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In this supplementary material, we investigate the depletion of condensate during the π pulse pumping and present
the equations of motion as well as the condensate dynamics in more details.
π pulse Pumping. The equations describing an optically pumped condensate read
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where Ωpump is the Rabi frequency of the pumping beam and Γ is the spontaneous decay rate of the exited level |e〉,
which decoheres the BEC wave function and plays the major role of heating mechanism. To investigate condensate
depletion during the optical pumping in the presence of incoherent processes, we first prepare a initial state where
all the atoms are condensed in the state |g〉 with the initial total particle number NBEC = 106 and then turn on the
pumping field with the duration ∆t such that Ωpump∆t = π. In the numerical simulations, we consider four different
pumping durations ∆t = 0.001µs, 0.1µs, 1µs, and 10µs. For the pulse duration shorter than 1/Γ ∼ 1µs the condensed
atoms in |g〉 can be coherently transferred to the excited level |e〉 as shown in Fig. S1. For the pulse duration shorter

FIG. S1. Panels a-d show the condensate populations in the ground level |g〉 (blue line) and excited level |e〉 (green line) where
the atoms are pumped by a resonant π pulse of duration ∆t = 0.001µs, 0.1µs, 1µs, and 10µs, respectively.

than 1/Γ the atom number transferred to the excited state reaches its maximum right after the pumping field is off as
shown in Fig. S1 a-c. On the other hand, for ∆t > 1/Γ, the spontaneous emission becomes important and significantly
and suppresses the number of coherently excited atoms as depicted in Fig. S1 d. Nevertheless, even for ∆t = 10µs
there are still around 105 atoms coherently excited. Therefore under the condition Ωpump > Γ (i.e. ∆t < 1/Γ), the
π pulse pumping offers sufficient atom number for the superradiant process. The required π pulse laser power for
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the relevant Lithium transition is estimated to be around 1 − 10W/cm2 depending on ∆t, and it is achievable with
commercial laser systems.
Optical Bloch Equation. In the presence of counter-propagating coupling fields Ω±c and the superradiant fields
Ω±, the dynamics of the EIT mirror is described by the optical-Bloch equation which reads [S1–S5]:
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where Γ is the spontaneous decay rate of the excited state |3〉 and ρij is the element of the density matrix. In
equations (S2)-(S7), all fast-oscillation exponential factors associating with center frequencies and wave factors have
been eliminated, and only slowly-varying profiles are retained.
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FIG. S2. Panels a-d show the dynamics of the binary BEC inside the EIT cavity of dopt = 500 and Ωc = 2Γ within 2 µs.
The evolution of the condensate densities in momentum space are shown in panels a and b where the high odd kp modes are
generated in ψg while the even kp modes are generated in ψe. Panel c shows the optical coherence σeg. The coherent transfer
of the BEC particle number from states |e〉 (green line) to |g〉 (blue solid line) is shown. Panels e-h represent the time-of-fight
simulation after the condensate is released from the cavity and harmonic trap. Panels e-g are the density components carry
the momenta ±kp, ±3kp, and ±5kp, respectively. The total density profile |ψg|2at tTOF = 1.8 ms. The contrast of the 2D plots
is adjusted for better visualization.

Dynamics of BEC. When the condensate is loaded in the dispersive cavity, in the presence of the interaction between
the circulating SR fields and condensate, the condensate wave functions ψg and ψe constitute the superposition of
discrete ±(2n + 1)kp and ±2nkp plane waves, respectively. In this manner the condensate wave function can be
decomposed as :
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where ψ
(n)
e,g are slowly-varying profiles. As depicted in Fig. S2 a and b, the momentum-space density profile of single

realization of dopt = 500 and Ωc = 2Γ shows the clear generation of these discrete ±nkp modes. Furthermore the
Fourier transform of the coherence σeg depicted in Fig. S2 c shows clear superposition of ±nkp modes. The coherent
SR-BEC interaction results in the Rabi oscillation in short time scale and transfers most of the atoms to the ground
state while the rest of them decay to other states due to the incoherent spontaneous processes as shown in Fig. S2 d.
The Rabi oscillation is the consequence of the strong atom-light coupling.

The generation of the highest ±nkp mode is limited by the competition between the linewidth of the superradiance
and the recoil-induced Doppler shift which is given by ∆ωn ≈ ΓSR where ∆ωn = ±~nkpω/(mc) is the Doppler shift
of n-th mode with ω the transition frequency and c the speed of light. In order to generate the harmonics as high as
possible, one can use a heavier atom, e.g., 87Rb, with lower recoil velocity.

After passing through the cavity, the dynamics of the condensate is described by the single component Gross-
Pitaevskii equation which reads
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where we neglect the cross-species and atom-light interactions.
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FIG. S3. Panels a-d The controllability of the cavity is shown for dopt = 500 and Ωc = 2Γ within 2 µs where the coupling
fields are switched off at t = 0.07 µs. The evolution of the condensate densities in momentum space are shown in panels a
and b where the only ±3kp modes are significantly generated in the ground state. Panel c shows the optical coherence σeg.
The coherent transfer of the BEC particle number from states |e〉 (green line) to |g〉 (blue solid line) is shown. Panels e-h
represent the time-of-fight simulation after the condensate is released from the cavity and harmonic trap. Panels e-g are the
density components carry the momenta ±kp, ±3kp, and ±5kp, respectively. The total density profile |ψg|2at tTOF = 1.5 ms.
The contrast of the 2D plots is adjusted for better visualization.

During the time of flight (TOF) measurement, the condensate would split into several atomic clouds which corre-
sponds to different ±nkp modes. To simulate the TOF dynamics, we follow the standard procedures in Refs. [S6–S8]
to numerically integrated the time-dependent GPE, equation. S8. To describe the motion of the cloud with different
±nkp, the TOF simulation domain is extended to 7L where L is the simulation domain in the presence of harmonic
trap.

As shown in Fig. S2 e-h, we perform the TOF simulation for ∆tTOF = 1.5 ms. In Fig. S2 e-g, the evolution of
the condensed atoms carrying momenta are plotted and the velocities can be calculated from the slopes which agrees
with the expected values, ±~kp/m, ±3~kp/m, and ±~kp/m. In Fig. S2 h, the total density distribution at tTOF = 1.5
ms is shown where six density bumps that are symmetric to the origin can be observed. The two innermost density
bump pair in Fig. S2 h corresponds to the ±kp modes while the density bump pair located around z = ±0.5 mm is
±3kp modes and the outermost pair carries ±5kp momenta.
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In addition, to control the generation of the momentum modes up to specific ±nkp mode can be controlled by
switching off the coupling fields Ωc. For instance, in Fig. S3, the coupling fields are turned off at 0.07 µs where only
±3kp modes are significantly generated and the amplitude of Rabi oscillation is suppressed. In the TOF simulation
as shown in Fig. S3 e-h only ±3kp modes can be clearly observed .
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[S7] T. Lahaye, J. Metz, B. Fröhlich, M. Meister, A. Gresmaier, T. Pfau, H. Saito, Y. Kawaguchi, and M. Ueda, “d-wave
collapse and explosion of a dipolar bose-einstein condensate,” Phys. Rev. Lett. 101, 080401 (2008)
.
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