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The density-functional approach to quantum electrodynamics is extending traditional density-functional
theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham
potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a
prototype system which consists of a trapped electron coupled to a quantized electromagnetic mode in an
optical high-Q cavity. While the effective current that acts on the photons is known explicitly, the exact
effective potential that describes the forces exerted by the photons on the electrons is obtained from a
fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features
of the effective potential which mark the breakdown of classical light-matter interactions. We observe
peak and step structures in the effective potentials, which can be attributed solely to the quantum nature
of light, i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole
interaction with a classical electromagnetic field has to be modified in real-space in order to take the
quantum nature of the electromagnetic field fully into account.

In the last decades, the quantum nature of light has in-
spired many experimental and theoretical developments in
physics. In particular, the fields of cavity [1] and circuit [2]
quantum electrodynamics (QED) have recently seen excep-
tional progress. For instance, slow photons in vacuum [3]
and two-ion superradiant states [4] have been observed,
and only recently the chemical landscape of a molecule
has been modified using strong coupling to photons [5, 6],
which can be also termed QED chemistry.
However, traditional ab-initio approaches developed to in-
vestigate large quantum systems (see, e.g., [7–12]) are
not fully applicable in situations where the quantum na-
ture of light becomes important. These many-body meth-
ods ignore typically the quantum-mechanical coupling to
photons and usually take only the classical Coulomb in-
teraction into account. Recently, an approach that treats
particles (electrons, ions) and the photons on equal foot-
ing and closes the gap between traditional many-body
and quantum-optical methods has been proposed [13–
15]. This so-called quantum-electrodynamical density-
functional theory (QEDFT) allows to represent the cou-
pled particle-photon system by two uncoupled, yet non-
linear auxiliary quantum systems. The resulting multi-
component Kohn-Sham systems are subject to effec-
tive potentials that take into account the particle-particle
(Coulomb) interaction and the particle-photon interaction.
If we employ approximations to this new type of Kohn-
Sham potentials, the resulting equations become numer-
ically feasible and ab-initio calculations of large quan-
tum systems coupled to photons are possible [16–18].
While a wealth of approximations to the particle-particle

interaction part of the effective potential are known (see,
e.g., [8, 9, 19]) at the moment there is only one approxi-
mation for the particle-photon part of the effective poten-
tial beyond the classical mean-field approximation avail-
able [20]. Indeed, besides its existence and uniqueness, so
far nothing is known about the exact real-space properties
of this particle-photon effective potential and how it mod-
els the interaction between charged particles and quantized
photon fields.
In this letter, we present the exact space- and time-resolved
Kohn-Sham potential for a coupled multi-component
electron-photon system in an optical cavity. The proto-
type system that we consider in the present work is a two-
dimensional quantum ring containing one electron that is
coupled to a single photon mode. We construct the exact
effective potential by a fixed-point procedure [21–24] and
study ground-state properties as well as the time-evolution
of the electron-photon system. In the first case we identify
electronic states in the weak and strong-coupling regime,
which cannot be generated by any classical light field in
dipole approximation. In the time-dependent framework,
we analyze the quantum effects of the photon field by
putting the field initially into (1) a coherent state and (2)
a linear superposition of two Fock number states and show
when the quantum nature of the photon field induces the
dominant contribution to the Kohn-Sham electron-photon
exchange-correlation (xc) potential. Here we find that
the electron-photon interaction is responsible for steps and
peaks in the exact Kohn-Sham potential. Similar steps and
peaks have been found in purely electronic time-dependent
density functional theory (TDDFT) in e.g., charge-transfer
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processes [25, 26], but these exact features have so far
only been observed for the time-dependent case in one-
dimensional models [25].
The static and dynamical behavior of the coupled electron-
photon systems that we consider in the present work is
given by the following Hamiltonian [14, 15],

Ĥ =
∑
i

(
− ~2

2m
~∇2
i + vext(rit)

)
+

e2

4πε0

∑
ij,i>j

1

|ri − rj|

+
∑
α

1

2

[
p̂2α + ω2

α

(
q̂α −

λα
ωα
· R
)2
]

+
jαext(t)

ωα
q̂α.

(1)

The first part of the Hamiltonian describes the electronic
subsystem and contains the non-relativistic kinetic energy,
the external-potential energy due to a classical external po-
tential vext(rt) and the Coulomb-interaction energy. The
second part of the Hamiltonian accounts for the presence
of the photons, where the electron-photon interaction is
described in dipole approximation, i.e, the dipole-moment
operator R =

∑
i ri couples linearly to the photon dis-

placement coordinate q̂α =
√

~
2ωα

(
â†α + âα

)
, which is

proportional to the quantized displacement field compo-
nent of the αth mode, i.e, D̂α = ε0ωαλαq̂α/e. Although
we restrict ourselves here to dipole-coupling, all findings
shown below also apply for beyond-dipole situations. The
electron-photon coupling is given by λα = λαeα, where
eα is the polarization vector of the photon field. (For later
reference, we measure λα in units of [

√
meV/nm]). In ad-

dition, the Hamiltonian contains a quadratic electron self-
interaction λ2

αR2/ω2
α and the photons interact furthermore

with a classical external current jαext(t). We emphasize that
both external potentials, i.e., vext(rt) and jαext(t), can be
used to control the quantum system.
In QEDFT the electron-photon system is exactly described
by two reduced quantities that couple to the external con-
trol fields [13–15]. In the case of the Hamiltonian (1)
these reduced quantities are the usual electronic density
n(rt) = 〈n̂(r)〉, where n̂(r) =

∑
i δ(r − ri), and the

expectation value of the photon coordinates qα(t) = 〈q̂α〉.
In principle, we only need to calculate these expectation
values and can then determine (for a fixed initial state)
all properties of the electron-photon system. To calculate
n(rt) and qα(t) one only needs to solve the corresponding
coupled equations of motions for these two basic variables
in the system, i.e., the Ehrenfest equations [14, 15]

∂2
t qα(t) = ωαλα · R(t)− ω2

αqα(t)− jαext(t)

ωα
, (2)

∂2
t n(rt) = ~∇ ·Q(rt) +

1

m
~∇ ·
(
n(rt)~∇vext(rt)

)
+
∑
α

λα · ~∇〈Ψ| n̂(r) (λα · r− ωαq̂α) |Ψ〉 ,

(3)

ωα

electron-photon
 coupling λα

n(t0 )

vext

FIG. 1. The figure schematically illustrates a two-dimensional
optical cavity containing one atom, with a single electron. The
coupling of the electron to the cavity mode at resonance fre-
quency ωα and with electron−photon coupling strength λα mod-
ifies the dynamics of the electron density n(rt), which moves in
the external potential vext(rt).

with the local-force density of the electrons given by
Qk(rt) =

∑
l ∂lTkl(rt) + Wk(rt), where the first term

describes the momentum-stress forces and the second term
is responsible for the forces due to the particle-particle in-
teractions. In order to solve these implicit equations, we
would need to find explicit expressions in terms of n(rt)
and qα(t) for the different force densities. We note, that
in the equations of motion for the photon coordinates all
terms are explicitly known, and hence the unknown ex-
pressions that take care of the proper description of the
electron-photon interactions are contained solely in the
electronic equation. To make approximations for these
unknown quantities easier, one can adopt a Kohn-Sham
scheme, such that approximations in terms of the force den-
sities of the uncoupled and non-interacting system become
possible. This approach has been applied highly success-
fully to electronic-structure calculations (see, e.g., [8, 9,
19]). In a Kohn-Sham approach to the electron-photon
system the missing forces are accounted for by the ef-
fective potential vs(rt) that naturally splits into two parts
vs(rt) = vext(rt) + vMxc(rt), where vext is the external
potential of the original problem, and vMxc (Mean-field-
exchange-correlation) denotes the effective potential due
to the interaction with the photons. In general, vs(rt) con-
tains both, the contributions due to the Coulombic electron-
electron repulsion in the original many-body problem, and
in addition the contributions from the electron-photon in-
teraction, here in dipole approximation. However, since
our aim is to investigate the effective potentials due to the
coupling between photons and electrons, we restrict our-
selves here to a single electron in an semiconductor GaAs
quantum ring, which is placed in a cavity and is assumed
to couple to a specific cavity photon mode, as depicted
schematically in Fig. 1. This restriction to a single elec-
tron has the advantage that we only have contributions of
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the electron-photon interaction in the effective Kohn-Sham
potential vs(rt) and can exclusively study only their behav-
ior. We treat the electron in this semiconductor medium by
using an effective massm = 0.067me [27] and we employ
vext(r) = 1

2
mω2

0r2+V0e
−r2/d2 , where r2 = x2+y2, to de-

scribe the quantum ring. This potential effectively confines
the electron in a harmonic trap, which contains a Gaus-
sian peak in the center. For the system at hand, we choose
the experimental parameter values [27] ~ω0 = 10meV,
V0 = 200meV, d = 10nm, and the effective dielectric
constant κ = 12.7ε0. The two-dimensional electronic sys-
tem has a non-degenerate ground state and a two-fold de-
generacy in the excited states [27]. We choose the photon
frequency ωα in resonance with the transition between the
ground state and the first excited state in the electronic sys-
tem. Thus, ~ωα = 1.41meV. For simplicity, we restrict
ourselves to one of the two independent polarization direc-
tions of the field mode and use eα = (1, 1) without loss of
generality.
The Kohn-Sham scheme then decouples the two subsys-
tems, which leads us to two evolution equations of the form

i~∂tφ(rt) = − ~2

2m
~∇2φ(rt) + vs(rt)φ(rt), (4)

i~∂t |α, t〉 =
1

2

[
p̂2α + ω2

αq̂
2
α

]
|α, t〉+

jαs (t)

ωα
q̂α |α, t〉 ,

(5)

where the Kohn-Sham photon wavefunction is given by
|α, t〉 =

∑
n cn |n, t〉 and |n, t〉 are the Fock number

states of cavity mode α. The Kohn-Sham construction fur-
thermore requires that the initial state of the Kohn-Sham
system has to have the same density n(r, 0) and time-
derivative ṅ(r, 0) as the coupled system. The same is
required for the basic variable in the photon system, i.e.,
qα(0) and q̇α(0).
To determine the in general unknown effective poten-
tial vs(rt) in terms of n(rt) and qα(t), we use a fixed-
point method originally developed for purely electronic
TDDFT [21–24]. Although naively one could expect that
a fixed-point iteration is also needed to determine the ef-
fective current jαs (t), from Eq. (2) this current is known
explicitly, i.e., jαs (t) = jαext(t) + ω2

αλα · R(t). Hence we
only need to determine vs(rt), for which we use the fixed-
point formula

−~∇ ·
(
n(rt)~∇vk+1(rt)

)
= ∂2

t [n([vk], rt)− n(rt)]

− ~∇ ·
(
n([vk], rt)~∇vk(rt)

)
.

(6)

To find the fixed-points of this equation, we solve first the
Schrödinger equation for vk (using zero-boundary condi-
tions) and from the exact many-body solution we deter-
mine the corresponding n[vk]. Next, we employ a multi-
grid solver to invert the Sturm-Liouville problem in Eq. 6,

which yields vk+1. This procedure is repeated until con-
vergence to the fixed-point has been reached. To speed
up convergence, we employ a direct inversion in the iter-
ative subspace (DIIS) approach [28]. We have tested the
validity of this approach in the time-independent situation
by comparing to the well-known analytic inversion formula
for one-electron and two-electron singlet problems [29]

v(0)s (r) =
~2

2m

~∇2
√
n0(r)√
n0(r)

+ E0. (7)

First, let us investigate the effective potential in the case
of the ground state of the multi-component system. Us-
ing exact diagonalization [30], we are able to calculate the
exact ground state of the correlated electron-photon sys-
tem. We use a 127x127 two-dimensional real-space grid
for the electron and 40 photon number states. This amounts
to a dimensionality of the full problem of 127x127x40
= 645160 basis functions. From this we then determine
with the above iteration procedure the exact vs. Since we
treat the interaction with the photon field in dipole ap-
proximation, the classical field contribution to the effec-
tive potential is vM(rt) = ωαλαqα(t) · r. If the impact
of the quantum nature of the cavity light field would be
negligible, the classical field would be the only contribu-
tion. Thus, if we use that vMxc = vM + vxc, the non-
dipole corrections (to all orders in r) due to vxc are a di-
rect measure of the non-classical light-matter interaction.
In Fig. 2 (a) we show a ground-state density in the weak-
coupling case (λα = 0.0135meV1/2/nm). Compared to
the cavity-free case, we see a slight prolongation of the
density along the x = y axis. If we increase the coupling
(λα = 0.54meV1/2/nm) this feature becomes more dom-
inant and the charge density of the electron becomes even
separated (see Fig. 2 (b)). If we consider the Mxc poten-
tial we observe a peak in the middle of the cavity, which
models the forces that the photons exert on the electron to
elongate its charge distribution (see Fig. 2 (c) for weak-
coupling and Fig. 2 (d) for strong-coupling). In Fig. 2 (e)
and (f), we show diagonal cuts through vMxc(r) for the
weak (blue) as well as the strong coupling (red) regime. We
see how vMxc pushes the density further apart the stronger
the coupling becomes. Such a splitting can not be gener-
ated using a static classical field in dipole coupling. Hence
the non-dipole contributions of the vMxc mark the non-
classical interaction with the photons and are a necessary
feature to model the exact forces exerted by the photons
on the charged particles. To further substantiate our find-
ings we have determined the photon-number expectation
value 〈â†αâα〉 as well as the purity γ = Tr

(
ρ2ph
)

of the
ground state, where ρph is the reduced photon density ma-
trix. Here, a purity value that deviates from 1 indicates
that the state is not factorizable into photon and electron
wave functions. Therefore, the purity is a measure for
electron-photon entanglement. For weak coupling we have
1.18 · 10−3 photons and γ = 0.999763 and for strong
coupling we find 0.655 photons in the ground-state with
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FIG. 2. (Color online) Panel (a) shows the ground-state den-
sity for a weak-coupling case with λα = 0.0135meV1/2/nm
and in panel (b) we illustrate a strong-coupling case with λα =

0.54meV1/2/nm. The corresponding ground-state Mxc poten-
tial for λα = 0.0135meV1/2/nm is displayed in (c) and for
λα = 0.54meV1/2/nm displayed in (d). In (e) and (f) cuts
(blue λα = 0.0135meV1/2/nm and red λα = 0.54meV1/2/nm)
through vMxc along the diagonal(c) /antidiagonal(d) are shown.
The white arrow in (a) indicates the polarization direction of the
field mode.

γ = 0.5969. This clearly indicates that the ground state is
a hybrid-state of the photons and the electron with stronger
entanglement in the strong-coupling regime. A further pa-
rameter that we consider in our analysis is the Mandel Q
parameter [31]

Q =
〈â†αâ†αâαâα〉 − 〈â†αâα〉2

〈â†αâα〉
, (8)

which measures the deviation of the photon statistics

from a Poisson distribution and thus is a measure for the
quantum nature of the photonic subsystem. If the field
is in a quasi-classical state, i.e., in a coherent state, then
Q = 0. For weak coupling we find Q = 3.87 · 10−4,
while for strong coupling we have Q = 0.3361. This
further supports that this model has a highly non-classical
ground state of the coupled matter-photon system.
Next, we turn our attention to the time-dependent situation.
As initial states of the combined matter-photon system
(as well as for the corresponding Kohn-Sham system) we
consider two different cases. In both cases we choose
factorizable initial states, which consist of the electronic
ground state of the unperturbed quantum ring and the
photon field in (1) a coherent state with 〈â†αâα〉 = 4
and in (2) a superposition of the vacuum state and the
one-photon state with 〈â†αâα〉 = 0.5. In both exam-
ples, we choose the electron-photon coupling strength
λα = 0.027meV1/2/nm. To numerically propagate the
system, we use a Lanczos scheme and propagate the
initial state in (1) 160000 ((2) 360000) timesteps with
∆t = 0.146fs. We start with the analysis of example (1).
Here, we compare the exact dynamics to the dynamics
induced by the (self-consistent) classical mean-field
approximation. In Fig. 3 (a) we display the time evolution
of the exact experimentally accessible dipole moment
(black) and contrast it to the classical approximation
(red). Since the field is initially in a coherent state and
resembles a classical field, the evolution of the classical
approximation is for small times similar to the exact one.
Between t = 0ps and t = 6ps, the classical approximation
is the dominant part for most of the time in vMxc(rt) (see
Fig. 3 (c)). Nevertheless, also in this time interval we
find large beyond-dipole corrections to vMxc(rt), which
appear at the turning points of the dipole evolution and
vanish afterwards. Precisely at these times, we observe
several peaks and steps in the two-dimensional surface
plot of the effective potential (see Fig. 3 (f) and (i)) that
describe the non-classical forces due to the interaction
with the photon mode. After t = 6ps, the beyond-dipole
correction becomes the dominant part in vMxc(rt) and we
find a dominating peak in the two-dimensional surface
plot (see Fig. 3 (l)). The peak structure of vMxc becomes
clearly visible in Fig. 3 (g), (j), and (m), where we plot the
diagonal of vMxc for the different timesteps. To further
analyze this time-dependent system, we computed the
(now time-dependent) Mandel Q(t) parameter and the
purity γ(t).
In Fig. 3 (b) we contrast the exact results (black) to those
found from the mean-field calculation (red). The purity
(dotted black) as well as the Mandel Q(t) parameter (solid
black) are in agreement with our previous observations,
namely that around t = 6ps, where these parameters start
to deviate more strongly from the mean-field values, the
classical description breaks down. We point out, that in
our (decoupled) Kohn-Sham system these parameters are
by construction constant and equivalent to the mean-field
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FIG. 3. (Color online) Coherent state as initial state for the photon mode: In (a) we display the dipole of the exact (black) and
mean-field (red) time evolution. In (b) we contrast the exact Mandel parameter Q(t) (see text for definition) (solid black) and γ(t)
(dotted black) with the corresponding mean-field values (red). In (c), (f), (i) and (l) the corresponding Mxc potentials at different times
(t = 0, 3.67, 4.53, 7.29 ps), in (d), (g), (j) and (m) the corresponding diagonal cuts of the Mxc potentials, and in (e), (h), (k), and (n)
we present the corresponding densities. The inset in (b) shows Q(t) between t=3ps and 5ps. The negative Q(t) in the exact solution
indicates nonclassical behavior in the photon mode. Supporting information (SI) Movie 1 shows the full time-evolution from 0ps to
23ps.

values, and the Kohn-Sham photon field only changes
the number of photons in the coherent state. Hence, the
values of these parameters become non-trivial functionals
of the initial state as well as n and qα. In particular
the assessment of the purity allows us to conclude that
the peaks in vMxc are associated with how close to a
factorizable (electronic) state the many-body system is.
For small times, the system remains close to a factorizable
state (purity value close to 1) and we find peaks and steps
only at the turning point of the dipole moment, while
later in time memory effects become dominant and cause
permanent peaks and steps. Finally we note that while we
have termed all beyond-dipole contributions to vMxc(rt)
as non-classical (since they come solely from the quantum
nature of light), the non-classicality of the photon field
alone is often associated with a negativeQ(t). In Fig. 3 (b)
we have thus provided an inset to highlight that (up to
t = 5ps, see inset) such sub-Poissonian statistics, which
cannot be described by any probability distribution in

phase space, are also present in our prototype system.
Next, we analyze in detail our example (2) in Fig. 4. We

again compare the exact dynamics to the time-evolution
induced by the (self-consistent) classical mean-field
approximation. For the photon mode we chose in this
example as initial state a superposition of the lowest two
Fock number states. Although the field is in this case
initially in a state that is not resembling a classical situa-
tion as in our first example, the evolution of the classical
approximation is for small times similar to the exact one.
Between t = 0ps and t = 2ps, the classical approximation
is the dominant part for most of the time in vMxc(rt) (see
Fig. 4 (c)). Nevertheless, also in this time interval we find
large beyond-dipole corrections to vMxc(rt). After the first
turning points of the dipole evolution, a dominant peak
in vMxc appears (see Fig. 4 (f). Later, we observe again
several peaks and steps appearing in the two-dimensional
surface plot of the effective potential (see Fig. 4 (f) and (i))
that describe the non-classical forces due to the interaction
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FIG. 4. (Color online) Superposition of Fock number states as initial state for the photon mode: In (a) we display the dipole of the exact
(black) and mean-field (red) time evolution. In (b) we contrast the exact Q(t) (solid black) and γ(t) (dotted black) with the correspond-
ing mean-field values (red). In (c), (f), (i) and (l) the corresponding Mxc potentials at different times (t = 0, 1.56, 13.92, 37.83 ps), in
(d), (g), (j) and (m) the corresponding diagonal cuts of the Mxc potentials, and in (e), (h), (k) and (n) we present the corresponding
densities. SI Movie 2 shows the full time-evolution from 0ps to 50ps.

with the photon mode. After t = 2ps, the beyond-dipole
correction becomes the dominant part in vMxc(rt) and we
find a dominating peak in the two-dimensional surface
plot. The peak structure of vMxc becomes clearly visible
in Fig. 4 (g), (j),and (m), where we plot the diagonal
of vMxc for the different timesteps. The purity (dotted
black) as well as the Mandel Q(t) parameter (solid black)
are in agreement with our previous observations in the
coherent state example, that around t = 2ps, where
these parameters start to deviate more strongly from the
mean-field values, the classical description breaks down.
For small times, the system remains close to a factorizable
state, while later memory effects become dominant and
cause permanent peaks and steps.
Both examples shown in Fig. 3 and Fig. 4 nicely illustrate
how a Kohn-Sham approach can exactly describe the
different regimes of quantized photon fields that interact
with matter. Additionally, we provide in SI Movie 3 a
supplementary example of a correlated electron-photon
propagation with non-factorizable initial state driven by an
external laser pulse.
In conclusion, we have presented the real-space signatures

of the exact effective potentials for a Kohn-Sham approach
to cavity QED. We have identified step and peak structures
which are reminiscent of the steps and peaks in the exact
Kohn-Sham potential of traditional DFT, but arise here
solely due to the coupling to quantized photon fields.
These effective potentials account for the forces that
the photons and the electrons exert on each other if we
employ an uncoupled Kohn-Sham system to describe
the coupled matter-photon system. Provided we have a
good approximation to the effective potential [20], which
includes the here observed peak and step structures due to
the non-classical light-matter interaction, the Kohn-Sham
approach can be used to perform ab-initio calculations of
large quantum systems interacting with photons in a high-
Q cavity. In this case we have a valuable computational
tool for QED chemistry [5, 6], which would open up a new
field of research for the electronic-structure community.
Besides developing approximations to the Mxc potential,
a further important line of research is the extension of
the current work to cavities with loss [15], which is the
standard situation in most cavity-QED experiments. Work
along these lines is currently in progress in our group.
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