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In fusion plasmas, a regular pulsation of the perpendicular flow velocity u⊥ and the density

fluctuations ñ can occur at the transition from low to high confinement regimes (L-H transition).

These pulsations, sometimes referred to as limit-cycle oscillations [1], I-phase [2] or dithering

cycles [3], have frequencies in the low kilohertz range and are associated with an improved

confinement with respect to the L-mode.
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Figure 1: The appearance of the I-phase pulsation in

the Doppler shift fD ∼ u⊥ and amplitude AD ∼ ñ of the

Doppler reflectometer signal, the divertor shunt current

Idiv, the poloidal magnetic field coil Ḃθ , and the electron

density ne at three different radial positions.

It is discussed whether an interac-

tion between edge turbulence and zonal

flows [4, 5] regulate the I-phase pul-

sation. However, there are also indi-

cations that the Reynolds stress drive

of zonal flows is too weak in order

to explain the measured flows in some

cases [6]. Therefore, it is still an open

question whether the turbulence-flow

interaction is the dominant mechanism

to explain the experimental findings or

whether there are other mechanisms at

work as proposed in theoretical mod-

els [7, 8]. The experimental results pre-

sented in the following indicate that the

I-phase pulsations are accompanied by electromagnetic phenomena which point to physics be-

yond the flow-turbulence interaction picture.
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The I-phase is typically studied with Doppler reflectometry [2] since the pulsation of the

turbulence amplitude ñ and the flow velocity u⊥ during this intermediate phase between L-mode

and H-mode can easily be detected by the Doppler shift fD ∼ u⊥ and the amplitude AD ∼ ñ of

the backscattered microwave. An example of an I-phase 6 ms after the L-I transition at medium

density is shown in Fig. 1 (first two rows). During the phase of high turbulence level (peaks in

AD) the particle transport is increased resulting in a modulation of the divertor shunt current Idiv

(third row in Fig. 1) with the same frequency of about 2 kHz. As already described in Ref. [3],

the pulsations are accompanied by a magnetic response visible in signals of magnetic pick up

coils measuring Ḃθ (Fig. 1, second last row). In lower single null configuration, this magnetic

response seems to originate from the X-point region and propagates along the high-field side

from bottom to top. The outer part of the electron density profiles reconstructed from lithium

beam emission spectrocscopy (Li-BES) data every 50 µs is modulated during an I-phase cycle.

The separatrix and scrape-off layer density is increased while the inner parts of the profile

(ρpol < 0.98) stay unchanged or are slightly reduced during the turbulence burst of the I-phase

(last row in Fig. 1). This indicates that the density gradient is reduced during the high turbulence

phase.

Figure 2: Correlation between Doppler reflectom-

etry velocity signal and radial channels of Li-BES

rawdata (∼ ne).

The modulation of the electron density

profile seems to propagate from inside to out-

side and is strongest slightly inside the spara-

trix. This can be deduced from the slightly

oblique stripes in the spatio-temporal cross-

correlation of the Doppler velocity signal

fD with different radial channels of the Li-

BES system (Fig.2). The highest correlation

is found at ρpol = 0.99 (green plus sign) and

the time shift of the maximum is negative

∆t ≈ −100 µs indicating that the flow ve-

locity at the probing position rises before the

density profile change takes place.

The frequency of the I-phase pulsation in individual discharges decreases linearly with the

density and temperature in the edge during the evolution from L-mode to type-I ELMy H-

modes indicating a weaker drive or a stronger damping of the pulsation at higher density and

temperature. In a series of discharges with varying magnetic field B, plasma current Ip and

density ne the I-phase frequency was studied in order to find a determining quantity for the
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pulsation frequency across various discharges. The model presented in Ref. [7] predicts an I-

phase frequency scaling proportional to the neoclassical poloidal damping rate νpol .
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Figure 3: I-phase frequency f versus poloidal damping

rate νpol , normalized pedestal pressure βped , normalized

Larmor radius ρ∗, and poloidal Alfvén speed vA ∼ Ip/
√

n.

The data set from ASDEX Upgrade,

however, does not follow this trend as

shown in Fig. 3 (upper left box). Differ-

ent colors indicate the covered I-phase

frequency range in different discharges.

The frequency likewise does not clearly

scale with the poloidal Alfvén speed

vA ∼ Ip/
√

n as proposed by Solano

et al. [9] based on JET data (lower

right box). Furthermore, it does not

scale with single parameters (e.g. B,

Te, ne) and shows a weak dependence

on the normalized Larmor radius ρ∗

(lower left box) and the normalized

pedestal pressure βped = 2µ0 pped/B2

(upper right box). It is therefore unclear

by which quantity the I-phase frequency is determined.

In the very late phase of the I-phase, the frequency is typically very low due to high density

and temperature, and the pulsation becomes very intermittent and spiky. In this phase, each spike

is accompanied by a magnetic precursor clearly visible in magnetic pick up coils measuring Ḃr

sharing the characteristics of type-III ELM precursors. Its frequency ranges from 50 to 100 Hz

as shown in the spectrogram of Ḃr (Fig. 4). Even before the precursor appears in the Ḃr-signal,

it is already detectable in the phase signal of the reflectometer which probes the (movement of

the) cutoff-layer close to the separatrix (Fig. 4, third row).

In the early I-phase, magnetic precursors are hardly distinguishable. In the phase signal of

the reflectometer, however, very small but significant quasi-coherent oscillations can be found

(Fig. 5, third row). We interpret these findings as follows: each I-phase pulse has a precursor

similar to a type-III ELM which is, however, too weak to be detected with the magnetic pick up

coils in the early I-phase but always existing and in principle detectable as a modulation of the

separatrix density. The existence of precursors in all phases of the pulsation points to a dynamic

as it is known from magnetohydrodynamic instabilities which grow in a linear phase and result

in a crash after a certain amplitude is exceeded [10].
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Figure 4: Late I-phase: precursor modes are clearly

visible in the Ḃr-signal (red and spectrogram be-

low) and even earlier in the reflectometer phase sig-

nal (purple and spectrogram below) prior to each

I-phase pulse (black).
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Figure 5: Early I-phase: There are no precursors

in the Ḃr-signal but small oscillations in the reflec-

tometer phase indicating a small precursor activity

already at the beginning of the I-phase.
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