CHEMBIOCHEM

Supporting Information

Unprecedented Utilization of Pelargonidin and Indole for the Biosynthesis of Plant Indole Alkaloids

Anne-Christin Warskulat, Evangelos C. Tatsis, Bettina Dudek, Marco Kai, Sybille Lorenz, and Bernd Schneider^{*[a]}

cbic_201500572_sm_miscellaneous_information.pdf

Table of contents

S1. Assessment of ¹³ C Isotope Abundances by NMR	3
Table of contents	2
List of figures	4
List of tables	6

S1. Assessment of ¹³C Isotope Abundances by NMR

Assessment of relative and absolute abundances and isotopologue composition in the experiment with $[^{13}C_6]$ glucose was performed as previously exemplified in the supporting information describing a pulse-chase experiment with $^{13}CO_2$ under http://dx.doi.org/10.1002/cbic.201402109.

The relative ¹³C abundances of the biosynthetic nudicaulin samples obtained from specific labeling experiments were determined by comparing the signal intensities with the signals of samples of natural ¹³C abundance measured under identical spectroscopic conditions. In detail, ¹³C NMR spectra of nudicaulin I obtained from incubation of sliced petals with ¹³C-labeled precursors were acquired and the integrals of selected ¹³C NMR signals were determined. A ¹³C NMR spectrum of nudicaulin I under the same experimental conditions was also acquired and the integrals of ¹³C signals of nudicaulin I of natural abundance isotope composition were determined. A signal of a natural abundance ¹³C atom was used as a reference. The ratio of signal integrals of corresponding carbon atoms in nudicaulin I from feeding experiments and of natural abundance material was then calculated. This ratio is a direct measure of the relative ¹³C abundance at each position of nudicaulin I from labeling experiments.

[1] E. C. Tatsis, A. Schaumlöffel, A. C. Warskulat, G. Massiot, B. Schneider, G. Bringmann, Org. Lett. 2013, 15, 156-159.

List of figures

Figure S1. Structures of nudicaulin I (3 <i>S</i> ,11 <i>R</i>) and nudicaulin II (3 <i>R</i> ,11 <i>S</i>).	.7
Figure S2. ESI-MS spectrum of nudicaulin I of natural abundance isotope composition	7
Figure S3. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of nudicaulin I of natural abundance isotope composition.	8
Figure S4. ¹³ C NMR spectrum (125 MHz, CD ₃ OD) of nudicaulin I of natural abundance isotope composition.	8
Figure S5. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_6]$ glucose as a tracer.	9
Figure S6. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using $[{}^{13}C_6]$ glucose as a tracer. The spectrum was recorded without solvent suppressio	n. 12
Figure S7. ¹³ C NMR spectra (125 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [¹³ C ₆]glucose as a tracer. Panel A): Full spectrum; panels B)-D): extended partial spectra with carbon numbering of ¹³ C-enriched signals. For $J_{13C-13C}$ values, see Table S3. The asterisks (*) indicate the signals of trifluoroacetic acid.	1 12
Figure S8. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [ring- ${}^{13}C_6$]anthranilic acid as a tracer.	13
Figure S9. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [ring- $^{13}C_6$]anthranilic acid as a tracer. The asterisk (*) indicates the signal of a contamination.	14
Figure S10. ¹³ C NMR spectrum (125 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [ring- ¹³ C ₆]anthranilic acid as a tracer. Specific ¹³ C-enrichment at C-14 to C-19 were 6-8% (calculated as described in S1, using the signal of C-2'/6' (δ 139.3) as a reference). Below: Full spectrum; above: partial spectra showing signals of ¹³ C-enriched positions. The asterisk (*) indicates the signal of trifluoroacetic acid.	15
Figure S11. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [¹⁵ N]anthranilic acid as a tracer.	16
Figure S12. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [2- ¹³ C]indole as a tracer.	17
Figure S13. ¹ H NMR spectrum (700 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [2- ¹³ C]indole as a tracer.	18
Figure S14. ¹³ C NMR spectra (175 MHz, CD ₃ OD) of nudicaulin I. Above: spectrum obtained from the labeling experiment using [2- ¹³ C]indole as a tracer. Specific ¹³ C-enrichment at C-2 was 57% (calculated as described in S1, using the signal of C-2'/6' (δ 139.3) as a reference). Below: Spectrum of unlabeled nudicaulin I (reference).	n 18
Figure S15. PDB experiment with cyanidin. The cyanidin scaffold is shown in bold; Glc: β-glucosyl; Soph: β-sophorosyl	19
Figure S16. LC-ESI-MS (extracted ion chromatogram) of 3'-hydroxynudicaulin obtained from the PDB experiment with cyanidin.) 19
Figure S17. PDB experiment with 4-fluoroanthranilic acid. The 4-fluoroanthranilic acid scaffold is shown in bold; Glc: β-glucosyl; Soph: β-sophorosyl	s 20
Figure S18. LC-ESI-MS (extracted ion chromatogram) spectrum of 17-fluoronudicaulin obtained from the PDB experiment with 4-fluoroanthranilic acid.	20

Figure S19. PDB experiment with 5-hydroxyanthranilic acid. The 5-hydroxyanthranilic acid scaffold is shown in bold; Glc: β-glucosyl; Soph: β-sophorosyl
Figure S20. LC-ESI-MS (extracted ion chromatogram) spectrum of 16-hydroxynudicaulin obtained from the PDB experiment with 5-hydroxyanthranilic acid
Figure S21. PDB experiment with 5-methylanthranilic acid. The 5-methylanthranilic acid scaffold is shown in bold; Glc: β -glucosyl; Soph: β -sophorosyl
Figure S22. LC-ESI-MS (extracted ion chromatogram) spectrum of 16-methylnudicaulin obtained from the PDB experiment with 5-methylanthranilic acid
Figure S23. Detection of indole by GC-MS analysis (total ion chromatograms) of the petal extracts of yellow <i>P. nudicaule</i> . Petals were collected from buds at days 7, 5, 3, 2, and 1 before flowering and from the blooming flower
Figure S24. GC-EIMS spectra of indole (positive ionization). Above: Indole standard. Below: Indole from extracts of yellow petals of <i>P. nudicaule</i>
Figure S25. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_9]L$ -phenylalanine as a tracer
Figure S26. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [¹³ C ₉]L-phenylalanine as a tracer
Figure S27. ¹³ C NMR spectrum (125 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using $[^{13}C_9]L$ -phenylalanine as a tracer. Below: Full spectrum; above: partial spectra showing signals of ¹³ C-enriched positions. Specific ¹³ C-enrichment at C-3, C-11, C-12 and C-1' to C-6' were 4-8% (calculated as described in S2, using the signal of C-15 (δ 125.6) as a reference). The asterisk (*) indicates the signal of trifluoroacetic acid
Figure S28. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [2- ¹³ C]L-tyrosine as a tracer
Figure S29. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [2- ¹³ C] <i>p</i> -coumaric acid as a tracer
Figure S30. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_2]$ acetate as a tracer
Figure S31. ¹ H NMR spectrum (500 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using $[^{13}C_2]$ acetate as a tracer. The asterisk (*) indicates the signal of a contamination. 30
Figure S32. ¹³ C NMR spectrum (125 MHz, CD ₃ OD) of nudicaulin I obtained from the labeling experiment using [$^{13}C_2$]acetate as a tracer. Full spectrum, see below; partial spectra showing signals of ^{13}C -enriched positions, see above. Specific ^{13}C -enrichment at C-4 - C-9 were 3-5% (calculated as described in S1, using the signal of C-2'/6' (δ 139.3) as a reference). The asterisk (*) indicates the signal of trifluoroacetic acid
Figure S33. HPLC profiles (UV 460 nm) of petal extracts of yellow <i>P. nudicaule</i> . Petals were collected from buds at days 7, 5, 3, 2, and 1 before flowering

List of tables

Table S1. ESI-MS data of nudicaulin I of natural abundance isotope composition. For spectrum, see Figure S2. 7
Table S2. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[^{13}C_6]$ glucose as a tracer. For spectrum, see Figure S5
Table S3. ¹ H and ¹³ C NMR spectroscopic data (500 MHz for ¹ H; 125 MHz for ¹³ C) of nudicaulin I aglycone with ¹³ C abundances obtained from the labeling experiment using [¹³ C ₆]glucose as a tracer
Table S4. ESI-MS data of nudicaulin I obtained from the labeling experiment with [ring- ${}^{13}C_6$]anthranilic acid as a tracer. For spectrum, see Figure S8
Table S5. ¹ H and ¹³ C NMR spectroscopic data (500 MHz for ¹ H; 125 MHz for ¹³ C) for ¹³ C-labeled positions of nudicaulin I with ¹³ C abundances obtained from the labeling experiment using [ring- ${}^{13}C_6$]anthranilic acid as a tracer
Table S6. ESI-MS data of nudicaulin I obtained from the labeling experiment with [¹⁵ N]anthranilic acid as a tracer. For spectrum, see Figure S1116
Table S7. ESI-MS data of nudicaulin I obtained from the labeling experiment with [2- ¹³ C]indole as a tracer. For spectrum, see Figure S1217
Table S8. LC-ESI-MS data of 3'-hydroxynudicaulin obtained from the PDB experiment with cyanidin. For spectrum, see Figure S16.19
Table S9. LC-ESI-MS data of 17-fluoronudicaulin obtained from the PDB experiment with 4-fluoroanthranilic acid. For spectrum, see Figure S18.20
Table S10. LC-ESI-MS data of 16-hydroxynudicaulin obtained from the PDB experiment with 5-hydroxyanthranilic acid. For spectrum, see Figure S20
Table S11. LC-ESI-MS data of 16-methylnudicaulin obtained from the PDB experiment with 5-methylanthranilic acid. For spectrum, see Figure S22
Table S12. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[^{13}C_9]L$ -phenylalanine as a tracer. For spectrum, see Figure S2525
Table S13. ¹ H and ¹³ C NMR spectroscopic data (500 MHz for ¹ H; 125 MHz for ¹³ C) of nudicaulin I aglycone with ¹³ C abundances obtained from the labeling experiment using [¹³ C ₉]L-phenylalanine as a tracer
Table S14. ESI-MS data of nudicaulin I obtained from the labeling experiment with [2- ¹³ C]L- tyrosine as a tracer. For spectrum, see Figure S28
Table S15. ESI-MS data of nudicaulin I obtained from the labeling experiment with [2- ¹³ C] <i>p</i> -coumaric acid as a tracer. For spectrum, see Figure S29
Table S16. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[^{13}C_2]$ acetate as a tracer. For spectrum, see Figure S30
Table S17. ¹ H and ¹³ C NMR spectroscopic data (500 MHz for ¹ H; 125 MHz for ¹³ C) of nudicaulin I aglycone with ¹³ C abundances obtained from the labeling experiment using [$^{13}C_2$]acetate as a tracer.

Figure S1. Structures of nudicaulin I (3S,11R) and nudicaulin II (3R,11S).

Table S1. ESI-MS data of nudicaulin I of natural abundance isotope composition. For spectrum, see Figure S2.

m/z	Intensity	Relative intensity
872.26	178896.1	100
873.26	77763.8	43.47
874.26	22778.2	12.73
875.27	4057.7	2.27

Figure S2. ESI-MS spectrum of nudicaulin I of natural abundance isotope composition.

Figure S3. ¹H NMR spectrum (500 MHz, CD₃OD) of nudicaulin I of natural abundance isotope composition.

Figure S4. ¹³C NMR spectrum (125 MHz, CD₃OD) of nudicaulin I of natural abundance isotope composition.

Figure S5. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_6]$ glucose as a tracer.

Table S2. ESI-MS data of nudicaulin I obtained from the labeling experiment with [¹³ C	C ₆]glucose as
a tracer. For spectrum, see Figure S5.	

m/z	Intensity	Relative intensity
872.26	2329834.0	100.00
873.26	1241770.8	53.30
874.27	613506.9	26.33
875.27	317167.0	13.61
876.27	210509.4	9.04
877.28	142013.2	6.10
878.28	106431.3	4.57
879.28	73759.5	3.17
880.29	60438.2	2.59
881.29	48049.4	2.06
882.29	42943.4	1.84
883.30	35384.6	1.52
884.30	31021.3	1.33
885.30	23778.1	1.02
886.31	21020.6	0.90
887.31	15379.0	0.66
888.31	11299.6	0.48
889.32	8663.8	0.37
Calculated total ¹³ C enrichment: 3.3%		

No	¹ H NMR	¹³ C NMR	Coupling constant		¹³ C and isotopolog	gue abundances
INO.	δ , mult., J (Hz)	δ^{a}	J_{CC} (Hz) [coupled C] ^b	$\% {}^{13}C^{c}$	$\% {}^{13}C^{13}C^{d}$ [coupled C] ^b	% mol isotopologues [position] ^e
Aglycone						
2		177.5	48 [13]	20.5	64.1 [13]	13.1 [2, 13]
3	5.63, <i>s</i>	49.9	41 [11]	3.3	60.0 [11]	1.8 [3, 11]
4		101.8	77 [5], 63 [9]	6.3	45.1	2.2 [4, 5] or [4, 9]
5		156.4	77 [4], 66 [6]	4.9	50.3	2.2 [4, 5] or [5, 6]
6	6.33, <i>d</i> , 2.0	99.3	66 [5], 71 [7]	5.5	47.6	2.2 [6, 7] or [5, 6]
7		162.6	71 [6], 71 [8]	4.0	40.1	2.2 [6, 7] or [7, 8]
8	6.29, <i>d</i> , 2.0	92.4	71 [7], 71 [9]	4.7	48.5	2.2 [8, 9] or [7, 8]
9		161.1	71 [8], 63 [4]	4.3	45.5	2.2 [8, 9] or [4, 9]
11		126.9	41 [3], 53 [12]	5.4	38.4 [3, 12]	2.6 [3, 11, 12]
12		168.5	53 [11]	3.3	53.5 [11]	2.0 [11, 12]
13		131.2	48 [2]	15.8	68.4 [2]	11.3 [2, 13]
14		122.7	59 [19]	16.8	56 [19]	9.4 [14, 19]
15	8.33, <i>d</i> , 7.8	125.6	58 [16]	13.3	76.0 [16]	11.3 [15,16] and [15,16,17]
16	7.59, <i>dd</i> , 7.8, 7.8	128.5	58 [15], 56 [17]	14.9	75.7 [15 and 17],	9.7 [15, 16, 17],
					12.6 [15 or 17]	1.7 [15, 16] and [16, 17]
17	7.66, <i>dd</i> , 7.8, 7.8	131.4	56 [16], 56 [18]	11.6	39.9 [16 and 18],	4.8 [16, 17, 18],
					46.5 [16 or 18]	5.4 [16, 17] and [17, 18]
18	7.72, <i>d</i> , 7.8	117.2	56 [17]	18.8	48.8 [17]	9.2 [17,18] and [16,17,18]
19		148.4	59 [14]	19.3	73.8 [14]	12.3 [14, 19]
1′		123.0	59 [2′]	3.5	66.5 [2′]	2.3[1', 2']
2′/6′	8.63, <i>d</i> , 9.0	139.3	59 [1'] / 59 [5']	5.5	52.5 [1' or 5']	2.9 [1', 2'] and [5', 6']
3′/5′	7.16, <i>d</i> , 9.0	118.3	59 [6'], 61 [4']	4.9	26.0[4' and 6']	1.5 [3',4',5'] and [4', 5', 6'],
			L 3/ L 3		15.7 [4' or 6']	1.2 [3', 4'] and [5', 6']
4′		168.3	61 [3'/ 5'], 9 [6']	4.3	39.6[3' and 5'].	2.4 [3',4',5'] and [4', 5', 6'],
					19.7 [3' or 5']	1.2 [3', 4'] and [5', 6']

Table S3. ¹H and ¹³C NMR spectroscopic data (500 MHz for ¹H; 125 MHz for ¹³C) of nudicaulin I aglycone with ¹³C abundances obtained from the labeling experiment using [$^{13}C_6$]glucose as a tracer.

^{a 13}C NMR chemical shifts are from Schliemann et al., *Phytochemistry* **2006**, *67*, 191-201 and may slightly deviate in the spectra obtained from the ¹³CO₂ experiment due to residual trifluoroacetic acid remaining from HPLC solvent.

^bThe numbers in parentheses indicate the coupling partners. ^{c 13}C abundances of individual carbon atoms ($\%^{13}$ C). ^d Relative contribution of a satellite pair to the overall ¹³C NMR signal integral of the indexed carbon atom. ^e Relative molar amounts of isotopologues were calculated as $\%^{13}$ C × $\%^{13}$ C¹³C. Bracketed numbers indicate ¹³C atoms of the respective isotopologue.

Figure S6. ¹H NMR spectrum (500 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using $[^{13}C_6]$ glucose as a tracer. The spectrum was recorded without solvent suppression.

Figure S7. ¹³C NMR spectra (125 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [¹³C₆]glucose as a tracer. Panel A): Full spectrum; panels B)-D): extended partial spectra with carbon numbering of ¹³C-enriched signals. For $J_{13C-13C}$ values, see Table S3. The asterisks (*) indicate the signals of trifluoroacetic acid.

Figure S8. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[ring-^{13}C_6]$ anthranilic acid as a tracer.

Table S4. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[ring-^{13}C_6]$ anthranilic acid as a tracer. For spectrum, see Figure S8.

m/z	Intensity	Relative intensity	
872.26	3683457.5	100.00	
873.26	3608827.8	97.97	
874.27	1737296.9	47.16	
875.27	534059.1	14.50	
876.27	115343.2	3.13	
877.27	24306.2	0.66	
878.27	136494.1	3.71	
879.27	116956.3	3.18	
880.27	46912.2	1.27	
881.27	12064.7	0.33	
Calculated total ¹³ C enrichment: 16.9%			

Figure S9. ¹H NMR spectrum (500 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [ring-¹³C₆]anthranilic acid as a tracer. The asterisk (*) indicates the signal of a contamination.

Table S5. ¹H and ¹³C NMR spectroscopic data (500 MHz for ¹H; 125 MHz for ¹³C) for ¹³C-labeled positions of nudicaulin I with ¹³C abundances obtained from the labeling experiment using [ring-¹³C₆]anthranilic acid as a tracer.

No	¹ H NMR	¹³ C NMR	Coupling constant
110.	δ , mult., $J_{\rm HH}$ (Hz)	δ^{a}	$J_{\rm CC}$ (Hz) [coupled C] ^b
Aglycone			
14		122.7	59 [19], 56 [15]
15	8.33, <i>d</i> , 7.8	125.6	58 [16], 56 [14]
16	7.59, <i>dd</i> , 7.8, 7.8	128.5	58 [15], 56 [17]
17	7.66, <i>dd</i> , 7.8, 7.8	131.4	56 [16], 56 [18]
18	7.72, <i>d</i> , 7.8	117.2	56 [17], 56 [19]
19		148.4	59 [14], 56 [18]

^a ¹³C NMR chemical shifts are from Schliemann et al., *Phytochemistry* **2006**, *67*, 191-201 and may slightly deviate in the spectra obtained from the ¹³CO₂ experiment due to residual trifluoroacetic acid remaining from HPLC solvent.

^b The numbers in parentheses indicate the coupling partners.

Figure S10. ¹³C NMR spectrum (125 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [ring-¹³C₆]anthranilic acid as a tracer. Specific ¹³C-enrichment at C-14 to C-19 were 6-8% (calculated as described in S1, using the signal of C-2'/6' (δ 139.3) as a reference). Below: Full spectrum; above: partial spectra showing signals of ¹³C-enriched positions. The asterisk (*) indicates the signal of trifluoroacetic acid.

Table S6. ESI-MS data of nudicaulin I obtained from the labeling experiment with [¹⁵N]anthranilic acid as a tracer. For spectrum, see Figure S11.

m/z	Intensity	Relative intensity	
872.26	4594081.5	100.00	
873.26	2249753.0	48.97	
874.27	716722.9	15.60	
875.27	158632.5	3.45	
876.27	28717.1	0.63	
Calculated total ¹³ C enrichment: 1.7%			

Figure S12. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[2^{-13}C]$ indole as a tracer.

Table S7. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[2-^{13}C]$ indole as a tracer. For spectrum, see Figure S12.

m/z	Intensity	Relative intensity	
872.26	16161.2	77.84	
873.26	20517.4	100.00	
874.27	7642.9	38.59	
875.27	2524.8	10.65	
Calculated total ¹³ C enrichment: 56.1%			

Figure S13. ¹H NMR spectrum (700 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [2-¹³C]indole as a tracer.

Figure S14. ¹³C NMR spectra (175 MHz, CD₃OD) of nudicaulin I. Above: spectrum obtained from the labeling experiment using [2-¹³C]indole as a tracer. Specific ¹³C-enrichment at C-2 was 57% (calculated as described in S1, using the signal of C-2[']/6' (δ 139.3) as a reference). Below: Spectrum of unlabeled nudicaulin I (reference).

Figure S15. PDB experiment with cyanidin. The cyanidin scaffold is shown in bold; Glc: β -glucosyl; Soph: β -sophorosyl.

Figure S16. LC-ESI-MS (extracted ion chromatogram) of 3'-hydroxynudicaulin obtained from the PDB experiment with cyanidin.

Table S8. LC-ESI-MS data of 3'-hydroxynudicaulin obtained from the PDB experiment with cyanidin. For spectrum, see Figure S16.

m/z	Intensity	Relative intensity
888.26	522311.6	100.00
889.26	229375.1	43.92
890.26	68888.6	13.19
891.27	14429.4	2.76
892.30	3416.1	0.65

Figure S17. PDB experiment with 4-fluoroanthranilic acid. The 4-fluoroanthranilic acid scaffold is shown in bold; Glc: β -glucosyl; Soph: β -sophorosyl.

Figure S18. LC-ESI-MS (extracted ion chromatogram) spectrum of 17-fluoronudicaulin obtained from the PDB experiment with 4-fluoroanthranilic acid.

Table S9. LC-ESI-MS data of 17-fluoronudicaulin obtained from the PDB experiment with 4-fluoroanthranilic acid. For spectrum, see Figure S18.

m/z	Intensity	Relative intensity
890.25	127777.4	100.00
891.25	54556.9	42.70
892.26	15495.0	12.13
893.26	3680.5	2.88
894.27	457.7	0.36

Figure S19. PDB experiment with 5-hydroxyanthranilic acid. The 5-hydroxyanthranilic acid scaffold is shown in bold; Glc: β -glucosyl; Soph: β -sophorosyl.

Figure S20. LC-ESI-MS (extracted ion chromatogram) spectrum of 16-hydroxynudicaulin obtained from the PDB experiment with 5-hydroxyanthranilic acid.

Table S10. LC-ESI-MS data of 16-hydroxynudicaulin obtained from the PDB experiment with 5-hydroxyanthranilic acid. For spectrum, see Figure S20.

m/z,	Intensity	Relative intensity
888.25	277447.7	100.00
889.26	122378.8	44.11
890.26	36020.5	12.98
891.26	7544.3	2.72
892.26	1422.6	0.51

Figure S21. PDB experiment with 5-methylanthranilic acid. The 5-methylanthranilic acid scaffold is shown in bold; Glc: β -glucosyl; Soph: β -sophorosyl.

Figure S22. LC-ESI-MS (extracted ion chromatogram) spectrum of 16-methylnudicaulin obtained from the PDB experiment with 5-methylanthranilic acid.

Table S11. LC-ESI-MS data of 16-methylnudicaulin obtained from the PDB experiment with 5-methylanthranilic acid. For spectrum, see Figure S22.

m/z	Intensity	Relative intensity
886.27	35041.1	100.00
887.28	15588.1	44.49
888.28	4191.3	11.96
889.28	858.2	2.45

Figure S23. Detection of indole by GC-MS analysis (total ion chromatograms) of the petal extracts of yellow *P. nudicaule*. Petals were collected from buds at days 7, 5, 3, 2, and 1 before flowering and from the blooming flower.

Figure S24. GC-EIMS spectra of indole (positive ionization). Above: Indole standard. Below: Indole from extracts of yellow petals of *P. nudicaule*.

Figure S25. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_9]L$ -phenylalanine as a tracer.

m/z	Intensity	Relative intensity	
872.26	1383446.6	100.00	
873.26	1255039.1	90.61	
874.27	569636.6	41.13	
875.27	169974.2	12.25	
876.27	35691.4	2.58	
877.28	7088.2	0.51	
880.29	12317.0	0.89	
881.29	87749.8	6.33	
882.29	64220.1	4.65	
883.30	23668.8	1.71	
Calculated total ¹³ C enrichment: 11.3%			

Table S12. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[^{13}C_9]L$ -phenylalanine as a tracer. For spectrum, see Figure S25.

Table S13. ¹H and ¹³C NMR spectroscopic data (500 MHz for ¹H; 125 MHz for ¹³C) of nudicaulin I aglycone with ¹³C abundances obtained from the labeling experiment using [$^{13}C_9$]L-phenylalanine as a tracer.

No	¹ H NMR	¹³ C NMR	Coupling constant
INU.	δ, mult., $J_{\rm HH}$ (Hz)	δ^{a}	J_{CC} (Hz) [coupled C] ^b
Aglycone			
3	5.63, <i>s</i>	49.9	41 [11], 3 [12]
11		126.9	41 [3], 53 [12]
12		168.5	53 [11], 54 [1′]
1′		123.0	59 [2′/6′], 54 [12]
2'/6'	8.63, <i>d</i> , 9.0	139.3	59 [1′], 59 [3′/5′]
3′/5′	7.16, <i>d</i> , 9.0	118.3	59 [2′/6′], 61 [4′]
4′		168.3	61 [3′/ 5′], 9 [2′/6′]

^{a 13}C NMR chemical shifts are from Schliemann et al., *Phytochemistry* **2006**, *67*, 191-201 and may slightly deviate in the spectra obtained from the ¹³CO₂ experiment due to residual trifluoroacetic acid remaining from HPLC solvent.

^b The numbers in parentheses indicate the coupling partners.

Figure S26. ¹H NMR spectrum (500 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using $[^{13}C_9]L$ -phenylalanine as a tracer.

Figure S27. ¹³C NMR spectrum (125 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [¹³C₉]L-phenylalanine as a tracer. Below: Full spectrum; above: partial spectra showing signals of ¹³C-enriched positions. Specific ¹³C-enrichment at C-3, C-11, C-12 and C-1' to C-6' were 4-8% (calculated as described in S2, using the signal of C-15 (δ 125.6) as a reference). The asterisk (*) indicates the signal of trifluoroacetic acid.

Figure S28. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[2-^{13}C]L$ -tyrosine as a tracer.

Table S14. ESI-MS data of nudicaulin I obtained from the labeling experiment with [2-¹³C]L-tyrosine as a tracer. For spectrum, see Figure S28.

m/z	Intensity	Relative intensity		
872.26	1383446.6	74.65		
873.26	1255039.1	100.00		
874.27	569636.6	38.06		
875.27	169974.2	10.16		
876.27 35691.4 2.25				
Calculated total ¹³ C enrichment: 56.8%				

Figure S29. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with [2-¹³C]*p*-coumaric acid as a tracer.

Table S15. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[2-^{13}C]p$ -coumaric acid as a tracer. For spectrum, see Figure S29.

m/z	Intensity	Relative intensity	
872.26	12117.9	100.00	
873.26	6466.6	53.36	
874.27	1794.7	14.81	
875.27	565.3	3.11	
Calculated total ¹³ C enrichment: 4.7%			

Figure S30. ESI-MS spectrum of nudicaulin I obtained from the labeling experiment with $[^{13}C_2]$ acetate as a tracer.

Table S16. ESI-MS data of nudicaulin I obtained from the labeling experiment with $[^{13}C_2]$ acetate as a tracer. For spectrum, see Figure S30.

m/z	Intensity	Relative intensity	
872.26	2998524.8	100.00	
873.26	1426116.8	47.56	
874.27	1078839.0	35.98	
875.27	402629.3	13.43	
876.27	401013.7	13.37	
877.27	142641.9	4.76	
878.27	95178.7	3.17	
879.27	28458.4	0.95	
880.27	6861.0	0.23	
Calculated total ¹³ C enrichment: 13.4%			

Table S17. ¹H and ¹³C NMR spectroscopic data (500 MHz for ¹H; 125 MHz for ¹³C) of nudicaulin I aglycone with ¹³C abundances obtained from the labeling experiment using $[^{13}C_2]$ acetate as a tracer.

δ , mult., J_{HH} (Hz) δ^a J_{CC} (Hz) [coupled C] ^b 4 101.8 77 [5], 63 [9] 5 156.4 77 [4], 66 [6], 5 [9] 6 6.33, d, 2.0 99.3 66 [5], 71 [7] 7 162.6 71 [6], 71 [8] 8 6.29, d, 2.0 92.4 71 [7], 71 [9] 9 161 1 71 [8] 63 [4] 5 [5]	No	¹ H NMR	¹³ C NMR	Coupling constant
4 101.8 77 [5], 63 [9] 5 156.4 77 [4], 66 [6], 5 [9] 6 6.33, d, 2.0 99.3 66 [5], 71 [7] 7 162.6 71 [6], 71 [8] 8 6.29, d, 2.0 92.4 71 [7], 71 [9] 9 161.1 71 [8] 63 [4] 5 [5]	INU	δ, mult., $J_{\rm HH}$ (Hz)	δ^a	J_{CC} (Hz) [coupled C] ^b
5 156.4 77 [4], 66 [6], 5 [9] 6 6.33, d, 2.0 99.3 66 [5], 71 [7] 7 162.6 71 [6], 71 [8] 8 6.29, d, 2.0 92.4 71 [7], 71 [9] 9 161 1 71 [8] 63 [4] 5 [5]	4		101.8	77 [5], 63 [9]
6 6.33, d, 2.0 99.3 66 [5], 71 [7] 7 162.6 71 [6], 71 [8] 8 6.29, d, 2.0 92.4 71 [7], 71 [9] 9 161 1 71 [8] 63 [4] 5 [5]	5		156.4	77 [4], 66 [6], 5 [9]
7 162.6 71 [6], 71 [8] 8 6.29, d, 2.0 92.4 71 [7], 71 [9] 9 161.1 71 [8] 63 [4] 5 [5]	6	6.33, <i>d</i> , 2.0	99.3	66 [5], 71 [7]
8 6.29, <i>d</i> , 2.0 92.4 71 [7], 71 [9] 9 161 1 71 [8] 63 [4] 5 [5]	7		162.6	71 [6], 71 [8]
9 161 1 71 [8] 63 [4] 5 [5]	8	6.29, <i>d</i> , 2.0	92.4	71 [7], 71 [9]
	9		161.1	71 [8], 63 [4], 5 [5]

^a ¹³C NMR chemical shifts are from Schliemann et al., *Phytochemistry* **2006**, *67*, 191-201 and may slightly deviate in the spectra obtained from the ${}^{13}CO_2$ experiment due to residual trifluoroacetic acid remaining from HPLC solvent.

^b The numbers in parentheses indicate the coupling partners. Due to alternative cyclization between C-4 and C-5 or between C-4and C-9, bond labeling of C-5/C-6, C-7/C-8, C-9/C-4 and C-4/C-5, C-6/C-7, C-9/C-4 was observed.

Figure S31. ¹H NMR spectrum (500 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [$^{13}C_2$]acetate as a tracer. The asterisk (*) indicates the signal of a contamination.

Figure S32. ¹³C NMR spectrum (125 MHz, CD₃OD) of nudicaulin I obtained from the labeling experiment using [$^{13}C_2$]acetate as a tracer. Full spectrum, see below; partial spectra showing signals of ^{13}C -enriched positions, see above. Specific ^{13}C -enrichment at C-4 - C-9 were 3-5% (calculated as described in S1, using the signal of C-2'/6' (δ 139.3) as a reference). The asterisk (*) indicates the signal of trifluoroacetic acid.

Figure S33. HPLC profiles (UV 460 nm) of petal extracts of yellow *P. nudicaule*. Petals were collected from buds at days 7, 5, 3, 2, and 1 before flowering.