cm distance from the maize stem

each, in which the larvae were placed. Such larval density

allows injury levels relatively comparable to field injury

and is commonly used (Robert et al., 2012a,b). Control

plants remained uninfested. After this period, all roots

were washed with tap water and all larvae were manually

removed from infested roots. Maize plants were then

replanted in soil. Stem circumference was measured at

days 0 (day of infestation), 8, and 16 using a flexible ruler.

The emerging crown roots were counted every 4 days

post-infestation. Crown roots arose from the stem and

were visible above the surface without disturbing the

plants. The number of emerging crown roots was

expressed in percentage of newly emerged roots compared

to the average emerging crown from their respective con-

trols.

Field experiment

The field experiment was conducted in 2012 at the Brad-

ford Research Extension Center (Columbia, MO, USA).

Maize plants (two seeds per plot) were sown on 15 May

with 43 cm spacing between plants and 76 cm spacing

between rows. Plants of the variety Pioneer 33M16 were

used as buffer plants. Two rows of buffer plants sur-

rounded each experimental plant to avoid herbivore

movement from infested to control plots and prevent edge

effects. Two weeks after sowing, seedlings were trans-

planted where no plant emerged. All experimental plots

consisted of one plant. Plants from the various maize lines

were randomly placed in the field (n = 48 per line). Two

weeks later (30 May), half of the plots were infested with

600 D. virgifera eggs each, which corresponds to natural

infestation density (Hibbard et al., 2004; Robert et al.,

2012a,b). Control plants (n = 24) were left uninfested.

Eggs from the same batch kept in the greenhouse hatched

on 11 June (day 0). Stem circumference and crown root

emergence were evaluated every 4 days after egg hatching.

Crown root emergence from infested plants was expressed

as the percentage of newly emerged roots compared to the

average of their respective controls. Injury inflicted by

D. virgifera was evaluated 2 weeks after larval hatching by

harvesting half of the infested and half of the control plants

(n = 12 each) and using Oleson’s scale (Fuller et al., 1997;

Oleson et al., 2005). Root regrowth was recorded 4 weeks

after larval hatching by harvesting the remaining plants

(12 control and 12 infested plants) and attributing a score

for regrowth on a scale from 0 to 6 (0 = no regrowth;

6 = much regrowth). Larval development was estimated

using the model developed by Elliott et al. (1990). First

harvest fell within the feeding phase of the larvae, whereas

the second harvest fell within the pupation phase. Roots

were then dried in a glasshouse with the cooling system

turned off for 2 weeks prior tomeasuring their dry mass.

Statistical analyses

All statistical analyses were performed using R software

(http://www.R-project.org/). Data were analyzed using a

Wald test on a linear mixedmodel (LMM; function ‘lmer’,

package ‘lme4’; Bates et al., 2014) in which the phenotype

and the treatment were considered as fixed factors, and the

maize line as a random factor. Root damage and percent-

age of emerging crown roots were √x-transformed for a

better model fit. Relevant pairwise comparisons of least

squares means (LSMeans) were performed using the func-

tion ‘lsmeans’ (package ‘lsmeans’; Lenth & Herv�e, 2015)

and the Tukey correction for P values. All LMM results

can be found in Tables S1–S7.

Results

Plant tolerance phenotype

No difference was found in the root regrowth abilities of

the susceptible lines. Similarly, no difference was found in

the root regrowth abilities of the tolerant lines. Tolerant

and susceptible lines suffered similar injury by the root

herbivore D. virgifera in the field, suggesting no difference

in resistance of the different lines (Figure 1, Table S1).

Susceptible and tolerant lines displayed similar root system

biomass after 2 weeks of larvae feeding (Figure 2A,

Table S2). Yet, 4 weeks after infestation only tolerant
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plants regrew significantly more biomass (Figure 2B) and

roots (Figure 2B and C, Tables S3 and S4). At the end of

the experiment (4 weeks feeding by the root herbivore),

the root systems from infested tolerant plants were almost

twice as large (volume and biomass) as the controls (Fig-

ure 2B and C).

Stem circumference

Susceptible lines did not grow larger stems upon below-

ground infestation by D. virgifera in the field (Figure 3A,

Table S5) or in the greenhouse (Figure 3B, Table S6) at

any of the measured time points. Tolerant lines displayed

significantly larger stems upon infestation in the field at

day 12 after larval hatching than control plants (Figure 3C,

Table S5). However, it should be noted that this difference

is driven by one of the tolerant plant lines only

(CRW17C0-101) and that the effect is absent in all lines in

the greenhouse (Figure 3D, Table S6).

Crown root emergence

In the field, both susceptible and tolerant lines reduced the

production of crown roots after D. virgifera infestation.

Susceptible lines grew less crown roots after 12 days of

belowground herbivory than their respective uninfested

controls (Figure 4A, Table S7). Infested tolerant plants

reduced their production of new crown roots significantly

after only 8 days of herbivory (Figure 4C), but regrew

some by day 12, after 2 weeks of infestation.

In the greenhouse, the same pattern was observed with a

reduction in crown root emergence and regrowth occur-

ring in tolerant lines (significant at day 4 after herbivory;

Table S8). Yet, no reduction was observed in susceptible

lines before regrowth of new roots (Figure 4D).

Discussion

Our experiments reveal that both the extent and timing of

regrowthmay function in a synergistic manner to improve

plant success under root herbivore attack. Although both

tolerant and susceptible maize lines were injured to the

same extent byD. virgifera, tolerant lines slowed down the
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growth of emerging roots early (4–8 days after attack) and

regrew significantly more roots 4 weeks after attack,

whereas susceptible lines slowed down the emergence of

new roots only 12 days after infestation, only in the field,

and did not overcompensate after 4 weeks attack. The tol-

erant population produced more biomass when attacked

by D. virgifera than controls. This form of overcompensa-

tion has been observed in grazed plants before, and it was

suggested that grazing may in fact increase rather than

decrease plant performance (Dyer, 1975; McNaughton,

1979; Hilbert et al., 1981; Paige & Whitham, 1996). In the

case of roots, it can be expected that overcompensating

maize plants maintain or even enhance their capacity to

take up water and nutrients from the soil later in the sea-

son. In fact, root regrowth after western corn rootworm

larval feeding positively affected yield when soil moisture

is low, but negatively affected yield when soil moisture was

adequate (Gray & Steffey, 1998). Therefore, and although

the impact of similar injury levels on the yield of tolerant

and susceptible plants remains to be tested, it is tempting

to speculate that maintaining a large root system is an

advantage late in the season upon D. virgifera attack,

despite the highmetabolic investment into root growth.

Aside from biomass overaccumulation, the tolerant

maize lines displayed a significant shift in the timing of

root regrowth. Although the susceptible population

maintained its root system over 8 days of herbivory and

reduced its regrowth on day 12 in the field, the tolerant

population reduced its regrowth already after 8 days of

infestation, and bounced back to control levels by day 12.

A similar pattern was observed under more controlled

conditions in the greenhouse, albeit with a slightly earlier

response due to direct infestation with L2 larvae com-

pared to starting with hatching eggs in the field. Although
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the physiological mechanism underlying these differences

in regrowth timing remain to be determined, we propose

that a delayed regrowth may be advantageous for several

reasons. First, an initial reduction in belowground growth

may starve the D. virgifera larvae, which may increase

their mortality and potentially their susceptibility to natu-

ral enemies. Second, the delayed burst of regrowth may

co-occur with the onset of pupation and the end of the

feeding phase, thereby increasing the sustainability of the

newly produced roots. It is therefore possible that the

delayed regrowth is partially responsible for the stronger

overaccumulation of root biomass in these lines. How-

ever, more detailed experiments are required to link the

extent and timing of delayed root regrowth, including

tighter experimental control of the timing of larval feed-

ing. Nevertheless, it is tempting to speculate that the tol-

erant plants may be able to sense and anticipate the

development of D. virgifera and thereby time their meta-

bolic investment into regrowth.

In an earlier study, we observed that a maize hybrid

line attacked by D. virgifera showed an increase in stem

diameter, which was followed by increased crown root

regrowth from the same organ (Robert et al., 2014). In

the current experiments, however, we could not detect

any effect on stem diameter. Only the stems from the

tolerant line CRW17-101 were thicker upon D. virgifera

attack from day 0 onwards. This effect remains incon-

clusive as (1) infested plants possess thicker stems on

day 0 in the field (although day 0 in the field is an

approximation) and (2) this difference was not found

in the greenhouse. Several factors may account for the

absence of a clear stem phenotype in the current exper-

iments. First, it is possible that stem thickening is geno-

type specific, and that none of the lines used in this

study display this behavior. Second, the stem phenotype

may be visible only in younger plants, and not in the

older plants used in the current experiments. As stems

elongate and the different nodes move up from the

stem base, it becomes more difficult to assess stem

thickness as stems become somewhat irregular. From

the current experiments, it seems that stem thickening

is not a reliable marker of maize tolerance to root

herbivory.

In conclusion, our study reveals that tolerant maize

plants respond vigorously to root attack by the western

corn rootworm with delayed overcompensatory root

growth. Although it remains to be determined whether

other plant families display similar growth patterns, our

results demonstrate how timing and vigor may act

together to help plants endure herbivore attack. Given

the limited availability of D. virgifera resistant maize

germplasm, breeding for tolerance may be a promising

alternative to reduce the negative impact of this root fee-

der. The observed growth phenotypesmay be useful mark-

ers to identify potentially tolerant germplasm in the

greenhouse without the need to conduct laborious yield

assessments.
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