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1. Introduction

In recent years, the super-Poincaré covariant description [1] of ten-dimensional super Yang–

Mills theory (SYM) has been extensively used to compute scattering amplitudes in string

and field theory. This description features the ten-dimensional superfields,

Aα(x, θ), A
m(x, θ), W

α(x, θ), F
mn(x, θ) , (1.1)

where Aα,Am are the spinor and vector potentials and Wα,Fmn their associated field-

strengths. They satisfy certain non-linear field equations to be reviewed below.

The appearance of the linearized versions Aα(x, θ), A
m(x, θ), Wα(x, θ) and Fmn(x, θ)

of (1.1) in the massless vertex operators of the pure spinor superstring [2] have brought

these superfields to the forefront of perturbation theory: They compactly encode the kine-

matical factors of scattering amplitudes in string and field theory.

Following the standard CFT prescription for scattering amplitudes in the pure spinor

superstring, it soon became clear that the linearized superfields repeatedly appeared in the

same meaningful combinations. The study of short-distance singularities among massless

vertex operators gave rise to the notion of multiparticle superfields,

KP ∈ {A
P
α (x, θ), A

m
P (x, θ), Wα

P (x, θ), Fmn
P (x, θ)} .

We gather the labels of several particles in P = 12 . . . p and collectively refer to the four

types of superfields via KP to avoid the cluttering of Lorentz indices.

In the last years, two distinct ways of obtaining the explicit expressions of multiparticle

superfields have been proposed. In 2011 and 2012 [3,4], their construction closely followed

the (lengthy) OPE calculations in superstring tree amplitudes, leading to expressions for

KP which satisfy the Lie symmetries of nested commutators [. . . [[t1, t2], t3], . . . , tp] under

permutations of the labels in P = 12 . . . p. In 2014 [5], an efficient recursive definition of

multiparticle superfields was given in terms of a cubic-vertex prescription K[P,Q], bypass-

ing the need to perform OPEs beyond multiplicity p = 2. A chain of redefinitions was

supplemented in order to recover the same Lie symmetries as in the previous approach.

In addition to the (local) multiparticle superfields, the superstring amplitude calcu-

lations also suggested natural definitions of their non-local counterparts, called Berends–

Giele currents and represented by calligraphic letters,

KP ∈ {Aα(x, θ), Am(x, θ), Wα(x, θ), Fmn(x, θ)} . (1.2)
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As described in [3,5], the precise definition of KP used an intuitive mapping between

planar binary trees (or cubic graphs) and Lie symmetry-satisfying multiparticle superfields,

dressed with the propagators of the graph. These Berends–Giele currents elegantly capture

kinematic factors of multiparticle amplitudes in both string and field-theory.

As one of the main result of this article, we provide an alternative definition of

Berends–Giele currents which tremendously simplifies the construction of earlier work [5]

while preserving their equations of motion.

1.1. Generating series and non-linear gauge transformations

A new perspective on multiparticle superfields KP and their associated Berends–Giele

currents KP is provided by the generating series of Berends–Giele currents. These gen-

erating series are an expansion in terms of Lie-algebra generators ti with multiparticle

Berends–Giele currents as coefficients [6],

K ≡
∞
∑

p=1

∑

i1,i2,...,ip

Ki1i2...ipt
i1ti2 . . . tip . (1.3)

As a key feature of these generating series K ∈ {Aα(x, θ),A
m(x, θ),Wα(x, θ),Fmn(x, θ)},

they are Lie algebra-valued and solve the non-linear field equations of ten-dimensional

SYM theory. These equations are invariant under non-linear gauge transformations [1],

δΩAα =
[

Dα,Ω
]

−
[

Aα,Ω
]

, δΩW
α =

[

Ω,Wα
]

, (1.4)

δΩAm =
[

∂m,Ω
]

−
[

Am,Ω
]

, δΩF
mn =

[

Ω,Fmn
]

,

where Ω(x, θ) is a generating series of multiparticle gauge parameters ΩP . This non-linear

gauge invariance will be the main topic of this work. It underpins the earlier constructions

of multiparticle superfields and provides a surprising link between the Bern–Carrasco–

Johansson (BCJ) duality [7,8,9] and multiparticle gauge transformations.

1.2. Non-linear gauge transformations and the BCJ duality

As will be shown in this paper, the cubic-vertex prescription K[P,Q] appearing in the earlier

construction of multiparticle superfields turns out to have a direct non-local counterpart

for Berends–Giele currents

KP ≡
1

sP

∑

XY =P

K[X,Y ] (1.5)
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with the same functional form for the currents K[X,Y ] as seen for the local fields K[X,Y ].

The recursive definition (1.5) yields a particular gauge where kPmA
m
P (x, θ) = 0, in other

words, the generating series AL
m of the currents in (1.5) realizes Lorentz gauge.

The redefinitions required by imposing the Lie symmetries on the multiparticle super-

fields in the previous constructions [3,5] are now understood as a change of gauge. Starting

from the definitions in the Lorentz gauge as above, the superfield redefinitions discussed

in [3,5] amount to enforcing the BCJ gauge, e.g.,

A
BCJ
m = A

L
m +

[

∂m,ΩBCJ
]

−
[

A
L
m,ΩBCJ

]

, (1.6)

where the superscripts BCJ and L refer to the redefined superfields of [3,5] and the new

recursive constructions discussed in this paper. The gauge parameter1 ΩBCJ in the sense

of (1.4) will be described in section 3, with complete expressions up to the fifth order in

the multiparticle expansion.

The terminology “BCJ gauge” for the above transformations is motivated by the

BCJ conjecture [7] on a duality between color and kinematics: The kinematic factors

Ni of scattering amplitudes can be arranged to satisfy the same Jacobi identity as their

associated color factors Ci, see [8] for the striking impact on gravity amplitudes, [9] for the

loop-level formulation of the conjecture and [10] for a review. Incidentally, the family KBCJ
P

of multiparticle superfields in the BCJ gauge satisfy the same “generalized Lie symmetries”

[11] as a string of structure constants in [ta, tb] = fabctc,

“kinematics” KBCJ
12...p ←→ f12a3fa33a4fa44a5 . . . fappap+1 “color” . (1.7)

The relation between the tree-level BCJ duality and the superfields in the BCJ gauge can

be seen from the tree-level amplitudes computed with the pure spinor superstring.

At tree level, the numerators Ni are assembled from cubic expressions AP
αA

Q
β A

R
γ where

the particular linear combinations of multiparticle labels P,Q,R follow from the field-

theory limit of the superstring amplitude, see fig. 1. As shown in [12], the numerators

resulting from this procedure obey the color-kinematics duality for any number of external

particles. The superfields in the “BCJ gauge” were an essential requirement in the deriva-

tion of BCJ-satisfying numerators from the pure spinor superstring2. Non-linear gauge

transformations of the generating series (1.3) of multiparticle superfields reparametrize

the SYM amplitudes by moving terms between different cubic diagrams. They can there-

fore be viewed as an example of the “generalized gauge freedom” of [7,8,9].

1 For historical reasons, ΩBCJ will be denoted by −H in section 3.
2 In eliminating spurious double poles from the string computation, BCJ gauge of the multi-

particle superfields is automatically attained [3].
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1

2 3 j n j+1 n-3

n-1

n-2

V12...j Vn Vn−1,n−2...j+1

Fig. 1 The basis of half-ladder diagrams with legs 1 and n−1 attached to opposite endpoints fur-

nish the manifestly-local pure spinor representation of tree-level numerators V12...jVnVn−1,n−2,...j+1

built from SYM superfields in the BCJ gauge.

. .
.

. . .

..
.

...

A

B C

D
VATB,C,D

. .
.

. . .

..
.

...

A

B C

D
TA,B|C,D

Fig. 2 The pure spinor expressions of arbitrary box and double-box numerators are given by

certain multiparticle building blocks VATB,C,D [13] and TA,B|C,D [14]. They furnish a manifestly

local representation that satisfies the BCJ identities within each external tree subdiagram when

the SYM superfields are in the BCJ gauge.

At loop level, BCJ-satisfying five-point integrands at both one- and two-loops were

recently derived using multiparticle superfields in the BCJ gauge [13,14]3. At any multiloop

order, kinematic Jacobi identities within tree-level subdiagram are manifestly satisfied if

they are represented by multiparticle superfields in BCJ gauge. This for instance applies to

the general box and double-box diagram displayed in fig. 2 where the multiparticle labels

A,B,C and D refer to appropriate superfields with the symmetry (1.7). The ubiquitous

appearance of multiparticle superfields calls for an efficient handle on their components,

i.e. their dependence on the Grassmann-odd superspace coordinates θα.

1.3. Theta-expansions in Harnad–Shnider gauge

In the same way as the Lie symmetries required by the BCJ duality could be attained

through a non-linear gauge transformation (1.6), we will simplify the theta-expansion of

3 It should be pointed out that the straightforward derivation of the six-point integrand at

one-loop does not satisfy the BCJ duality [13]. Although not conclusive, the failure seems to be

related to the well-known six-point gauge anomaly and deserves further investigation.
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Berends–Giele currents through a convenient choice of multiparticle gauge parameters. The

underlying gauge condition θαAHS
α = 0 goes back to Harnad and Shnider (HS) [15] and

has been further studied in the context of linearized superfields [16]. We apply this line of

thoughts to the multiparticle level and obtain economic theta-expansions for Berends–Giele

currents KP which largely resemble the linearized counterparts. Non-linear deviations at

higher powers of theta are controlled by superfields of higher mass dimension [6].

The theta-expansions of HS gauge significantly alleviate the conversion of kinematic

factors in pure spinor superspace to their components involving gluons and gluinos. The

computational effort caused by large numbers of external states [17] can be tremendously

reduced, and the resulting structural insights into the tree-level components are discussed in

a companion paper [18]. A huge long-term benefit for higher orders in perturbation theory

is expected from the quick access to the component information on multiloop kinematic

factors.

1.4. Outline

This paper is organized as follows. In section 2, the field equations of ten-dimensional SYM

are reviewed and exploited to construct Berends–Giele currents in Lorentz gauge. Their

gauge equivalence to the earlier construction of [5] in BCJ gauge is clarified in section 3.

In section 4, the key ideas of HS gauge are reviewed and applied to streamline the theta-

expansions of Berends–Giele currents, starting from either Lorentz gauge or BCJ gauge.

Finally, we conclude in section 5 with applications of the improved theta-expansions to

scattering amplitudes in pure spinor superspace.

2. Super-Poincare description of ten-dimensional super Yang–Mills

2.1. Non-linear super Yang–Mills

Ten-dimensional SYM can be described in a super-Poincaré covariant manner using super-

space coordinates (xm, θα) where m,n = 0, . . . , 9 and α, β = 1, . . . , 16 denote vector and

spinor indices of the Lorentz group. Using Lie algebra-valued connections Aα = Aα(x, θ)

and Am = Am(x, θ), one defines supercovariant derivatives [19,1],

∇α ≡ Dα − Aα , ∇m ≡ ∂m − Am . (2.1)
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The fermionic differential operators

Dα ≡
∂

∂θα
+

1

2
(γmθ)α∂m , {Dα, Dβ} = γm

αβ∂m (2.2)

involve the 16 × 16 Pauli matrices γm
αβ = γm

βα subject to the Clifford algebra γ
(m
αβγ

n)βγ =

2ηmnδγα, and the convention for (anti)symmetrizing indices does not include 1
2 . The con-

straint equation
{

∇α,∇β

}

= γm
αβ∇m together with Bianchi identities then lead to the

non-linear equations of motion [1],

{

∇α,∇β

}

= γm
αβ∇m ,

[

∇α,∇m

]

= −(γmW)α ,

{

∇α,W
β
}

=
1

4
(γmn)α

β
Fmn ,

[

∇α,F
mn

]

= (W[mγn])α ,

(2.3)

where

Fmn ≡ −
[

∇m,∇n

]

, W
α
m ≡

[

∇m,Wα
]

. (2.4)

Equivalently, using the definitions (2.1) the equations of motion (2.3) become

{D(α,Aβ)} = γm
αβAm + {Aα,Aβ} ,

[Dα,Am] = [∂m,Aα] + (γmW)α + [Aα,Am] ,

{Dα,W
β} =

1

4
(γmn) β

α Fmn + {Aα,W
β}

[Dα,F
mn] = (W[mγn])α + [Aα,F

mn] .

(2.5)

It is straightforward to check that (2.3) or (2.5) are preserved by the non-linear gauge

transformations,

δΩAα =
[

∇α,Ω
]

, δΩAm =
[

∇m,Ω
]

(2.6)

δΩW
α =

[

Ω,Wα
]

, δΩF
mn =

[

Ω,Fmn
]

, δΩW
mα =

[

Ω,Wmα
]

,

with Lie algebra-valued gauge parameter Ω = Ω(x, θ).

2.1.1. Linearized super Yang–Mills

Discarding the quadratic terms in the superfields from the equations of motion (2.5) yields

the field equations of linearized SYM,

{D(α, Aβ)} = γm
αβAm,

[Dα, Am] = (γmW )α + [∂m, Aα]

{Dα,W
β} =

1

4
(γmn)α

βFmn

[Dα, Fmn] = [∂[m, (γn]W )α] .
(2.7)

They are invariant under the linearized gauge transformations,

δΩAα =
[

Dα,Ω
]

, δΩAm =
[

∂m,Ω
]

, δΩW
α = 0 , δΩF

mn = 0 . (2.8)

Note that the massless vertex operators in the open pure spinor superstring [2] are given in

terms of these linearized superfields and the equations of motion (2.7) imply their BRST

invariance [20].

7



2.2. Supersymmetric Berends–Giele currents in Lorentz gauge

For a multiparticle label P ≡ i1i2i3 . . . ip with each ij referring to an external SYM state,

we define a set of multiparticle Berends–Giele currents

KP ∈ {A
P
α ,A

m
P ,Wα

P ,F
mn
P } (2.9)

as follows. The single-particle currents Ki are given by the linearized superfields, Ki ∈

{Ai
α, A

m
i ,Wα

i , F
mn
i }, while multiparticle instances follow from the recursion4

KP ≡
1

sP

∑

XY =P

K[X,Y ] , (2.10)

where

A[P,Q]
α = −

1

2

[

AP
α (k

P · AQ) +AP
m(γmWQ)α − (P ↔ Q)

]

(2.11)

A[P,Q]
m = −

1

2

[

AP
m(kP · AQ) +AP

nF
Q
mn − (WP γmW

Q)− (P ↔ Q)
]

(2.12)

Wα
[P,Q] =

1

2
(kmP + kmQ )γαβ

m

[

An
P (γnWQ)β − (P ↔ Q)

]

(2.13)

Fmn
P = kmP A

n
P − knPA

m
P −

∑

XY=P

(

Am
XA

n
Y −A

n
XA

m
Y

)

. (2.14)

Multiparticle momenta as well as their associated Mandelstam invariants are defined by

kmP ≡ kmi1 + kmi2 + · · ·+ kmip , sP ≡
1

2
k2P , (2.15)

and the sum over multiparticle labels XY = P in (2.10) and (2.14) instructs to decon-

catenate P = i1i2i3 . . . ip into non-empty words X = i1i2 . . . ij and Y = ij+1 . . . ip with

j = 1, 2, . . . , p− 1. Alternative recursive formulæ for Wα
P and Fmn

P read5

Wα
[P,Q] = −

1

2

[

Wα
P (kP · AQ) +W

mα
P Am

Q +
1

2
(γrsWP )

αFrs
Q − (P ↔ Q)

]

(2.16)

Fmn
[P,Q] = −

1

2

[

Fmn
P (kP · AQ) + F

p|mn

P AQ
p + 2Fmp

P F
n
Qp + 4γ

[m
αβW

n]α
P Wβ

Q − (P ↔ Q)
]

,

4 This definition of the supersymmetric Berends–Giele currents closely generalizes the standard

Berends–Giele currents Jm
P of [21]. When the fermions are set to zero, Jm

P can be identified

as the theta-independent component of Am
P (x, θ). Furthermore, the quartic-vertex interaction

{JX , JY , JZ} of [21] is automatically included in the cubic-vertex prescription K[X,Y ] [18].
5 The recursion for Berends–Giele currents Wα

P and Fmn
P based on (2.16) is actually closer

to the original string-inspired construction of multiparticle superfields where the key input stems

from the short-distance behaviour of integrated vertex operators [5].
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with superfields Wmα
P ,F

m|pq
P of higher mass dimension,

Wmα
P ≡ kmPW

α
P +

∑

XY =P

(

Wα
XA

m
Y −W

α
YA

m
X

)

(2.17)

F
m|pq
P ≡ kmP F

pq
P +

∑

XY=P

(

Fpq
X A

m
Y − F

pq
Y A

m
X

)

. (2.18)

One can show by induction that the Berends–Giele currents defined in (2.11) to (2.14)

obey the equations of motion

D(αA
P
β) = γm

αβA
P
m +

∑

XY =P

(

AX
α A

Y
β −A

Y
αA

X
β

)

(2.19)

DαA
P
m = kPmA

P
α + (γmWP )α +

∑

XY =P

(

AX
αA

Y
m −A

Y
αA

X
m

)

DαW
β
P =

1

4
(γmn)α

βFP
mn +

∑

XY =P

(

AX
αW

β
Y −A

Y
αW

β
X

)

DαF
mn
P = (W

[m
P γn])α +

∑

XY =P

(

AX
α F

mn
Y −AY

αF
mn
X

)

.

Apart from the terms along with the deconcatenation sum
∑

XY =P , these multiparticle

equations of motion have the same form as the linearized ones (2.7). They play a key role

for the BRST invariance of scattering amplitudes in string and field theory, see [22,23,3]

for examples at tree-level and [4,24,13,14] at loop-level. The need for such objects was also

observed in the worldline version of the pure spinor formalism [25,26].

In addition, one can also show by induction that the currents defined in (2.10) satisfy,

kPmA
m
P = 0 (2.20)

kPm(γmWP )α =
∑

XY =P

[

AX
m(γmWY )α −A

Y
m(γmWX)α

]

(2.21)

kPmF
mn
P =

∑

XY =P

[

2(WXγnWY ) +A
X
mF

mn
Y −AY

mF
mn
X

]

. (2.22)

As we will see, (2.20) implies that the generating series of Berends–Giele currents (2.10)

is in Lorentz gauge.

2.2.1. Symmetries of supersymmetric Berends–Giele currents

The currents KP (x, θ) defined above satisfy the following symmetry proven in appendix A,

KA�B = 0, ∀A,B 6= ∅ , (2.23)
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where the shuffle product � between the words A = a1a2 . . . a|A| and B = b1b2 . . . b|B| is

defined recursively by

∅�A = A�∅ = A, A�B ≡ a1(a2 . . . a|A|�B) + b1(b2 . . . b|B|�A) , (2.24)

and ∅ denotes the empty word.

As elaborated in a companion paper [18], setting the fermions to zero reduces the

θα-independent component of Am
P (x, θ) to the gluonic current Jm

P defined by Berends and

Giele [21], thus (2.23) implies the symmetry Jm
A�B = 0 derived in [27]. These facts explain

why KP (x, θ) are called supersymmetric Berends–Giele currents.

2.3. Generating series of Berends–Giele currents

The generating series of multiparticle Berends–Giele currents KP ∈ {A
P
α ,A

m
P ,Wα

P , . . .}

K ∈ {Aα,A
m,Wα, . . .} (2.25)

is an expansion in terms of Lie-algebra generators tij [6]

K ≡
∞
∑

p=1

∑

i1,i2,...,ip

Ki1i2...ipt
i1ti2 . . . tip (2.26)

=
∞
∑

p=1

∑

i1,i2,...,ip

1

p
Ki1i2...ip [t

i1 , [ti2 , . . . , [tip−1 , tip ]] . . .] .

The second line follows from the Berends–Giele symmetry (2.23) and guarantees that K

is Lie algebra valued, see [28] for a proof. The equations of motion (2.19) satisfied by the

Berends–Giele currents imply that K satisfies the non-linear field equations (2.5) [6]6.

Given that the Mandelstam invariant sP in (2.15) arises from half the d’Alembertian

�K ≡
[

∂m, [∂m,K]
]

, (2.27)

6 The notion of a generating series which solves the field equations and gives rise to tree

amplitudes is also central to the “perturbiner” formalism [29]. This approach has been used to

derive a generating series of Yang–Mills MHV amplitudes, see [30] for a supersymmetric extension.

However, the generic Yang–Mills amplitudes have never been obtained (see also [31]). We thank

Nima Arkani-Hamed for pointing out these references.
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the recursive prescriptions (2.11) to (2.13) for AP
α ,A

P
m,Wα

P can be reexpressed at the level

of the generating series as

�Aα =
[

Am, [∂m,Aα]
]

+
[

(γm
W)α,Am

]

(2.28)

�Am =
[

Ap, [∂
p,Am]

]

+
[

F
mp,Ap

]

+ γm
αβ{W

α,Wβ} (2.29)

�W
α =

[

∂m, [An, (γ
mγn

W)α]] . (2.30)

As detailed in the following subsection, these second-order differential equations can be

verified from (2.5) and (2.4), provided that Lorentz gauge is imposed,

[∂m,Am] = 0 . (2.31)

Similar manipulations lead to the generating-series representation of (2.16),

�W
α =

[

Am, [∂m,Wα]
]

+
[

A
m,Wα

m

]

+
1

2

[

Fmn, (γ
mn

W)α
]

(2.32)

�F
mn = [Ap, [∂

p,Fmn]] + [Ap,F
p|mn] + 2[Fmp,Fp

n] + 4{(W[mγn])α,W
α} , (2.33)

where Fp|mn denotes the generating series of (2.18). Equivalence of (2.32) and (2.30) follows

from the Dirac equation,

∇m(γm
W)α = 0 , (2.34)

i.e. the generating series of (2.21). In summary, the recursive prescriptions (2.11) to (2.13)

for multiparticle superfields yield a solution of the SYM equations in Lorentz gauge.

2.3.1. Deriving non-linear wave equations

We shall now derive the non-linear wave equations (2.28), (2.29), (2.32) and (2.33) for

the non-linear superfields K in Lorentz gauge. By Jacobi identities and repeated use of

∂m = ∇m + Am, we have

�K = [∇m + A
m, [∂m,K]] (2.35)

= [[∇m, ∂m],K] + [Am, [∂m,K]] + [Am, [∇m,K]] + [∇m, [∇m,K]] .

The first term in the second line vanishes in Lorentz gauge (2.31) by [∂m,∇m] = −[∂m,Am].

For any of the gauge-covariant choices K → {∇α,∇m,Wα,Fmn}, the last term of (2.35)

can be converted to quadratic expressions in the non-linear fields using (2.34) and

[∇m,Fmp] = γ
p
αβ{W

α,Wβ}

[∇m,Wmα] =
1

2
[Fmn, (γ

mn
W)α] (2.36)

[∇m,Fm|pq] = 2[Fpn,Fn
q] + 4{(W[mγn])α,W

α} .

Upon inserting (2.36) into (2.35), one can reproduce the wave equations (2.28), (2.29),

(2.32) and (2.33) from K→ {∇α,∇m,Wα,Fmn}.
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2.4. Generating series of gauge transformations

In general, the non-linear gauge transformations (2.6) are a symmetry of the non-linear

SYM equations of motion (2.5) for any Lie algebra-valued gauge parameter Ω with gener-

ating series,

Ω =
∞
∑

p=1

∑

i1,i2,...,ip

Ωi1i2...ipt
i1ti2 . . . tip , ΩA�B = 0 ∀A,B 6= ∅ . (2.37)

In the remainder of this work we will exploit the effects of different gauge parameters

ΩP . One particular choice to be discussed in the next subsection efficiently encodes the

multiparticle response to linearized gauge variations (2.8), possibly for several external

legs. But more importantly, the multiparticle gauge freedom parameterized by ΩP can be

exploited as a tool to:

1. Find a representation of multiparticle superfields which manifestly obey generalized

Lie symmetries, so-called BCJ representations discussed in section 3.

2. Considerably simplify the theta-expansions of multiparticle superfields as discussed in

section 4.

3. Find a multiparticle representation which combines both features above.

The benefits for scattering amplitudes are sketched in section 5, and the tree-level appli-

cations are deepened in [18].

2.4.1. Generating series of polarization shifts

Standard linearized gauge variations of the form δGA
i
m = kimGi with scalar parameter

Gi = ekix induce multiparticle transformations of the Berends–Giele currents by their

recursive construction, see (2.10) to (2.14). They effectively shift gluon polarizations eim

by kim and do not affect the transversality (ki · Ai) = 0, hence, they cannot alter the

property kmP A
P
m = 0 at any multiparticle level and preserve Lorentz gauge (2.31). The

resulting condition [∂m, δGAm] = 0 applied to δGAm = [∂m,G]− [Am,G] (see (2.6)) yields

a recursion for the multiparticle components of G,

�G =
[

Am, [∂m,G]
]

, GP = −
1

2sP

∑

XY=P

[

GX(kX · AY )− (X ↔ Y )
]

. (2.38)

This formula generalizes the transformations of multiparticle fields discussed in [32]. In that

reference the single-particle initial conditions for the recursion in (2.38) were specialized

12



to Gi = δi,1e
k1x; only the gluon polarization of particle i = 1 is shifted. Note that (2.38)

with several non-vanishing Gi in the initial conditions allows to address simultaneous shifts

of multiple polarization vectors emi by the corresponding kmi . One can show that (2.38)

is the supersymmetric generalization of the complicated-looking formula (2.24) of [27],

highlighting the benefits of the superspace approach to the Berends–Giele currents adopted

here.

3. Non-linear superfields and Berends–Giele currents in BCJ gauge

In a previous paper, supersymmetric Berends–Giele currents were constructed in a totally

different fashion [5]. Starting with a local representation of multiparticle superfields

KP ∈ {A
P
α , A

P
m,Wα

P , F
P
mn} , (3.1)

redefinitions were employed in order to enforce the symmetries of nested commutators

[[t1, t2], t3] in a Lie algebra such as K123 +K231 +K312 = 0. Their Berends–Giele currents

were constructed by adjoining propagators, i.e. inverse Mandelstam invariants (2.15), to

Lie symmetry-satisfying numerators, following an intuitive mapping to cubic graphs com-

patible with the ordering of the external legs. Despite their different construction, the

Berends–Giele currents KBCJ
P of [5] or those in the Lorentz gauge KL

P ≡ KP constructed

in the previous section give rise to identical tree-level amplitudes. As verified below up to

multiplicity five, these different currents are in fact related by a non-linear gauge trans-

formation and are therefore equivalent. As indicated by the superscript in KBCJ
P , the con-

stituents K12...p of the Berends–Giele currents in [5] have the symmetries suggested by the

BCJ duality between color and kinematics [7]. Accordingly, the currents KBCJ
P are said to

be in BCJ gauge.

3.1. Recursive definition of local superfields in Lorentz gauge

The definition of local superfields K̂[P,Q] in Lorentz gauge7 is given by

Â[P,Q]
α = −

1

2

[

ÂP
α (k

P · ÂQ) + ÂP
m(γmŴQ)α − (P ↔ Q)

]

(3.2)

Â[P,Q]
m = −

1

2

[

ÂP
m(kP · ÂQ) + ÂP

n F̂
Q
mn − (ŴPγmŴQ)− (P ↔ Q)

]

(3.3)

Ŵα
[P,Q] =

1

2
(kmP + kmQ )γαβ

m

[

Ân
P (γnŴQ)β − (P ↔ Q)

]

, (3.4)

7 Starting from rank four, the superfields denoted by {ÂP
α , Â

P
m, Ŵα

P , F̂mn
P } in this work and [5]

do not match.
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it amounts to picking up the numerator on top of various inverse sX in the recursions (2.11)

to (2.13) for Berends–Giele currents. We will often use a simplified notation for brackets

[P,Q] when one of P,Q is of single-particle type,

K̂12...p ≡ K̂[12...p−1,p] . (3.5)

In this topology, the field-strength8 appearing above is given by

F̂ 12...p
mn ≡ k12...pm Â12...p

n −k12...pn Â12...p
m +

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 ·kj) Â
12...j−1,{δ}
[n Â

j,{βj\δ}

m] , (3.6)

where βj ≡ {j + 1, j + 2, . . ., p} and P (βj) denotes its power set.

3.2. Review of generalized Lie symmetries for multiparticle superfields

The approach of [5] to Berends–Giele currents in BCJ gauge KBCJ
P is based on local su-

perfields K12...p satisfying all generalized Lie symmetries £k up to k = p,

£k ◦K12...p = 0, k = 2, . . . , p (3.7)

£k=2n+1: K12...n+1[n+2[...[2n−1[2n,2n+1]]...]] −K2n+1...n+2[n+1[...[3[21]]...]] = 0

£k=2n: K12...n[n+1[...[2n−2[2n−1,2n]]...]] +K2n...n+1[n[...[3[21]]...]] = 0 .

For example,

£2 ◦K12 = K12 +K21 = 0 , £3 ◦K123 = K123 +K231 +K321 = 0 (3.8)

£4 ◦K1234 = K1234 −K1243 +K3412 −K3421 = 0 ,

and so forth. These symmetries leave (p− 1)! independent permutations of K12...p and are

also obeyed by nested commutators [. . . [[t1, t2], t3], . . . , tp] and the color factors in

K12...p ←→ f12a3fa33a4fa44a5 . . . fappap+1 . (3.9)

Therefore the local superfields KP admit the following diagrammatic interpretation:

1

2 3 4

. . .

p

. . . ↔ K123...p

8 Field-strenghts F̂mn
[P,Q] of more general topologies beyond (3.5) such as F̂mn

[12,34] can be ad-

dressed along the lines of (2.16).
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3.3. Recursive definition of local superfields in BCJ gauge

The recursively defined superfields K̂12...p in (3.2) to (3.6) do not yet satisfy the Lie sym-

metries (3.7). However, this can be compensated by redefinitions K12...p = K̂12...p+ . . . via

superfields Ĥ12...p ≡ Ĥ[12...p−1,p] which amount to a non-linear gauge transformation of

their corresponding generating series. Starting from Ĥi = Ĥij = 0, the superfields Ĥ12...p

at multiplicity p enter through the following recursive system of equations [5]

K[12...p−1,p] ≡ K̂[12...p−1,p] −

p
∑

j=2

∑

δ∈P (βj)

(k1...j−1 · kj)
[

Ĥ1...j−1,{δ} K̂j,{βj\δ} − (1 . . . j − 1↔ j)
]

−







DαĤ[12...p−1,p] : K = Aα

km12...pĤ[12...p−1,p] : K = Am

0 : K = Wα

(3.10)

and will be introduced separately in the next subsection.

The redefinitions in (3.10) have been originally designed in a two-step procedure which

yields the expressions for Ĥ12...p in a constructive manner9 [5]. As a result, the superfields

K12...p defined by (3.10) as well as

F 12...p
mn ≡ k12...pm A12...p

n −k12...pn A12...p
m +

p
∑

j=2

∑

δ∈P (βj)

(k12...j−1 ·kj)A
12...j−1,{δ}
[n A

j,{βj\δ}

m] (3.11)

satisfy all the Lie symmetries £2,£3, . . . in (3.7) up to and including £p. For example,

since Ĥi = Ĥij = 0, the definitions in (3.10) yield

K1 = K̂1 , K12 = K̂12 , ∀ K ∈ {Aα, A
m,Wα, Fmn} , (3.12)

and the first non-trivial redefinition occurs at multiplicity three with

A123
α = Â[12,3]

α −DαĤ[12,3] , Am
123 = Âm

[12,3] − km123Ĥ[12,3] , Wα
123 = Ŵα

[12,3] . (3.13)

A rank-four sample of the redefinitions (3.10) is provided by

Am
1234 = Âm

[123,4] − (k123 · k4)Ĥ[12,3]A
m
4 − (k12 · k3)Ĥ[12,4]A

m
3

− (k1 · k2)
(

Ĥ[13,4]A
m
2 − Ĥ[23,4]A

m
1

)

− km1234Ĥ[123,4] . (3.14)

9 As discussed in [5], an intermediate step of the redefinition procedure gives rise to rede-

fined superfields A′m
12...p which determine the definition of H[12...p−1,p] via £p ◦ A′m

[12...p−1,p] ≡

p km
12...pH[12...p−1,p]. For this definition to work, the overall momentum km

12...p must factorize in the

sum dictated by £p ◦A
′m
[12...p−1,p], providing a strong consistency check of the setup. The relation

between H12...p and Ĥ12...p will be given in (3.15).
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3.4. Explicit form of the redefinitions Ĥ

One can show that expressions for Ĥ[12...p−1,p] can be conveniently summarized by

Ĥ[A,B] ≡ H[A,B] −
1

2

[

ĤA(kA ·AB)− (A↔ B)
]

(3.15)

H ′
A,B,C ≡ HA,B,C +

1

2

[

H[A,B](kAB ·AC) + cyclic(A,B,C)
]

, (3.16)

with the central building block

HA,B,C ≡ −
1

4
Am

AAn
BF

mn
C +

1

2
(WAγmWB)A

m
C + cyclic(A,B,C) . (3.17)

In particular, the redefinitions up to multiplicity five are captured by

H[12,3] =
1

3
H1,2,3

H[123,4] =
1

4

(

H ′
12,3,4 +H ′

34,1,2

)

H[12,34] =
1

4

(

− 2H ′
12,3,4 + 2H ′

34,1,2

)

(3.18)

H[1234,5] =
1

5

(

H ′
123,4,5 −H ′

543,2,1 +H ′
12,3,45

)

H[123,45] =
1

5

(

− 3H ′
123,4,5 − 2H ′

543,2,1 + 2H ′
12,3,45

)

.

The treatment and significance of the additional topologies H[12,34] and H[123,45] is ex-

plained around (3.30) and in appendix B. Higher-rank versions of HP are under investi-

gation, and it would be interesting to extend the simple expressions in (3.18) to arbitrary

multiplicity10. The expressions above are sufficient to identify the redefinitions up to and

including multiplicity five as originating from a non-linear gauge transformation.

It is worth mentioning a remarkable feature of HA,B,C in (3.17): Upgrading the polar-

ization vectors and spinors in the color-ordered SYM three-point amplitude at tree level,

ASYM(1, 2, 3) = −
1

2
em1 en2 f

mn
3 + (χ1γmχ2)e

m
3 + cyclic(1, 2, 3) . (3.19)

to superfields according to emi → Am
i (θ), χα

i → Wα
i (θ) and fmn

i = k
[m
i e

n]
i → Fmn

i (θ), the

amplitude (3.19) can be rewritten as

ASYM(1, 2, 3) = 2H1,2,3(θ = 0) . (3.20)

10 Noting that H[12...p−1,p] here corresponds to H12...p from [5], the expression of H[123,4] pre-

sented in (3.18) considerably simplifies the expression of H1234 given in the appendix C of [5].
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3.5. Supersymmetric Berends–Giele currents in BCJ gauge

In this section, we will justify the terminology of Lorentz and BCJ gauge for the represen-

tations KL
P and KBCJ

P of Berends–Giele currents. It will be verified up to multiplicity five

that they are indeed related by a non-linear gauge transformation, e.g.

A
BCJ
m = A

L
m − [∂m,H] + [AL

m,H] , (3.21)

translating into

Am,BCJ
P = Am,L

P − kmP HP +
∑

XY=P

(Am,L
X HY −A

m,L
Y HX) . (3.22)

Clearly, (3.21) is a special case of a non-linear gauge transformation (2.6) with Ω→ −H.

The generating series of gauge parameters

H ≡
∑

i1,i2,i3

Hi1i2i3t
i1ti2ti3 +

∑

i1,i2,i3,i4

Hi1i2i3i4t
i1ti2ti3ti4 + · · · (3.23)

is built from Berends–Giele currents HP of the superfields Ĥ[A,B]. As before, the Berends–

Giele symmetry HA�B = 0 implies Lie algebra-valuedness of the series (3.23) [28]. Of

course, the same H describes the transformation of the remaining series Aα, W
α, Fmn, see

(2.6). We will focus on the transformation between the currents Am,BCJ
P and Am,L

P of the

vector potential since the remaining superfields follow the same or simpler lines.

In the following discussion we will construct Berends–Giele currents up to rank four

using the mapping between planar binary trees and nested brackets [5], see appendix B

for rank five. By (3.12), the two gauge choices are identical at multiplicities one and two,

KBCJ
1 = KL

1 , KBCJ
12 = KL

12 , (3.24)

reflecting the vanishing of the simplest redefinitions,

Ĥ1 = Ĥ12 = 0 ⇒ H1 = H12 = 0 , (3.25)

and justifying the absence of single-particle and two-particle contributions in the series

(3.23).
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1 2 3 1 2 3

K[[1,2],3]

s12s123

K[1,[2,3]]

s23s123

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

K[[[1,2],3],4]

s12s123s1234

K[[1,[2,3]],4]

s23s123s1234

K[[1,2],[3,4]]

s12s34s1234

K[1,[2,[3,4]]]

s34s234s1234

K[1,[[2,3],4]]

s23s234s1234

Fig. 3 The planar binary trees used to define K123 and K1234.

3.5.1. Rank three

At multiplicity three, the two binary trees displayed in fig. 3 lead to

KBCJ
123 =

K[12,3]

s12s123
+

K[1,23]

s23s123
, KL

123 =
K̂[12,3]

s12s123
+

K̂[1,23]

s23s123
, (3.26)

with K̂[P,Q] = −K̂[Q,P ] from (3.2) to (3.4). Hence, the relation (3.11) between the local

superfields in the two gauges is sufficient to determine the corresponding relation between

their Berends–Giele currents. For example, Am
[12,3] = Âm

[12,3] − km123Ĥ[12,3] implies that

Am,BCJ
123 = Am,L

123 − km123H123, H123 =
Ĥ[12,3]

s12s123
+

Ĥ[1,23]

s23s123
, (3.27)

where (3.25) allows to restore a vanishing deconcatenation term 0 = Am,L
1 H23+A

m,L
12 H3−

Am,L
23 H1 −A

m,L
3 H12 and to verify (3.22) at P = 123.

3.5.2. Rank four

Similar calculations at multiplicity four lead to the relation

Am,BCJ
1234 = Am,L

1234 − km1234H1234 +A
m
1 H234 −A

m
4 H123 (3.28)

required by (3.22), where (3.25) identifies the last two terms on the right-hand side as

a perfect deconcatenation
∑

XY=1234(A
m,L
X HY − A

m,L
Y HX). The Berends–Giele currents
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comprise the five binary trees depicted in fig. 3,

Am,BCJ
1234 =

1

s1234

(Am
[123,4]

s12s123
+

Am
[321,4]

s23s123
+

Am
[12,34]

s12s34
+

Am
[342,1]

s34s234
+

Am
[324,1]

s23s234

)

Am,L
1234 =

1

s1234

( Âm
[123,4]

s12s123
+

Âm
[321,4]

s23s123
+

Âm
[12,34]

s12s34
+

Âm
[342,1]

s34s234
+

Âm
[324,1]

s23s234

)

(3.29)

H1234 =
1

s1234

( Ĥ[123,4]

s12s123
+

Ĥ[321,4]

s23s123
+

Ĥ[12,34]

s12s34
+

Ĥ[342,1]

s34s234
+

Ĥ[324,1]

s23s234

)

,

where four of the five numerators in (3.29) belong to the topology of (3.14). However, the

third term representing the middle diagram in fig. 3 follows the separate conversion rule

Am
[12,34] = Âm

[12,34] − km1234Ĥ[12,34] (3.30)

+ (k1 · k2)
(

Ĥ[13,4]A
m
2 − Ĥ[23,4]A

m
1

)

+ (k3 · k4)
(

Ĥ[12,4]A
m
3 − Ĥ[12,3]A

m
4

)

between Lorentz gauge and BCJ gauge. As a defining property of BCJ gauge, the left-hand

side can be expressed in terms of the basic topology (3.10) via Am
[12,34] = Am

1234−A
m
1243. The

new topology Ĥ[12,34] of redefining fields (see [32]) is determined by (3.30) whose solution

can be found in (3.18).

Upon insertion into (3.29), contributions of the form Ĥ[12,3]A
m
4 in (3.14) and (3.30)

conspire to the desired deconcatenation term in (3.28), verifying the mediation of a non-

linear gauge transformation between Am,BCJ
1234 and Am,L

1234. The analogous analysis of the

gauge transformation at multiplicity five is relegated to appendix B.

4. Theta-expansions in Harnad–Shnider gauge

In the last section we have identified a particular gauge transformation H which relates

the Berends–Giele currents in the BCJ gauge to their counterparts in the Lorentz gauge.

Similarly, we will now construct another gauge transformation

L ≡
∑

i1,i2

Li1i2t
i1ti2 +

∑

i1,i2,i3

Li1i2i3t
i1ti2ti3 + · · · (4.1)

whose expansion starts at multiplicity two and is designed to simplify the theta-expansions

of the multiparticle superfields.
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4.1. Generating series of Harnad–Shnider gauge variations

A convenient gauge choice to expand the superfields of ten-dimensional SYM in θα is the

Harnad–Shnider (HS) gauge [15],

θαAHS
α = 0 . (4.2)

At the linearized level, the gauge θαAi
α = 0 has been used in [16] to obtain the theta-

expansions of the single-particle superfields to arbitrary order. However, the recursive

definition (2.11) of multiparticle Berends–Giele currents AP
α in Lorentz gauge does not

preserve linearized HS gauge, e.g.

θαAi
α = 0 ⇒ θαA12

α =
1

2s12

[

A2
m(θγmW1)− (1↔ 2)

]

6= 0 . (4.3)

Still, there is a non-linear gauge transformation L which brings the currents from Lorentz

gauge into HS gauge via

A
HS
α = A

L
α − [Dα,L] + [AL

α,L] . (4.4)

It can determined recursively by contracting with θα:

[D,L] = θαAL
α + [θαAL

α,L] , (4.5)

where the Euler operator

D ≡ θαDα = θα
∂

∂θα
(4.6)

weights the kth order in θ by a factor of k. At the level of multiparticle components in

(4.1), this translates into

DLP = θαAP
α +

∑

XY=P

(

θαAX
α LY − θαAY

αLX

)

, (4.7)

where the Berends–Giele currents LX ,LY on the right hand side have lower multiplicity

than LP on the left hand side. Hence, (4.7) is a recursion w.r.t. multiplicity in its Lie-

series expansion (4.1). The currents AP
α are understood to follow the Lorentz-gauge setup

in (2.10) to (2.14). Using θαAi
α = Li = 0 at the linear level, we have for instance

DL12 = θαA12
α , DL123 = θαA123

α , DL1234 = θαA1234
α + θαA12

α L34 − θαA34
α L12 . (4.8)

By imposing L(θ = 0) = 0, we arrive at explicit theta-expansions such as

L12 =
1

2s12

(

(θγmχ1)e
m
2 +

1

8
(θγmnpθ)e

m
1 f

np
2

+
1

12
(θγmnpθ)(θγ

mχ1)k
n
12e

p
2 − (1↔ 2) + · · ·

)

ek12x , (4.9)

with terms of order θ≥4 in the ellipsis and analogous expressions for L12...p at p ≥ 3.
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4.2. Multiparticle theta-expansions in Harnad–Shnider gauge

The theta-expansion of non-linear fields in HS gauge (4.2) can be elegantly captured by

means of higher mass dimension superfields [6],

W
m1...mkα ≡ [∇m1 ,Wm2...mkα] , F

m1...mk|pq ≡ [∇m1 ,Fm2...mk|pq] , (4.10)

subject to non-linear gauge transformations [6]

δΩW
m1...mkα =

[

Ω,Wm1...mkα
]

, δΩF
m1...mk|pq =

[

Ω,Fm1...mk|pq
]

. (4.11)

In the subsequent, we assume that the superfields have been brought to HS gauge via

(2.6) through the transformation Ω→ L constructed from (4.7). For ease of notation, the

accompanying HS superscripts as in (4.4) will henceforth be suppressed. Contracting the

non-linear equations of motion (2.5) with θα yields [15]

(

D + 1
)

Aβ = (θγm)βAm , DAm = (θγmW) (4.12)

DWβ =
1

4
(θγmn)βFmn , DFmn = −(W[mγn]θ)

by virtue of HS gauge. This can be used to reconstruct the entire theta-expansion of any

superfield from their zero’th orders K(θ = 0) [15],

[Aα]k =
1

k + 1
(θγm)α[Am]k−1 , [Am]k =

1

k
(θγm[W]k−1) (4.13)

[Wα]k =
1

4k
(θγmn)α[Fmn]k−1 , [Fmn]k = −

1

k
([W[m]k−1γ

n]θ) ,

where the notation [. . .]k instructs to only keep terms of order (θ)k of the enclosed super-

fields. The analogous expressions for superfields at higher mass dimensions are

[Wα
m]k =

1

k

{

1

4
(θγpq)α[Fm|pq]k−1 − (θγm)β

k−1
∑

l=0

{[Wβ]l, [W
α]k−l−1}

}

[Fm|pq]k = −
1

k

{

([Wm[p]k−1γ
q]θ) + (θγm)α

k−1
∑

l=0

[[Wα]l, [F
pq]k−l−1]

}

(4.14)

[Wα
mn]k =

1

k

{

1

4
(θγpq)α[Fmn|pq]k−1 + (θγm)β

k−1
∑

l=0

{[Wβ]l, [W
α
n]k−l−1}

+ (θγn)β

k−1
∑

l=0

(

{[Wβ
m]l, [W

α]k−l−1}+ {[W
β]l, [W

α
m]k−l−1}

)

}

,

see [6] for the underlying equations of motion and (C.8) for generalizations to higher mass

dimension.
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4.2.1. The component wavefunctions

The θ-independent terms [K]0 initiate the above recursions in the order of θ, and their

multiparticle components [KP ]0 at lowest mass dimensions

[Am
P ]0 ≡ emP ekP x , [Wα

P ]0 ≡ X
α
P ekP x (4.15)

are shown in [18] to supersymmetrize the Berends–Giele currents in [21], e.g.

s12e
m
12 = em2 (k2 · e1)− em1 (k1 · e2) +

1

2
(km1 − km2 )(e1 · e2) + (χ1γ

mχ2) (4.16)

s12X
α
12 =

1

2
km12γ

αβ
m

[

en1 (γnχ2)β − en2 (γnχ1)β
]

.

Note that Lorentz gauge for the superfields Am
P propagates to the currents emP ,

(kP · eP ) = (kP · [AP ]0) = 0 , (4.17)

since the transformation towards HS gauge in (4.5) is chosen with L(θ = 0) = 0.

At higher mass dimensions, the wavefunctions in

[Wm1...mkα
P ]0 ≡ X

m1...mkα
P ekP x , [F

m1...mk|pq
P ]0 ≡ f

m1...mk|pq
P ekP x (4.18)

with k = 0, 1, 2, . . . inherit the recursive expressions from (4.10) such that

fmn
P ≡ kmP enP − knP e

m
P −

∑

XY=P

(emXenY − enXemY ) (4.19)

Xm1...mkα
P ≡ km1

P X
m2...mk|pq
P −

∑

XY =P

(em1

X X
m2...mkα
Y −Xm2...mkα

X em1

Y ) , k = 1, 2, . . .

f
m1...mk|pq
P ≡ km1

P f
m2...mk|pq
P −

∑

XY=P

(em1

X f
m2...mk|pq
Y − f

m2...mk|pq
X em1

Y ) , k = 1, 2, . . . .

4.2.2. The theta-expansion

Using the notation KP (x, θ) ≡ KP (θ)e
kP ·x one can show that the recursions (4.13) and

(4.14) lead to the following multiparticle theta-expansions,

AP
α (θ) =

1

2
(θγm)αe

m
P +

1

3
(θγm)α(θγ

mXP )−
1

32
(θγm)α(θγmnpθ)fPnp (4.20)

+
1

60
(θγm)α(θγ

mnpθ)(XP
n γpθ) +

1

1152
(θγm)α(θγ

mnpθ)(θγpqrθ)f
n|qr
P

+
∑

XY =P

[AX,Y
α ]5 + . . .
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Am
P (θ) = emP + (θγmXP )−

1

8
(θγmpqθ)fpqP +

1

12
(θγmnpθ)(X n

P γ
pθ)

+
1

192
(θγm

nrθ)(θγ
r
pqθ)f

n|pq
P −

1

480
(θγm

nrθ)(θγ
r
pqθ)(X

np
P γqθ)

+
∑

XY =P

(

[Am
X,Y ]4 + [Am

X,Y ]5

)

+ . . .

Wα
P (θ) = X

α
P +

1

4
(θγmn)αfPmn −

1

4
(θγmn)

α(Xm
P γnθ)−

1

48
(θγ q

m )α(θγqnpθ)f
m|np
P

+
1

96
(θγ q

m )α(θγqnpθ)(X
mn
P γpθ)−

1

1920
(θγ r

m )α(θγ s
nr θ)(θγspqθ)f

mn|pq
P

+
∑

XY =P

(

[Wα
X,Y ]3 + [Wα

X,Y ]4 + [Wα
X,Y ]5

)

+ . . .

Fmn
P (θ) = fmn

P − (X
[m
P γn]θ) +

1

8
(θγ [m

pq θ)f
n]|pq
P −

1

12
(θγ [m

pq θ)(X
n]p
P γqθ)

−
1

192
(θγ [m

ps θ)f
n]p|qr
P (θγs

qrθ) +
1

480
(θγ

[m
ps
θ)(X

n]pq
P γrθ)(θγs

qrθ)

+
∑

XY =P

(

[Fmn
X,Y ]2 + [Fmn

X,Y ]3 + [Fmn
X,Y ]4 + [Fmn

X,Y ]5

)

+
∑

XY Z

[Fmn
X,Y,Z ]5 + . . .

with terms of order θ≥6 in the ellipsis. The non-linearities of the form
∑

XY=P [KX,Y ]l can

be traced back to the quadratic expressions in (4.14), e.g.

[AX,Y
α ]5 =

1

144
(θγm)α(θγ

mnpθ)(XXγnθ)(X
Y γpθ) (4.21)

[Am
X,Y ]4 =

1

24
(θγm

npθ)(X
Xγnθ)(X Y γpθ)

[Wα
X,Y ]3 = −

1

6
(θγmn)

α(XXγmθ)(XY γ
nθ)

[Fmn
X,Y ]2 = −(XXγ[mθ)(XY γ

n]θ) ,

and further instances as to make the complete orders θ≤5 available are spelt out in appendix

C. It is easy to see that these non-linear terms vanish in the single-particle case, and one

recovers the linearized expansions of [16].

Analogous theta-expansions for superfields (4.10) of higher mass dimensions start with

Wmα
P (x, θ) = ekP x

(

Xmα
P +

1

4
(θγnp)

αf
m|np
P +

∑

XY =P

[

(XXγmθ)Xα
Y − (X ↔ Y )

]

+ . . .
)

F
m|pq
P (x, θ) = ekP x

(

f
m|pq
P − (X

m[p
P γq]θ) +

∑

XY =P

[

(XXγmθ)fpqY − (X ↔ Y )
]

+ . . .
)

,(4.22)

where the lowest two orders ∼ θ2, θ3 in the ellipsis along with generalizations to higher

mass dimensions are spelt out in appendix C.
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4.3. Combining HS gauge with BCJ gauge

The steps in (4.4) and (4.5) towards HS gauge can be literally repeated when starting with

BCJ gauge:

A
BCJ−HS
α = A

BCJ
α − [Dα,L

′] + [ABCJ
α ,L′] (4.23)

[D,L′] = θαABCJ
α + [θαABCJ

α ,L′] .

The multiparticle expansion of the gauge parameter L′ can be constructed along the lines

of (4.7), where we again set L′(θ = 0) = 0. The resulting gauge combines the benefits of a

simplified theta-expansion due to

θαABCJ−HS
α = 0 (4.24)

with a manifestation of the BCJ duality in cubic-diagram numerators subject to Lie sym-

metries. The arguments of subsection 4.2 give rise to theta-expansions completely analo-

gous to HS gauge, see (4.20) and appendix C. The only difference is a redefinition of the

component Berends–Giele currents according to

emP → A
m,BCJ
P (θ = 0) = emP +

∑

XY =P

(emXhY − emY hX)− kmP hP

Xα
P →W

α,BCJ
P (θ = 0) = Xα

P +
∑

XY =P

(Xα
XhY − X

α
Y hX) , (4.25)

where the multiparticle gauge parameters contribute through their θ = 0 order,

hP ≡ HP (θ = 0) . (4.26)

The redefinitions in (4.25) propagate to their counterparts at higher mass dimension via

(4.19). Since BCJ gauge already violates the Lorentz-gauge condition at the three-particle

level, e.g. k123m A
m,BCJ
123 = −2s123H123, transversality (4.17) of the modified current emP →

Am,BCJ
P (θ = 0) will no longer hold.

Similarly, the theta-expansions of higher-mass dimension Berends–Giele currents given

in (4.22) and appendix C preserve their structure after the replacements in (4.25). As

mentioned earlier, the BCJ gauge appears naturally in the context of string amplitudes

due to the redefinitions induced by the double poles in OPE contractions. Hence, BCJ-HS

gauge is particularly convenient for an accelerated approach to component amplitudes of

the pure spinor superstring.
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5. Application of Berends–Giele currents in Harnad–Shnider gauge

In this subsection, we sketch applications of multiparticle superfields in HS gauge to scat-

tering amplitudes in pure spinor superspace, relevant to both string and field theories.

The identification of gluon and gluino components in supersymmetric kinematic factors is

shown to simplify enormously in HS gauge, in particular for large numbers of external legs.

5.1. Pure spinor superspace

Pure spinor superspace is obtained by supplementing ten-dimensional superspace {xm, θα}

with a bosonic Weyl spinor λα subject to the pure spinor constraint

(λγmλ) = 0 . (5.1)

Physical components in pure spinor superspace reside at the order λ3θ5 [2],

〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 2880 , (5.2)

and group theory fixes any other tensor structure in terms of the above scalar [33]. The

prescription (5.2) guarantees that kinematic factors S(θ, λ) in the cohomology of the BRST

operator

Q ≡ λαDα (5.3)

are supersymmetric and gauge invariant [2]. On these grounds, various scattering am-

plitudes in ten-dimensional SYM have been proposed by constructing BRST-invariant

expressions with the required propagator structure [22,23,13,14]. Also, cohomology argu-

ments have given constructive input to the computation of superstring amplitudes [3,4,24].

Up to now, in order to extract the kinematic components from scattering amplitudes

in pure spinor superspace, the theta-expansions of the linearized superfields are inserted

into the recursive definitions of multiparticle superfields, leaving a huge number of tensor

contractions of λ3θ5 for a computer-based evaluation [17]. Many kinematic factors obtained

from this procedure have been gathered on the website [34]. HS gauge, on the other hand,

drastically reduces the number of different λ3θ5 contractions. This makes kinematic factors

with an arbitrary number of external legs tractable for manual evaluation.
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5.2. Applications at tree level

Tree-level kinematics of both the open superstring [3] and ten-dimensional SYM [23] can

be expressed in terms of the building block

〈MAMBMC〉 , MA ≡ λαAA
α . (5.4)

BRST-invariant combinations of the building block (5.4) descend from a generating series

of color-dressed tree-level amplitudesMSYM(1, 2, . . . , n) [6],

1

3
Tr〈VVV〉 =

∞
∑

n=3

(n− 2)
∑

i1<i2<...<in

MSYM(i1, i2, . . . , in) , V ≡ λα
Aα . (5.5)

Since (5.5) is also invariant under non-linear gauge transformations, the components of

(5.4) can be equivalently evaluated in HS gauge for arbitrary multiplicity,

〈MHS
A MHS

B MHS
C 〉 =

1

2
emA enBf

C
mn + (XAγmXB)e

m
C + cyc(A,B,C) . (5.6)

The component currents emA ,Xα
A and fmn

A defined in (4.15) and (4.18) can be obtained by

truncating the superspace recursion (2.10) to (2.14) to θ = 0. By the theta-expansions in

(4.20), this component extraction involves no tensor structures ∼ λ3θ5 other than

〈(λγmθ)(λγnθ)(λγrθ)(θγ
pqrθ)〉 = 32(δmpδnq − δmqδnp) (5.7)

〈(λγmθ)(λγnθ)(λγpθ)(γnθ)α(γpθ)β〉 = −18γ
m
αβ ,

and elegantly settles the building blocks for components of tree-level amplitudes. In a

companion paper [18], it will be demonstrated that (5.6) reproduces the Berends–Giele

formula for bosonic tree amplitudes [21] along with its supersymmetric completion from

the pure spinor superspace formula [23].

The generating series (5.5) found appearance in [35] as a superspace action for ten-

dimensional SYM. The component evaluation in (5.6) is compatible with the component

action of SYM in the sense that

1

3
Tr〈VVV〉 = Tr

(1

4
FmnF

mn + (Wγm∇mW)
)
∣

∣

∣

θ=0
. (5.8)

The fermionic coupling vanishes on-shell by the Dirac equation (2.34) and a total derivative

∂m has been discarded to relate

(∂mAn)F
mn = ∂m(AnF

mn)− An

(

[Am,Fmn] + γn
αβ{W

α,Wβ}
)

(5.9)

through the expression for ∂mFmn in (2.36).
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5.3. Applications at loop level

In the same way as the building block (5.4) is specific to tree amplitudes, any loop or-

der singles out specific scalar combinations of multiparticle superfields which are BRST

invariant at the linearized level, e.g.

MA(λγmWB)(λγnWC)F
mn
D ↔ 1− loop [36, 4, 5] (5.10)

(λγmnpqrλ)(λγsWA)F
mn
B Fpq

C F
rs
D ↔ 2− loop [37, 14]

(λγmW
n
A)(λγnW

p
B)(λγpW

m
C ) ↔ 3− loop [6] .

They describe the low-energy limit in string theory and are motivated by the zero-mode

saturation rules of the pure spinor formalism [2,36]. Moreover, they are believed to represent

box, double-box and Mercedes-star diagrams in SYM amplitudes to arbitrary multiplicity,

see [13,14]. Again, HS gauge as well as the theta-expansions in (4.20), (4.22) and appendix C

greatly simplify their component evaluation via (5.2).

In contrast to tree-level, loop amplitudes in SYM and superstring theory addition-

ally involve tensorial building blocks contracting the loop momenta where HS gauge yields

comparable benefits in the component evaluation. One-loop kinematic factors generalizing

(5.10) to arbitrary tensor rank have been constructed in [32], and some of them have been

defined in terms of the superfields H12...p from the transformation to BCJ gauge. As will

be described elsewhere, kinematic factors with explicit reference to gauge parameters will

require extra care when adapted to different non-linear gauges. At any rate, HS gauge for

Berends–Giele currents sets new scales for the computational effort in component evalua-

tions.
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Appendix A. Proof of the Berends–Giele symmetries

In this appendix, the symmetry property (2.23) of Berends–Giele currents will be proven

from their recursive definition (2.10). The idea is to regard the bracketing operation in

sABKA�B =
∑

XY =A�B

K[X,Y ] (A.1)

as a linear and antisymmetric map B acting on a tensor product of words X ⊗ Y ,

B : X ⊗ Y → K[X,Y ] , B(X ⊗ Y ) = −B(Y ⊗X) . (A.2)

We will then show by induction that

sABKA�B =
∑

XY =A�B

B(X ⊗ Y ) = 0 , (A.3)

starting with 0 = K1�2 = K12 +K21 by antisymmetry of the bracket.

As pointed out below (2.10), the convention for deconcatenation sums
∑

XY =P is to

exclude the empty words X = ∅ and Y = ∅. Hence, they have to be subtracted in relating

(A.3) to the deconcatenation coproduct for (possibly empty) words P ,

∆(P ) ≡ 1⊗ P + P ⊗ 1 +
∑

XY =P

X ⊗ Y . (A.4)

This coproduct is known to be compatible with the shuffle product in the sense that

∆(A�B) = ∆(A)�∆(B) (A.5)

= 1⊗ (A�B) + (A�B)⊗ 1 + A⊗B +B ⊗ A+
∑

PQ=A

∑

RS=B

(P�R)⊗ (Q�S)

+
∑

RS=B

(

R ⊗ (A�S) + (A�R)⊗ S
)

+
∑

PQ=A

(

P ⊗ (Q�B) + (P�B)⊗Q
)

,

see e.g. section 1.5 in [11]. The tensor product in (A.3) can then be written as

∑

XY=A�B

X ⊗ Y = A⊗B +B ⊗ A+
∑

PQ=A

∑

RS=B

(P�R)⊗ (Q�S) (A.6)

+
∑

RS=B

(

R⊗ (A�S) + (A�R)⊗ S
)

+
∑

PQ=A

(

P ⊗ (Q�B) + (P�B)⊗Q
)

.

In turns out that the right hand side is annihilated by B in (A.2) since the first two terms

A⊗B+B⊗A drop out by antisymmetry of B and the remaining terms are mapped to the
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1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

K[[[[1,2],3],4],5]

s12s123s1234s12345

K[[[1,2],[3,4]],5]

s12s34s1234s12345

K[[1,[[2,3],4]],5]

s23s234s1234s12345

K[[1,[2,3]],[4,5]]

s23s123s45s12345

K[[1,2],[3,[4,5]]]

s12s345s45s12345

K[1,[[2,[3,4]],5]]

s34s234s2345s12345

K[1,[2,[[3,4],5]]]

s34s345s2345s12345

K[[[1,[2,3]],4],5]

s23s123s1234s12345

K[[[1,2],3],[4,5]]

s12s123s45s12345

K[[1,[2,[3,4]]],5]

s34s234s1234s12345

K[1,[2,[3,[4,5]]]]

s45s345s2345s12345

K[1,[[2,3],[4,5]]]

s23s2345s45s12345

K[1,[[[2,3],4],5]]

s23s234s2345s12345

K[[1,2],[[3,4],5]]

s12s34s345s12345

Fig. 4 The fourteen binary trees used in the definition of K12345.

schematic form K[X�Y,Z] under B with all of X, Y, Z 6= ∅. By the bracketing rules (2.11)

to (2.13), the latter yields antisymmetric combinations of KX�Y and KZ with X�Y of

multiplicity smaller than A�B. Hence, we can set KX�Y = 0 by the inductive assumption

which concludes the proof of (A.3).

The proof can be easily extended to Fmn
P and higher-mass dimension superfields with

recursive definition in (2.14) and (4.10): The deconcatenation sums along with the non-

linearities can be treated using the same arguments as above, and the linear contributions

from superfields of the same multiplicity inherit the shuffle property of lower-mass dimen-

sion superfields.

Appendix B. BCJ gauge versus Lorentz gauge at rank five

In this appendix, we verify that the supersymmetric Berends–Giele currents at rank five

in BCJ gauge and Lorentz gauge are related by a non-linear gauge transformation as in

(3.22). Straightforward but tedious calculations lead to the following translation between

local superfields in BCJ and Lorentz gauge,

Am
[1234,5] = Âm

[1234,5] − km12345Ĥ[1234,5] (B.1)

− (k1 · k2)(Ĥ[134,5]A
m
2 + Ĥ[14,5]A

m
23 + Ĥ[13,5]A

m
24 + Ĥ[13,4]A

m
25 − (1↔ 2))
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− (k12 · k3)(Ĥ[124,5]A
m
3 + Ĥ[12,5]A

m
34 + Ĥ[12,4]A

m
35 − Ĥ[34,5]A

m
12)

− (k123 · k4)(Ĥ[123,5]A
m
4 + Ĥ[12,3]A

m
45)

− (k1234 · k5)(Ĥ[123,4]A
m
5 )

Am
[123,45] = Âm

[123,45] − km12345Ĥ[123,45]

− (k1 · k2)(Ĥ[13,45]A
m
2 + Ĥ[45,2]A

m
13 − (1↔ 2)) (B.2)

− (k12 · k3)(Ĥ[12,45]A
m
3 + Ĥ[45,3]A

m
12)

− (k123 · k45)(Ĥ[12,3]A
m
45)

− (k4 · k5)(Ĥ[123,4]A
m
5 − Ĥ[123,5]A

m
4 )

Am
[[12,34],5] = Âm

[[12,34],5] − km12345Ĥ[[12,34],5] (B.3)

− (k1 · k2)(Ĥ[34,2]A
m
15 − Ĥ[34,1]A

m
25 + Ĥ[342,5]A

m
1 − Ĥ[341,5]A

m
2 )

− (k3 · k4)(Ĥ[12,3]A
m
45 − Ĥ[12,4]A

m
35 + Ĥ[123,5]A

m
4 − Ĥ[124,5]A

m
3 )

− (k12 · k34)(Ĥ[12,5]A
m
34 − Ĥ[34,5]A

m
12)

− (k1234 · k5)(Ĥ[12,34]A
m
5 ) ,

where the second and third equations can be regarded as the definitions of Ĥ[123,45] and

Ĥ[[12,34],5]. The solution of the former is given in (3.18) and (3.15) while the latter is

Ĥ[[12,34],5] = H[1234,5] −H[1243,5] −
1

2
H[12,34](k1234 ·A5) . (B.4)

Plugging the above equations into the generic definition of the rank-five Berends–Giele

current as displayed in fig. 4, namely,

s12345K12345 =
K[1,4532]

s2345s345s45
−

K[1,3452]

s2345s345s34
−

K[1,3425]

s2345s234s34
+

K[1,2345]

s2345s234s23
−

K[12,453]

s345s12s45

+
K[12,345]

s345s12s34
+

K[45,231]

s123s23s45
−

K[45,123]

s123s12s45
+

K[3421,5]

s1234s234s34
−

K[2341,5]

s1234s234s23

−
K[2314,5]

s1234s123s23
+

K[1234,5]

s1234s123s12
+

K[1,[23,45]]

s2345s23s45
−

K[5,[12,34]]

s1234s12s34
, (B.5)

leads to

Am,BCJ
12345 = Am,L

12345 − km12345H12345 +A
m
1 H2345 +A

m
12H345 −A

m
5 H1234 −A

m
45H123 . (B.6)

By the vanishing of Hi and Hij , this reproduces the non-linear gauge transformation (3.22)

at multiplicity five.
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Appendix C. Theta-expansions in Harnad–Shnider gauge

C.1. Theta-expansions of Aα
P ,A

m
P ,Wα

P ,F
mn
P

The component prescription (5.2) in pure spinor superspace requires the theta-expansion of

the enclosed superfields up to the order θ5. The expansions up to θ5 of the Berends–Giele

currents Aα
P ,A

m
P ,Wα

P ,F
mn
P in HS gauge can be found in (4.20) up to deconcatenation

terms. These are now spelt out:

[Am
X,Y ]5 =

1

320
(θγmnrθ)(θγrpqθ)(XXγnθ)f

pq
Y − (X ↔ Y ) (C.1)

[Wα
X,Y ]4 = −

1

64
(θγ q

m )α(θγqnpθ)(XXγmθ)fnpY − (X ↔ Y ) (C.2)

[Wα
X,Y ]5 =

1

120
(θγ q

m )α(θγnpqθ)(XXγmθ)(X n
Y γ

pθ)

+
1

240
(θγ q

n )α(θγmpqθ)(XXγmθ)(X n
Y γ

pθ)

−
1

1280
(θγrs)α(θγmnrθ)(θγpqsθ)f

mn
X f

pq
Y − (X ↔ Y ) (C.3)

[Fmn
X,Y ]3 =

1

8

[

(θγ [m
pq θ)(XXγn]θ)fpqY − (X ↔ Y )

]

(C.4)

[Fmn
X,Y ]4 =−

1

12
(θγ [m

pq θ)(XXγn]θ)(X p
Y γ

qθ)

−
1

24
(θγpq[mθ)(XXγpθ)(X

n]
Y γqθ)

−
1

128
(θγ

[m
pq
θ)(θγ

n]
rs
θ)fpqX frsY − (X ↔ Y ) (C.5)

[Fmn
X,Y ]5 =−

1

192
(θγ[m

psθ)(XXγn]θ)f
p|qr
Y (θγs

qrθ)

−
1

320
(XXγpθ)(θγ [m

ps θ)f
n]|qr
Y (θγs

qrθ)

−
1

320
(θγ [m

ps θ)(X
n]
X γpθ)fqrY (θγs

qrθ)

+
1

96
(θγ

[m
pq
θ)(θγ

n]
rs
θ)(X p

Xγqθ)frsY − (X ↔ Y )

[Fmn
X,Y,Z ]5 =−

1

24
(θγ [m

pq θ)(XXγn]θ)(XY γ
pθ)(XZγ

qθ) + (X ↔ Z) (C.6)

C.2. Theta-expansions of the simplest higher mass dimension superfields

For the simplest superfields of higher mass dimension, the theta-expansion in HS gauge

that starts as in (4.22) and has the following second and third order:

[Wmα
P ]2 = −

1

4
(θγnp)

α(Xmn
P γpθ) +

∑

XY =P

[1

4
(θγnp)

α(XXγmθ)fnpY
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−
1

8
(θγm

npθ)X
α
Xf

np
Y − (X ↔ Y )

]

[Wmα
P ]3 = −

1

48
(θγ r

n )α(θγrpqθ)f
mn|pq
P +

∑

XY =P

[

−
1

4
(θγnp)

α(XXγmθ)(X n
Y γ

pθ)

−
1

6
(θγnp)

α(XXγnθ)(Xm
Y γpθ)−

1

12
(θγm

npθ)(X
n
Xγpθ)Xα

Y

−
1

32
(θγnp)

α(θγm
qrθ)f

np
X f

qr
Y − (X ↔ Y )

]

[F
m|pq
P ]2 = −

1

8
f
m[p

|nr(θγ
q]nrθ)−

∑

XY =P

[

(XXγmθ)(X
[p
Y γq]θ) (C.7)

+ (Xm
X γ[pθ)(XY γ

q]θ) +
1

8
(θγm

nrθ)f
pq
X fnrY − (X ↔ Y )

]

[F
m|pq
P ]3 =

1

12
(X

m[p
B n

γrθ)(θγ
q]nrθ) +

∑

XY =P

[1

8
(XXγmθ)(θγ

[p
nr
θ)fq]|nr

+
1

8
(θγ [p

nr θ)(XXγq]θ)f
m|nr
Y −

1

8
(Xm

X γ[pθ)(θγ
q]
nr
θ)fnrY

+
1

8
(θγm

nrθ)(X
[p
X γq]θ)fnrY −

1

12
(θγm

nrθ)(X
n
Xγrθ)fpqY − (X ↔ Y )

]

+
∑

XY Z=P

[

(XXγ[pθ)(XY γ
q]θ)(XZγ

mθ) + (X ↔ Z)
]

.

C.3. Theta-expansions of generic higher mass dimension superfields

For superfields of higher mass dimension as defined in (4.10), the theta-expansion in HS

gauge is governed by the recursion

[WNα]k =
1

k

{

1

4
(θγpq)

α[FN|pq]k−1 +
∑

M∈P (N)
M 6=0

k−1
∑

l=0

[

([W]lγθ)
M , [W(N\M)α]k−l−1

]

}

[FN|pq]k = −
1

k

{

([WN [p]k−1γ
q]θ)−

∑

M∈P (N)
M 6=0

k−1
∑

l=0

[

([W]lγθ)
M , [F(N\M)|pq]k−l−1

]

}

.(C.8)

We are using multi-index notation N ≡ n1n2 . . . nk where the power set P (N) consists of

the 2k ordered subsets, and (Wγ)N ≡ (Wn1...nk−1γnk). Their resulting theta-expansion to

subleading order is given by

WNα
P (θ) = XNα

P +
1

4
(θγpq)

αf
N|pq
P

+
∑

XY =P

∑

M∈P (N)
M 6=0

[

(XXγθ)MX
(N\M)α
Y − (XY γθ)

MX
(N\M)α
X

]

+ . . .

F
N|pq
P (θ) = f

N|pq
P − (XN [pγq]θ) (C.9)

+
∑

XY =P

∑

M∈P (N)
M 6=0

[

(XXγθ)M f
(N\M)|pq
Y − (XY γθ)

M f
(N\M)|pq
X

]

+ . . . .
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