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Many applications in photonics require all-optical manipulation of plasma waves1, 

which can concentrate electromagnetic energy on sub-wavelength length scales.  

This is difficult in metallic plasmas because of their small optical nonlinearities. 

Some layered superconductors support Josephson plasma waves (JPWs)2,3, 

involving oscillatory tunneling of the superfluid between capacitively coupled planes. 

Josephson plasma waves are also highly nonlinear4, and exhibit striking phenomena 

like cooperative emission of coherent terahertz radiation5,6, superconductor-metal 

oscillations7 and soliton formation8. We show here that terahertz JPWs can be 

parametrically amplified through the cubic tunneling nonlinearity in a cuprate 

superconductor. Parametric amplification is sensitive to the relative phase between 

pump and seed waves and may be optimized to achieve squeezing of the order 

parameter phase fluctuations9 or single terahertz-photon devices. 



Cuprates are strongly anisotropic superconductors in which transport is made 

three-dimensional by Josephson tunneling between the Cu-O planes. Tunneling 

reduces the superfluid density in the direction perpendicular to the planes and 

hence the frequency of the plasmon to below the average pair breaking gap. Weakly 

damped oscillations of the superfluid sustain transverse Josephson Plasma Waves 

(JPWs) that propagate along the planes.  

Consider a complex superconducting order parameter in the ith Cu-O plane 

ψi (x, y,t) = ψi (x, y,t) expiθi (x, y,t) , which depends on two in-plane spatial 

coordinates x and y and on time t. For a THz-frequency optical field polarized 

perpendicular to the planes, excitations above the superconducting gap are 

negligible and the modulus of the order parameter ψ 2
(number of Cooper pairs) is 

nearly constant in space and time. Hence, the electrodyamics is dominated by the 

order-parameter phase ),,( tyxiθ . Ignoring at first the spatial dependence of the 

phase, the local tunneling strength can, from the Josephson equations10, be 

expressed in terms of an equivalent inductance, L, which depends on the local 

interlayer phase difference )()()( 11, ttt iiii +=+ −θθθ as L(θi,i+1(t)) ~ L0 / cos(θi,i+1(t))   

(i and i+1 are the indices for two neighboring layers). Here
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h=  is the 

inductance at equilibrium, h  the reduced Planck’s constant, 2e the Cooper pair 

charge and Ic  the critical current. Denoting the capacitance of the Cu-O planes with 

a constant C, we express the Josephson Plasma Resonance (JPR) frequency as
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Correspondingly, the oscillator strength f for the plasma oscillations11 is also a 

function of the interlayer phase and scales as f = f0 cos[θi,i+1(t)] . The dependence of 

the oscillator strength f on the cosine of the superconducting phase corresponds to a 

third order optical nonlinearity.  

According to the second Josephson equation10, the interlayer phase difference 

θi,i+1(t) 
advances in time with the time integral of the interlayer voltage drop, as 
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 . For an optical field made resonant with the Josephson plasma 

frequency E(t) = E0 sin(ωJP0t) , the interlayer phase oscillates as θi,i+1(t) =θ0 cos(ωJP0t) , 

where E0  is the field amplitude and 0
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frequency 02 JPω , whenever the field E0 is large enough to make the phase excursion 

θ0 sizeable.  

Figure 1 provides a pictorial representation of this physics. We plot a vector that 

represents both the phase difference θi,i+1(t) (vector angle) and the oscillator strength 

fi,i+1(t)  (vector length). This picture shows how, for small driving fields, only θi,i+1(t) 

oscillates at the driving frequency ωJP0 , whereas for larger fields these oscillations 

are accompanied by a 02 JPω modulation of the oscillator strength fi,i+1(t) . 



Note also that the phenomena discussed above can be casted in terms of a Mathieu 

equation (see Supplementary Information 2). Thus, a 2ωJP0 modulation of the 

oscillator strength can serve as a pump for the parametric amplification of a second, 

weak plasma wave at frequency 0JPω . In this paper we demonstrate experimentally 

this effect in La1.905Ba0.095CuO4 (LBCO9.5), a cuprate superconductor with the 

equilibrium JPR at 5.00 ≅JPω THz. 

Terahertz pulses, generated with a photoconductive antenna12, were used as a weak 

probe of JPWs (a schematic drawing of the measurement geometry is reported in 

Supplementary Information 1). A typical THz-field trace13 reflected by the sample is 

shown in Fig. 2A. Two different measurements are displayed: one taken below (red 

line) and the other one above (black line) the superconducting transition 

temperature Tc = 32 K. In the superconducting state, long-lived oscillations with ~ 2 

ps period were observed on the trailing edge of the pulse, indicative of the JPR at 

5.00 ≅JPω THz. Figure 2B (solid red line) displays the corresponding reflectivity 

edge in frequency domain. The solid lines in Fig. 2C -2D are the complex dielectric 

permittivity ε(ω) and the loss function 2
21
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peaks at 0JPω , where the real part of the dielectric permittivity, )(1 ωε , crosses zero. 

These optical properties could be well reproduced by solving the wave equation in 

the superconductor in one dimension8 (see Supplementary Information 3), which 

yields the space and time dependent order parameter phase θi,i+1(x, t)  (Fig. 2E) and 

the corresponding changes (negligible in linear response regime) of the oscillator 



strength f = f0 cos[θi,i+1(x, t)]  (Fig. 2F). The reflectivity, complex permittivity, and 

loss function (dashed lines in Fig. 2B, 2C, and 2D, respectively), calculated from 

these simulations by solving the electromagnetic field at the sample surface8, are in 

good agreement with the experimental data.  

Amplification of a weak JPW like the one above (probe field) was achieved by mixing 

it with a second, intense pump field, which resonantly drove the Josephson phase to 

large amplitudes. Quasi-single cycle THz pulses, generated in LiNbO3 with the tilted 

pulse front method14 (yielding field strengths up to ~100 kV/cm), were used to 

excite these waves in nonlinear regime. The spectral content of these pulses 

extended between 0.2 and 0.7 THz, centered at the JPR frequency (see 

Supplementary Information 4). Note that the pump field strength used in this 

experiment exceeds the expected threshold to access the nonlinear regime, defined 

by 1~
2
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~ 20 kV/cm. 

In Fig. 3, we report the time-delay dependent, spectrally integrated pump-probe 

response of LBCO9.5. Changes in the reflected probe field were measured at one 

specific probe sampling time (� = ��), as a function of pump-probe time delay (t). 

For a system in which the optical properties are dominated by a single plasma 

resonance, the spectrally integrated response is proportional to the plasma 

oscillator strength f.   

As shown in Fig. 3A-3B, this integrated response exhibits a reduction of the signal 

and oscillations at a frequency ~ 02 JPω . Note that the oscillation frequency did not 



depend on the pump electric field strength E0, while the frequency reduced when 

the base temperature of the experiment was increased, consistent with the 

reduction of the equilibrium 0JPω  (see Supplementary Information 5 and 6). The 

effect completely disappeared at T > Tc.   

Hence, the theoretically predicted 02 JPω modulation of the total oscillator strength f 

(see above) is well reproduced by the data in Fig. 3. This response could also be 

simulated using the space- and time-dependent sine-Gordon equation (see Fig. 3C- 

3D), yielding good agreement between experiment and theory (see dashed lines in 

Fig. 3A-3B). 

Note that here we only analyze pump-probe delays t ≳ 1 ps, because the response at 

the earliest times suffers from perturbed free induction decay15. This effect consists 

in the deformation of a coherent signal, which occurs when the pump strikes the 

sample during the oscillatory relaxation of the probe (for t ≲ 1 ps in our case). 

Perturbations of the response are particularly evident in case of long momentum 

relaxation times, as in superconductors. 

Selected time-domain probe traces measured before and after excitation are 

displayed in Fig. 4. Crucially, at specific time delays the probe field is amplified (Fig. 

4A), whereas at other delays it is suppressed (Fig. 4B) with respect to that measured 

at equilibrium. 

In Fig. 5 we report the time-delay and frequency dependent loss function

2
21

2

)),(),((
),(

),(
1

Im),(
ωεωε

ωε
ωε

ω
tt

t

t
tL

+
=








−= , a quantity that peaks at the zero 

crossing of ),(1 ωε t  and is always positive for a dissipative medium (i.e., a medium 



with ),(2 ωε t  > 0). The experimental data of Fig. 5A show that after excitation L ω( )

acquires negative values around 0JPω (red regions). This is indicative of a negative 

),(2 ωε t  and hence amplification. The effect is strong near zero pump-probe time 

delay, then disappears after ~1 ps and is observed again periodically with a 

repetition frequency of ~ 02 JPω . The same effect appears also in the simulations 

(Fig. 5B), yielding periodic amplification at a repetition frequency of 02 JPω .  

In Supplementary Information 7 we report additional quantitative estimates of the 

degree of amplification. We include a negative absorption coefficient and a 

reflectivity larger than 1 at � ≃ �� . The extracted values are � = �−0.090 ±
0.003�μm�� and	� = �1.042 ± 0.008�, respectively. 

The data and theoretical analysis reported here demonstrate that terahertz JPWs 

can be parametrically amplified, exhibiting the expected sensitivity to the relative 

phase of strong and weak fields mixed in this process and the oscillatory 

dependence at twice the frequency of the drive.  

Parametric amplification of THz light based on nonlinear optical techniques has 

already been shown in the past16. However, the physics demonstrated here extend 

beyond potential applications in photonics, directly leading to coherent parametric 

control of the superfluid in layered superconductors, and providing a means to 

manipulate the properties of the material or to probe them in new ways17. 

Moreover, the ability to amplify a plasma wave could lead to single-THz photon 

manipulation devices that may operate above 1 K temperatures. These would 

exploit concepts that to date have been developed only at microwave frequencies 



and in the milli-Kelvin regime18–21. Finally, the parametric phenomena discussed 

here can also potentially be used to squeeze9,22, 23 the superfluid phase, and may lead 

to control of fluctuating superconductivity24, perhaps even over a range of 

temperatures above Tc  
25,26.  



Methods 

Laser pulses with 100 fs duration and ~5 mJ energy from a commercial Ti:Sa 

amplifier were split into 3 parts (92%, 7%, 1%). The most intense beam was used to 

generate strong-field THz pulses with energies up to ~3 µJ via optical rectification in 

LiNbO3 with the tilted pulse front technique. These were collimated and then 

focused at normal incidence onto the sample (with polarization perpendicular to the 

Cu-O planes, i.e. along the c axis) using a Teflon lens and a parabolic mirror, with 

focal lengths of 150 mm and 75 mm, respectively. The pump spot diameter at the 

sample position was ~2.5 mm. The pump field strength was calibrated with electro-

optic sampling in a 0.2-mm-thick GaP crystal, yielding a maximum value of 

~100 kV/cm (see Supplementary Information 4).  

The 7% beam was used to generate the THz probe pulses with a photoconductive 

antenna. These had a dynamic bandwidth of 0.1-3 THz, corresponding to a time 

resolution of ~250 fs. The c-axis optical properties of the superconductor (both at 

equilibrium and throughout the pump-induced dynamics) were probed in reflection 

geometry, with a probe incidence angle of 45° and a spot diameter at the sample 

position of ~2 mm). The reflected probe pulses were electro-optically sampled in a 

1-mm-thick ZnTe crystal, using the remaining 1% of the 800 nm beam. This 

measurement procedure returned the quantity Eprobe (t, τ), with t being the pump-

probe delay and τ being the electro-optic sampling time coordinate.  

The sample used in our experiment was a single crystal of La1.905Ba0.095CuO4 cut and 

polished along an ac oriented surface of ~3x3 mm size. Its equilibrium optical 

response in the superconducting state was determined by measuring the complex-

valued Eprobe(ω) (pump off) both at T < Tc and T > Tc and by referencing it to the 

normal-state reflectivity measured in another crystal coming from the same batch of 

samples27.  

The spectrally integrated pump-probe traces of Fig. 3 were measured by scanning 

the pump-probe delay t at a fixed sampling time τ= τ0. This was chosen to be on the 

trailing edge of the pulse, where the JPR oscillations are present. Note that the 

observed dynamics, and in particular the 2ωJP0 oscillations, did not depend 

significantly on the specific τ0 value at which the scan was performed. 

The frequency and time-delay dependent loss function of Fig. 5 (as well as all 

complex optical properties of the perturbed material) was determined by applying 

Fresnel equations11 to the pump-induced changes in the reflected electric field. 

These were normalized by independently recording Eprobe (t, τ) in presence and 

absence of the THz pump field. Note that there was no need to take into account any 

pump-probe penetration depth mismatch in the calculation.   

In the simulations, the Josephson phase evolution ),(1, txii +θ was determined through 

the one-dimensional sine-Gordon equation6: 



),(sin
),(),(1),(

1,2

2
0

2

1,
2

2

1,

2

1,
2

tx
ct

tx

ct

tx

x

tx
ii

rJPiiriiii
+

+++ =
∂

∂
−

∂
∂

−
∂

∂
θεωθεθ

γ
θ

 

being γ  a damping constant, c the speed of light, rε the dielectric permittivity, and 

0JPω  the equilibrium JPR frequency. This equation was solved numerically, with the 

THz pump and probe fields overlapping at the vacuum-superconductor interface. 

For more details on this topic, we refer the reader to Supplementary Information 3. 
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Figure Captions 
 
Figure 1. Schematic representation of Josephson plasma waves. Schematic time-
dependent representation of JPWs in linear and nonlinear regime, in presence of a driving 
field )sin()( 00 tEtE JPω= polarized along the out-of-plane direction of a layered 

superconductor. Red arrows indicate the Josephson phase while the corresponding 
oscillator strength f is represented by the black circle area. A JPW in linear regime 
consists of small amplitude modulations of 1, +iiθ  at constant oscillator strength 2

0~ JPf ω . 

In nonlinear regime, the Josephson phase oscillates at 0JPω , whereas f is modulated at 

02 JPω .  

 
 
Figure 2. Linear JPWs in LBCO9.5. a, Eprobe (τ) measured in absence of pump field both 
above and below Tc = 32 K. b, Frequency-dependent, c-axis reflectivity at T = 5 K (solid 
line), extracted from the Eprobe (τ) trace of panel a. c, Corresponding real and imaginary 
part of the complex permittivity and (d) energy loss function (solid lines). Dashed lines in 
b-d were calculated by numerically solving the sine-Gordon equation in linear regime. e, 
Simulated phase ),(1, txii +θ and (f) corresponding oscillator strength f (no change) induced 

by a weak probe THz field. Horizontal dotted lines indicate the spatial coordinate x at 
which the line cuts are displayed (lower panels).  
 
 
Figure 3.  Nonlinear JPWs in LBCO9.5. a1, Normalized spectrally integrated pump-

probe response 
������ ����� �!, �� = 2	ps� . Experimental data are shown along with 

calculations based on the sine-Gordon equation in nonlinear regime (displayed with a 
vertical offset). Dashed lines indicate an average reduction that accompanies the 
oscillations (see model). The reduction was subtracted through Fourier filtering (>0.2 
THz) to obtain the oscillations shown in a2. The signal buildup region affected by 
perturbed free induction decay is shaded in grey. b, Fourier transform of the extracted 
oscillations, showing a peak at ~1 THz. c, Phase ),(1, txii +θ and (d) corresponding 

oscillator strength f induced by a strong THz pump field, as determined by numerically 
solving the sine-Gordon equation in nonlinear regime. Horizontal dotted lines indicate the 
spatial coordinate x at which the line cuts are displayed (lower panels). 
 

Figure 4. Amplification and suppression of plasma oscillations. Eprobe (t, τ) traces 
measured by scanning the electro-optic sampling time τ at selected pump-probe delays t = 
0 ps and t = 2 ps. Data are shown along with the same quantity measured at equilibrium 
(pump off). Plasma oscillations on the trailing edge of the pulses (τ ≳  2 ps) are 
highlighted by thicker lines. Colored shadings in a and b indicate amplification and 
suppression of the JPW amplitude, respectively. 

 



Figure 5. Time-delay and frequency dependent loss function. Time-delay and 
frequency dependent loss function L(t,ω) determined (a) experimentally and (b) by 
numerically solving the sine-Gordon equation in nonlinear regime. Note that 
experimental and simulated L(ω) in the region between t=-4 ps and  
t=-2 ps have been multiplied by a factor of 5 to be better visualized with the other data. 
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S1: Scheme of the experimental geometry 

A schematic representation of the experimental geometry is shown in Fig. S1. The 

ac-cut surface of a LBCO (x=9.5%) sample was illuminated with pump and probe 

THz pulses, both polarized along the c direction (i.e., perpendicular to the Cu-O 

layers). The probe beam had an incidence angle of 45°, while the pump hit the 

sample at normal incidence.  

 

Figure S1. Schematic representation of the measurement geometry. The Cu-O planes are indicated along 
with propagation vector and polarization of the light fields. A top view is shown on the right. 

 

S2. Josephson equation as Mathieu equation 

A Josephson junction can be approximated with an LC circuit equivalent. By 
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where rε  is the dielectric permittivity of the Josephson junction, c  the speed of light, 
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In a perturbed state in which the oscillator strength is modified as  
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the time dependence of the Josephson phase is described by  
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We note that Eq. (4) is a damped Mathieu equation of the form 
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S3. Simulation of the nonlinear optical properties from the sine-Gordon equation 

A Josephson junction with semi-infinite layers stacked along the & direction (with 

translational invariance along the y direction) can be modeled with the one-



dimensional sine-Gordon equation1,2. Being x the propagation direction, the 

Josephson phase evolution is described by: 
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The damping factor γ  is a fitting parameter used to reproduce the optical properties 

observed experimentally. In this section, we drop the subscripts for simplicity, i.e. 

we redefine ),(),(1, txtxii θθ =+ . The pump and probe THz fields impinge on the 

superconductor at the boundary ' = 0. The Josephson phase evolution is therefore 

affected by the following boundary conditions at the vacuum-sample interface3. 

 

                 (E*�t� + E-�t�./0�� = E1�x, t�|/04� = H� �
6789√;

<=�/,>�
<> |/04�,                             (7) 

																	(H*�t� + H-�t�./0�� = H1�x, t�|/04� = −H�λ@ <=�/,>�</ |/04�.                                 (8) 

 

The subscripts i, r, and c denote the fields incident, reflected and propagating inside 

the cuprate, respectively. Here H� = Φ�/2πDλ@, where Φ� is the flux quantum 

EΦ� = FG
HIJ and D is the distance between adjacent superconducting layers. The 

equilibrium Josephson Plasma Resonance (JPR) is an input parameter in the 

simulations, which is chosen to be that of La1.905Ba0.095CuO4, i.e. ω@LM = 0.5	THz. 

For fields in vacuum (' < 0), the Maxwell’s equations imply 

 

                                    E* − E- = 6P
1Q �H* + H-� = H* +H- .                                                 (9) 



 

By combining Eq. (9) with Eq. (7) and (8) we obtain the boundary condition 

 

                              
H√;RS E*�t�|/0�� = <=�/,>�

6789 <> |/04� − √ε <=�/,>�<//U7 |/04�.                                 (10) 

 

After solving the Josephson phase through Eq. (6) and Eq. (10), the reflected field is 

calculated from Eq. (7). The equilibrium reflectivity of the cuprate is obtained by 

computing the ratio between the Fourier transforms of the reflected field and a 

weak input field 

 

                                    rWXY*Z*[-*Y\�ω� = E-WXY*Z*[-*Y\�ω�/E*�ω� .                                     (11) 

 

The complex optical properties are then calculated from rWXY*Z*[-*Y\�ω� . In 

particular, the equilibrium dielectric permittivity and loss function are computed as: 

 

ε�ω� = ]^1 − rWXY*Z*[-*Y\�ω�1 + rWXY*Z*[-*Y\�ω�_
H` 

L�ω� = −Imag]^rWXY*Z*[-*Y\�ω� + 1rWXY*Z*[-*Y\�ω� − 1_
H` 

 

For the pump-probe configuration, the input field is the sum of the pump and probe 

fields (with a defined delay between them):  



 

                                            	E*�t� = EeY\e�t� + Ee-f[W�t�.                                                      (12) 

 

Correspondingly, the Josephson phase can be written as 

 

                                                   θ = θeY\e + θe-f[W.                                                                 (13) 

 

And the sine-Gordon equation (6) decomposes into two coupled equations 
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For a weak probe (θ ≪ 1), cos θe-f[W ≈ 1 and the effect of θe-f[W on θeY\e can be 

neglected in Eq. (14). The phases θeY\e	and	θe-f[W are calculated in two steps: (i) 

Eqs. (14) and (10) are solved with the driving field E* = EeY\e to get θeY\e�x, t� and 

then (ii) Eq. (15) and (10) are solved by substituting θeY\e�x, t� with the input field 

E* = Ee-f[W , to obtain θe-f[W�x, t�  and the reflected probe field E-eW->Y-[ . The 

perturbed reflectivity is given by 

 

                                        	reW->Y-[�ω, t� = E-eW->Y-[�ω, t�/E*�ω�.                                           (16) 



 

The optical response functions of the perturbed material are extracted from the 

complex optical reflectivity reW->Y-[. For instance, the dielectric permittivity and loss 

function are calculated as: 

                                                  ε�ω� = ^E��-� �no���6��4-� �no���6�J
H_ 

                                      L�ω, t� = −Imag ^E-� �no���6,>�4�-� �no���6,>���J
H_. 

 

S4. Pump spectrum 

The electric field profile of the THz pump pulse measured at the sample position is 

displayed in Fig. S2A along with the corresponding frequency spectrum (Fig. S2B). 

This is peaked at ~0.5 THz, being therefore resonant with the JPR of LBCO9.5 (see 

reflectivity edge in the blue curve of Fig. S2B). The input pump field used in the 

simulations is also displayed (dashed), both in time (Fig. S2A) and frequency 

domain (Fig. S2B).  

 

 

Figure S2. (A) Electro-optic sampling trace of the THz pump pulse measured at the sample position and 
(B) corresponding frequency spectrum. The c-axis equilibrium reflectivity of LBCO9.5 at T = 5 K is also 



displayed. Dashed lines in both panels refer to the input pump field used in simulations. The ringing 
observed on the trailing edge of the pulse (black line in A) is due to narrow water absorption lines at ~0.5 
THz and ~1.2 THz (see also corresponding spectrum in B). These can be ignored because all measurements 
but that reported in this figure have been performed under high vacuum condition (P = 10-6 mbar). 

 

 

 

S5. Pump field dependence 

The spectrally integrated pump-probe response is displayed in Fig. S3 for different 

pump field strengths. A minimum field of ~30 kV/cm was required to induce a 

response of sufficient amplitude to be detected in our experiment. 

The oscillatory behavior at twice the equilibrium JPR frequency was found to be 

only weakly dependent on the pump field strength. Note that pump-field-

independent 2ωJP0 oscillations are only observed at t ≳ 0 ps, i.e. after the early-time 

dynamics (t ≲ 0 ps) dominated by perturbed free induction decay4,5,6 (shaded region 

in Fig. S3). 

The time-delay and frequency dependent loss function measured with a pump field 

of 40 kV/cm is displayed in Fig. S4, along with the corresponding theoretical 

calculations. These can be compared with the data of Fig. 5 in the main text, which 

were taken with a higher pump field (~80 kV/cm). Remarkably, while the 2ωJP0 

oscillatory behavior is observed in both data sets, periodic amplification is only 

present with stronger pump field (consistently in both experiment and calculations). 

This indicates that phase-sensitive amplification of Josephson Plasma Wave can be 

achieved only for THz pump field amplitudes above a threshold of  ~70 kV/cm.  

 

 



 

Figure S3. (A) Spectrally-integrated pump-probe response measured for different pump field strengths at a 
sample temperature T = 5 K. The dashed line is an example of background which was subtracted to extract 
the oscillatory components shown in the inset. The negative time delay region, interested by perturbed free 
induction decay, is shaded in grey. (B) Normalized Fourier transforms of the oscillatory signals. 

 

 

 

 

Figure S4. Time-delay and frequency dependent loss function determined (A) experimentally and (B) by 
numerically solving the sine-Gordon equation in nonlinear regime. The applied THz pump field is 
40 kV/cm. 

 



S6. Temperature dependence 

In Fig. S5 we show the measured equilibrium reflectivity of LBCO9.5 at two different 

temperatures. The JPR exhibits a red shift from ~0.5 THz to ~0.35 THz upon 

increasing the sample temperature from 5 K to 30 K.  

The temperature dependence of the spectrally integrated pump-probe response has 

also been determined experimentally (only the oscillatory component of this 

response is shown in Fig. S5B). As expected, the measured oscillations slow down 

with increasing T. Indeed their frequency reduces from ~ 1 THz at 5 K to ~0.75 THz 

at 30 K, scaling as 2ωJP0. 

 

 

Figure S5. (A1) Eprobe(τ) measured in absence of pump field at different temperatures above and below Tc. 
(A2) Frequency-dependent reflectivity at T = 5 K and T = 30 K, extracted from the Eprobe(τ) trace of panel 



(A1). (B1) Oscillatory component of the spectrally-integrated pump-probe response, measured at T = 5 K 
and T = 30 K at the same τ (arrow in (A1)). (B2) Corresponding Fourier transforms of the oscillatory 
integrated response. 

 

S7. Parametric Amplification 

An increase of the signal amplitude along the sampling time axis τ, which is in fact the 

Fourier transform of the spectrum, is shown in Fig. 4 of the main text. Amplification is 

demonstrated even more directly in Fig. 5, where we show the energy loss function. As 

discussed in the text, this function is proportional to qH���, and it is shown to become 

negative at selected time delays. 

 

 

 

Figure S6. (A) Frequency-dependent reflectivity and (B) corresponding absorption coefficient, determined 
before and after excitation (at a selected pump-probe delay t). Experimental data (A2, B2) are displayed 
along with simulations (A1, B1), consistently showing amplification at �~�st�. Dashed lines at R = 1 and 
α = 0 are visualized to emphasize the amplification. Error bars (blue ticks in A2, B2) are propagated from 
the standard deviation in the measured Δvw/vw 	signal (estimated from different scans). 



 

 

In order to quantify the level of amplification, we use the absorption coefficient �, as in 

Ref. 7. The lowest value determined at 0JPω  is � = Hx
G Im�yz� ≃ �−0.090 ± 0.003�μm�� 

(here n~  is the complex refractive index), as shown in the Fig. S6B for both experiment 

and simulations.  

For clarity, we also include the reflectivity in Fig. S6A, which for a specific frequency 

becomes larger than 1 (� = 1.042 ± 0.008 ), providing a further demonstration of 

amplification.  
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