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ABSTRACT: Skeletal muscle has emerged as an important
secretory organ that produces so-called myokines, regulating
energy metabolism via autocrine, paracrine, and endocrine
actions; however, the nature and extent of the muscle
secretome has not been fully elucidated. Mass spectrometry
(MS)-based proteomics, in principle, allows an unbiased and
comprehensive analysis of cellular secretomes; however, the
distinction of bona fide secreted proteins from proteins
released upon lysis of a small fraction of dying cells remains
challenging. Here we applied highly sensitive MS and
streamlined bioinformatics to analyze the secretome of lipid-
induced insulin-resistant skeletal muscle cells. Our workflow
identified 1073 putative secreted proteins including 32 growth
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factors, 25 cytokines, and 29 metalloproteinases. In addition to previously reported proteins, we report hundreds of novel ones.
Intriguingly, ~40% of the secreted proteins were regulated under insulin-resistant conditions, including a protein family with
signal peptide and EGF-like domain structure that had not yet been associated with insulin resistance. Finally, we report that
secretion of IGF and IGF-binding proteins was down-regulated under insulin-resistant conditions. Our study demonstrates an
efficient combined experimental and bioinformatics workflow to identify putative secreted proteins from insulin-resistant skeletal
muscle cells, which could easily be adapted to other cellular models.

KEYWORDS: myokines, quantitative proteomics, mass spectrometry, metabolism, glucose uptake, insulin signaling, diabetes, obesity,
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B INTRODUCTION

Skeletal muscle is the primary tissue for insulin-mediated
glucose uptake, accounting for up to 75% of the insulin-
dependent glucose disposal." Accordingly, insulin resistance in
skeletal muscle plays a central role in the development of type 2
diabetes.” The role of inflammation in the pathogenesis of type
2 diabetes, obesity, and associated complications is now well
established.” Pro-inflammatory proteins, such as tumor necrosis
factor alpha (Tnf-a), interleukin 6 (II-6), II-1b, and monocyte
chemotactic proteins 1 (Mcp-1), are elevated in experimental
animal model of obesity and in obese humans.”® Many of these
pro-inflammatory proteins are secreted from adipose tissues.’
In the last years, skeletal muscle has also been recognized as an
important secretory organ. Proteins secreted from the
contracting (exercised) skeletal muscle can possess anti-
inflammatory properties and protect the body from chronic
diseases such as type 2 diabetes.” Additionally, physical
inactivity is associated with increased risk of type 2 diabetes,”®
which could hint at a potential role for secreted proteins from
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skeletal muscle in type 2 diabetes. Proteins and peptides that
are secreted by skeletal muscles are often termed as myokines.”
Given that muscle is the largest organ in the body, analysis of its
secretome provides a basis for understanding how this tissue
communicates with other organs such as adipose tissue, liver,
pancreas, bone, and brain.

Proteomics based on high-resolution mass spectrometry
(MS) has become a powerful tool for the analysis of protein
abundance, modifications, and interactions.” For the inves-
tigation of cellular communication, proteomic analysis of
secreted proteins holds enormous promise; however, secretome
analysis faces several challenges, including the detection of bona
fide secreted proteins at low concentrations by MS (pg/mL)
and the separation of authentic secreted proteins from proteins
derived from cell leakage or serum. We have recently shown
that with current technology quantitative MS-based secretome
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Figure 1. Proteomics analysis of lipid-induced insulin-resistant cells. (A) Differentiated C2C12 cells were treated with S00 M palmitic acid in the
presence of BSA (PA/ BSA) for 16 h. Controls cells were treated with BSA. Conditioned media from PA/BSA treated cells were collected after 12 h
of incubation in serum-free media. Proteomics analysis was performed on conditioned media and cell lysates. (B) Western blot analysis displaying
impairment of insulin-stimulated Akt (Ser473) phosphorylation in PA/BSA-treated muscle cells. (C) Proteomics workflow of conditioned media
from control and palmitate-treated insulin-resistant muscle cells. Proteins from conditioned media were digested on FASP filters. Peptides were

eluted and analyzed by LC—MS on Q Exactive mass spectrometer.

analysis of immune cells can be performed with picogram
sensitivity.'” Bioinformatics approaches have been used to
separate secreted proteins from nonsecreted proteins.'" So far,
these have typically been based either on algorithms that
predict signal peptides from primary sequence or on subcellular
locations from curated databases or on a combination of both.
Because proteins may carry out different functions in different
cellular locations,'” it is inherently difficult to discriminate
secreted proteins from nonsecreted ones. Thus, despite the
technical advances in mass spectrometry and sample prepara-
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tion, the bioinformatics analysis and interpretation of the data
remains a challenge.

Proteomic profiling of the conditioned media from mouse,
rat, and human skeletal muscle cells has already helped to

identify hundreds of secreted proteins.">~"®

One such study
reported that insulin stimulation alters the secretome profile of
skeletal muscle cells, which would suggest that the protein
secretion profile of skeletal muscle may differ between insulin

resistance states.” Despite these pioneering studies, the
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secretomes of skeletal muscle cells in the insulin sensitive or
resistant states have not been fully characterized.

Insulin resistance precedes the diagnosis of type 2 diabetes."”
Lipid-induced insulin resistance has been linked to multiple
cellular events including accumulation of ceramides,”” impaired
insulin-stimulated phosphatidylinositol 3-kinase activity,”'
activation of protein kinase C ¢,** mitochondrial dysfunction,23
and activation of nuclear factor kB (NF-xB).”* Moreover,
increased levels of plasma FFA contribute to impaired insulin
signaling, leading to reduced insulin sensitivity and glucose
uptake in insulin-sensitive tissues.'”>*>°

Here we performed a proteomic analysis of the conditioned
media from C2C12 myotubes, which are muscle cells that are
differentiated into muscle fibers. Treating these myotubes with
palmitic acid constitutes a frequently used model of induced
insulin resistance.”””" In this study, we sought to develop a
stringent bioinformatics workflow to help characterize the
skeletal muscle secretome and to identify novel myokines,
especially those whose secretion is modulated under lipid-
induced insulin resistance conditions.

B EXPERIMENTAL PROCEDURES

Cell Culture

C2C12 cells (myoblasts) were grown in Eagle’s minimum
essential medium supplemented with 2 mM L-glutamine and
10% fetal bovine serum (FBS) plus antibiotics in a humidified
atmosphere with 5% CO2 in air. Undifferentiated myoblasts
were grown to confluence in normal growth media. To induce
differentiation, the amount of serum in the media was reduced
to 2%. Cells were differentiated for 4 days. Growth medium was
replaced with fresh medium every 2 days over a period of 4
days. Throughout the experiment, cells were grown on 10 cm
plates with 10 mL of growth/differentiation medium.

Fatty Acid Treatment

Palmitic acid was conjugated with BSA at 2:1 molar ratio. After
4 days of differentiation, C2C12 myotubes were treated with
0.5 mM palmitic acid (Sigma-Aldrich) or 0.1% fatty acid free
Bovine Serum Albumin (BSA) (Sigma-Aldrich) for 16 h.
Because the cell culture media in this stage of the experiment
contained high concentration of BSA, it was not suitable for the
proteomic analysis. Therefore, cells were washed five times with
serum-free media (conditioned media) to reduce the amount of
contaminating BSA and incubated for another 12 h in the
conditioned media. Finally, we collected the conditioned media
for proteomic analysis. This procedure was performed in
quintuplicate (biological replicates) for palmitic acid/BSA-
treated cells. We term BSA-treated samples “control” and
palmitic-acid-treated cell “palmitate-treated”. Viability of cells
before, during, and after palmitic acid/BSA treatment was
monitored using the Trypan blue exclusion technique. After
post-treatment with BSA or palmitic acid, we observed <10%
cell death.

Palmitic-Acid-Induced Insulin Resistance

To examine palmitic-acid-induced insulin resistance, C2C12
myotubes were treated with 100 nM of insulin (Sigma-Aldrich)
for 10 min. Cells were treated with insulin immediately after 16
h of palmitic acid treatment as well as 12 h of post treatment
(Figure 1A). Cells were harvested and lysed in buffer
containing 0.1 M Tris-HCl, pH 7.5, 0.1 M DTT, and 4%
SDS. Cell lysates (20 ug of proteins) were separated on SDS-
PAGE. Insulin-induced Akt (Ser473) phosphorylation was
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measured by immunoblotting (phospho-Akt (Ser473), Cell
Signaling Technology). Palmitic-acid-induced insulin resistance
was confirmed by impaired Akt (Ser473) phosphorylation
under insulin-stimulated conditions (Figure 1B).

Sample Preparation for Proteomic Analysis

Proteomic analysis was performed on the conditioned media
from BSA- and palmitic acid-treated cells. Conditioned media
collected after 12 h postpalmitic acid/BSA treatment were
centrifuged and filtered using 0.2 pm filter (Millipore) to
ensure removal of any dead cells. Enzymatic digestion was
performed on the proteins secreted in the media. To 500 uL of
conditioned media, 60 mg of urea, 16 uL of 1 M DTT, and S
uL of 1 M HEPES were added and mixed, and samples were
incubated at 56 °C for 15 min. Thereafter samples were
transferred to an Ultracel YM-10 10,000 molecular weight
cutoff centrifugal filter (Millipore), spun down, and washed two
times with 200 L of 2 M urea in 0.1 M Tris/HCI pH 8.5.
Proteins were alkylated with 55 mM iodoacetamide for 30 min
in the dark. Filters were washed two times with 2 M urea in 0.1
M Tris/HCI pH 8. After the final wash, 100 uL of 2 M urea
(pH 8) was added on the filters. Subsequently proteins were
digested with 0.5 ug LysC (Wako) for 3 h at room temperature
and 0.5 ug trypsin (Promega, Manheim, Germany) for 16 h at
37 °C.

To measure the cellular proteome from the same cells that
we had measured the secretomes of, we lysed differentiated
C2C12 cells in buffer consisting of 0.1 M Tris-HCI, pH 7.5, 0.1
M DTT, and 4% SDS and incubated at 95 °C for S min.
Lysates were sonicated using a Branson-type sonicator and
were then clarified by centrifugation at 16 000g for 10 min. Cell
lysates were diluted in 8 M urea in 0.1 M Tris-HC], followed by
protein digestion with trypsin according to the FASP
protocol.27 After an overnight digestion, peptides were eluted
from the filters with 25 mM ammonium bicarbonate buffer.
Peptides were recovered by centrifugation, acidified with 0.5%
trifluoroacetic acid, and desalted on reverse-phase C18
StageTips.”® Peptides were eluted using 20 uL of 80%
acetonitrile in 0.5% acetic acid. The volume was reduced in a
SpeedVac and the peptides were resuspended in buffer
containing 2% acetonitrile and 0.1% formic acid.

LC—MS/MS Analysis

The peptides were analyzed using LC—MS instrumentation
consisting of an Easy nanoflow UHPLC (Thermo Fisher
Scientific) coupled via a nanoelectrospray ion source (Thermo
Fisher Scientific) to Q Exactive’” mass spectrometer (Thermo
Fisher Scientific). Peptides were separated on S0 cm column
with 7S pm inner diameter packed in-house with ReproSil-Pur
Cl18-aq 1.9 um resin (Dr. Maisch). Peptides were loaded in
buffer containing 0.5% formic acid and eluted with a 270 min
linear gradient with buffer containing 80% acetonitrile and 0.5%
formic acid (v/v) at 250 nL/min. Chromatography and column
oven (Sonation) temperature were controlled and monitored in
real time using SprayQ_C.R’0 Mass spectra were acquired in a
data-dependent manner, with an automatic switch between MS
and MS/MS using a top 10 method. MS spectra were acquired
in the Orbitrap analyzer with a mass range of 300—1750 m/z
and 70000 resolution at m/z 200. HCD peptide fragments
were acquired with normalized collision energy of 25. The
maximum ion injection times for the survey scan and the MS/
MS scans were 20 and 60 ms, and the ion target values were set
to 3e6 and le6, respectively. Data were acquired using Xcalibur

software.
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Figure 2. Bioinformatics workflow for the prediction of secreted proteins. (A) Using different bioinformatics tools, total identified proteins in
conditioned media are separated into “classically secreted” and “nonclassically secreted proteins”. Bar graph displays % proteins annotation for
proteins detected in the conditioned media (top panel) and for the proteins that were classified as secreted proteins (bottom panel). (B) Histogram
displaying the ratio of protein abundance (LFQ intensities) between proteins quantified in the media and proteins from cellular proteome of the
muscle cells. Red bar shows the proteins which were predicted as secreted proteins. (C) Histogram displaying the distribution of protein abundances
(LFQ_ intensities) from cellular proteomes. Red bar indicates the number of proteins we defined as secreted.

Computational MS Data Analysis

Mass spectra were analyzed using MaxQuant®' (version
1.4.1.14) with the Adromeda search engine.”” The initial
maximum allowed mass deviation was set to 6 ppm for
monoisotopic precursor ions and 20 ppm for MS/MS peaks.
Enzyme specificity was set to trypsin, defined as C-terminal to
arginine and lysine excluding proline, and a maximum of two
missed cleavages were allowed. A minimal peptide length of six
amino acids was required. Cabamidomethylcysteine was set as a
fixed modification, while N-terminal acetylation and methio-
nine oxidation were set as variable modifications. The spectra

4888

were searched by the Andromeda search engine against the
mouse UniProt sequence database combined with 248
common contaminants and concatenated with the reversed
versions of all sequences. The false discovery rate (FDR) was
set to 1% for peptide and protein identifications. To match the
identifications across different LC—MS runs, the “match
between runs” option in MaxQuant was enabled with a
retention time window of 30 s. In the case of identified peptides
that were shared between two or more proteins, these were
combined and reported in protein group. Contaminants and
reverse identification were removed from further data analysis.
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All statistical analyses of the MaxQuant output were performed
with the Perseus program, which is part of MaxQuant (http://
141.61.102.17/perseus_doku/doku.php?id=start, version
1.4.2.31). We used Gene Ontology (GO) biological process
(GOBP), molecular function (GOMF), cellular component
(GOCC), and UniProt Keywords to assign categorical
annotations to identified proteins. Pfam database (http://
pfam.xfam.org/) was used for the domain predictions.

Bioinformatics Workflow for the Prediction of Putative
Secreted Proteins

Secreted proteins were filtered using a combination of the
SignalP 4.1°” and SecretomeP 2.0 prediction methods and
UniProt keyword annotations—*“Signal”. SignalP predicts N-
terminal signal peptides, whereas SecretomeP predicts secretory
proteins following nonclassical, signal peptide-independent
mechanisms. Default NN-score and D-score cut-offs were
used for SecretomeP and SignalP, respectively. On the basis of
these predictions, we selected the putative secreted proteins in
three steps (Figure 2A). (1) From the total of the identified
proteins, those with predicted signal peptides were extracted
using SignalP and UniProt keyword annotation “Signal”. These
proteins were grouped as “classically” secreted proteins. (2)
The remaining proteins were annotated with GO Cellular
Component (GOCC). The proteins with “extracellular
locations” were classified as “nonclassically secreted proteins -
I”. (3) From the remaining candidates, those annotated with
“intracellular locations” (GOCC) were discarded. Protein
sequences for the remaining proteins were analyzed with
SecretomeP.** The proteins with SecretomeP NN-score >0.5
were grouped as “nonclassically secreted proteins II”. Finally,
the nonclassically secreted proteins-I and -II were grouped
together as the proteins secreted by alternate pathways
(nonclassical).

Statistical Analysis

Protein quantification in MaxQuant was Eerformed using the
built-in label-free quantification algorithm.”* The proteins with
at least three valid values in at least one group (control/
palmitate treated) were considered as quantified. The data were
imputed to fill missing data points by creating a Gaussian
distribution of random numbers with a standard deviation of
30% in comparison with the standard deviation of measured
values, and one standard deviation down-shifted from the mean
to simulate the distribution of low signal values. Two sample ¢
tests were performed on control and palmitate-treated group
with FDR = 5% and SO correction of 0.1.> Fischer’s exact test
was performed for the enrichment in the set of significantly
changing proteins of GO annotations, UniProt keyword
annotations, and Pfam domains, using Benjamini—Hochberg
correction with an FDR cutoff of 5%.

B RESULTS AND DISCUSSION

Palmitic Acid-Induced Insulin Resistance in C2C12 Muscle
Cells

Akt plays an important role in insulin-mediated glucose uptake
and glycogen synthesis;** hence its dysregulation is likely to
impact glucose homeostasis. Among the free fatty acids (FFAs),
palmitic acid is well-established for eliciting insulin resistance in
previously insulin-sensitive cells including skeletal muscle
cells. %> Using this model, we induced insulin resistance in
C2C12 myotubes (Figure 1). Palmitic-acid-induced insulin

resistance can be monitored by suppression of insulin-
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stimulated glucose uptake, PI3K activity, or Akt (Ser473)
phosphorylation.””** Accordingly, we confirmed insulin resist-
ance by measuring insulin-stimulated Akt (Ser473) phosphor-
ylation. As expected, insulin robustly increased Akt (Ser473)
phosphorylation in control (BSA) condition, while it failed to
do so after palmitic acid treatment (Figure 1B). Because the
secretome of C2C12 myotubes was measured 12 h postpalmitic
acid treatment, we also confirmed that the cells were insulin-
resistant at that time point (Figure 1B). We monitored the
viability of cells before, during, and after palmitic acid/BSA
treatment using the Trypan Blue exclusion technique. Under all
conditions Tryphan-Blue-positive cells were below 10%,
indicating that cells remained viable.

Secretome Analysis of C2C12 Muscle Cells

With high-resolution MS®” and automated computational
analysis in MaxQuant,** we detected 4491 protein groups in
the conditioned media from the control and the palmitate-
treated C2C12 myotubes together (Supplemental Table 1)
(Figure 2A). In order to reduce the number and amount of
background proteins in the conditioned medium, we omitted
supplementation of serum proteins to the culture medium in
the later stages, and this did not cause a reduction in viability
(see above).

Secretomes contain the proteins released through the
classical ER—Golgi pathways (classically secreted proteins),
extracellular domains of plasma membrane proteins generated
by protease shedding, and proteins secreted through different
nonclassical pathways (nonclassically secreted proteins).”” Our
understanding of the secretome is constantly evolving as more
and more proteins with multiple annotations are described as
secreted proteins. One of the largest challenges in secretome
analysis is to distinguish bona fide secreted proteins from the
proteins that are released into the cell culture medium upon
lysis of a small fraction of dying cells. In our data set, 15 and
11% of detected proteins were annotated in UniProt with the
keywords “Signal” and in GOCC as “Extracellular”, respectively
(Figure 2A). We next searched for proteins containing features
of known secreted proteins using both Gene Ontology
annotation information and sequence-based prediction meth-
ods, SignalP** and SecretomeP.”> On the basis of our
streamlined computational workflow (experimental proce-
dures), we identified 1073 putative secreted proteins from
C2C12 cells, including classically and nonclassically secreted
proteins as described later and in the experimental procedures
(Figure 2A) (Supplemental Table 2). Among these are a wide
variety of known secreted proteins such as growth factors
(Fgf21, Igfl, Tgfbl, Bdnf), cytokines (1134), chemokines (Ccl9,
Cxcll), and metalloproteinases (Nrdl, Mmp2, Bmpl). The
secretome of C2C12 myotubes presented here is measured
over a period of 12 h. Therefore, some of the secreted proteins
might have been taken up again by the cells, and the real
amount of secreted proteins may have been somewhat
underestimated. The list of the putative secreted proteins in
this study represents the largest muscle secretome (myoki-
nome) so far. Notably, almost half of these proteins had not
been identified in conditioned media from skeletal muscle
before. A previous study reported the identification of 635
secreted proteins during the C2C12 myogensis program.'®
Despite our different experimental setup, we identified ~60%
these proteins in our secreted protein data set (Figure S1A). A
total of 80% of the secreted proteins from the current study
were also identified our recent adult mouse skeletal muscle
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indicate proteins we defined as secreted.

proteome study,”” indicating that the myokinome reported here
is not restricted to our cellular model (Figure S1B). At the
same time, we acknowledge limitations of the results acquired
from C2C12 myotube model. For instance, the systemic
components controlling homeostatic regulation in vivo are
missing in cell cultures; the cellular metabolism may be more
constant in vitro than in vivo and may therefore not be as
representative.

The majority of known secreted proteins, regardless of their
subsequent fate, are targeted for translocation across the
endoplasmic reticulum membrane by an N-terminal signal
peptide sequence and subsequently secreted through the
classical secretion pathway. Often these proteins are secreted
in low concentration and are heavily postranslationally
modified, making their MS-based detection more difficult.
Additionally, cell culture media are rich in salts and other
compounds that can interfere with the proteomics analysis.
Despite these challenges, our proteomic workflow enabled
accurate quantitation of hundreds of classically secreted
proteins. For instance, the small protein bone-derived neuro-
tropic factor (Bdnf), which is known to be present in ng/mL
concentrations in healthy human plasma,39 was identified with
three unique peptides (Supplemental Table 2, Figure S2C).
Bdnf is produced by contracting skeletal muscle and regulates
skeletal muscle lipid metabolism.*’ In our data set, 779 proteins
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were defined as classically secreted proteins (Figure 2A),
supporting a pivotal role for skeletal muscle in interorgan
communication.

Nonclassical secretion of proteins via the ER/Golgi-
independent pathways is poorly understood. Because non-
classically secreted proteins by definition do not contain a
signal peptide sequence and comprise proteins with various
mechanistically distinct secretion paths,”” their prediction is
more difficult than that of classically secreted proteins. Among
the tools available, SecretomeP is by far the most frequently
used.” Instead of using SecretomeP on the complete data set
of proteins identified in the supernatants, we used annotations
to eliminate unnecessary false negatives and likely false
positives. We achieved the former by filtering the proteins
with the GOCC annotations indicating extracellular locations
and categorized them as “nonclassical I” (56 proteins) (Figure
2A). This list includes several proteins, which have been
reported to be secreted such as Annexins (Anxal, Anxa AS) and
high mobility group proteins (Hmgbl, Hmgb B2) (Supple-
mental Table 2).*"** We then removed the proteins with
GOCC annotations indicating intracellular locations, which if
predicted to be secreted would likely be false-positive
predictions. The remaining proteins were run through
SecretomeP, which yielded a second group of potentially
nonclassically secreted proteins (nonclassical II, 238 proteins,
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Figure 4. Secreted proteins regulated under palmitate-treated insulin-resistant conditions are enriched for EGF-like domain. (A,B) Enrichment of
calcium-binding EGF domain (A) and EGF-like domain (B) after Fischer’s exact test. (C) Abundance of few classically secreted proteins with EGF-
like domain. Secretion of these proteins is induced under palmitate-treated insulin resistance conditions in skeletal muscle cells. Error bars are

standard deviation from median.

Figure 2A). Thus, using this filtering strategy, our workflow led
to the identification of 1073 putative secreted proteins from
skeletal muscle cells (Figure 2A, Supplemental Table 2).

This list of proteins was strongly enriched for proteins
annotated to be glycoprotein, signal-peptide-containing, and
extracellular, whereas the number of proteins with intracellular
annotation was substantially decreased (Figure 24, total
identified versus total secreted). Interestingly, 40% of these
putative secreted proteins still had annotated intracellular
locations in GOCC. Our bioinformatics workflow classifies
these proteins as secreted because they either contained a
predicted signal peptide (400 proteins) or were annotated to
“extracellular locations” (GOCC) (44 proteins). Of the 400
proteins, 214 were assigned to “endoplasmic reticulum” (104)
and or to “golgi” (53) or “membrane” (138). While we cannot
be sure that this set of proteins is truly secreted, they contain
known secreted proteins such as Bdnf, Anxa2, Bmpl, Mmp2,
and apolipoprotein E. Our results further support the concept
of multitasking proteins or “protein moonlighting”.'> Within
the group of proteins, which we categorized as nonsecreted, a
plurality (40%) was annotated to intracellular locations in
GOCC (Supplemental Table 4). We cannot exclude the
possibility that some of these proteins are true secreted
proteins, that is, secretion via exosomes and microvesicles.

The presence of a high number of proteins with the
“intracellular location” (GOCC) might be attributed to serum-
deprivation and or palmitate-induced apoptosis of cells. To
investigate whether our bioinformatics workflow separates
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these contaminating proteins from true secreted proteins, we
correlated the proteins detected in the media and the cellular
proteome of exactly the same samples. 90% of the proteins
detected in media were also detected in cellular proteome.
When we compared the intensities of proteins from the media
and cell lysate, we observed a moderate correlation (R* = 0.37),
suggesting that few abundant cellular proteins may have been
released due to cell death (Figure S1C). Importantly, protein
abundances were significantly different (Mann—Whitney p
value = 0.028) in the conditioned media than in the cellular
proteome (Figure 2B,C). Finally, despite presenting “myoki-
nome”, one should not undermine the limitations of
computations tools and our incomplete knowledge of secretion
biology. Additional experiments should be performed to verify
candidates in secretome maps.

Comparative Secretome Analysis between Control and
Insulin-Resistant C2C12 Cells

Although the pathophysiology of insulin resistance is still
incompletely understood, it is believed that increased plasma
levels of FFA and pro-inflammatory proteins are responsible for
at least part of reduced insulin signaling and glucose
utilization.'?>>%¢ Additionally, it has been established that
insulin signaling is impaired in human and animal models
subjected to lipid infusion”"** and in skeletal muscle cells
treated with FFAs such as palmitic acid.””** Likewise, we
showed that lipid treatment impaired insulin signaling in our
cellular model (Figure 1B). Together, this suggests that it
would be informative to compare the skeletal muscle secretome
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of insulin-resistant skeletal muscle cells with the control. Usmg
MaxQuant built-in label free-quantification algorithm,* we
quantified ~3000 proteins in the conditioned media from each
replicate (Figure 3A). We required stringent criteria for
quantified proteins, considering only those that were quantified
three or more times in at least the control or palmitate-treated
group. As displayed in Figure 3A (red stacked graph), ~23% of
the quantified proteins fell into the group of putative secreted
proteins as previously determined. We examined the
reproducibility within the biological quintuplicates and found
very high correlations within the control and palmitate-treated
groups (Pearson correlation = 0.97 and 0.96, respectively,
Figure S2A,B). Median unique peptide numbers and sequence
coverage for quantified secreted proteins were 9 and 33.2%,
respectively. Figure S2C illustrates MSMS spectra of a peptide
for Bdnf, the growth factor previously discussed.

To investigate whether our secretome analysis can segregate
control and palmitate-treated insulin-resistant cells, we
performed principal component analysis (PCA) (Figure 3B).
Component 1 of the PCA accounted for 40% of total variance
(horizontal axis in Figure 3B) and clearly separated the control
group from palmitate-treated group. This demonstrates that
media from the control and palmitate-treated insulin-resistant
cells have protein secretion patterns that are sufficiently distinct
to classify them as distinct entities. Examples of putative
secreted proteins that drive the separation of control and
palmitate-treated insulin-resistant conditions are indicated in
the “PCA loadings” (Figure 3C). They include insulin-like
growth factor binding protein 7 (Igfbp7) whose secretion is
significantly down-regulated (P < 9.8 X 10™°) under the insulin-
resistant conditions. Interestingly, a low plasma level of Igfbp7
is correlated with the incidence of type 2 diabetes in humans.*
Secretory leucocyte protease inhibitor (Slpi) also helps to
discriminate control and palmitate-treated secretomes (Figure
3C), and our measurements indicated 2 times higher levels in
palmitate-treated insulin-resistant cells. Slpi is an anti-
inflammatory proteln whose expression is induced by high-fat
diet in rodents.** We examined whether a specific group of
proteins distinguishes palmitate-treated insulin-resistant secre-
tomes from control, which identified the category “Signal”
(UniProt Keyword, 5SS proteins) as the topmost enriched
category in the palmitate-treated state (P < 3.9 X 107'%, Figure
3D). These findings clearly imply that classical secreted
proteins rather than contaminating intracellular proteins are
responsible for the separation of control and palmitate treated
groups.

To gain more insights into biological differences between
secretomes of control and palmitate-treated insulin-resistant
muscle cells, we performed two-sample t test (Figure 3E). This
identified 378 significantly different putative secreted proteins
(Figure 3E, Supplemental Table 3). The list of significantly
different proteins obtained by unbiased proteomic analysis
contains several proteins including pro-inflammatory cytokines
and proteins from insulin-like growth factors (IGF) pathways,
whose expression levels has already been described to be
regulated under diabetes and or obesity. (See details later.) This
encouraged us to further investigate properties of the regulated
and putative secreted proteins. To check for specific domain
structures or patterns in comparison with all identified proteins,
we imported domain information from the Pfam database and
performed Fischer’s exact test with an FDR = 0.02. Among the
domains with significant p value, the “calcium-binding EGF
domain” and “EGF-like domain” were the topmost significant
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(P < 1.05 X 10753, 1.1 X 1079, respectively) (Figure 4A,B). A
few examples of classically secreted proteins with EGF-like
domains, whose secretion was regulated under palmitate-
treated insulin-resistant state, are shown in Figure 4C. None of
these proteins were previously described in the context of
skeletal muscle insulin resistance. Further studies are required
to dissect the functional roles of these EGF domain-containing
secreted proteins in skeletal muscle biology and insulin
resistance.

Reduced Secretion of IGF and IGFBP under
Palmitate-Treated Insulin-Resistant Conditions

Insulin-like growth factor 1 (Igf-1) is a multipotent growth
factor with important activities in regulating growth and
metabolism. Additionally, because of its glucose-lowering and
insulin-sensitizing actions, it has beneficial effects on glucose
homeostasis.*> The abundance of Igf-1 was 3 times lower in the
media from palmitate-treated cells compared with control cells,
while levels of Igf-2 were similar (Figure SA, Supplemental
Table 2). This may be mediated by palmitic-acid-induced
increase in TNF-a procluction,46 which, in turn, decreases
circulating levels of Igf-1.*

IGF binding proteins (IGFBPs) represent an important link
between the insulin and IGF systems, and several lines of
evidence suggest the strong association of different IGFBPs
with type 2 diabetes.” In our experimental model, we
successfully quantified Igfbp2, Igfbp4, and IgfbpS—7 and
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Figure S. Reduced secretion of IGF and IGFBP under palmitate-
treated insulin-resistant conditions. (A,B) Abundances of IGF-1 and
IGFBP’s in conditioned media from control and palmitate-treated
insulin-resistant muscle cells. In panel B, error bars are standard
deviation from median.
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found that they all are downregulated under insulin resistance
(Figure SB).
Regulation of Cytokines and Chemokines

Pro-inflammatory cytokines and chemokines play an important
role in the pathogenesis of type 2 diabetes and obesity.”** An
excess of nutrient causes aberrant release of adipokine,
cytokine, and chemokine from adipose tissues, which leads to
low-grade chronic inflammation, a hallmark feature of obesity."*
Our data set contains 21 quantified proteins with known
cytokine activity (Supplemental Table S), 8 of which were
significantly regulated under palmitate-treated insulin-resistant
conditions (Figure 6). Serum levels of chemokines including
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Figure 6. Quantification of regulated cytokines. Abundances of
significantly regulated chemokines and cytokines in the media from
control and palmitate-treated insulin-resistant cells. Error bars are
standard deviation from median.

Ccl2, Ccls, Ccl7, Cd8, Cdll1, Ccl13, Cxcll, CxclS, Cxcl8, and
Cxcll0 are dramatically increased in obese versus lean
individuals.”*® A majority of these chemokines were quantified
in our study (Supplemental Table 5), and we confirmed that
secretion of Cxcll, Cxcl5, and Ccl2 chemokines was
significantly increased in palmitate-treated insulin-resistant
muscle cells (P < 0.001, 6.7 X 1075, 0.00S, respectively)
(Figure 6). Thus, in addition to adipose tissues, lipid-induced
secretion of pro-inflammatory chemokines from skeletal muscle
might contribute to the low-grade chronic inflammation.

Secretion of Granulin (Grn), growth/differentiation factor 11
(Gdf11), and bone morphogenetic protein 1 (Bmpl) were
significantly decreased in palmitate-treated muscle cells (P <
0.001, 0.002, 1.2 X 1073, respectively) (Figure 6). Granulin
(also known as progranulin) is a pleiotropic molecule
regulating cell growth and anti-inflammatory functions.*’
Reduced secretion of granulin in combination with increased
secretion of pro-inflammatory chemokines might exacerbate
inflammatory response under insulin resistant conditions.
Gdf11, which was recently reported to be a rejuvenating factor
for skeletal muscle,”® and, interestingly, it was significantly
reduced in palmitate-treated insulin-resistant skeletal muscle (P
< 0.002). Finally, secretion of Bmpl, which is known to
regulate muscle cell growth by activation of latent myostatin,>'
was also reduced in palmitate-treated insulin-resistant muscle
cells. Our findings suggest follow-up experiments to dissect the
roles of circulating Gdfll and Bmpl in insulin-resistant
conditions.
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B CONCLUSIONS

Here we have shown that a combination of large-scale
quantitative proteomics and a streamlined bioinformatics
workflow is a promising tool to study secretomes of skeletal
muscles. We demonstrated how bioinformatics filter strategies
can be applied to discriminate secretory proteins from those
that likely originate from cell leakage. To our knowledge, this is
the deepest, high-accuracy, quantitative secretome study on
skeletal muscle to date. The approach described here could
now be applied to study secretomes of other cellular models.
Our data revealed significant differences in the secretomes of
muscle cells as they become insulin-resistant. PCA analysis
showed that these differences are mainly due to differential
secretion of classical secreted proteins and not contaminating
intracellular proteins. The significant quantitive differences
between the secretomes of the control and palmitate-treated
insulin-resistant muscle cells confirmed known markers
previously discovered in other cellular, rodent, or human
models of diabetes and highlighted novel ones, which include
an interesting family of proteins containing signal peptide and
EFF-like domain structure. Finally, our finding that secretion of
IGF and IGF binding proteins was down-regulated under
palmitate-treated insulin-resistant conditions suggests interest-
ing avenues for follow up.

Our quantitative analyses of muscle secretomes provide a
comprehensive resource to explore muscle biology and muscle-
dependent cross talk with other tissues. The myokines defined
in this study comprises about 1000 proteins; however, their
function and regulation in context of muscle physiology is
unexplored. We envision that skeletal-muscle-derived secreted
proteins could vary under various environmental conditions.
Therefore, further studies are required to clarify their regulation
and their roles in distinct signaling pathways to understand
their biological functions.
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