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The setting of Mössbauer nuclei embedded in thin-film cavities has facilitated an aspiring plat-
form for x-ray quantum optics as shown in several recent experiments. Here, we generalize the
theoretical model of this platform that we developed earlier [Phys. Rev. A 88, 043828 (2013)]. The
theory description is extended to cover multiple nuclear ensembles and multiple modes in the cavity.
While the extensions separately do not lead to qualitatively new features, their combination gives
rise to cooperative effects between the different nuclear ensembles and distinct spectral signatures
in the observables. A related experiment by Röhlsberger et al. [Nature 482, 199 (2012)] is success-
fully modeled, the scalings derived with semiclassical methods are reproduced, and a microscopic
understanding of the setting is obtained with our quantum mechanical description.

PACS numbers: 42.50.Pq, 42.50.Nn, 42.50.Gy, 76.80.+y

I. INTRODUCTION

With the advent of novel light sources, the emerging
field of x-ray quantum optics has gained considerable
momentum, both on the experimental and theoretical
side [1]. While ideas based on quantum coherence and
interference could in principle be realized with inner-shell
electrons, solid state targets obeying the Mössbauer ef-
fect [2] have sparked interest in many recent works [3–9].

A particularly interesting setting in which quantum
optics with Mössbauer nuclei can be realized is specifi-
cally engineered planar x-ray cavities. Embedding a thin
layer of resonant nuclei in such cavities has facilitated the
observation of a number of phenomena, such as the coop-
erative Lamb shift and single-photon superradiance [10],
Fano line shape control and interferometric phase mea-
surements [11], magnetically controlled reflection spectra
modified by spontaneously generated coherences [12] and
group velocity control of x-ray pulses [13].

However, there is an additional cavity configuration
which has sparked interest recently. In a setting with
two particularly placed ensembles of Mössbauer nuclei
in the cavity, the iron isotope 57Fe with its transition
at 14.4 keV, it was possible to observe a reflection spec-
trum with a deep interference minimum in the center due
to the phenomenon of electromagnetically induced trans-
parency (EIT) [14–16]. This is a remarkable result, since
typically two coherent driving fields are required for this
effect to emerge. In Ref. [16], however, the EIT exper-
iment was established in a thin-film cavity with only a
single excitation from a synchrotron beam, whereas the
second field was intrinsically provided by intracavity cou-
plings between the two 57Fe layers. For the modeling of
the experiment, different semiclassical approaches can be
employed [17, 18], while a consistent description based on
quantum optics as usually desired for EIT is still lacking.

A first quantum optical model for the light-matter in-
teraction in the cavity was developed in Ref. [19]. How-
ever, it does not yet cover cavity settings with multiple
resonant layers, and hence it is also not yet capable of
describing the EIT experiment. But motivated by the ex-

pected significance of multilayer configurations, it would
be highly desirable to also have a microscopic theory at
hand, which allows for a deeper understanding. Top-
ics of interest include the nature of the above-mentioned
intrinsic cavity-mediated coupling between the different
resonant layers, and perspectives on how multilayer cav-
ities can be specifically engineered. We note that other
approaches based on scattering theory were employed to
model the two-layer layout [20]; however to our knowl-
edge they remained unsuccessful in providing a quanti-
tative description of the EIT experiment.

In this work, we generalize the quantum optical the-
ory from Ref. [19] with the aim to describe the single-
photon EIT experiment [16] and related settings. To this
end, we extend the description to include multiple cav-
ity modes as well as multiple layers. The extension to
multiple modes allows us to accurately describe the cav-
ity reflection in the absence of resonant nuclei. How-
ever, the general shape of the nuclear contribution to the
measured signal turns out to be unchanged when con-
sidering the two extensions separately. In this case, the
line shape predicted in the absence of a magnetic hyper-
fine splitting is a Lorentz profile, in which only the co-
efficients are modified due to the additional elements in
the theory. However, if multiple cavity modes and mul-
tiple layers are considered simultaneously, a new class
of nuclear reflection spectra is obtained. In particular,
restricting the analysis to two resonant layers, the EIT-
like spectrum observed in Ref. [16] is reobtained and the
predicted scalings are in accordance with previous semi-
classical calculations. Due to the microscopic ansatz of
our theoretical model, we can provide a full quantum
interpretation of the system. A good agreement to nu-
merical results obtained from semiclassical descriptions is
found over a broad parameter range. Furthermore, our
extended model opens up avenues to engineer a broader
set of effective level schemes at x-ray energies by com-
bining the advanced possibilities of multiple modes and
layers together with magnetic hyperfine splitting.

This paper is structured as follows: In Sec. II we re-
capitulate the cavity system and the basic model which
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FIG. 1. (Color online) Schematic of the considered setup. A
thin-film cavity is probed by hard x rays in grazing incidence.
The light-matter interaction with the resonant nuclei in the
center of the cavity, possibly under the influence of a magnetic
field, modifies the observed reflected signal.

was developed for its description in Ref. [19]. After this,
we generalize the model to include multiple layers and
multiple modes. In Secs. IV and V, we analyze the ef-
fects of the two extensions separately and in Sec. VI the
consequence of both extensions applied simultaneously
are discussed. Finally, the general model is applied to
describe the EIT setting from Ref. [16].

II. RECAP OF THE BASIC MODEL

The setup which is considered in this work is a thin-
film cavity with embedded Mössbauer nuclei, probed by
hard x rays in grazing incidence as visualized in Fig. 1.
Such a cavity is formed by a stack of different materials.
At its boundaries materials with a high electron density,
such as platinum or palladium, act as mirrors, while the
material in the center, e.g. carbon, has a low electron
density and provides a guiding layer for the x rays. For
certain incident angles in the mrad range, the x rays can
resonantly excite a guided cavity mode and propagate
inside the cavity, rendering the structure a waveguide-like
system. By embedding Mössbauer nuclei in the center
of the waveguide, a near-resonant interaction of the x-
ray light with the transitions of the resonant nuclei is
achieved. The reflected signal forms the main observable,
and its spectral shape is crucially influenced by the light-
matter interaction in the cavity. As proven in a number
of recent experiments [10–13, 16], this setup constitutes
an auspicious platform for the exploration of quantum
optical phenomena in the x-ray regime.

A quantum optical model for the description of the
x-ray light-matter interaction in these thin-film cavities
was introduced in Ref. [19], however, it is limited to a
small subset of possible cavity layouts. In the following,
we will briefly present the existing theoretical approach,
before we then continue to generalize the model in order
to cover more elaborate scenarios.
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FIG. 2. (Color online) Field distribution in the two cavities
defined in Tab. I is shown. The incidence angle (θ ≈ 3.5 mrad)
is chosen such that the third guided mode is driven. The cav-
ity field is normalized to an input field with unity intensity.
Solid red lines take into account only electronic scattering in
the cavity, which is realized at x-ray frequencies off-resonant
to the nuclear transition in 57Fe, dashed blue curves assume
resonant driving of the transition. The shaded areas (red,
gray, blue) indicate the positions of the different cavity ma-
terials (Pt, C, Fe).

A. Cavity

As already mentioned above, guided cavity modes can
be excited for certain resonance angles θ0. These angles
depend on the cavity layout, such as the materials and
the layer thicknesses, and can be determined by comput-
ing the angular-dependent reflectance in the absence of
resonant nuclei. At certain positions of this curve, the
reflection is strongly suppressed, indicating the presence
of a guided cavity mode. The reason for this suppression
is the destructive interference between the reflection di-
rectly at the cavity surface and the reflection of the light
which entered the cavity mode.

Exemplary field distributions for two particular cavi-
ties, which will be analyzed later, are shown in Fig. 2.
The incidence angle is chosen such that the third guided
mode is driven, which is reflected in the three antin-
odes of the field intensity inside the cavity. The external
cavity field stems from the interference of the incident
(“exp (ikzz)”) and reflected beam (“R exp (−ikzz)”).
Hence, the suppression in the reflectance R� 1, which is
characteristic for the guided modes, is visible as a small
modulation of the external field. In contrast, if the x-
ray frequency matches the transition of the nuclei in the
cavity (dashed lines in Fig. 2), the relative strength of
the reflected light becomes larger as it now consists not
only of electronic, but also nuclear scattering contribu-
tions which adds up to the observed signal. Note that
the external field in Fig. 2 is shown close to the cavity
surface and therefore it an interference pattern of the in-
cident and the reflected light appears. In the far field,
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TABLE I. Parameters for the two-layer cavities analyzed in
this work. The geometry defined in the first column corre-
sponds to a node–antinode configuration in which an EIT-
like spectrum is expected, the second parameter set defines a
antinode–node configuration in which no EIT-like spectrum
was observed [16].

Material Thickness [nm] Thickness [nm]

Pt 3 3
C 10.5 20

57Fe 3 3
C 6.5 6.5

57Fe 3 3
C 21 11.5
Pt 10 10

however, these two contributions are easily distinguished
due to the different propagation direction, as visualized
in the schematic in Fig. 1.

Since the different cavity modes are well separated in
their resonant incident angles by several mrad, only at
most one mode is usually driven near its resonance. Nev-
ertheless, to take into account the two polarization states
of the x rays perpendicular to the propagation direction,
two cavity modes a1 and a2 are included in the theoretical
description. In the rotating frame of the external driving
field with frequency ω, the Hamiltonian characterizing
the free evolution of the cavity modes with photon anni-
hilation and creation operators a and a† as well as their
coupling to the external field ain is given by (~ = 1 used
here and in the following) [19]

HM = ∆Ca1
†a1 + ∆Ca2

†a2

+ i
√

2κR

[
(â∗1 ·âin) aina

†
1 − (â∗in ·â1) a∗ina1

]
+ i
√

2κR

[
(â∗2 ·âin) aina

†
2 − (â∗in ·â2) a∗ina2

]
. (1)

Here, the expressions in the round brackets denote scalar
products of the polarization directions between the inci-
dent radiation (âin) and the cavity modes (â1,â2). The
mismatch between the frequencies of the cavity mode and
the external field is denoted by the cavity detuning

∆C(θ) = ωC − ω = ω

[√
cos (θ)

2
+ sin (θ0)

2 − 1

]
. (2)

We emphasize that the cavity detuning can be controlled
with the incidence angle θ and does not depend on the
frequency of the driving field for all practical purposes.
The reason for this is the special grazing incidence geom-
etry, in which the cavity is probed, and that the nuclear
resonance typically is orders of magnitude more narrow
than the cavity line width.

Furthermore, incoherent effects such as the photon loss
of the cavity modes have to be included in the model.
This can be done via a description in terms of the density
matrix ρ and Lindblad operators L[ρ]. We define

L[ρ,O+,O−] =
(
O+O−ρ+ ρO+O− − 2O−ρO+

)
(3)

for arbitrary operators O+ and O−. Then, the photon
loss can be described via

LM [ρ] =− κL[ρ, a†1, a1]− κL[ρ, a†2, a2] . (4)

B. Nuclei

Next, we include the resonant nuclei to the descrip-
tion. In this work, to be specific, we refer to the com-
monly used Mössbauer isotope 57Fe with its transition at
ω0 = 14.4 keV and a line width of γ = 4.7 neV. To en-
compass the general case, we allow for a magnetic hyper-
fine splitting of the nuclear resonance. Then, the ground
state splits up into two states separated by the energy δg
and four excited states with energy spacing δe between
adjacent states. This leads to six M1 allowed transitions
in the nucleus [21], which are summarized in Tab. II. We
note that the energy splitting of the ground states is in
the neV range, such that both states are evenly popu-
lated at room temperature according to the Boltzmann
factor exp (δg/kBT ).

In a suitable interaction picture, the nuclear dynamics
is characterized by the Hamiltonian

HN = H0 +HC . (5)

The diagonal part

H0 =

N∑
n=1

[ 2∑
j=1

δg(j − 3
2 ) |g(n)

j 〉〈g
(n)
j |

+

4∑
j=1

(
δe(j − 5

2 )−∆
)
|e(n)
j 〉〈e

(n)
j |
]

(6)

contains the energy detuning ∆ = ω−ω0 and the energy
splitting of the states due to the magnetic hyperfine in-
teraction for all N atoms. It is important to note that
in contrast to the cavity detuning ∆C , the detuning ∆
does not depend on the incidence angle θ, but only on
the frequency of the externally applied x-ray field. In
Eq. (6), the index n sums over all N nuclei, and j sums
over the two ground and four excited hyperfine states,
respectively. The coupling of the six transitions µ (see
Tab. II) to the two polarization modes are given as

HC =

N∑
n=1

6∑
µ=1

[
(d̂
∗
µ ·â1) g(n)

µ S
(n)
µ+a1

+ (d̂
∗
µ ·â2) g(n)

µ S
(n)
µ+a2 + H.c.

]
. (7)

Here, d̂µ denotes the normalized dipole moment, S
(n)
µ−

[S
(n)
µ+ ] is the nuclear lowering [raising] operator of the

transition µ for atom n, and the coupling coefficient

g
(n)
µ = gcµe

i φ(n)

is composed of a constant g, the Clebsch-
Gordan coefficient cµ of the respective transition and a
phase taking into account the position of the atom n.
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TABLE II. Overview of the M1 allowed transitions in the
57Fe nucleus with transition index µ. Shown are the involved
states, the transition energy ∆E relative to the energy at
vanishing magnetization ω0, the Clebsch-Gordan coefficient
(CG) cµ and the polarization type. Linear polarization is
denoted by π0, right (left) circular polarization as σ+ (σ−).

µ Transition ∆E C-G Polarization

1 |g1〉 ↔ |e1〉 −δg/2− 3/2δe 1 σ−

2 |g1〉 ↔ |e2〉 −δg/2− 1/2δe
√

2/3 π0

3 |g1〉 ↔ |e3〉 −δg/2 + 1/2δe
√

1/3 σ+

4 |g2〉 ↔ |e2〉 δg/2− 1/2δe
√

1/3 σ−

5 |g2〉 ↔ |e3〉 δg/2 + 1/2δe
√

2/3 π0

6 |g2〉 ↔ |e4〉 δg/2 + 3/2δe 1 σ+

Additionally, the spontaneous decay of the excited nu-
clear states is taken into account via

LSE[ρ] =

N∑
n=1

L(n)
SE [ρ] , (8)

L(n)
SE [ρ] = −γ

2

6∑
µ=1

c2µ L[ρ, S
(n)
µ+ , S

(n)
µ− ] . (9)

C. Input-output relation and observables

In order to relate the internal operators in the cav-
ity to externally accessible quantities, the input-output
relations are employed [22]. The output field aout, also
visualized in Fig. 1, is given by

aout = −ain (â∗out ·âin)

+
√

2κR [(â∗out ·â1) a1 + (â∗out ·â2) a2] . (10)

With this operator at hand, the reflection coefficient
reads

R =
〈aout〉
ain

. (11)

Note that in a typical experiment, the reflectance |R|2 is
measured.

D. Full model

The expressions given above form the building blocks
of the general model developed in Ref. [19]. The full
master equation reads

d

dt
ρ = −i[HM +HN , ρ] + LM [ρ] + LSE[ρ] . (12)

In principle, the dynamics of the system could be solved
this way. However, due to the huge Hilbert space con-
nected with the N atoms and two cavity modes, this

task is challenging. Hence, in Ref. [19] two approxi-
mations well justified at present experimental conditions
were performed. First, the cavity modes a1 and a2 were
adiabatically eliminated. This is possible since the cavity
modes have a low quality factor Q [10], which is known as
the bad-cavity regime [23]. Hence, the time scale 1/κ, on
which the mode dynamics equilibrates, is very short com-
pared to the nuclear time scale and therefore the cavity
modes can be considered as stationary. Second, it is pos-
sible to restrict the analysis to the subspace of up to one
excitation in the system, since experiments performed at
current synchrotron radiation sources provide on average
less than one resonant photon per pulse [10, 24, 25]. This
simplifies the master equation considerably and compact
analytic expressions for the observables can be obtained.
Below we will exploit the same approaches to also sim-
plify the extended model which will then include different
resonant layers and multiple modes.

III. GENERALIZATION TO MULTIPLE
LAYERS AND MULTIPLE MODES

We will now extend the basic model introduced in the
last section by explicitly including multiple layers of res-
onant nuclei as well as more than a single cavity mode
in theory. As already discussed above, in typical experi-
ments at most one cavity mode can be driven resonantly
at a time. This is due to their large angular separation,
which significantly exceeds the beam divergence at mod-
ern x-ray sources. The angular separation in turn leads to
large cavity detunings ∆C for nonresonant modes. Nev-
ertheless, as we will show below, the additional modes
can sometimes be of importance, since the nuclei can in
principle scatter into them, or if the reflectance is con-
sidered over a broad range of incidence angles. Also the
inclusion of multiple layers is a highly desirable goal, as
motivated by observation of EIT in Ref. [16].

Clearly, the coefficients in the master equation, such
as decay rates κ or coupling constants g, differ for each
mode and each layer and ought to be marked with an in-
dex for the respective element. In an attempt to reduce
confusion, we stick to the following notation: An atomic
index is denoted by an upper index n in brackets. Lower
indices µ indicate a transition, as listed in Tab. II. The
different cavity modes are distinguished by an upper in-
dex [j] in squared brackets. A curly bracket {l} indicates
that the respective quantity is related to layer l. This
notation is summarized in Tab. III.

We start by revisiting the internal and external elec-
tromagnetic field. We consider a single incident field ain,
which impinges onto the cavity surface under the graz-
ing angle θ, and an outgoing field aout, emitted at the
respective reflection angle π − θ. Compared to the ini-
tial analysis in Sec. II, the input field does not only drive
one cavity mode a, but multiple modes a[j]. At the same
time, the output field is driven by these modes and, nat-
urally, also the resonant nuclei will interact with the dif-
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TABLE III. Index notation used throughout this work.

Index Quantity

n,m nucleus n,m ∈ {1, . . . , N}
µ, ν nuclear transition µ, ν ∈ {1, . . . , 6}
{l}, {k} nuclear layer

[j] cavity mode

ferent cavity field modes. This means, we also have to
distinguish the coupling coefficients and decay rates for
each cavity mode.

Generalizing Eq. (10) from the original theory, we write
for the input-output relation

aout = −ain (â∗out ·âin)

+
∑
j

√
2κ

[j]
R

[
a

[j]
1

(
â∗out ·â

[j]
1

)
+ a

[j]
2

(
â∗out ·â

[j]
2

) ]
(13)

and the Hamiltonian describing the dynamics of the
modes given in Eq. (1) becomes

HM =
∑
j

∆
[j]
C

(
a

[j]
1

†
a

[j]
1 + a

[j]
2

†
a

[j]
2

)
+ i
∑
j

√
2κ

[j]
R

×
[
aina

[j]
1

† (
â

[j]
1

∗
·âin

)
− a∗ina

[j]
1

(
â∗in ·â

[j]
1

)
+ aina

[j]
2

† (
â

[j]
2

∗
·âin

)
− a∗ina

[j]
2

(
â∗in ·â

[j]
2

) ]
.

(14)

In a similar fashion, the couplings with nuclei are mod-
ified to include the sum over all modes j and the in-
teraction Hamiltonian given in Eq. (7) and describing a
transition µ of an atom n is extended accordingly. While
the coupling to the single cavity mode was denoted by

g
(n)
µ before, the coefficients related to a general cavity

mode j are now named g
(n)[j]
µ . They can be decomposed

into g
(n)[j]
µ = g[j]cµe

iφ(n)

, where cµ is the Clebsch-Gordan

coefficient of the transition µ, φ(n) accounts for a poten-
tial phase imprinted on the nucleus by the field due to
the atomic position, and g[j] denotes a universal coupling
constant between mode j and all nuclei and transitions.
Note that this factorization is possible in this way only
because we assumed a single thin layer of resonant nuclei
in this analysis.

However, as soon as we consider multiple layers, the as-
sumption of uniform coupling strengths g[j] for all atoms
is clearly no longer justified. For example, for a cav-
ity without resonant nuclei, roughly an intensity profile
with sin2 shape can be expected along the cavity for the
guided modes. Different layers at different positions will
thus experience different field strengths and the coupling
coefficient g to the cavity mode cannot be considered as
a constant anymore. Also, we want to emphasize that
the same argument holds if a very thick layer of resonant

nuclei is present in the cavity. Here, the nuclei close to
the two layer boundaries might be exposed to strongly
differing field strengths and the respective coupling coef-
ficients become spatially dependent.

Both cases can be modeled by introducing several en-
sembles of nuclei. The atoms in each ensemble are sit-
uated at the same depth of the cavity and hence couple
to the modes with a common coefficient. We denote this
coupling parameter between the nuclei in the layer l and
the cavity modes j by g[j]{l}. The coupling coefficient of
the transition µ in single atom n located in the layer ln
then reads

g(n)[j]
µ = g[j]{ln}cµe

i φ(n)

, (15)

The number of nuclei in each layer is N{l} and the to-
tal number of resonant nuclei is N =

∑
lN
{l}. In this

formulation, the coupling Hamiltonian from Eq. (7) is
generalized to

HC =
∑
n,µ,j

[ (
d̂
∗
µ ·â

[j]
1

)
g(n)[j]
µ S

(n)
µ+a

[j]
1

+
(
d̂
∗
µ ·â

[j]
2

)
g(n)[j]
µ S

(n)
µ+a

[j]
2 + H.c.

]
. (16)

The diagonal part H0 containing the energy shifts of the
states and the detuning ∆ is unaffected by our extension
of the model.

Next to the Hamiltonian dynamics, also the incoherent
part capturing the mode decays need to be extended ac-
cordingly. The Lindblad operator describing the photon
loss in the cavity modes, see Eq. (4), becomes

LM [ρ] =−
∑
j

κ[j] L[ρ, a
[j]
1

†
, a

[j]
1 ]

−
∑
j

κ[j] L[ρ, a
[j]
2

†
, a

[j]
2 ] , (17)

whereas the spontaneous emission contribution of the nu-
clei remains the same.

A. Effective Master equation

In a next step we simplify the master equation by ap-
plying the same approximations as in the case of the orig-
inal model, which were described already in Sec. II D.

First, we perform the adiabatic elimination of the cav-
ity modes. In contrast to the basic model, we do not
eliminate the two modes a1 and a2 for the two polar-
ization directions only, but a total of 2j modes. How-
ever, since the different modes are not directly mutually
coupled, they can be eliminated independently and their
contributions to the effective master equation sum up.

From the Heisenberg equation of motion for the cavity
mode operators

d

dt
a[j]
ι = i[HM +H0 +HC , a

[j]
ι ]− κ[j]a[j]

ι (18)
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we find the stationary solutions

a[j]
ι =

1

κ[j] + i∆
[j]
C

[√
2κ

[j]
R ain(â[j]

ι

∗
·âin)

− i
∑
n,µ

(â[j]
ι

∗
·d̂µ)g(n)[j]

µ

∗
S

(n)
µ−

]
, (19)

where ι = 1, 2 indicates the two perpendicular cavity
mode polarizations.

Inserting these operators in the full model, we obtain
the effective master equation for the nuclei

d

dt
ρ = −i[Heff, ρ] + Leff[ρ] , (20)

with the effective Hamiltonian and the Lindblad terms

Heff = H0 +HΩ +HLS , (21)

Leff[ρ] = LSE[ρ] + Lcav[ρ] . (22)

In the same notation as in Ref. [19], the individual com-
ponents of these equations are found as

HΩ =
∑
n,µ

(
d̂
∗
µ ·1⊥ ·âin

)∑
j

(
Ω[j]g(n)[j]

µ

)
S

(n)
µ+ + H.c. ,

(23)

HLS =
∑
n,m

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)∑
j

(
δ

[j]
LSg

(n)[j]
µ g(m)[j]

ν

∗)
× S(n)

µ+S
(m)
ν− , (24)

Lcav[ρ] =
∑
n,m

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)∑
j

(
−ζ [j]

S g(n)[j]
µ g(m)[j]

ν

∗)
× L[ρ, S

(n)
µ+ , S

(m)
ν− ] , (25)

with the coefficients

Ω[j] =

√
2κ

[j]
R ain

κ[j] + i∆
[j]
C

, (26)

δ
[j]
LS = Im

(
1

κ[j] + i∆
[j]
C

)
, (27)

ζ
[j]
S = Re

(
1

κ[j] + i∆
[j]
C

)
. (28)

and the outer product 1⊥ = â1â
∗
1 + â2â

∗
2. Note that

this completeness relation only refers to the two possible
mode polarizations, such that no sum over the different
modes [j] is required. Moreover, the adiabatic elimina-
tion also affects the input-output relation from Eq. (10)
and thus the observable in Eq. (11). We obtain for the
reflection coefficient

R = RC +RN , (29)

with the cavity contribution RC and the nuclear part of
the reflectance RN . The two reflection coefficients are
given by

RC =

−1 +
∑
j

2κ
[j]
R

κ[j] + i∆
[j]
C

 (â∗out ·âin) , (30)

RN = − i

ain

∑
n,µ

∑
j

√
2κ

[j]
R g

(n)[j]
µ

∗

κ[j] + i∆
[j]
C

(â∗out ·1⊥ ·d̂µ
)

× 〈S(n)
µ−〉 . (31)

In a second approximation, we restrict the dynamics
of the system to the subspace of up to one excitation in
the system. As mentioned above, the reduction to the
linear regime is well justified for experiments performed
at current synchrotron radiation sources. In the initial
stage, all nuclei reside in one of the two hyperfine ground
states |g1〉 and |g2〉, with equal probability at room tem-
perature. Further, we can assume that the nuclei of the
different macroscopic ensembles l introduced above are
evenly distributed among these two states as well. This
collective ground state is denoted by |G〉.

The definition of the collective excited states demands
a more elaborate approach. In Ref. [19] collective ex-

cited states |E(+)
µ 〉 were introduced, which denote a sym-

metrized excitation on the transition µ. Note that such
an excitation is shared only by N/2 nuclei, since only half
of the nuclei were originally in the ground state of the re-
spective transition. Here, we now generalize these states
and denote a collectively excited state in the ensemble l

on the transition µ by |E{l}µ 〉. More formally, we define
it as

|E{l}µ 〉 =
1√

N{l}/2

N{l}/2∑
n

ei φ
(n)

S
(n)
µ+ |G〉 , (32)

and again only half of the nuclei in the respective layer l
contribute due to the ground state distribution. Each
of the contributory nuclei couples to the modes with
the same rate g[j]{l}. This qualifies the collective states
defined here to rewrite the system dynamics given in
Eqs. (23)–(25) in the linear regime. In the process, the
sums over the macroscopic number of atoms

∑
n is sim-

plified to the much more manageable sum over the dif-
ferent resonant layers l as∑

n

g(n)[j]
µ S

(n)
µ+ =

∑
l

√
1
2N
{l}cµg

[j]{l}|E{l}µ 〉〈G| . (33)

This way, we obtain the effective equations for the linear
regime

HΩ =
∑
µ,j,l

(
d̂
∗
µ ·1⊥ ·âin

)(
Ω[j]cµg

[j]{l}
)

×
√

1
2N
{l} |E{l}µ 〉〈G|+ H.c. , (34)
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HLS =
∑
µ,ν

∑
j,l,k

(
d̂
∗
µ ·1⊥ ·d̂ν

)(
δ

[j]
LScµcνg

[j]{l}g[j]{k}∗
)

× 1
2

√
N{l}N{k} |E{l}µ 〉〈E{k}ν | , (35)

Lcav[ρ] =
∑
µ,ν

∑
j,l,k

(
d̂
∗
µ ·1⊥ ·d̂ν

)(
−ζ [j]

S cµcνg
[j]{l}g[j]{k}∗

)
× 1

2

√
N{l}N{k} L[ρ, |E{l}µ 〉〈G|, |G〉〈E{k}ν |] .

(36)

Finally, the reflection coefficient reads

R = RC −
i

ain

∑
µ,j,l


√

2κ
[j]
R cµg

[j]{l}∗

κ[j] + i∆
[j]
C


×
(
â∗out ·1⊥ ·d̂µ

)√
1
2N
{l} 〈E{l}µ |ρ|G〉 . (37)

B. Unmagnetized layers

A commonly encountered scenario is the setting with-
out a magnetic hyperfine splitting in the resonant layers.
In this case, the level scheme of the 57Fe nucleus reduces
to a two-level system with one ground and one excited
state. From the general theory above, this behavior can
be emulated by setting the energy splittings δg, δe of
the ground and excited states to zero and choosing the
quantization axis such that the incident beam with polar-
ization âin only drives the linearly polarized transitions
µ = 2, 5 (c.f. Tab. II). Further, we define the state

|E{l}〉 =
1√
2

(
|E{l}2 〉+ |E{l}5 〉

)
, (38)

which describes an excitation in the lth resonant layer
without the distinction of the two hyperfine substates.
We obtain for the master equation and the reflection co-
efficient

HΩ =
∑
j

Ω[j]
√

2
3

∑
l

g[j]{l}
√
N{l}|E{l}〉〈G|+ H.c. ,

(39)

HLS =
∑
j

δ
[j]
LS

2
3

∑
l,k

g[j]{l}g[j]{k}∗
√
N{l}N{k}

× |E{l}〉〈E{k}| , (40)

Lcav[ρ] = −
∑
j

ζ
[j]
S

2
3

∑
l,k

g[j]{l}g[j]{k}∗
√
N{l}N{k}

× L[ρ, |E{l}〉〈G|, |G〉〈E{k}|] , (41)

R =

[
− 1 +

∑
j

2κ
[j]
R

κ[j] + i∆
[j]
C

− i

ain

∑
j

√
2κ

[j]
R

κ[j] + i∆
[j]
C

×
√

2
3

∑
l

g[j]{l}∗
√
N{l}〈E{l}|ρ|G〉

]
(â∗out ·âin) .

(42)

This set of equations will form the basis for the descrip-
tion of the EIT experiment [16], which we will analyze in
Sec. VII.

C. Heuristic extensions

Before we study the phenomena and consequences
which emerge from our generalized theory, we take a step
back and consider additional effects in our system, which
in general will turn out to be of significance. We em-
phasize, that so far our theory is developed to capture
the cavity character of the layer system, i.e. the guided
modes and the embedded resonant nuclei. However, in
the grazing incidence geometry, also effects which are not
related to the structure of the cavity and stem from bulk
material properties become important.

Since the refractive index of the cavity materials at x-
ray energies is less than one, total reflection is observed
for small incidence angles θ in the few-mrad range, while
for larger angles the light is essentially completely ab-
sorbed. The transition between those two regimes is not
sudden, but can be characterized by a smooth function
REnvelope(θ). As soon as we consider the reflectance over
a broader range of incidence angles, this envelope has to
be taken into account. Note that previous studies have
been performed at a fixed incidence angle [10, 12, 13, 16]
or covered only tiny angular ranges, for which the en-
velope could be considered constant [11]. To include
this total reflection behavior at grazing incidence, we
will heuristically combine the analytical formula from
Eq. (30), describing the guided modes, with the reflection
curve of the cavity’s mirror material only, which approx-
imately takes into account the total reflection envelope.
The envelope function REnvelope(θ) is described in more
detail in Appendix A.

Furthermore, it has been observed that the cavity ma-
terial dispersion leads to an additional relative phase be-
tween light reflected off of the outside of the cavity and
light entering the cavity. This dispersion phase was found
to be necessary, e.g., to describe the asymmetry of the
reflection curve R(θ) around the minima of the guided
modes [26]. It can be included by generalizing the contri-
bution which stems from the direct reflection on the cav-
ity surface (“−1” in Eq. (30)) with an additional phase
factor exp (iφC). As a second heuristic extension, we in-
clude such a phase phase factor as well, and allow for a
complex variable r instead of the cavity surface ampli-
tude −1 with |r| ≈ 1. This has the additional advantage
that such a modification can also take into account pos-
sible effects of far off-resonant modes, which would give
rise to a small constant offset to the reflection coefficient.

With the heuristic modifications described above, the
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cavity contribution to the reflection coefficients reads

RC(θ) = REnvelope(θ)

r +
∑
j

2κ
[j]
R

κ[j] + i∆
[j]
C (θ)

 , (43)

with the cavity detuning (c.f. Eq. (2))

∆
[j]
C (θ) = ω

[√
cos (θ)

2
+ sin (θ

[j]
0 )

2
− 1

]
. (44)

IV. EFFECT OF MULTIPLE MODES

In this part, we will discuss the influence of multiple
modes on the reflectivity, while we still restrict ourselves
to a single thin layer of resonant nuclei in the cavity.
Hence, the index l corresponding to the different nuclear
ensembles in the cavity, will be omitted in the following.

We start by considering the nuclear contribution to
the reflectance only. Restricting ourselves to only one
layer l, it can be easily seen from Eqs. (34)–(37) that
the general form of contributions to the effective master
equation does not depend on the number of cavity modes
j. In particular, no new operators or additional couplings
between the different collective states are present in the
effective master equation, which is a direct consequence
of the adiabatic elimination. The sole differences are the
coefficients entering the expressions. For instance, gen-
eralizing the driving Hamiltonian HΩ from a single to
multiple modes requires only the modification

Ωg(n)
µ →

∑
j

Ω[j]g[j]
µ (45)

on the level of a coefficient. Similar replacements of the
variables are required for the other parts contributing to
the master equation.

With the knowledge that the basic equations in the
cases with one and with multiple cavity modes j are
equivalent, the results obtained in the original theory
(c.f. Ref. [19]) can be straightforwardly extended by re-
placing the coefficients with their respective generalized
counterparts. Doing so for the linear reflectance without
magnetic hyperfine splitting and neglecting the trivial
polarization dependency (â∗out ·âin), this yields

RN = −i2N
3

(∑
j

√
2κ

[j]
R g[j]

κ[j]+i∆
[j]
C

)(∑
j

√
2κ

[j]
R g[j]

∗

κ[j]+i∆
[j]
C

)
∆ + iγ2 + 2N

3

[∑
j

∣∣g[j]
∣∣2 (iζ [j]

S − δ
[j]
LS

)] .
(46)

Since in the single-mode theory a Lorentzian profile
was derived for the nuclear spectrum, we also recover
this line shape here in the case of multiple cavity modes.
Similar to the original model, it is shifted due to a collec-
tive Lamb shift and broadened due to superradiance [10].
It can be seen from the denominator in Eq. (46) that each

mode induces its own frequency shift and line broaden-
ing. But typically for any angle of incidence, all but
(at most) one mode are driven far off-resonantly as men-
tioned above. Then, the according values for the cavity
detuning ∆C become large and their respective contribu-
tions to the cooperative Lamb shift and to the superradi-
ance diminish. From the numerator of the nuclear part,
we find that the strength of the nuclear signal is typically
determined by one dominant mode with the smallest ∆C .
Generally, the behavior is as follows. The nuclei can be
excited by the external driving field via each mode j.
This is represented by the first sum in the numerator
of Eq. (46). The emission forms an independent second
step and can again occur via each mode, as indicated by
the second sum. Hence, in the general case, interferences
between the different cavity modes can arise. Neverthe-
less, the general Lorentzian structure of the line profile
is unaffected by this and hence no qualitatively different
features appear in the spectrum.

The main difference to the single-mode result is found
in the cavity contribution to the reflectance RC given
in Eq. (30), and accordingly its heuristic extension in
Eq. (43). Since we included multiple guided modes in
the analysis above, it is clear that the resonances of these
modes should become apparent in the reflection curve,
i.e. when considering the cavity reflectance in dependence
on the incidence angle θ. Indeed, the expressions we de-
rived in Eqs. (30) and (43) highlight these resonances in
its sum. The resonance of a guided mode j is encountered

at θ = θ
[j]
0 , where ∆

[j]
C = 0, and the reflection curve will

exhibit a local minimum in the vicinity of the resonant
angles.

At this point it is of interest, how well the actual an-
gular dependent reflection curve R(θ) can be described
by the cavity part of the reflectance. To this end, we nu-
merically calculate the reflection curve using established
semiclassical methods, such as Parratt’s formalism [17]
or simulations by conuss [27], which both give equiva-
lent results. As we will describe the EIT scenario from
Ref. [16] below, we specialize to this particular cavity
structure. The parameters of this cavity geometry are
given in the middle column of Tab. I. Note that the two
resonant iron layers do not pose a challenge in this anal-
ysis, since in this first step the nuclear resonances are
omitted in the description of the angular dependent re-
flection curve.

In the specified cavity it is platinum that acts as
cavity mirror material, therefore the envelope function
REnvelope(θ) taking account for the total reflection is the
reflectivity of a single infinitely thick Pt layer. We fitted
the absolute value of Eq. (43) with a maximum number
of cavity modes j = 5 to the expected reflection curve for
the cavity, which was obtained using Parratt’s formalism.
The fit was performed in the range 0 ≤ θ ≤ 5 mrad and
the obtained parameters are summarized in Appendix B.
The result is shown in Fig. 3. Clearly, the quantum opti-
cal model together with the heuristic extensions are well
suited to describe the reflection curve. We observe that
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the last guided mode in Fig. 3 is not reproduced. How-
ever, this is expected, since it is the sixth mode not in-
cluded in the fit model, and since its angular position is
not within the fit range.

Interestingly, we find that also the phase behavior of
the cavity reflection coefficient is reproduced very well.
This is remarkable, because only absolute values were
taken into account in the fit procedure. The analytic
formula in Eq. (43) has only been corrected for a global
phase to match the phase behavior predicted by the Par-
ratt formalism. Considering the phases in more detail,
a deviation can be seen at the second guided mode at
θ ≈ 3 mrad. In contrast to Parratt’s formalism, the curve
obtained with the quantum optical model features an ap-
parent phase jump of 2π at the resonance. To understand
this artifact we note that in the vicinity around a guided
mode, the reflection coefficient can be approximated as
RC ≈ −1+2κR/[κ+i∆C ], which results in a minimum at
the resonance angle where ∆C = 0. The reflectance van-
ishes completely for 2κR = κ, which is known as the crit-
ical coupling condition. However, a residual reflectance
occurs for both 2κR > κ and 2κR < κ, which correspond
to the over- and undercritically coupled cases, respec-
tively [28]. Looking solely at the modulus |RC |, though,
these two cases cannot be distinguished. The difference
becomes only apparent when the phase of RC around the
resonance angle is considered: For an undercritically cou-
pled cavity mode the phase remains in the same branch,
however it undergoes an evolution to the next branch
in the overcritically coupled case, which manifests as an
apparent phase jump of 2π. Generally, it might be ben-
eficial to not fit absolute values, but to use the complex
values of the reflection curve instead. In this case also
the over- and undercritically coupled modes should be
captured correctly within the quantum optical descrip-
tion. However, since we are interested mainly at the
third guided mode later on, which is the mode at which
the EIT spectra have been measured in Ref. [16], we will
use the parameters obtained in the fit discussed above
for our further analysis.

Finally, it should be mentioned that it is not meaning-
ful to extend the quantum optical descriptions to very
large incident angles θ. On the one hand, the theoretical
description of the perpendicular polarization directions
might break down. On the other hand, distinct non-
grazing incidence effects are expected, since the cavity is
no longer probed in (000) Bragg geometry. The angu-
lar cutoff should therefore be around the total reflection
edge, which for typical cavity settings limits the number
of guided modes to approximately five.

V. EFFECT OF MULTIPLE RESONANT
LAYERS

In this part we will examine the influence of multiple
layers of resonant nuclei in the cavity, while restricting
the analysis to only on cavity mode. Hence, we drop the
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FIG. 3. (Color online) Cavity reflectance as a function of
the incidence angle θ. The minima denote resonance angles
at which guided modes are driven resonantly. Including a
dispersion phase and the heuristic extension of an envelope
given by the topmost layer (gray dotted line), the quantum
optical theory (blue, solid) can reproduce the exact result cal-
culated with Parratt’s formalism (red, dashed) very well. In
the quantum optical model only the first five guided modes
were taken into account and the fit was restricted to the range
0 ≤ θ ≤ 5 mrad, as indicated by the shaded area. Although
only the absolute value of the reflectance was fitted, the be-
havior of the phases calculated with the two descriptions are
very similar.

index j in the coefficients throughout this section.
Since the cavity reflection part RC is unaffected by

including multiple layers in the theory, we considering
the nuclear contribution to the reflectance only. Starting
from the general expressions given in Eqs. (34)–(37) and
taking only one cavity mode j into account, we observe
that the set of equations can be considerably simplified
by means of a basis transformation.

We introduce the states which resemble a collective
excitation on transition µ, which is distributed among
the different nuclear ensembles l, as

|E{+}µ 〉 =
1

G
∑
l

g{l}
√
N{l}|E{l}µ 〉 (47)
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with the normalization factor

G =
(∑

l

∣∣g{l}∣∣2N{l})1/2

. (48)

Using the new states, Eqs. (34)–(37) become

HΩ =
√

1
2ΩG

∑
µ

(
d̂
∗
µ ·1⊥ ·âin

)
cµ |E{+}µ 〉〈G|+ H.c. ,

(49)

HLS = 1
2δLSG2

∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)
cµcν |E{+}µ 〉〈E{+}ν | ,

(50)

Lcav[ρ] = − 1
2ζSG

2
∑
µ,ν

(
d̂
∗
µ ·1⊥ ·d̂ν

)
cµcν

× L[ρ, |E{+}µ 〉〈G|, |G〉〈E{+}ν |] , (51)

R = RC −
i

ain

√
κR

κ+ i∆C
G
∑
µ

cµ

×
(
â∗out ·1⊥ ·d̂µ

)
〈E{+}µ |ρ|G〉 . (52)

Comparing these expressions with the effective master
equation of the original single-layer theory (c.f. Ref. [19]),
we observe an exact correspondence of the structure.
Similar as in the case of the extension to multiple cavity
modes, the differences manifest only in terms of the co-
efficients. In particular, the collective coupling between
the cavity mode and the nuclei is modified as

|g|
√
N → G =

(∑
l

∣∣g{l}∣∣2N{l})1/2

, (53)

while all other relations remain the same. Hence, the
shape of the reflection coefficient is unaffected by taking
into account multiple resonant layers. In the absence of
magnetization, it is given by

R =

[
− 1 +

2κR
κ+ i∆C

− i 2κR
(κ+ i∆C)2

2
3G

2

∆ + iγ2 + 2
3G2(iζS − δLS)

]
(â∗out ·âin) .

(54)

Restricting ourselves to only one layer, the coefficient G2

reduces to |g|2N and we recover the result which we al-
ready derived in Ref. [19].

Even though we included multiple layers in our analy-
sis, we see from Eq. (54) that it is not possible to explain
an EIT-like spectrum as reported in Ref. [16]. Rather,
we will find that it is the combined extension of multiple
layers and multiple guided modes to the theory, which
will be able to explain the EIT phenomenon. This will
be shown in the following Sections.

VI. EFFECT OF MULTIPLE RESONANT
LAYERS AND MULTIPLE MODES

In the last Sections we generalized the theoretical de-
scription to include multiple modes and multiple resonant
layers, respectively. When restricting to one extension at
a time, we observed that both give rise to additions in the
nuclear reflection amplitude, while, however, leaving the
general structure of a Lorentzian line shape unaffected,
c.f. Eqs. (46) and (54).

The general expressions for covering both multiple
modes and multiple layers in the cavity were given in
Eqs. (34)–(37), or, in the absence of magnetization, in
Eqs. (39)–(42). To simplify this set of equations, it would
be desirable to perform a basis transformation which con-

verts the different states |E{l}µ 〉 which describes an exci-
tation in a single layer into a collective layer state, similar
to the transformation we performed in Eq. (47). For that
purpose, one would have to sum over the layers l, which
then contains the coupling factor g[j]{l}. But since this
coupling coefficient now also depends on the guided mode
index j, the basis transformation must also involve the
sum over the modes

∑
j . However, it can be easily seen

from Eqs. (39)–(42) that this sum would be different for
every contribution to the equations of motion, since the
prefactors depending on j are mutually different. Hence,
also in the absence of magnetization it is not possible to
transform the system into a form in which only one col-
lective state is excited. Rather, in a cavity configuration
with l resonant layers the equations of motion need to
be solved for the l coupled states |E{l}〉. This implies
that the response of the nuclear ensemble will generally
go beyond a Lorentzian line profile.

The different coupling coefficients g[j]{l} required for
the extended theory need to be determined in different
ways. Apart from a direct fit to numerical data, a more
sophisticated approach is to derive the relative weights
and phases from the field amplitudes calculated with Par-
ratt’s formalism [29]. This self-consistent method will be
applied and explained in more detail in Sec. VII D.

VII. APPLICATION TO THE EIT SETTING

Next, we will analyze a particular setting, in which
both multiple layers and multiple modes are considered.
In the previous Section, we already discovered that the
general theory developed here allows for reflection spec-
tra, which comprise nuclear responses beyond a simple
Lorentz profile. As it was shown in Ref. [16] employing a
semiclassical model, the reflectance of a cavity with two
unmagnetized resonant layers can even exhibit EIT-like
spectra. It is this particular scenario which will be dis-
cussed in more detail in the following.
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A. The EIT experiment

The key of the setting studied in Ref. [16] is the place-
ment of two ensembles of 57Fe nuclei in the cavity. The
incidence angle was chosen such that the third guided
mode of the cavity is driven resonantly and the first layer
of the resonant nuclei was placed in a field node, the sec-
ond layer in a antinode as sketched in Fig. 2(a). Fol-
lowing the interpretation in the same reference, only the
latter ensemble is probed by the x-ray beam and decays
superradiantly with rate Γ, while the nuclei in the first
layer are only subjected to natural decay γ on a much
longer timescale. However, the first ensemble can cru-
cially influence the system’s dynamics, as a control field
ΩC between the two layers is naturally established. It
arises due to radiative coupling between the two ensem-
bles. The resulting level scheme, as also visualized in
Fig. 4(a), is equivalent to a system featuring EIT. By
employing a cavity like the one sketched in Fig. 2(a), the
key signature of EIT, transparency of the medium on
resonance, could be verified in Ref. [16]. Interestingly, it
was found that the coupling field ΩC vanishes by inter-
changing the roles of the two layers, i.e. placing the first
layer in a field antinode and the second ensemble in a
field node, see Fig. 2(b).

B. Theoretical analysis

In order to describe the setting of two resonant layers
with our quantum optical model, we restrict ourselves to
two ensembles of nuclei l = 1, 2 in the cavity, but we
still allow for an arbitrary number of cavity modes j. As
before, we consider the linear response case without mag-
netization and omit the trivial polarization dependence
in the following. We rewrite the effective Hamiltonian
from Eqs. (39) and (40) as well as the detuning part from
Eq. (6) as

H =
(

Ω̃{1}|E{1}〉〈G|+ h.c.
)

+
(

Ω̃{2}|E{2}〉〈G|+ h.c.
)

+ (δ̃{1} −∆)|E{1}〉〈E{1}|+ (δ̃{2} −∆)|E{2}〉〈E{2}|

+
(
δ̃{1,2}|E{1}〉〈E{2}|+ h.c.

)
. (55)

Here, the first line covers the driving of the two layers, the
second line accounts for the cooperative Lamb shifts and
the detuning, and the last line describes a coherent cou-
pling between the two layers. Later, we will see that the
last contribution can in parts be identified with the con-
trol field ΩC from the EIT interpretation in Ref. [16]. The
incoherent Lindblad terms in our description are given by

L = −
(γ

2
+ γ̃{1}

)
L[ρ, |E{1}〉〈G|, |G〉〈E{1}|]

−
(γ

2
+ γ̃{2}

)
L[ρ, |E{2}〉〈G|, |G〉〈E{2}|]

− γ̃{1,2} L[ρ, |E{1}〉〈G|, |G〉〈E{2}|]

− γ̃{1,2}
∗
L[ρ, |E{2}〉〈G|, |G〉〈E{1}|] . (56)

Here, the first line accounts for spontaneous emission and
superradiance. The other two terms describe an incoher-
ent cross-damping term [12, 30], which will contribute
to the control field coupling in the EIT interpretation as
well. The coefficients in Eqs. (55) and (56) are given by

Ω̃{l} =
∑
j

Ω[j]
√

2
3g

[j]{l}
√
N{l} , (57)

δ̃{l} =
∑
j

δ
[j]
LS

2
3

∣∣g[j]{l}∣∣2N{l} , (58)

δ̃{1,2} =
∑
j

δ
[j]
LS

2
3g

[j]{1}g[j]{2}∗
√
N{1}N{2} , (59)

γ̃{l} =
∑
j

ζ
[j]
S

2
3

∣∣g[j]{l}∣∣2N{l} , (60)

γ̃{1,2} =
∑
j

ζ
[j]
S

2
3g

[j]{1}g[j]{2}∗
√
N{1}N{2} . (61)

The effective level scheme of the system defined above
is visualized in Fig. 4(b). The similarity to the scheme
used in the interpretation of Ref. [16] can already be an-
ticipated. However, in our approach a larger number of
coherent and incoherent couplings are present. Never-
theless, the relative strength and hence the importance
of the coupling rates can be straightforwardly estimated,
as we will show in the following.

As mentioned above, in the cavity geometries of inter-
est, the 57Fe layers are arranged such that one layer l = 1
is located at a field node of the third guided mode, while
a second layer l = 2 is located at an antinode. As a con-
sequence, the nuclei in the node hardly couple to driven
mode. In our quantum optical language, we can repre-
sent this idealized case by setting the respective coupling
constant to zero, i.e. g[3]{1} = 0. At the same time, all
other modes j 6= 3 are driven strongly off-resonant, such

that their cavity detuning ∆
[j]
C becomes large. Indicating

this suppression due to the large detuning with a sym-
bolic notation 1/∆C , we find the scalings

Ω̃{1} , δ̃{1} , δ̃{1,2} ∼ 1

∆C
, (62)

γ̃{1} , γ̃{1,2} ∼ 1

∆2
C

. (63)

In contrast, the coefficients

Ω̃{2} , δ̃{2} , γ̃{2} ∼ 1 (64)

for the second layer are not suppressed due to cavity
mode detuning, as they still contain the non-zero cou-
pling coefficient g[3]{2} to the resonantly driven mode.
From these scalings we can already anticipate the EIT
behavior in accordance with the interpretation discussed
Ref. [16]: Only the nuclei in the second layer decay super-
radiantly. The collective decay of atoms in the first layer
γ̃{1} and the cross-damping terms γ̃{1,2} are quadrati-
cally suppressed in the detunings of the additional cavity
modes and can be neglected in a first approximation.
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(a)

|E{1}〉 |E{2}〉

|G〉
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γ Γ

(b)

|E{1}〉 |E{2}〉

|G〉

δ̃{1,2}

Ω̃
{2}

Ω̃
{1}

δ̃{1} δ̃{2}

γ̃{1} γ̃{2}

γ̃{1,2}

FIG. 4. (Color online) (a) Effective level scheme of the EIT scenario from Ref. [16]. The nuclei in the field antinode are driven
by the external field ΩP and decay superradiantly with rate Γ, the nuclei in the field only due to spontaneous decay γ. Both
ensembles are coupled via the cavity field ΩC , which gives rise to a scheme equivalent to EIT. (b) Effective level scheme in
the quantum optical model. Two collective excited states are coupled to the ground state. Coherent driving and collective
Lamb shifts are marked in blue, superradiant spontaneous emission is denoted by curly red single headed arrows, cross-damping
between the excited states by curly red double headed arrows. [Thick solid / solid / dashed] lines denote the cavity mode
detuning scalings ∼ [1 / ∆−1

C / ∆−2
C ] and mark the relative magnitude of the different couplings.

However, other contributions due to the presence of fur-
ther cavity modes can have a substantial influence on
the system, such as the coherent driving δ̃{1,2} between
the two layers, which can give rise to the coupling field
required for EIT.

These scalings with the cavity detuning ∆C are visual-
ized in the level scheme shown in Fig. 4(b) as well. Cou-
pling rates denoted by thick, solid or dashed lines and
indicate the different powers in the scaling behavior with
respect to ∆C . With the relative magnitude of the rates
in mind, a very close similarity with the EIT level scheme
from Fig. 4(a) can be observed. Hence, our analysis so
far also suggests EIT-like features in the system. How-
ever, it is yet unclear how the additional driving terms
and inter-layer coupling terms affect the spectrum in de-
tail. In order to answer this question, we will now turn
to the analytic solution of the model.

Starting from Eqs. (55) and (56), we find that the equa-
tions of motion for the density matrix elements

ρ1G = 〈E{1}|ρ|G〉 , (65)

ρ2G = 〈E{2}|ρ|G〉 , (66)

form a closed set of equations in the limit of linear re-
sponse, i.e., where the populations 〈G|ρ|G〉 ≈ 1 and
〈E{1}|ρ|E{1}〉 = 〈E{2}|ρ|E{2}〉 ≈ 0 and the coherence
between the excited states 〈E{1}|ρ|E{2}〉 vanishes. The
equations of motion read

d

dt
ρ1G =

[
i(∆− δ̃{1})− γ̃{1} − γ

2

]
ρ1G

− iΩ̃{1} − (iδ̃{1,2} + γ̃{1,2})ρ2G , (67)

d

dt
ρ2G =

[
i(∆− δ̃{2})− γ̃{2} − γ

2

]
ρ2G

− iΩ̃{2} − (iδ̃{1,2}
∗

+ γ̃{1,2}
∗
)ρ1G . (68)

From this we obtain the steady state solutions of the
coherences

ρ1G =
∆̃{2}Ω̃{1} −

(
−δ̃{1,2} + iγ̃{1,2}

)
Ω̃{2}

∆̃{1}∆̃{2} − Ω2
C

, (69)

ρ2G =
∆̃{1}Ω̃{2} −

(
−δ̃{1,2}

∗
+ iγ̃{1,2}

∗)
Ω̃{1}

∆̃{1}∆̃{2} − Ω2
C

, (70)

with the abbreviations

∆̃{l} = ∆− δ̃{l} + i (γ2 + γ̃{l}) , (71)

Ω2
C =

(
δ̃{1,2} − iγ̃{1,2}

)(
δ̃{1,2}

∗
− iγ̃{1,2}

∗)
. (72)

With the solutions for the coherences at hand, we can
now turn to the observable, the complex reflection coef-
ficient R. According to Eq. (42), it is given by

R = −1 +
∑
j

2κ
[j]
R

κ[j] + i∆
[j]
C

+R{1}ρ1G +R{2}ρ2G , (73)

with

R{l} = − i

ain

∑
j

√
2κ

[j]
R

κ[j] + i∆
[j]
C

√
2
3g

[j]{l}∗
√
N{l} . (74)

At this point it is instructive to discuss the scaling related
to the cavity detuning ∆C once again. As before, we as-
sume that g[3]{1} = 0, i.e. the first layer does not couple
to the driven cavity mode j = 3 since it is located at a
field node. In this case we find that R{1} ∼ 1/∆C , while
R{2} is not suppressed due to a cavity detuning, since the
second layer can couple to the resonantly driven mode as
g[3]{2} 6= 0. Furthermore, from Eqs. (69) and (70) we find
that ρ1G ∼ 1/∆C , whereas the ρ2G is not suppressed in
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this fashion. Therefore, for a qualitative understanding
of the reflectance, it is well justified to drop the quadrati-
cally suppressed contribution R{1}ρ1G and only consider
the reflection signal which stems from the second layer,
i.e. R{2}ρ2G.

In a further step, we restrict the numerator of the frac-
tion in R{2}ρ2G to terms up to linear order in 1/∆C .
Moreover, we neglect the tiny collective Lamb shift and
superradiance of the nuclei in the first layer. This yields
the reflection coefficient

R =− 1 +
∑
j

2κ
[j]
R

κ[j] + i∆
[j]
C

+R{2} Ω̃2

∆ + i γ2(
∆ + i γ2

) (
∆− δ̃2 + i (γ2 + γ̃2)

)
− Ω2

C

.

(75)

The nuclear contribution to the reflectance is revealed in
the second line. Its spectral shape is essentially that of a
system featuring EIT. Hence, we recover the same result
as in Ref. [16]: In a cavity with two resonant layers it is
possible to realize the phenomenon of electromagnetically
induced transparency.

C. Comparison to the semiclassical analysis

In Ref. [16], the case was studied, where the empty-
cavity contribution to the reflectance vanishes, and a
semiclassical theory based on transfer matrix techniques
was used to derive an expression for the nuclear re-
flectance. In the sign convention of the nuclear reso-
nances of the present work, the result was found as

R = −id2f0
γ
2E2−+

∆ + iγ2
(∆ + iγ2 )(∆ + iΓ

2 )− Ω2
C

, (76)

Γ = γ(1 + d2f0E2−−) , (77)

Ω2
C = d1d2f

2
0
γ2

4 E2−+E1+− , (78)

where d1 and d2 are the thicknesses of the respective
two layers, f0 is the nuclear scattering amplitude at reso-
nance, and E2−+, E2−−, and E1+− are transfer matrix el-
ements. Comparing it with the part of the nuclear reflec-
tion in the quantum optical expression given in Eq. (75),
we notice a perfect agreement of the structures of the two
formulas. However, as an important consistency check,
it remains to be verified if the scaling with the number
of nuclei in the two layers agrees as well. In the semi-
classical theory it was shown that the amplitude of the
reflection coefficient and the superradiance of the nuclei
in the second layer scale linearly with the thickness of the
second layer d2, and furthermore the control field ΩC was
shown to be proportional to

√
d1d2. The present model

does not directly contain the layer thicknesses as param-
eters. But since d1 ∝ N{1} and d2 ∝ N{2}, is sufficient to
show that the scaling relations also hold for the numbers

of nuclei. From Eqs. (57)–(61) and (74) it can indeed be
seen that the relations are correctly reproduced by our
theory.

This is an important result, since it is a strong hint
that the two independently derived results do not coin-
cide by chance, but also agree on a more fundamental
level. Hence, the model developed here can now be em-
ployed to shine light on the EIT scenario from a different
perspective.

In the nuclear reflectance calculated in Eq. (75), the
coupling Rabi frequency occurs as Ω2

C in the denomina-
tor, whereas in standard EIT settings it appears as a pos-
itive real-valued variable |ΩC |2. Taking a closer look at
our definition of the coupling Rabi frequency in Eq. (72),
we note that in our case Ω2

C can generally be complex.
Also in the semiclassical theory the complex field ampli-
tudes and transfer matrix elements E2−+E1+− allow for
complex values, c.f. Eq. (78). The results of Ref. [16],
though, seem to imply that the imaginary component is
very small and an EIT situation is well realized. How-
ever, from the theoretical analysis of the semiclassical
models, this fact could not be understood and the influ-
ence of the imaginary component was unclear [25]. With
the present theory, though, it is now possible to exam-
ine the complex nature of the coupling in more detail.
From Eq. (72) we know that it is not only given by the

coherent coupling δ̃{1,2} between the two layers as writ-
ten in the Hamiltonian in Eq. (55), but is also affected
by the incoherent cross-damping term γ̃{1,2} between the
two layers. In the discussion on the scalings we have al-
ready seen that, in contrast to the coherent contribution,
the incoherent term is suppressed quadratically with the
detuning of the off-resonant cavity modes. Thus, we find
that the incoherent part

Im(Ω2
C) = −2 Re

(
δ̃{1,2}γ̃{1,2}

∗)
∼ 1

∆3
C

(79)

can be neglected, and Ω2
C ≈ |δ̃{1,2}|2 such that the real

component of the coupling frequency ΩC dominates.
Furthermore, the microscopic ansatz of our quantum

optical theory enables one to interpret the origin of the
coupling between the layers. While in Ref. [16] it was
shown that the EIT control field arises from radiative
coupling between the two resonant layers, it can now be
pinned down from Eqs. (59), (61) and (72) to

Ω2
C =

(
2
3

)2
N{1}N{2}

×

∑
j

g[j]{1}g[j]{2}∗

∆
[j]
C − iκ[j]

∑
j

g[j]{1}∗g[j]{2}

∆
[j]
C − iκ[j]

 .

(80)

Since we assumed that the first layer does not couple to
the third guided mode in the idealized case, i.e. g[3]{1} =
0, we observe that the coupling field is only mediated via
the remaining guided modes j 6= 3 in the cavity. This
way, it becomes now also clear why the EIT phenomenon
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was not obtained in Sec. V, where multiple layers, but
only one guided mode was included in the theoretical
analysis.

D. Numerical analysis

Let us now see how well our analytical expression for
the reflectance derived above performs in practice. In
particular, we aim to describe the spectrum of the EIT
cavity defined in the first column of Tab. I with our quan-
tum optical model. Moreover, we include a second cavity
into the analysis: While the EIT cavity has its resonant
layers in a node and antinode of the field of the resonantly
driven mode, respectively, we also consider a cavity in
which the situation is reversed. Namely, the first reso-
nant layer is located at a field antinode and the second
ensemble of nuclei at the field node. The corresponding
geometry is defined in the last column of Tab. I. The
two cavity layouts reflect the cases discussed in Ref. [16],
where it was shown that the first cavity exhibits the EIT
phenomenon, while for the second system the control cou-
pling ΩC vanishes and only a Lorentz-like spectrum is
measured.

In order to determine the free parameters related to
the cavities defined in Tab. I for the quantum optical
model in a consistent way, we employed the following
method. First, we restricted ourselves to the first five
guided modes in the theory and did not take into account
the resonant nuclei yet. For each of these modes the

angles θ
[j]
0 , at which the modes are driven resonantly,

and the decay and coupling rates κ[j] and κ
[j]
R have to

be determined. The parameters can be found by fitting
Eq. (43) to the reflection curve as function of the x-ray
incidence angle as it was already done in Sec. IV.

With the cavity parameters at hand, the next step
now is to include the nuclear resonances to the model.
In particular, the complex collective coupling coefficients

g[j]{l}
√
N{l} between the jth guided mode and the layer l

of resonant nuclei have to be determined. For each cavity
the number of coupling coefficients is 10, since we special-
ize to five guided modes in the analysis and each mode
can couple to the two respective layers. In order to avoid
arbitrariness in a fit to numerical data, it is advisable to
decrease this large number of free parameters. In fact, is
it possible to determine all coupling coefficients in a con-
sistent way, while keeping only one global scaling as free
parameter. To illustrate this, we note that the coupling
coefficients can be decomposed as

g[j]{l}
√
N{l} = Ẽ [j]{l} ·

(
g̃{l}

√
N{l}

)
, (81)

where the first factor denotes the cavity field amplitude
of mode j at layer l, and the second factor includes the
collective nuclear dipole moment. Next, we exploit that
the complex field amplitudes in the cavity can be eas-
ily derived by means of Parratt’s formalism [29]. In a
simple picture, we can interpret the resonant nuclei in

the cavity as a perturbation, which modifies the cavity
field and, accordingly, the reflectance. The cavity field
in the presence of nuclear resonances can be understood
as a superposition of the bare cavity field and the con-
tribution due to scattering at the nuclei. This presuppo-
sition clearly holds for x-ray frequencies apart from the
nuclear resonance, but does also give consistent results
directly at the resonance, where the perturbation due to
the nuclei is not generally small. Hence, to determine the
field coefficients Ẽ [j]{l}, it is not necessary to include any
nuclear resonances in Parratt’s formalism, but only the
bare cavity field in the absence of 57Fe resonances are
required. With the input field normalized to intensity
one, like in Fig. 2, we can directly compute all complex
valued field coefficients Ẽ [j]{l} at the center of the respec-
tive layers l by tuning the incidence angle θ to the angles
θ[j], where the jth cavity mode is driven resonantly. The
remaining task is to determine the second coefficient in
Eq. (81), which takes into account the nuclear proper-
ties and other constant contributions. Since both iron
layers in the cavities have the same thickness and hence
the number of nuclei is the same, we can expect that

g̃{l}
√
N{l} is a constant and acts only as a scaling pa-

rameter for the previously determined field amplitudes.

This way, all coupling coefficients g[j]{l}
√
N{l} can be de-

duced by fitting the model to numerical data, calculated
with Parratt’s formalism, with only one free scaling pa-
rameter. The complex field amplitudes for both cavities
and the scaling parameter found in our analysis are sum-
marized in Appendix B. We note that the couplings to
the layers, which are located in the field nodes of the third
cavity mode, do not completely vanish due to the finite
thickness of the layers and a potential misplacement in
the cavity. However, they are found to be much smaller
than the coupling coefficients of the respective layers in
the cavity field antinode. This can already be deduced
from the field intensity distributions shown in Fig. 2.

An alternative approach to determine the coupling

constants g[j]{l}
√
N{l} is by fitting the model with all

coefficients directly to numerical data. While this proce-
dure is not as persuasive as the consistent method de-
scribed above, it might also offer some advantages in
quantitative studies. Errors in other parameters, such
as the coefficient which characterizes the cavity modes
can partly be compensated. Moreover, for iron layers
with a larger thickness the field amplitude might not be
constant and, in contrast to the method from above, an
effective coupling strength would be naturally obtained.
Finally, the fitted parameters could provide a handle to
cover the fact in more detail, that on-resonance the nuclei
have an effect on the cavity field which goes beyond a per-
turbation. In this work, however, we will not optimize
the parameters in this way, but utilize the coefficients
derived previously to illustrate the general consistency of
our model.

Now we are able to benchmark our analytical result for
the case of two resonant layers, which was calculated in
Eqs. (69)–(74). A comparison with the frequency- and
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FIG. 5. (Color online) The reflectance of (a) the EIT and (b) the non-EIT scenario is shown as a function of the detuning ∆ and
the incidence angle θ. The results derived with the extended quantum optical model agree very well with the predictions from
Parratt’s formalism. The dashed line at θ ≈ 3.5 mrad marks the angle at which the 3rd cavity minimum is expected. A cut
along this line corresponds to the spectrum measured in Ref. [16] and is shown in Fig. 6. Parameters are given in Appendix B.

angular-dependent reflectance for the EIT and the non-
EIT cavity is shown in Fig. 5. Clearly, the agreement
between the two different models is very good. We stress
that this is not an obvious result, since the parameters
for the quantum optical model were determined indepen-
dently and not obtained from a fit to the numerical data.

A range, in which strong deviations can be observed,
is the domain around ∆ ≈ 0. Here, the exact numeri-
cal solution obtained from Parratt’s formalism shows an
additional structure. This can be understood from the
following considerations. If the x rays are not resonant
to the transition in the 57Fe nuclei, they will primarily
be damped due to the electronic absorption in the cav-
ity, before they can reach the lower resonant layer. If,
however, their frequency is too close to resonance, the x
rays will additionally be absorbed by the nuclei in the
upper layer. Consequently, the field seen by the nuclei
in the second layer is strongly modified compared to the
off-resonant case. However, in the derivation above we
assumed that the presence of the nuclei can be treated as
a small perturbation to the cavity field, which is not the
case in the extreme situation encountered here. An ap-
proach for future studies could thus be to comprise this
effect self-consistently into the quantum optical theory

for an even better agreement with the numerical data.

We now turn to the spectrum measured at the inci-
dence angle corresponding to the third guided mode, i.e.,
the situation from Ref. [16]. The spectra for both the
EIT and the non-EIT cavity defined in Tab. I are shown
in Fig. 6. Again, we observe a good qualitative agree-
ment of our theory with the numerical data obtained with
Parratt’s formalism, which could already be anticipated
from the accordance in Fig. 5. But in any case, the fact
that the EIT as well as the non-EIT spectrum is repro-
duced without post-optimization of the consistently de-
rived parameters, supports the validity of our theoretical
description.

Finally, we want to review to role of the coupling field
ΩC . In the theoretical analysis in Sec. VII C it was found
that the presence of this control field gives rise to EIT.
Moreover, we found that the control field is established
by an interaction between the nuclear ensembles via dif-
ferent cavity modes, as the layer in the field node does
not directly couple to the driven guided mode. From
our numerical analysis we observe that this idealized case
is not strictly realized. Since the coupling coefficient is
small yet finite, also the resonantly driven mode gives
rise a coupling between the two layers in the cavity. Fur-
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FIG. 6. (Color online) Spectra of (a) the EIT and (b) the
non-EIT cavity at incidence angle θ ≈ 3.5 mrad, at which
the third guided mode is excited. The quantum optical de-
scription (blue solid lines) is in qualitative agreement with the
exact result derived with the Parratt formalism (red dashed
lines). Parameters are given in Appendix B.

thermore, the control field ΩC does not vanish in the
non-EIT case and hence the Lorentz-like spectrum can-
not be explained by its absence in the frame of our model.
Rather, in the non-idealized case it is the interplay with
other contributions to the reflection coefficient and their
interference which results in the Lorentzian spectrum.

SUMMARY AND DISCUSSION

In summary, we investigated the effect of multiple
modes and multiple ensembles of resonant Mössbauer nu-
clei in an x-ray cavity QED setup, which has recently
served as a platform for multiple experiments related to
x-ray quantum optics. Most of the time, the scenario
with a singe ensemble, realized by a layer of collectively
acting nuclei, has been studied theoretically [19] as well
as in several experiments [10–13]. The theoretical frame-
work of this work is applicable to also model experimental
settings with more than one resonant ensemble [16] and

interpret them from a quantum optical point of view.

Our theory from Sec. III is based on the approach taken
in Ref. [19] and constitutes a generalization with multiple
cavity modes and several layers of resonant Mössbauer
nuclei. Similar to the original theory, we were able to
simplify the basic equations using two well justified ap-
proximations. By adiabatically eliminating the cavity
modes and restricting the analysis to the linear regime,
effective equations of motion for the nuclear ensembles
could be derived. The resulting set of equations charac-
terizing the dynamics of a few-level system can easily be
solved analytically.

In Sections IV and V we discussed the consequences of
the two extensions to the theory in detail. By introduc-
ing multiple cavity modes to the model we found that the
spectral properties around the resonance of 57Fe are un-
affected. In absence of magnetic hyperfine splitting, the
nuclear response is given by Lorentz profiles, which are
shifted and broadened due to collective effects. The dif-
ferences to the predictions from Ref. [19] manifest only
in the coefficients entering the final expressions. How-
ever, a clear difference could be observed when the re-
flectance was studied as a function of the x-ray incidence
angle. While a single-mode theory can only indicate one
guided mode of the system at a time, our extension al-
lows to accurately model the reflectance over a range of
several mrad, reproducing all guided modes. Moreover,
we found that our model, which takes into account the
effect of the cavity and its modes, can be heuristically
extended to incorporate bulk material properties such as
the total reflection envelope. This way, a close agreement
with established semiclassical models could be achieved.
Further, the effect of multiple ensembles of 57Fe nuclei in
the cavity, located in different layers, was studied. This
extension alone did not give rise to qualitatively new ef-
fects.

Next, we analyzed the case in which both extensions
enter the theory at the same time, i.e. multiple cavity
modes and multiple resonant layers. We could show that
in this case the equations cannot be mapped to an effec-
tive two-level system, as the coupling coefficients between
the different nuclear ensembles and cavity modes are mu-
tually different and do not allow for a diagonalization in
which only one excited state is probed. Rather, more
advanced level schemes generally occur in this setting.

In the final part of this work we applied the general
theory to the setting, which was experimentally explored
in Ref. [16]. In this reference, EIT-like spectra could be
observed for a cavity with two layers of resonant iron
nuclei. We applied our quantum theoretical approach to
the setting and could successfully reproduce the findings.
An effective level scheme with one collective ground and
two collective excited states which captures the complete
system could be found and an analytic solution for the
reflection coefficient was given. For the idealized case
of perfectly placed layers in the cavity we found that
the nuclear response has indeed the spectral shape of a
system featuring EIT. In this process, we compared our
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result to the previously used semiclassical models and
observed agreement on the analytic level. In particular,
the scalings with respect to the number of atoms in the
respective ensembles are reproduced by our quantum op-
tical description. Most importantly, the question on the
nature of the control field, which forms a pivotal require-
ment of EIT, could be elucidated. From our analysis of
the idealized scenario we found that the radiative cou-
pling is mediated by the off-resonant cavity modes.

We further developed a way to consistently derive the
different coupling rates required for the model. This ap-
proach is based on an analysis of the cavity in the ab-
sence of nuclear resonances. Hence, the arising spectral
features can be traced back to the capability of our model
and are not due to a potentially biased parameter fit. In
our numerical data we observe a good agreement to the
results of semiclassical models and the essential features,
such as the signatures of EIT, are reproduced.

While we mainly analyzed the cavity properties in the
absence of magnetization, we emphasize that the ex-
tended theory description developed in this work is not
restricted to a vanishing magnetic hyperfine splitting in
the resonant layers. Rather, in our model it is possi-
ble to include all Zeeman sublevels properly. In future
works, this could be exploited to combine the effect of
multiple layers and modes, giving rise to the EIT-like
effects, and magnetization, leading to the phenomenon
of spontaneously generated coherences [12]. This way, a
broad class of quantum optical level schemes could be en-
gineered, indicating promising perspectives of x-ray cav-
ity QED with Mössbauer nuclei.
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Appendix A: Reflection curve envelope due to bulk
material properties

As explained in the main text, the quantum optical
theory can model the minima in the reflection curve R(θ)
indicating the guided modes of the cavity, whereas the
envelope formed by the total reflection behavior is not
part of the description (gray dotted line in Fig. 3). How-
ever, it can be included by combining the expressions of
the quantum optical model, describing the cavity struc-
ture, with an envelope function REnvelope(θ), which takes
into account the reflection of the bulk material. This
way, a good agreement to the semiclassical approaches is
achieved. For a single (infinitely thick) layer, the Fresnel
reflection coefficient reads

REnvelope(θ) =
sin (θ)−

√
sin (θ)

2
+ n2 − 1

sin (θ) +

√
sin (θ)

2
+ n2 − 1

, (A1)

where θ is the angle of incidence and n is the refractive
index of the material. For a platinum layer and at x-ray
energy 14.4 keV, the latter is given by [31]

n = 1− δ + iβ , (A2)

δ = 1.603365× 10−5 , (A3)

β = 2.56353× 10−6 . (A4)

Appendix B: Numerical parameters

In Tabs. IV and V we summarize the parameters for
our quantum optical theory, which we used in this work.

TABLE IV. Parameters for the EIT cavity.

Mode j θ
[j]
0 [mrad] κ[j] [γ] κ

[j]
R [γ] Ẽ [j]{1} Ẽ [j]{2}

1 2.55943 145807 6110 0.609 + 0.036 i 0.903 + 0.346 i
2 2.99211 533322 311376 2.105 + 1.795 i 0.818 + 0.810 i
3 3.54936 615909 275736 −0.031 + 0.440 i −1.683− 1.815 i
4 4.14850 783648 373532 −0.947− 1.130 i −0.244− 0.781 i
5 5.07939 1718031 767833 −0.370− 1.567 i 0.361 + 1.582 i

Note that the coefficients Ẽ [3]{1} for the EIT cavity and
Ẽ [3]{2} for the non-EIT cavity are near zero, indicative
of a field node at the location of the respective layers.
The asymmetry parameters r for the two respective cav-

ities, expected to be close to the value −1, were deter-
mined as rEIT ≈ −0.981 + 0.363 i ≈ −1.047 e−0.354i and
rnon-EIT ≈ −0.979 + 0.383 i ≈ −1.051 e−0.373i. For the
scaling parameter of the coupling coefficients the values

g̃{1}
√
N{1} = g̃{2}

√
N{2} = 1983.89 γ were used.
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TABLE V. Parameters for the non-EIT cavity.

Mode j θ
[j]
0 [mrad] κ[j] [γ] κ

[j]
R [γ] Ẽ [j]{1} Ẽ [j]{2}

1 2.58446 242554 150696 1.889 + 1.613 i 0.957 + 0.935 i
2 2.96021 311202 48680 −0.760− 0.140 i −1.648− 1.160 i
3 3.55108 607732 342667 −1.631− 2.086 i −0.058− 0.332 i
4 4.17107 922367 453227 0.203− 0.067 i 1.031 + 1.606 i
5 5.09251 1844998 833796 0.217 + 1.585 i −0.203− 1.604 i
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