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Many applications in photonics require all-optical manipulation of plasma waves1, 

which can concentrate electromagnetic energy on sub-wavelength length scales.  

This is difficult in metallic plasmas because of their small optical nonlinearities. 

Some layered superconductors support weakly damped plasma waves2,3, involving 

oscillatory tunneling of the superfluid between capacitively coupled planes. Such 

Josephson plasma waves (JPWs) are also highly nonlinear4, and exhibit striking 

phenomena like cooperative emission of coherent terahertz radiation5,6, 

superconductor-metal oscillations7 and soliton formation8. We show here that 

terahertz JPWs in cuprate superconductors can be parametrically amplified 

through the cubic tunneling nonlinearity. Parametric amplification is sensitive to 

the relative phase between pump and seed waves and may be optimized to achieve 

squeezing of the order parameter phase fluctuations9 or single terahertz-photon 

devices. 



 

 

Cuprates are strongly anisotropic superconductors in which transport is made 

three-dimensional by Josephson tunneling between the Cu-O planes. Tunneling 

reduces the superfluid density in the direction perpendicular to the planes and 

hence the frequency of the plasmon to below the average pair breaking gap. Weakly 

damped oscillations of the superfluid sustain transverse Josephson Plasma Waves 

(JPWs) that propagate along the planes.  

Consider a complex superconducting order parameter in the ith Cu-O plane 
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ityxtyx θψψ = , which depends on two in-plane spatial coordinates x 

and y and on time t. For a THz-frequency optical field polarized perpendicular to the 

planes, excitations above the superconducting gap are negligible and the modulus of 

the order parameter ψ 2
(number of Cooper pairs) is nearly constant in space and 

time. Hence, the electrodynamics is dominated by the order-parameter phase 

),,( tyxiθ . Ignoring at first the spatial dependence of the phase, the local tunneling 

strength can, from the Josephson equations10, be expressed in terms of an 

equivalent inductance, L, which depends on the local interlayer phase difference 

)()()( 11, ttt iiii +=+ −θθθ as L(θi,i+1(t)) ~ L0 / cos(θi,i+1(t))   

(i and i+1 are the indices for two neighboring layers). Here
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h=  is the 

inductance at equilibrium, h  the reduced Planck’s constant, 2e the Cooper pair 

charge and Ic  the critical current. Denoting the capacitance of the Cu-O planes with 

a constant C, we express the Josephson Plasma Resonance (JPR) frequency as
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Correspondingly, the oscillator strength f for the plasma oscillations11 is also a 

function of the interlayer phase and scales as f = f0 cos[θi,i+1(t)] . The dependence of 

the oscillator strength f on the cosine of the superconducting phase corresponds to a 

third order optical nonlinearity.  

According to the second Josephson equation10, the interlayer phase difference 

θi,i+1(t) 
advances in time with the time integral of the interlayer voltage drop, as 
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 . For an optical field made resonant with the Josephson plasma 

frequency E(t) = E0 sin(ωJP0t) , the interlayer phase oscillates as θi,i+1(t) =θ0 cos(ωJP0t) , 

where E0  is the field amplitude and 0
0

0

2
E

ed

JPω
θ

h
=  (d ~ 1 nm is the interlayer 

distance). This implies that the oscillator strength
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ωθθωθ  is modulated at a 

frequency 02 JPω , whenever the field E0 is large enough to make the phase excursion 

θ0 sizeable.  

Figure 1 provides a pictorial representation of this physics. We plot a vector that 

represents both the phase difference θi,i+1(t) (vector angle) and the oscillator strength 

fi,i+1(t)  (vector length). This picture shows how, for small driving fields, only θi,i+1(t) 

oscillates at the driving frequency ωJP0 , whereas for larger fields these oscillations 

are accompanied by a 02 JPω modulation of the oscillator strength fi,i+1(t) . 



 

 

Note also that the phenomena discussed above can be casted in terms of a Mathieu 

equation (see Supplementary Section S1). Thus, a 2ωJP0 modulation of the oscillator 

strength can serve as a pump for the parametric amplification of a second, weak 

plasma wave at frequency 0JPω . In this paper we demonstrate experimentally this 

effect in La1.905Ba0.095CuO4 (LBCO9.5), a cuprate superconductor with the equilibrium 

JPR at 5.00 ≅JPω THz. 

Terahertz pulses, generated with a photoconductive antenna12, were used as a weak 

probe of JPWs. A typical THz-field trace13 reflected by the sample is shown in Fig. 2A. 

Two different measurements are displayed: one taken below (red line) and the 

other one above (black line) the superconducting transition temperature Tc = 32 K. 

In the superconducting state, long-lived oscillations with ~ 2 ps period were 

observed on the trailing edge of the pulse, indicative of the JPR at 5.00 ≅JPω THz. 

Figure 2B (solid red line) displays the corresponding reflectivity edge in frequency 

domain. The solid lines in Fig. 2C -2D are the complex dielectric permittivity ε(ω) 

and the loss function 2
21
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−=L . L(ω) peaks at 0JPω , 

where the real part of the dielectric permittivity, )(1 ωε , crosses zero. 

These optical properties could be well reproduced by solving the wave equation in 

the superconductor in one dimension8 (see Supplementary Section S2), which yields 

the space and time dependent order parameter phase θi,i+1(x, t)  (Fig. 2E) and the 

corresponding changes (negligible in linear response regime) of the oscillator 

strength f = f0 cos[θi,i+1(x, t)]  (Fig. 2F). The reflectivity, complex permittivity, and 



 

 

loss function (dashed lines in Fig. 2B, 2C, and 2D, respectively), calculated from 

these simulations by solving the electromagnetic field at the sample surface8, are in 

good agreement with the experimental data.  

Amplification of a weak JPW like the one above (probe field) was achieved by mixing 

it with a second, intense pump field, which resonantly drove the Josephson phase to 

large amplitudes. Quasi-single cycle THz pulses, generated in LiNbO3 with the tilted 

pulse front method14 (yielding field strengths up to ~100 kV/cm), were used to 

excite these waves in nonlinear regime. The spectral content of these pulses 

extended between 0.2 and 0.7 THz, centered at the JPR frequency (see 

Supplementary Section S3). Note that the pump field strength used in this 

experiment exceeds the expected threshold to access the nonlinear regime, defined 

by 1~
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~ 20 kV/cm. 

In Fig. 3, we report the time-delay dependent, spectrally integrated pump-probe 

response of LBCO9.5. Changes in the reflected probe field were measured at one 

specific point along the internal delay trace of the probe, as a function of pump-

probe time delay. For a system in which the optical properties are dominated by a 

single plasma resonance, the spectrally integrated response is proportional to the 

plasma oscillator strength f.   

As shown in Fig. 3A-3B, this integrated response exhibits a reduction of the 

reflectivity and oscillations at a frequency ~ 02 JPω . Note that the oscillation 

frequency did not depend on the pump electric field strength E0, while the frequency 



 

 

reduced when the base temperature of the experiment was increased, consistent 

with the reduction of the equilibrium 0JPω  (see Supplementary Sections S4 and S5). 

The effect completely disappeared at T > Tc.   

Hence, the theoretically predicted 02 JPω modulation of the total oscillator strength f 

(see above) is well reproduced by the data in Fig. 3. This response could also be 

simulated using the space- and time-dependent sine-Gordon equation (see Fig. 3C- 

3D). Good agreement between experiment and theory was obtained (see dashed 

lines in Fig. 3A-3B). 

Selected time-domain probe traces measured before and after excitation are 

displayed in Fig. 4. Crucially, at specific time delays the probe field is amplified (Fig. 

4A), whereas at other delays it is suppressed (Fig. 4B) with respect to that measured 

at equilibrium. 

In Fig. 5 we report the time-delay and frequency dependent loss function
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−= , a quantity that peaks at the zero 

crossing of ),(1 ωε t  and is always positive for a dissipative medium (i.e., a medium 

with ),(2 ωε t  > 0). The experimental data of Fig. 5A show that after excitation L ω( )  

acquires negative values around 0JPω (red regions). This is indicative of a negative 

),(2 ωε t  and hence amplification. The effect is strong near zero pump-probe time 

delay, then disappears after ~1 ps and is observed again periodically with a 

repetition frequency of ~ 02 JPω . The same effect appears also in the simulations 

(Fig. 5B), yielding periodic amplification at a repetition frequency of 02 JPω .  



 

 

The data and theoretical analysis reported here demonstrate that terahertz JPWs 

can be parametrically amplified, exhibiting the expected sensitivity to the relative 

phase of strong and weak fields mixed in this process and the oscillatory 

dependence at twice the frequency of the drive. This effect is of interest for 

applications in photonics or as a phase-coherent nonlinear probe of the superfluid 

itself15. Moreover, the ability to amplify a plasma wave could lead to single-THz 

photon manipulation devices that may operate above 1 K temperatures. These 

would exploit concepts that to date have been developed only at microwave 

frequencies and in the milli-Kelvin regime16–19. Finally, the parametric phenomena 

discussed here can also potentially be used to squeeze9,20, 21 the superfluid phase, 

and may lead to control of fluctuating superconductivity22, perhaps even over a 

range of temperatures above Tc  
23,24. 

  



 

 

Methods 

Laser pulses with 100 fs duration and ~5 mJ energy from a commercial Ti:Sa 

amplifier were split into 3 parts (92%, 7%, 1%). The most intense beam was used to 

generate strong-field THz pulses with energies up to ~3 µJ via optical rectification in 

LiNbO3 with the tilted pulse front technique. These were collimated and then 

focused at normal incidence onto the sample (with polarization perpendicular to the 

Cu-O planes, i.e. along the c axis) using a Teflon lens and a parabolic mirror, with 

focal lengths of 150 mm and 75 mm, respectively. The pump field at the sample 

position was calibrated with electro-optic sampling in a 0.2-mm-thick GaP crystal, 

yielding a maximum value of ~100 kV/cm (see also Supplementary Section S3).  

The 7% beam was used to generate the THz probe pulses with a photoconductive 

antenna. These had a dynamic bandwidth of 0.1-3 THz, corresponding to a time 

resolution of ~250 fs. The c-axis optical properties of the superconductor (both at 

equilibrium and throughout the pump-induced dynamics) were probed in reflection 

geometry, with a probe incidence angle of 45°. The reflected probe pulses were 

electro-optically sampled in a 1-mm-thick ZnTe crystal, using the remaining 1% of 

the 800 nm beam. This measurement procedure returned the quantity E(t, τ), with t 

being the pump-probe delay and τ being the internal electro-optic sampling time 

coordinate.  

The complex optical properties of the superconductor at equilibrium were 
determined by measuring the complex-valued E(ω) (pump off) both at T < Tc and T 

> Tc and by referencing it to the normal-state reflectivity measured in the same 

batch of samples25.  

In the spectrally integrated pump-probe traces of Fig. 3, E(t,τ) was measured by 

scanning the pump-probe delay t at a fixed internal delay τ. This was chosen to be 

on the trailing edge of the pulse, where the JPR oscillations are present. Note that 

the observed dynamics, and in particular the 2ωJP0 oscillations, did not depend 

significantly on the specific τ value at which the scan was performed. 

The frequency and time-delay dependent loss function of Fig. 5 (as well as all 

complex optical properties of the perturbed material) was determined by applying 

Fresnel equations11 to the pump-induced changes in the reflected electric field. 

These were normalized by independently recording E(t,τ) in presence and absence 

of the THz pump field. Note that there was no need to take into account any pump-

probe penetration depth mismatch in the calculation.   

In the simulations, the Josephson phase evolution ),(1, txii +θ was determined through 

the one-dimensional sine-Gordon equation6: 
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being γ  a damping constant, c the speed of light, rε the dielectric permittivity, and 

0JPω  the equilibrium JPR frequency. This equation was solved numerically, with the 

THz pump and probe fields overlapping at the vacuum-superconductor interface. 

For more details on this topic, we refer the reader to Supplementary Section S2. 

  



 

 

 
 

 
 

 
 
 
Figure 1. Schematic time-dependent representation of JPWs in linear and nonlinear 
regime, in presence of a driving field )sin()( 00 tEtE JPω= . Red arrows indicate the 

Josephson phase while the corresponding oscillator strength f is represented by the black 
circle area. A JPW in linear regime consists of small amplitude modulations of 1, +iiθ  at 

constant oscillator strength 2
0~ JPf ω . In nonlinear regime, the Josephson phase oscillates 

at 0JPω , whereas f is modulated at 02 JPω .   



 

 

 

Figure 2. Linear JPWs in LBCO9.5. (A) E(τ) measured in absence of pump field both 
above and below Tc = 32 K. (B) Frequency-dependent, c-axis reflectivity at T = 5 K 
(solid line), extracted from the E(τ) trace of panel (A). (C) Corresponding real and 
imaginary part of the complex permittivity and (D) energy loss function (solid lines). 
Dashed lines in (B-D) were calculated by numerically solving the sine-Gordon equation 
in linear regime. (E) Phase ),(1, txii +θ and (F) corresponding oscillator strength f (no 

change) induced by a weak probe THz field, also determined from the sine-Gordon 
equation in linear regime. Horizontal dotted lines indicate the spatial coordinate x at 
which the line cuts are displayed (lower panels).   



 

 

 
 

 
 

Figure 3.  Nonlinear JPWs in LBCO9.5. (A1) Spectrally integrated pump-probe response. 
Experimental data are displayed along with calculations based on the sine-Gordon 
equation in nonlinear regime. Dashed lines indicate the background which was subtracted 
to obtain the oscillatory component shown in (A2). (B) Fourier transform of the extracted 
oscillations, showing a peak at ~1 THz. (C) Phase ),(1, txii +θ and (D) corresponding 

oscillator strength f (normalized by the equilibrium value) induced by a strong THz pump 
field, as determined by numerically solving the sine-Gordon equation in nonlinear regime. 
Horizontal dotted lines indicate the spatial coordinate x at which the line cuts are 
displayed (lower panels). 



 

 

  

Figure 4.  E(t,τ) traces measured by scanning the electro-optic sampling internal delay τ 
at selected pump-probe delays t = 0 ps and t = 2 ps. Data are shown along with the same 
quantity measured at equilibrium (pump off). Shaded regions in (A) and (B) indicate 
amplification and suppression of the JPW amplitude, respectively. 

  



 

 

 

Figure 5:  Time-delay and frequency dependent loss function L(t,ω) determined (A) 
experimentally and (B) by numerically solving the sine-Gordon equation in nonlinear 
regime. Note that the equilibrium L(ω) has been multiplied by a factor of 5. 
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S1. Josephson equation as Mathieu equation 

A Josephson junction can be approximated with an LC circuit model. By equating the 

capacitive current 
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where rε  is the dielectric permittivity of the Josephson junction, c  the speed of light, 

e the electronic charge, 0I  the critical current,  C  the capacitance of the junction, 

and 

                                                     
C

eI
p

h

02
0

2 2== ωω . 

The equation of motion of the Josephson phase with damping (γ ) therefore reads 
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In a perturbed state in which the oscillator strength is modified as  
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the time dependence of the Josephson phase is described by  
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We note that Eq. (4) is a damped Mathieu equation of the form 
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S2. Simulation of the nonlinear optical properties from the sine-Gordon equation 

A Josephson junction with semi-infinite layers stacked along the � direction (with 

translational invariance along the y direction) can be modeled with the one-

dimensional sine-Gordon equation1,2. Being x the propagation direction, the 

Josephson phase evolution is described by: 
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The damping factorγ  is a fitting parameter used to reproduce the optical properties 

observed experimentally. In this section, we drop the subscripts for simplicity, i.e. 

we redefine ),(),(1, txtxii θθ =+ . The pump and probe THz fields impinge on the 

superconductor at the boundary � = 0. The Josephson phase evolution is therefore 

affected by the following boundary conditions at the vacuum-sample interface3. 
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 + E��t
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																	�H��t
 + H��t
���� = H��x, t
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�� |����.                                 (8) 

 

The subscripts i, r, and c denote the fields incident, reflected and propagating inside 

the cuprate, respectively. Here H� = Φ�/2πDλ%, where Φ� is the flux quantum 

+Φ� = ,-
./0 and D is the distance between adjacent superconducting layers. The 

equilibrium Josephson Plasma Resonance (JPR) is an input parameter in the 

simulations, which is chosen to be that of La1.905Ba0.095CuO4, i.e. ω%23 = 0.5	THz. 



 

 

For fields in vacuum (� < 0), the Maxwell’s equations imply 
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 = H� +H� .                                                 (9) 

 

By combining Eq. (4) with Eq. (2) and (3) we obtain the boundary condition 
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After solving the Josephson phase through Eq. (6) and Eq. (10), the reflected field is 

calculated from Eq. (7). The equilibrium reflectivity of the cuprate is obtained by 

computing the ratio between the Fourier transforms of the reflected field and a 

weak input field 
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 .                                     (11) 

 

The complex optical properties are then calculated from r>?@�A�B��@C�ω
 . In 

particular, the equilibrium dielectric permittivity and loss function are computed as: 
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For the pump-probe configuration, the input field is the sum of the pump and probe 

fields (with a defined delay between them):  

 

                                            	E��t
 = EU@CU�t
 + EU�VB>�t
.                                                      (12) 

 

Correspondingly, the Josephson phase can be written as 

 



 

 

                                                   θ = θU@CU + θU�VB>.                                                                 (13) 

 

And the sine-Gordon equation (6) decomposes into two coupled equations 
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For a weak probe (θ ≪ 1), cos θU�VB> ≈ 1 and the effect of θU�VB> on θU@CU can be 

neglected in Eq. (9). The phases θU@CU	and	θU�VB> are calculated in two steps: (i) 

Eqs. (14) and (10) are solved with the driving field E� = EU@CU to get θU@CU�x, t
 and 

then (ii) Eq. (15) and (10) are solved by substituting θU@CU�x, t
 with the input field 

E� = EU�VB> , to obtain θU�VB>�x, t
  and the reflected probe field E�U>�!@�B . The 

perturbed reflectivity is given by 

 

                                        	rU>�!@�B�ω, t
 = E�U>�!@�B�ω, t
/E��ω
.                                           (16) 

 

The optical response functions of the perturbed material are extracted from the 

complex optical reflectivity rU>�!@�B. For instance, the dielectric permittivity and loss 

function are calculated as: 

                                                  ε�ω
 = D+���^EK_GKJ��
���^EK_GKJ��
0
.M 

                                      Loss�ω, t
 = −Imag D+�^EK_GKJ��,!
���^EK_GKJ��,!
��0
.M. 

 

S3. Pump spectrum 

The electric field profile of the THz pump pulse (generated with the tilted pulse 

front technique in LiNbO3) measured at the sample position is displayed in Fig. S1A 



 

 

alongside the corresponding frequency spectrum (Fig. S1B). This is peaked at ~0.5 

THz, being therefore resonant with the JPR of LBCO9.5 (see reflectivity edge in the 

blue curve of Fig. S1B). The input pump field used in the simulations is also 

displayed, both in time (Fig. S1A) and frequency domain (Fig. S1B).  

 

 

Figure S1. (A) Electro-optic sampling trace of the THz pump pulse measured at the sample position and 
(B) corresponding frequency spectrum. The c-axis equilibrium reflectivity of LBCO9.5 at T = 5 K is also 
displayed. Dashed lines in both panels refer to the input pump field used in simulations. The ringing 
observed on the trailing edge of the pulse (black line in A) is due to narrow water absorption lines at ~0.5 
THz and ~1.2 THz (see also corresponding spectrum in B). These can be ignored because, unlike the pump 
field scan shown in this figure, all other measurements reported in this paper have been performed under 
high vacuum condition (P = 10-6 mbar). 
 

S4. Pump field dependence 

The spectrally integrated “1D” pump-probe response4,5 is displayed in Fig. S2 for 

different pump field strengths. A minimum field of ~30 kV/cm was required to 

induce a response of sufficient amplitude to be detected in our experiment.  

The oscillatory behavior at twice the equilibrium JPR frequency was found to be 

only weakly dependent on the pump field strength. Note that pump-field-

independent 2ωJP0 oscillations are only observed at t > 0, i.e. after the early-time 

dynamics (t < 0) dominated by perturbed free induction decay6 (shaded region in 

Fig. S2). 



 

 

 

Figure S2. (A) Spectrally-integrated “1D” pump-probe response measured for different pump field 
strengths at a sample temperature T = 5 K. The dashed line is an example of background which was 
subtracted to extract the oscillatory components shown in the inset. The early time delay region, interested 
by perturbed free induction decay, is shaded in grey. (B) Normalized Fourier transforms of the oscillatory 
signals. 
 
 

 

Figure S3. Time-delay and frequency dependent loss function determined (A) experimentally and (B) by 
numerically solving the sine-Gordon equation in nonlinear regime. The applied THz pump field is 40 
kV/cm. 
 
 

The time-delay and frequency dependent loss function measured with a pump field 

of 40 kV/cm is displayed in Fig. S3, along with the corresponding theoretical 

calculations. These can be compared with the data of Fig. 5 in the main text, which 

were taken with a higher pump field (~80 kV/cm). Remarkably, while the 2ωJP0 

oscillatory behavior is observed in both data sets, periodic amplification is only 

present with stronger pump field (consistently in both experiment and calculations). 



 

 

This indicates that phase-sensitive amplification of Josephson Plasma Wave can be 

achieved only for THz pump field amplitudes above a threshold of  ~70 kV/cm.  

 
 

S5. Temperature dependence 

The equilibrium JPR shifts to lower frequencies with increasing temperature 

towards Tc. This is clearly shown in Fig. S4A, where the measured equilibrium 

reflectivity of LBCO9.5 is reported at two different temperatures. The JPR exhibits a 

red shift from ~0.5 THz to ~0.35 THz upon increasing the sample temperature from 

5 K to 30 K.  

The temperature dependence of the spectrally integrated pump-probe response has 

also been determined experimentally (see Fig. S4B). As expected, the measured 

oscillations slow down with increasing T. Indeed their frequency reduces from  

~ 1 THz at 5 K to ~0.75 THz at 30 K, scaling as 2ωJP0. 

 

 
Figure S4. (A1) E(τ) measured in absence of pump field at different temperatures above and below Tc. 
(A2) Frequency-dependent reflectivity at T = 5 K and T = 30 K, extracted from the E(τ) trace of panel (A1). 
(B1) Oscillatory component of the spectrally-integrated “1D” pump-probe response, measured at T = 5 K 
and T = 30 K. (B2) Corresponding Fourier transforms of the oscillatory signals. 
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