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1. Introduction

Ten-dimensional super Yang–Mills (SYM) provides a simplified description of maximally

supersymmetric gauge theories [1]. On the one hand, its spectrum comprises just a gluon

and a gluino which automatically cover the scalars in lower-dimensional formulations [2].

On the other hand, pure spinors allow to formulate the on-shell conditions as a cohomology

problem [3], and the BRST operator in the associated pure spinor superspace powerfully

embodies gauge invariance and supersymmetry [4]. This framework naturally appears in

the manifestly super Poincaré-covariant quantization of the superstring [4].

Using a confluence of string-theory techniques and field-theory intuition, scattering

amplitudes in ten-dimensional SYM have been compactly represented in pure spinor super-

space [5,6,7]. This construction crucially rests on the notion of multiparticle superfields [8]

which were motivated by superstring computations [9–13]. Multiparticle superfields collect

the contributions of tree-level subdiagrams at arbitrary multiplicity and can be flexibly

attached to multiloop diagrams, see [7] for a two-loop application.

In a companion paper [14], the construction of multiparticle superfields and their

expansion in the Grassmann variable θα of pure spinor superspace have been tremendously

simplified. In the following, we will revisit tree-level amplitudes in the light of the new

theta-expansions and in particular:

• recover and supersymmetrize the Berends–Giele recursion for gluonic tree amplitudes

• present a simplified component realization of the BCJ color-kinematics duality, along

with a new superspace proof for the closely related BCJ relations.

1.1. Summary of results on the Berends–Giele recursion

The theta-expansions of ten-dimensional multiparticle superfields have recently [14] been

simplified using supersymmetric Berends–Giele currents which generalize the gluonic cur-

rents defined by Berends and Giele [15]. Using these simplified expansions, the pure spinor

superspace formula to compute ten-dimensional color-ordered SYM amplitudes at tree

level [5],

ASYM(1, 2, . . . , p, p+ 1) = 〈E12...pMp+1〉 , (1.1)

will be explicitly evaluated in components and shown to be

ASYM(1, 2, . . . , p, p+ 1) = s12...p(e12...p · ep+1) + km12...p(X12...pγmXp+1) . (1.2)
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The superfields E12...p and Mp+1 will be introduced in section 2.3, and the square of the

region momentum km12...p ≡ km1 + km2 + . . . + kmp is denoted by s12...p. Moreover, em12...p

and Xα
12...p in (1.2) denote the component Berends–Giele currents which depend on the

gluon and gluino polarizations emi , χα
i as well as light-like momenta kmi associated with

legs i = 1, 2, . . . , p, where m = 0, . . . , 9 and α = 1, . . . , 16 are vector and Weyl-spinor

indices of the Lorentz group SO(1, 9).

After setting the fermionic fields to zero, the first term in (1.2) will be shown to

reproduce the gluonic Berends–Giele formula [15],

AYM(1, 2, . . . , p+ 1) = s12...p(J12...p · Jp+1) , (1.3)

making (1.2) its supersymmetric generalization for ten-dimensional SYM.

Furthermore, the same Berends–Giele currents em12...p and Xα
12...p together with a field-

strength companion fmn
12...p will be shown to yield economic and manifestly cyclic represen-

tations of SYM amplitudes such as

ASYM(1, 2, 3, 4, 5) =
1

2
(em12f

mn
34 en5 + em34f

mn
5 en12 + em5 fmn

12 en34) (1.4)

+ (X12γmX5)e
m
34 + (X34γmX12)e

m
5 + (X5γmX34)e

m
12 + cyclic(12345) ,

streamlining the earlier approach in [16] based on the above Jm
12...p.

Using the generating series of supersymmetric Berends–Giele currents discussed in

[17,14], it will be shown that the generating series of ten-dimensional SYM tree-level am-

plitudes takes a very simple form,

Tr
(1

4
FmnF

mn + (Wγm∇mW)
)
∣

∣

∣

θ=0
=

∞
∑

n=3

n− 2

n

∑

i1,i2,...,in

Tr(ti1ti2 . . . tin)ASYM(i1, i2, . . . , in) .

(1.5)

Note that the left-hand side of (1.5) matches the ten-dimensional SYM Lagrangian evalu-

ated on the generating series Fmn(x, θ = 0) and W
α(x, θ = 0) defined below.

1.2. Summary of results on the BCJ duality

The virtue of the simplified theta-expansions in [14] can be reconciled with a manifestation

of the duality between color and kinematics due to Bern, Carrasco and Johansson (BCJ)

[18] (see [19] for a review). A concrete tree-level realization of the BCJ duality was given

in [20] at any multiplicity, based on local numerators in pure spinor superspace. The
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components are accessible through the zero-mode treatment in [21], but we will present a

significantly accelerated approach where the zero-mode manipulations are trivialized.

The BCJ duality immediately led to the powerful prediction that only (n − 3)! per-

mutations of SYM tree-level subamplitudes (1.2) are linearly independent [18]. This ba-

sis dimension was later derived from the monodromy properties of the string worldsheet

[22,23], by the field-theory limit of the n-point superstring disk amplitude [12,24] and by

BCFW on-shell recursions in field theory [25]. In addition to these proofs, the following

explicit BCJ relations among color-ordered amplitudes will be obtained from pure spinor

cohomology arguments,

|A|
∑

i=1

|B|
∑

j=1

(−1)i−jsaibjA
SYM((a1 . . . ai−1�a|A| . . . ai+1), ai, bj, (bj−1 . . . b1�bj+1 . . . b|B|), n) = 0 ,

(1.6)

where the words A = a1a2 . . . a|A| and B = b1b2 . . . b|B| have total length |A|+ |B| = n−1.

The shuffle product � is defined recursively as

∅�A = A�∅ = A, A�B ≡ a1(a2 . . . a|A|�B) + b1(b2 . . . b|B|�A) , (1.7)

where ∅ denotes the case when no “letter” is present.

2. Review

2.1. Berends–Giele recursion relations

In the 80s, Berends and Giele proposed a recursive method to compute color-ordered gluon

amplitudes at tree-level using multiparticle currents Jm
P defined1 as [15]

Jm
i ≡ emi , sPJ

m
P ≡

∑

XY =P

[JX , JY ]
m +

∑

XY Z=P

{JX , JY , JZ}
m , (2.1)

where emi denotes the polarization vector of a single-particle gluon, P = 12 . . . p encom-

passes several external particles, and the Mandelstam invariants are

sP ≡
1

2
k2P , kmP ≡ km1 + km2 + · · ·+ kmp . (2.2)

1 The original definition of Jm
P in [15] contains the factor 1/k2

P instead of 1/sP as adopted

here. An overall factor of 1
2
in (2.3) and (2.4) compensates this difference.
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The notation
∑

XY =P in (2.1) instructs to deconcatenate P = 12 . . . p into non-empty

words X = 12 . . . j and Y = j+1 . . . p with j = 1, 2, . . . , p−1 and the obvious generalization

to
∑

XY Z=P . The brackets [·, ·]m and {·, ·, ·}m are given by stripping off one gluon field

(with vector index m) from the cubic and quartic vertices of the Yang–Mills Lagrangian,

[JX , JY ]
m ≡ (kY · JX)Jm

Y +
1

2
kmX (JX · JY )− (X ↔ Y ) (2.3)

{JX , JY , JZ}
m ≡ (JX · JZ)J

m
Y −

1

2
(JX · JY )J

m
Z −

1

2
(JY · JZ)J

m
X . (2.4)

The Berends–Giele currents Jm
P are conserved [15] and satisfy certain symmetries [26],

kmP Jm
P = 0 , Jm

A�B = 0, ∀A,B 6= ∅ . (2.5)

The purely gluonic amplitudes are then computed as [15]

AYM(1, 2, . . . , p, p+ 1) = s12...pJ
m
12...pJ

m
p+1 . (2.6)

For example, the Berends–Giele current of multiplicity two following from (2.1) is

s12J
m
12 = em2 (e1 · k2)− em1 (e2 · k1) +

1

2
(km1 − km2 )(e1 · e2) (2.7)

and leads to the well-known three-point amplitude

AYM(1, 2, 3) = s12J
m
12J

m
3 = (e1 · e2)(k1 · e3) + cyclic(123) . (2.8)

Note that the Berends–Giele formula (2.6) as presented in [15] is not supersymmetric, it

computes purely gluonic amplitudes.

2.2. Super Yang–Mills superfields in ten dimensions

SYM in ten dimensions admits a super-Poincare-invariant description in terms of four

types of superfields: the spinor potential Aα(x, θ), the vector potential Am(x, θ) and their

associated field-strengths Wα(x, θ), Fmn(x, θ). They satisfy the following non-linear field

equations2 [1],

{D(α,Aβ)} = γm
αβAm + {Aα,Aβ} (2.9)

[Dα,Am] = [∂m,Aα] + (γmW)α + [Aα,Am]

{Dα,W
β} =

1

4
(γmn) β

α Fmn + {Aα,W
β}

[Dα,F
mn] = [∂[m, (Wγn])α]− [A[m, (Wγn])α] + [Aα,F

mn] .

2 Our convention for (anti)symmetrizing indices does not include 1
2
, e.g. ∂[mγn]=∂mγn−∂nγm.
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For later convenience, we use the notation where K refers to any element of the set con-

taining these superfields,

K ∈ {Aα,Am,Wα,Fmn} . (2.10)

In the context of scattering amplitudes or vertex operators of the superstring [4], one dis-

cards the quadratic terms from (2.9) to obtain the linearized superfields of ten-dimensional

SYM Ki ∈ {Ai
α, A

i
m,Wα

i , F
mn
i } satisfying

{D(α, A
i
β)} = γm

αβA
i
m ,

[Dα, A
i
m] = (γmWi)α + [∂m, Ai

α] ,

{Dα,W
β
i } =

1

4
(γmn)α

βF i
mn

[Dα, F
i
mn] = [∂[m, (γn]Wi)α] .

(2.11)

They describe a single gluon and/or gluino which furnishes the ith leg in the amplitude.

In pursuing compact expressions for superstring scattering amplitudes one is led

to a natural multiparticle generalization of the above description, where the single-

particle labels are replaced by “words” P = 123 . . . p. In particular, amplitudes can

be compactly written in terms of non-local3 superfields called Berends–Giele currents

KP ∈ {AP
α ,A

P
m,Wα

P ,F
mn
P } encompassing several legs 1, 2, . . . , p in an amplitude. They are

recursively constructed from linearized superfields in (2.11), and the original expressions

in [8] are related to simplified representations in [14] via non-linear gauge transformations.

This gauge freedom affects the generating series K ∈ {Aα,Am,Wα,Fmn} of Berends–Giele

currents

K =
∑

i

Kit
i +

∑

i,j

Kijt
itj +

∑

i,j,k

Kijkt
itjtk + · · · , (2.12)

where ti are generators of a non-abelian gauge group. The generating series in (2.12)

were shown in [17] to solve the non-linear field equations4 (2.9) by the properties of the

constituent Berends–Giele currents KP ∈ {AP
α ,A

P
m,Wα

P ,F
mn
P }.

3 A discussion of local multiparticle superfields KP can be found in [14,8].
4 It should be pointed out that the notion of a generating series which solves the field equations

and gives rise to tree amplitudes corresponds to the “perturbiner” formalism [27]. This approach

has been applied to the self-dual sector of Yang–Mills theory and led to a generating series of MHV

amplitudes, see [28] for a supersymmetric extension. However, the generic Yang–Mills amplitudes

have never been obtained this way (see also [29]). We thank Nima Arkani-Hamed for pointing out

these references.
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2.2.1. Simplifying component expansions with superfield gauge transformations

The aforementioned gauge freedom of the generating series (2.12) allows to tune the theta-

expansion of the multiparticle supersymmetric Berends–Giele currents such that [14]

AP
α (x, θ) =

(1

2
(θγm)αe

m
P +

1

3
(θγm)α(θγmXP )−

1

32
(γpθ)α(θγmnpθ)f

mn
P +. . .

)

ekP ·x (2.13)

takes the same form as the linearized superfield Ai
α subject to (2.11) [30,31],

Ai
α(x, θ) =

(1

2
(θγm)αe

m
i +

1

3
(θγm)α(θγmχi)−

1

32
(γpθ)α(θγmnpθ)f

mn
i +. . .

)

eki·x . (2.14)

The components emP ,Xα
P , fmn

P depend on the momenta kmi , polarizations emi and wavefunc-

tions χα
i of the gluons and gluinos encompassed in the multiparticle label P = 12 . . . p and

can be obtained from the recursions [14]

emP =
1

sP

∑

XY =P

em[X,Y ] , Xα
P =

1

sP

∑

XY =P

Xα
[X,Y ] , (2.15)

where emi ≡ emi and Xα
i ≡ χα

i for a single-particle label as well as

em[X,Y ] = −
1

2

[

emX(kX · eY ) + eXn fmn
Y − (XXγmX Y )− (X ↔ Y )

]

(2.16)

Xα
[X,Y ] =

1

2
(kpX + kpY )γ

αβ
p

[

emX(γmXY )β − emY (γmXX)β
]

. (2.17)

The non-linear component field-strength is given by

fmn
P = kmP enP − knP e

m
P −

∑

XY=P

(

emXenY − enXemY
)

(2.18)

and generalizes the single-particle instance fmn
i ≡ fmn

i = kmi eni − kni e
m
i in (2.14).

The expressions in (2.16), (2.17) and (2.18) are obtained from the theta-independent

terms of the superfields Am
P ,Wα

P ,F
mn
P evaluated at x = 0 [14],

emP ≡ Am
P (0, 0) , Xα

P ≡ Wα
P (0, 0) , fmn

P ≡ Fmn
P (0, 0) , (2.19)

in the same way as emi , χα
i and fmn

i stem from the linearized superfields Am
i ,Wα

i , F
mn
i .

Accordingly, the recursions in (2.15) to (2.17) for emP and Xα
P descend from the recursive

construction of superspace Berends–Giele currents Am
P ,Wα

P ,F
mn
P described in [14].

Note that the transversality of the gluon and the Dirac equation of the gluino propa-

gate as follows to the multiparticle level,

(kP · eP ) = 0 , kPm(γmXP )α =
∑

XY =P

[

emX(γmXY )α − emY (γmXX)α
]

, (2.20)

where transversality of emP is a peculiarity of the Lorentz gauge chosen in the derivation of

the corresponding superspace Berends–Giele current Am
P (x, θ) [14].
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2.3. The pure spinor superspace formula for SYM tree amplitudes

Tree-level amplitudes in ten-dimensional SYM have been constructed in [5] from coho-

mology methods in pure spinor superspace [4]. Inspired by OPEs in string theory, the

BRST-invariant superspace expression

ASYM(1, 2, . . . , p, p+ 1) = 〈E12...pMp+1〉 ≡
∑

XY =12...p

〈MXMY Mp+1〉 (2.21)

with the pole structure of a color-ordered (p+ 1)-point amplitude has been proposed and

shown to reproduce known component expressions for various combinations of gluons and

gluinos. BRST invariance of the superfields implies gauge-invariant and supersymmetric

components. In (2.21) the bracket 〈. . .〉 instructs to pick up terms of order λ3θ5 of the

enclosed superfields [4] and the following shorthand has been used

MP ≡ λαAP
α (x, θ) . (2.22)

At this point, we make use of the gauge choice in [14] where the theta-expansion (2.13) of

the multiparticle superfield mimics the single-particle counterpart (2.14). In this way, the

same λ3θ5 correlators listed on appendix A of [32] govern both the three-point amplitude

ASYM(1, 2, 3) = 〈M1M2M3〉 =
1

2
em1 fmn

2 en3 + (X1γmX2)e
m
3 + cyclic(123) (2.23)

and a generic multiparticle constituent of the n-point amplitudes (2.21),

〈MXMY MZ〉 =
1

2
emX fmn

Y enZ + (XXγmXY )e
m
Z + cyclic(XY Z) ≡ MX,Y,Z . (2.24)

This makes the gluon and gluino components of an arbitrary n-point tree amplitude easily

accessible through the recursion (2.15) to (2.18) for the components emP ,Xα
P and fmn

P . Using

the component field-strength (2.18), it follows that the gluonic three-point amplitudes

of the Berends–Giele and pure spinor formulæ match. In the following section, we will

demonstrate that the same is true for an arbitrary number of external legs.

3. The supersymmetric completion of the Berends–Giele formula

In this section, the pure spinor superspace formula for ten-dimensional SYM tree ampli-

tudes (2.21) will be shown to reduce ipsis litteris to the Berends–Giele formula (2.6) when

restricted to its gluonic expansion. Given the supersymmetry of the pure spinor approach,

we will use it to derive the supersymmetric completion of the Berends–Giele formula.
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3.1. Bosonic Berends–Giele current from superfields

In a first step, the lowest components emP in the superfield (2.13) are demonstrated to

reproduce the bosonic Berends–Giele currents in (2.1) once the fermions are decoupled,

i.e.

emP
∣

∣

χj=0
= Jm

P . (3.1)

Plugging the field-strength fmn
P (2.18) into the recursive definition of emP (2.15) leads to

2sP e
m
P = −

∑

XY =P

[

2emX(kX · eY ) + kmY (eX · eY )− (XXγmXY )− (X ↔ Y )
]

+
∑

XY Z=P

[

2(eX · eZ)e
m
Y − (eX · eY )e

m
Z − (eY · eZ)e

m
X

]

. (3.2)

In absence of fermions, χα
j = 0, the first line (3.2) yields the contribution of the cubic vertex

(2.3) to the Berends–Giele current, and the second line due to the non-linear part of the

field-strength fmn
P reproduces the quartic vertex (2.4). This is natural since the quartic

interaction in the YM Lagrangian arises from the non-linear part of the field-strength.

Together with the single-particle case emi = Jm
i = emi , the matching of (3.2) at χα

j = 0

with the Berends–Giele recursion (2.1) completes the inductive proof of (3.1).

Also note that the recursion (2.17) for Xα
P amounts to a resummation of Feynman

diagrams incorporating both the fermion propagator kmγm
αβ/k

2 and the cubic coupling of

two fermions with a boson, in accordance with the Berends–Giele method [15] applied to

ten-dimensional SYM theory.

3.2. Supersymmetric Berends–Giele amplitude from the pure spinor formula

The relation (3.1) between the ten-dimensional Berends–Giele current emP in superspace

and its purely gluonic counterpart Jm
P is now extended to their corresponding tree-level

amplitudes: the pure spinor formula (2.21) versus the Berends–Giele formula (2.6).

To see the relation, note that (2.24) can be rewritten as

〈MXMY MZ〉 = (e[X,Y ] · eZ) + emX(XY γmXZ)− emY (XXγmXZ) (3.3)

+
1

2

∑

RS=Z

[

(eR · eX)(eS · eY )− (eR · eY )(eS · eX)
]

,

provided that transversality (2.20) and momentum conservation holds, kmX +kmY +kmZ = 0.

In particular, when Z → p+1 is a single-particle label associated with the (p+1)th massless

leg, the deconcatenation terms in the second line of (3.3) vanish:

〈MXMY Mp+1〉 = (e[X,Y ] · ep+1) + emX(XY γmXp+1)− emY (XXγmXp+1) . (3.4)

9



Plugging the correlator (3.4) into the pure spinor superspace formula for tree-level SYM

amplitudes (2.21) yields

ASYM(1, 2, . . . p, p+1) =
∑

XY =12...p

[

(e[X,Y ] ·ep+1)+emX(XY γmXp+1)−emY (XXγmXp+1)
]

. (3.5)

Alternatively, using (2.15) and (2.20) to identify em12...p and Xα
12...p, this can be written as

ASYM(1, 2, . . . p, p+ 1) = s12...p(e12...p · ep+1) + km12...p(X12...pγmXp+1) . (3.6)

In view of (3.1), the expression (3.6) reproduces the gluonic Berends–Giele formula [15] in

absence of fermions,

ASYM(1, 2 . . . , p, p+ 1)
∣

∣

χj=0
= s12...p(J12...p · Jp+1) = AYM(1, 2 . . . , p, p+ 1) , (3.7)

and additionally provides its supersymmetric completion. Note that the bosonic currents

emP contain even powers of gluino wavefunctions χα
i from the last term in (2.16) such as

s12e
m
12 = s12J

m
12 + (χ1γ

mχ2). Hence, both classes of terms on the right hand side of (3.6)

contribute to fermionic amplitudes.

3.3. Divergent propagators and their cancellation

3.3.1. In components

From the definition (2.15) it follows that both of emP and Xα
P in (3.6) are proportional to a

divergent propagator since sP = 0 for a massless (p+ 1)-point amplitude. As well known

from the Berends–Giele formula for gluons [15], this is compensated by the formally van-

ishing numerator containing sP = 0 in (2.6). The same is true for its supersymmetric

completion derived in (3.6) since kmP (γmXp+1)α = 0 using kmP = −kmp+1 and the mass-

less Dirac equation. The interpretation is also the same; sP is the inverse of the bosonic

propagator 1/∂2 while kPmγm
αβ is the inverse of the fermion propagator ∂mγm

αβ/∂
2.

3.3.2. In pure spinor superspace

The supersymmetric way to cancel a divergent propagator relies on the action of the pure

spinor BRST charge Q ≡ λαDα [4] on the currents MP [5],

EP ≡ QMP =
∑

XY=P

MXMY . (3.8)
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The integration of schematic form 〈λ3θ5〉 = 1 annihilates BRST-exact expressions [4].

Because the single-particle superfield Mp+1 is BRST closed, QMp+1 = 0, the superspace

representation of tree-level amplitudes in (2.21) would be BRST exact Q(MPMp+1) if the

current MP was well defined in the phase space of p + 1 massless particles [5]. However,

MP ∼ 1/sP and therefore the vanishing of sP prevents the amplitude from being BRST ex-

act. Just like (3.5), the expression 〈
∑

XY=P MXMY Mp+1〉 does not contain any divergent

propagator.

The assessment of BRST-exactness for a given superfield will play an important role

in the derivation of BCJ relations in section 4.2.

3.4. Short representations and BRST integration by parts

At first sight the Berends–Giele formula (2.6) requires the p-current Jm
12...p in the compu-

tation of the (p + 1)-gluon amplitude. However, a diagrammatic method has been used

by Berends and Giele in [16] to obtain “short” representations of bosonic amplitudes up

to eight points which required no more than the four-current and led to manifestly cyclic

formulæ for AYM(1, 2, . . . , p+ 1). For example, the six-point amplitude was found to be

AYM(1, 2, . . . , 6) =
1

2
s123J

m
123J

m
456 +

1

3
[J12, J34]

mJm
56 (3.9)

+
1

2
{J1, J23, J4}

mJm
56 + {J1, J2, J34}

mJm
56 + cyclic(123456) ,

and similar expressions were written for the seven- and eight-point amplitudes [16].

In the framework of pure spinor superspace, the multiplicity of currents can be short-

ened using integration by parts of the BRST charge. By (3.8), this amounts to

∑

XY =P

〈MXMY MQ〉 =
∑

XY =Q

〈MPMXMY 〉 , (3.10)

which has been used in [5] to cast the superspace formula (2.21) for n-point trees into a

manifestly cyclic form without any current of multiplicity higher than n
2
, e.g.

ASYM(1, 2, . . . , 6) =
1

3
〈M12M34M56〉+

1

2
〈M123(M45M6 +M4M56)〉+ cyclic(123456) .

(3.11)

11



In terms of the components MX,Y,Z from the evaluation (2.24) of pure spinor superspace

expressions, the component expressions for amplitudes of multiplicity ≤ 8 are given by

ASYM(1, 2, . . . , 4) =
1

2
M12,3,4 + cyclic(12 . . .4) (3.12)

ASYM(1, 2, . . . , 5) = M12,3,45 + cyclic(12 . . .5)

ASYM(1, 2, . . . , 6) =
1

3
M12,34,56 +

1

2
(M123,45,6 +M123,4,56) + cyclic(12 . . .6)

ASYM(1, 2, . . . , 7) = M123,45,67 +M1,234,567 + cyclic(12 . . .7)

ASYM(1, 2, . . . , 8) =
1

2
(M1234,567,8 +M1234,56,78 +M1234,5,678)

+M123,456,78 + cyclic(12 . . .8) ,

see [5] for the nine- and ten-point analogues. Given the recursive nature of the definitions of

emP , fmn
P and Xα

P , the full component expansion of the above amplitudes is readily available

and reproduce the results available in the website [33].

Note that the manipulations leading to (3.4) rely on a single-particle current Mp+1

and therefore do not apply to the MX,Y,Z in (3.12).

3.5. The generating series of tree-level amplitudes

The way how component amplitudes (3.6) of SYM descend from the pure spinor superspace

expression (2.21) can be phrased in the language of generating series. The solution

V ≡ λα
Aα =

∑

i

Mit
i +

∑

i,j

Mijt
itj +

∑

i,j,k

Mijkt
itjtk + · · · (3.13)

of the non-linear SYM equations (2.9) generates color-dressed SYM amplitudes via5 [17]

1

3
Tr〈VVV〉 =

∞
∑

n=3

n− 2

n

∑

i1,i2,...,in

Tr(ti1ti2 . . . tin)ASYM(i1, i2, . . . , in) . (3.14)

Note from (2.19) that emP ,Xα
P and fmn

P are just the θ = 0 components of the corresponding

generating series Am, Wα and F
mn. Therefore (2.24) implies that

1

3
Tr〈VVV〉 =

1

4
Tr([Am,An]F

mn) + Tr(Wγm
AmW)

∣

∣

∣

θ=0

= Tr
(1

4
FmnF

mn + (Wγm∇mW)
)
∣

∣

∣

θ=0
. (3.15)

5 The representations of SYM amplitudes generated by Tr〈VVV〉 are related to (2.21) by

BRST integration by parts (3.10).
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In passing to the second line of (3.15), we have used the massless Dirac equation

∇mγm
αβW

β = 0 as well as the field equation ∂mFmn = [Am,Fmn] + γn
αβ{W

α,Wβ} and

discarded a total derivative to rewrite (∂mAn)F
mn = −An

(

[Am,Fmn] + γn
αβ{W

α,Wβ}
)

.

The factor 1/3 on the left-hand side of (3.15) offsets the sum over three terms that results

from the cyclic symmetry of the trace.

It is interesting to observe that the generating series of tree-level amplitudes (3.15)

matches the ten-dimensional SYM Lagrangian evaluated on the generating series of (non-

local) Berends–Giele currents in superspace: Fmn(x, 0) and Wα(x, 0).

4. BCJ relations from the cohomology of pure spinor superspace

In this section, we prove that the BCJ relations [18] among partial SYM amplitudes follow

from the vanishing of certain BRST-exact expressions in pure spinor superspace and find

a closed formula for them. A closely related property of tree amplitudes is the possibility

to express the complete kinematic dependence in terms of (n − 2)! master numerators

through a sequence of Jacobi-like relations [18]. A superspace representation of such master

numerators was given in [20], and we will provide a compact component evaluation along

the lines of the previous section.

4.1. Kleiss–Kuijf relations from symmetries of Berends–Giele currents

For completeness, we start by revisiting from a superspace perspective the Kleiss–Kuijf

(KK) relations among color-ordered amplitudes [34], firstly proven in [35].

The KK relations are conveniently described in the Berends–Giele framework. To see

this, recall that the superspace currents KP ∈ {AP
α ,A

m
P ,Wα

P ,F
mn
P } satisfy the symmetry

property [8]

KA�B = 0, ∀A,B 6= ∅ , (4.1)

see appendix B of [14] for a proof. The symmetry (4.1) of course also holds for theta-

independent components {emP ,Xα
P , fmn

P } of KP , see (2.19). Since the currents emP reduce

to Jm
P via (3.1), this is consistent with the symmetry Jm

A�B = 0, ∀A,B 6= ∅ derived by

Berends and Giele in [26]. The symmetry (4.1) together with the identity6

KB1A − (−1)|B|K1(A�BT ) = −
∑

XY =B

(−1)|X|KXT
�(Y 1A) , (4.2)

6 Incidentally, the identity (4.2) shows the equivalence between the statements given in equa-

tion (2) of [36] and Theorem 2.2 of [37].
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where BT denotes the reversal of the word B, lead to an alternative form of (4.1),

KB1A − (−1)|B|K1(A�BT ) = 0 . (4.3)

Since EP ≡ QMP generalizes (4.3) to KP → EP , the tree-level amplitude representation7

(3.6) A12...n = 〈E12...n−1Mn〉 immediately yields the Kleiss–Kuijf relations

AC1Bn − (−1)|C|A1(B�CT )n = 〈
(

EC1B − (−1)|C|E1(B�CT )

)

Mn〉 = 0 , (4.4)

which reduce the number of independent color-ordered amplitudes to (n− 2)! [34].

4.2. BCJ relations from the BRST cohomology

4.2.1. Berends–Giele currents in BCJ gauge

There is a method to construct Berends–Giele currents from quotients of local superfields

K[P,Q] by Mandelstam invariants whose precise form follows from an intuitive mapping

with cubic graphs (or planar binary trees) [8,14]. For example, the Berends–Giele currents

associated with the local superfield V[P,Q] ≡ λαA
[P,Q]
α up to multiplicity four are given by

MBCJ
12 =

V[1,2]

s12
, MBCJ

123 =
V[[1,2],3]

s12s123
+

V[1,[2,3]]

s23s123
, (4.5)

MBCJ
1234 =

1

s1234

(V[[[1,2],3],4]

s12s123
+

V[[1,[2,3]],4]

s23s123
+

V[[1,2],[3,4]]

s12s34
+

V[1,[2,[3,4]]]

s34s234
+

V[1,[[2,3],4]]

s23s234

)

.

As discussed in a companion paper [14], one can perform a multiparticle gauge transfor-

mation (denoted BCJ gauge) which enforces the superfields

V123...p ≡ V[[...[[1,2],3],...],p] (4.6)

in (4.5) with diagrammatic interpretation shown in fig. 1 to satisfy the Lie symmetries of

nested commutators [[. . . [[t1, t2], t3], . . .], tp], e.g.

V12 + V21 = 0, V123 + V231 + V312 = 0 . (4.7)

7 We omit the superscript from ASYM and write the labels as a subscript to avoid cluttering.
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1

2 3 4

. . .
p

. . . ↔ V[[...[[1,2],3],...],p]

Fig. 1 The tree diagram with an off-shell leg is represented by the local superfield (4.6).

Moreover, BCJ gauge allows to reduce any other topology of bracketings to the master

topology (4.6) by a sequence of Jacobi-like identities

V...[[P,Q],R]... + V...[[Q,R],P ]... + V...[[R,P ],Q]... = 0 , e.g. V[[1,2],[3,4]] = V1234 − V1243 . (4.8)

Hence, the Berends–Giele current MBCJ
12...p can be expanded in terms of the (p − 1)! inde-

pendent permutations of V12...p. This is the same number of independent components as

left by the Berends–Giele symmetry (4.1) (here for K12...p → MBCJ
12...p). As a crucial feature

of Berends–Giele currents in BCJ gauge, there is an invertible mapping between the local

superfields V12...p and MBCJ
12...p. More explicitly, for multiplicity p ≤ 4 one can use (4.6) and

(4.8) to invert (4.5) and obtain

V12 = s12M
BCJ
12 , V123 = s12(s23M

BCJ
123 − s13M

BCJ
213 ) , (4.9)

V1234 = s12
[

s23s34M
BCJ
1234 − s13s34M

BCJ
2134 + s14s23M

BCJ
3214 − s13s24M

BCJ
3124

+ s23s24(M
BCJ
1234 +MBCJ

1243)− s13s14(M
BCJ
2134 +MBCJ

2143)
]

.

The generalization to arbitrary rank can be read off from the formula [12]

V12...p

z12z23 · · · zp−1,p
+ perm(2, . . . , p) =

p
∏

k=2

k−1
∑

m=1

smk

zmk

MBCJ
12...p + perm(2, . . . , p) , (4.10)

using partial fraction relations8 among the denominators made of zij ≡ zi − zj .

It is important to stress that the left-hand sides in (4.9) are local expressions; all

the kinematic poles in Mandelstam invariants cancel out from the linear combinations of

currents on the right-hand side. The poles cancel only when the superfields are in the BCJ

gauge. As we will see below, this fact can be exploited to derive the BCJ relations [18]

among color-ordered amplitudes.

8 Note that Z12...p−1,p ≡ 1/(z12z23 . . . zp−1,p) satisfies ZA�B = 0, ∀A,B 6= ∅.
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4.2.2. Four- and five-point BCJ relations

We shall now connect superfields in BCJ gauge with BCJ relations among partial SYM

amplitudes. At the four- and five-point level, one multiplies the local expressions in (4.9)

by a single-particle Vn (which is BRST closed) and uses the vanishing of BRST-exact

expressions under the pure spinor bracket prescription 〈. . .〉 [4]. For example,

V123

s12
= s23M

BCJ
123 −s13M

BCJ
213 ⇒ 0 =

〈

Q
(V123

s12
V4

)〉

= 〈(s23E
BCJ
123 −s13E

BCJ
213 )V4〉 (4.11)

with EBCJ
P ≡ QMBCJ

P corresponds to the four-point9 BCJ relation [18] by (2.21),

0 = s23A
SYM(1, 2, 3, 4)− s13A

SYM(2, 1, 3, 4) . (4.12)

Note that the BCJ gauge for the local superfields is a crucial requirement in this deriva-

tion: In a generic gauge, s23M123 − s13M213 would be an ill-defined expression containing

divergent propagators of the form 1/s123, and BRST-exactness would be obstructed as

argued in subsection 3.3 for individual SYM subamplitudes.

Similarly, the identities

V1234

s12s123
+

V3214

s23s123
= s34M

BCJ
1234 + s14M

BCJ
3214 − s24(M

BCJ
1324 +MBCJ

3124) (4.13)

V1234 − V1243

s12s34
= s23M

BCJ
1234 − s13M

BCJ
2134 − s24M

BCJ
1243 + s14M

BCJ
2143

derived from (4.9) with manifestly well-defined left-hand side imply the BCJ relations [18]

0 =
〈

Q
( V1234

s12s123
+

V3214

s23s123

)

V5

〉

= s34A
SYM(1, 2, 3, 4, 5) + s14A

SYM(3, 2, 1, 4, 5) (4.14)

− s24
[

ASYM(1, 3, 2, 4, 5) + ASYM(3, 1, 2, 4, 5)
]

0 =
〈

Q
(V1234 − V1243

s12s34

)

V5

〉

= s23A
SYM(1, 2, 3, 4, 5)− s13A

SYM(2, 1, 3, 4, 5)

− s24A
SYM(1, 2, 4, 3, 5) + s14A

SYM(2, 1, 4, 3, 5) .

Even though the above derivation relies on the choice of BCJ gauge, the subamplitudes

in the resulting BCJ relations are independent on the multiparticle gauge for the currents

MP . This can be seen from the non-linear gauge invariance in the generating series (3.14)

of the amplitude formula (2.21).

9 The three-point BCJ-relation 0 = s12A
SYM(1, 2, 3) following from s12 = 0 can be formally

derived via 0 = 〈QV12V3〉 = s12〈V1V2V3〉.
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4.2.3. Higher-point BCJ relations

Along the same lines, one can verify in a basis of VP that the expression [8]

MBCJ
S[A,B] ≡

|A|
∑

i=1

|B|
∑

j=1

(−1)i−j+|A|−1saibjM
BCJ
(a1a2...ai−1�a|A|a|A|−1...ai+1)aibj(bj−1...b2b1�bj+1...b|B|)

(4.15)

with A = a1a2 . . . a|A| and B = b1b2 . . . b|B| does not have any pole in sAB. One can there-

fore identify the following BRST-exact combinations of (|A|+ |B|+ 1)-point amplitudes,

0 = (−1)|A|−1〈Q(MBCJ
S[A,B]Mn)〉 (4.16)

=

|A|
∑

i=1

|B|
∑

j=1

(−1)i−jsaibj 〈E
BCJ
(a1a2...ai−1�a|A|a|A|−1...ai+1)aibj(bj−1...b2b1�bj+1...b|B|)

Mn〉

=

|A|
∑

i=1

|B|
∑

j=1

(−1)i−jsaibjA
SYM((a1 . . . ai−1�a|A| . . . ai+1), ai, bj, (bj−1 . . . b1�bj+1 . . . b|B|), n) ,

which all boil down to BCJ relations in some representation [18,22,23,25]. For the single-

particle choice A = 1 along with B = 2, n, (n − 1), . . . , 4, 3, (4.16) reduces to the funda-

mental BCJ relations

0 = (−1)n〈Q(MBCJ
S[1,2n(n−1)...54]M3)〉 (4.17)

= s12A
SYM(2, 1, 3, . . . , n) + (s12 + s13)A

SYM(2, 3, 1, 4, . . . , n)

+ · · ·+ (s12 + s13 + . . .+ s1,n−1)A
SYM(2, 3, . . . , n− 1, 1, n) ,

which are well-known to leave (n− 3)! independent subamplitudes [18,22,23,25].

4.3. Component form of BCJ numerators

The initial derivation of BCJ relations in [18] relied on the duality between color and kine-

matics, i.e. the existence of particular representations of tree amplitudes. The functions

of polarizations and momenta associated with the cubic graphs in such a “BCJ repre-

sentation” are assumed to obey the same Jacobi identities as the color factors made of

structure constants fabc of the gauge group. As a consequence, the complete information

on polarizations and momenta reside in (n − 2)! master graphs which can be chosen to

be the half-ladder diagrams with fixed endpoints 1 and n − 1 as depicted in fig. 2 and

arbitrary permutations of the remaining legs 2, 3, . . . , n− 2 and n.

An explicit realization of the BCJ duality for tree-level amplitudes was given in [20]

based on the tree amplitudes of the pure spinor superstring. The master graphs in the

figure were associated with local kinematic numerators10 〈V12...jVn−1,n−2...j+1Vn〉 labeled

10 Note that the precursors of V12...p were denoted by T12...p in [20].
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1

2 3 j n j+1 n-3

n-1

n-2

V12...j Vn Vn−1,n−2...j+1

Fig. 2 The (n − 2)! half-ladder diagrams with legs 1 and n − 1 attached to opposite endpoints

encode the complete kinematic dependence in a BCJ representation.

by j = 1, 2, . . . , n− 2 along with the (n− 3)! permutations in the legs 2, 3, . . . , n− 2. The

kinematic factors for any other graph can be reached by a sequence of Jacobi relations, and

this representation agrees with the field-theory limit of the open superstring amplitude,

i.e. yields the right SYM amplitude.

The techniques of [14] (in particular the discussion of BCJ/HS gauge) give rise to a

compact formula for their components,

〈VAVBVC〉 =
1

2
emA fmn

B enC + (χAγmχB)e
m
C + cyclic(ABC) , (4.18)

whose form is completely analogous to (2.24). The constituents emA , fmn
A and χα

A of (4.18)

are local multiparticle polarizations and will be explained below.

4.3.1. Local multiparticle polarizations

The discussion of recursion relations for local superfields given in [14] has a direct coun-

terpart for their multiparticle polarizations emA , fmn
A and χα

A which constitute their theta-

independent terms. The setup starts with a recursive definition for local multiparticle

polarizations êmA , f̂mn
A and χ̂α

A whose labels do not satisfy the symmetries of a Lie algebra,

for example êm123 + êm231 + êm312 6= 0 (their hatted notation is a reminder of this symme-

try failure). However, non-linear gauge variations of their multiparticle superfields can be

exploited to find a gauge where the symmetries are indeed satisfied.

The recursive definition of the hatted components is given by

êm12...p = −
1

2

[

êm12...p−1(k12...p−1 · êp) + ên12...p−1f̂
mn
p − (χ̂12...p−1γ

mχ̂p)− (12 . . . p− 1 ↔ p)
]

χ̂α
12...p =

1

2
kn12...pγ

αβ
n

[

êm12...p−1(γmχ̂p)β − (12 . . . p− 1 ↔ p)
]

, (4.19)

and it starts with êmi = emi and χ̂α
i = χα

i . The local field-strength is defined by

f̂12...p
mn ≡ k12...pm ê12...pn − k12...pn ê12...pm +

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 · kj) ê
12...j−1,{δ}
[n ê

j,{βj\δ}
m] , (4.20)
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with shorthand βj = {j + 1, j + 2, . . . , p} and P (βj) denoting the power set of βj , e.g.

f̂mn
1 = fmn

1 = km1 en1 − kn1 e
m
1 , f̂mn

12 = fmn
12 = km12e

n
12 − kn12e

m
12 − s12e

[m
1 e

n]
2

f̂mn
123 = km123ê

n
123 − kn123ê

m
123 − (s13 + s23)e

[n
12e

m]
3 − s12(e

[n
1 e

m]
23 − e

[n
2 e

m]
13 ) . (4.21)

Up to and including multiplicity p = 2, the multiparticle polarizations in the BCJ numer-

ators (4.18) agree with their hatted counterparts in (4.19),

em12 = êm12 = em2 (e1 · k2)− em1 (e2 · k1) +
1

2
(km1 − km2 )(e1 · e2) + (χ1γ

mχ2) (4.22)

χα
12 = χ̂α

12 =
1

2
kp12γ

αβ
p

[

em1 (γmχ2)β − em2 (γmχ1)β
]

,

while multiplicities p ≥ 3 require redefinitions ĥ12...p starting with

em123 = êm123 − km123ĥ123 , χα
123 = χ̂α

123 . (4.23)

The redefinition of êm123 in (4.23) ensures the Lie symmetry em123 + em231 + em312 = 0. At

multiplicity p = 4, we have

em1234 = êm1234 + (k123 ·k4)ĥ123e
m
4 − (k12 ·k3)ĥ124e

m
3 − (k1 ·k2)(ĥ134e

m
2 − ĥ234e

m
1 )− km1234ĥ1234

χα
1234 = χ̂α

1234 + (k123 ·k4)ĥ123χ
α
4 − (k12 ·k3)ĥ124χ

α
3 − (k1 ·k2)(ĥ134χ

α
2 − ĥ234χ

α
1 ) , (4.24)

and the rank-five example can be extracted from [14] as will be explained shortly. The

scalar correction terms ĥ12...p in (4.23) and (4.24) can be reduced to building blocks

hA,B,C ≡
1

4
emA fmn

B enC +
1

2
(χAγmχB)e

m
C + cyclic(ABC) (4.25)

made of multiparticle polarizations of lower multiplicity ≤ p− 2 via

3ĥ123 ≡ h1,2,3

4ĥ1234 ≡ h12,3,4 + h34,1,2 −
1

2
h1,2,3(k123 · e4) (4.26)

+
1

6

[

h1,3,4(k134 · e2)− h2,3,4(k234 · e1)− h124(k124 · e3)
]

.

Once the redefinition em12...p = êm12...p + . . . for the multiparticle polarization has been

performed, the corresponding “unhatted” field-strength relevant for the BCJ numerators

in (4.18) is obtained completely analogously to (4.20),

f12...p
mn ≡ k12...pm e12...pn −k12...pn e12...pm +

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 ·kj) e
12...j−1,{δ}
[n e

j,{βj\δ}
m] . (4.27)
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4.3.2. Higher multiplicity

As already mentioned, the above redefinitions of êm12...p, χ̂
α
12...p and f̂mn

12...p descend from the

superspace discussion in section 3 of [14]. In particular, the corrections hA,B,C defined in

(4.25) are the θ = 0 component of a local superfield HA,B,C(x, θ) which was completely

specified up to multiplicity five in [14]. So the full expressions of em12345, χ
α
12345 and fmn

12345

are readily available.

At the same time, there is no obstruction to pushing these recursive constructions even

further, leading to local multiparticle polarizations emP , χα
P and fmn

P of higher multiplicity.

Therefore, together with the central formula (4.18) for local components, the discussion in

this section provides access to the supersymmetric components of the local BCJ-satisfying

numerators of [20] in a recursive fashion.

5. Conclusion and outlook

In this work, we have extracted and streamlined component information from tree-level

scattering amplitudes in pure spinor superspace. The results are based on simplified theta-

expansions for multiparticle superfields of ten-dimensional SYM which are derived from

non-linear gauge transformations in a companion paper [14]. More specifically:

• The n-point tree-level amplitude derived in [5] from locality, supersymmetry and

gauge invariance is shown to reproduce the Berends–Giele formula, and the super-

symmetrization by fermionic component amplitudes is worked out.

• BCJ relations are derived from the decoupling of BRST-exact expressions in pure

spinor superspace.

• Kinematic tree-level numerators satisfying the BCJ duality between color and kine-

matics from [20] are translated into components.

The resulting ten-dimensional component amplitudes together with their BCJ represen-

tations and dimensional reductions will have a broad range of applications. With appro-

priate truncations of the gluon and gluino components, they are suitable to determine

D-dimensional unitarity cuts in a variety of theories including QCD, see e.g. [38,39,40]

and references therein.

It would be interesting to relate the multiparticle polarizations in the component

form of the BCJ numerators to the approach of [41]. In that reference, formally vanishing

non-local terms are added to the Yang–Mills Lagrangian to automatically produce BCJ

20



numerators. The interplay between Lagrangians and generating series of kinematic fac-

tors might shed further light on the superfield redefinitions in [14] underlying our BCJ

numerators.
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