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Summary 

Carbohydrate-based vaccines have successfully prevented infectious diseases in the last 

decades. To date, several vaccines based on isolated capsular polysaccharides (CPSs) are 

marketed against pathogenic bacteria such as Streptococcus pneumoniae. The 

manufacture of these vaccines still suffers from shortfalls associated with the isolation of 

CPSs from natural sources. Furthermore, limited protectiveness of certain CPS antigens 

hampers vaccine efficiency. Synthetic, structurally defined oligosaccharides present an 

important alternative, with great potential to understand glycan immunology and 

rationally engineer efficacious antigens. To that end, strategies are needed to facilitate 

the streamlined design and generation of these antigens. Novel synthetic methods fuel 

oligosaccharide assembly. Strategies to reverse engineer antibodies enable the rational 

antigen design. Concomitantly, optimizing the vaccine formulation helps to fine-tune the 

immune responses elicited by oligosaccharide antigens. This work combines the 

development of strategies in organic chemistry and biochemistry with in vivo 

immunological evaluations to provide insight into the nature of optimized carbohydrate-

based vaccines against S. pneumoniae. 

Zwitterionic polysaccharides (ZPSs) have gained attention due to their 

immunomodulatory properties that may render these structures interesting vaccine 

components. The ZPS representative Sp1 is an attractive vaccine target against S. 

pneumoniae serotype 1 (ST1) that is, in turn, insufficiently covered by existing vaccines. 

The first part of this work (Chapter 2) emcompasses the development of a 

chemoselective thioglycoside activation method in the presence of thioethers that allowed 

for the first total syntheses of conjugation-ready ZPS fragments. Glycan microarray 

analysis of serum samples along with immunological evaluation in mice gave insights into 

the immune recognition of conjugation-ready ZPS fragments. Finally, the potency of a 

synthetic Sp1 trisaccharide as a vaccine antigen against ST1 was evaluated in vivo. 

To facilitate the creation of next-generation vaccines, strategies are needed to 

rationally design oligosaccharide antigens based on first principles. Highly virulent S. 

pneumoniae serotype 8 (ST8) is not included in modern conjugate vaccine formulations, 
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and synthetic precedence on ST8-derived oligosaccharides is scarce. The second part of 

this work (Chapter 3) comprises the elucidation of an oligosaccharide substructure that 

confers protective immunity against ST8 CPS. A newly-designed, divergent synthetic 

route provided access to a collection of ST8-related oligosaccharides. These and other 

glycans were used to reverse-engineer a protective ST8 CPS-directed monoclonal 

antibody (mAb) by glycan microarray analysis. A distinct tetrasaccharide frameshift was 

found to harbor both protective and non-protective, immunodominant glycotopes, and a 

murine mAb raised against this frameshift protected mice from lethal pneumococcal 

infection. The molecular details that govern different in vitro phenotypes of bacterial 

recognition by a set of ST8 CPS-directed mAbs were investigated. 

Despite the progress in the development of vaccine antigens based on synthetic 

oligosaccharides, several shortcomings are still associated with the generation of 

glycosidic bonds. Particularly, the 1,2-cis-stereoselective introduction of N-protected, 

amino alcohol-derived linkers at the reducing end of oligosaccharides remains a major 

challenge. Chapter 4 features the development of a linker that can be introduced into 

synthetic oligosaccharides with excellent 1,2-cis-selectivities. Lowering the O-

nucleophilicity of a conventional, aliphatic linker by introducing two fluorine 

substituents leads to a striking increase of 1,2-cis-selectivities in glycosylation reactions. 

This effect is consistent over a wide range of reaction conditions and facilitates the 

generation of synthetic oligosaccharide antigens. 
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Zusammenfassung 

Mittels kohlenhydratbasierter Impfstoffe konnte in den vergangenen Jahrzehnten eine 

Vielzahl von Infektionskrankheiten verhindert werden. Eine Reihe kommerziell 

erhältlicher Präparate beruht auf Kapselpolysacchariden pathogener Bakterien wie 

Streptococcus pneumoniae. Allerdings ist die Produktion dieser Impfstoffe oftmals 

aufwändig. Darüber hinaus sind bestimmte Polysaccharidantigene nicht in der Lage, 

einen ausreichenden Impfschutz hervorzurufen. Synthetische, strukturell definierte 

Oligosaccharide sind ein vielversprechender Ansatz, um einerseits die Immunreaktionen 

des Körpers gegen Zuckerstrukturen zu verstehen und andererseits hochwirksame 

Antigene gezielt darszustellen. Allerdings müssen sowohl Entdeckung als auch 

Herstellung dieser Antigene vereinfacht werden, was die Verbesserung bestehender 

Verfahren und die Entwicklung neuer Herangehensweisen auf mehreren Ebenen erfordert. 

Innovative Synthesemethoden sind zum einen essentiell zum Aufbau komplexer 

Oligosaccharide. Der zielgerichteten Antigenentwicklung dient zum anderen die 

Rekonstruktion von Antikörper-Kohlenhydrat-Interaktionen. Darüber hinaus ermöglichen 

neue Methoden der Impfstoffformulierung die Optimierung der Immunantwort gegen ein 

Oligosaccharidantigen. Diese Arbeit verbindet neuartige Strategien der organisch-

chemischen Synthese und der Biochemie mit immunologischer Evaluierung synthetischer 

Antigene in vivo, um Aufschluss über die Charakteristika optimierter 

Kohlenhydratimpfstoffe gegen S. pneumoniae zu erhalten. 

Zwitterionische Polysaccharide (ZPSs) sind auf Grund ihrer immunmodulierenden 

Eigenschaften für den Einsatz in Impfstoffen von Interesse. Das ZPS-Molekül Sp1 ist 

darüber hinaus eine wichtige Zielstruktur zur Impfstoffentwicklung gegen S. pneumoniae 

Serotyp 1 (ST1), einem Stamm, der von existierenden Impfstoffen nur unzureichend 

abgedeckt wird. Der erste Teil dieser Arbeit (Kapitel 2) behandelt die Entwicklung einer 

Methode zur chemoselektiven Aktivierung von Thioglycosiden in Anwesenheit von 

Thioethern. Mit Hilfe dieser Methode konnte die erste Totalsynthese konjugierbarer ZPS-

Substrukturen realisiert werden. Durch Glycan-Microarray-Analyse sowie 

immunologische Evaluierung im Mausmodell konnte Aufschluss über die Erkennung der 

ZPS-Fragmente durch Komponenten des Immunsystems erhalten werden. Schließlich 
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wurde die Eignung eines synthetischen Sp1-Trisaccharids als Impfstoffkandidat gegen 

ST1 in vivo untersucht. 

Zur Erforschung neuartiger Impfstoffe werden Methoden benötigt, um 

Oligosaccharidantigene zielgerichtet auf Basis weniger Grundprinzipien zu entwerfen. 

Obwohl der hochvirulente S. pneumoniae Serotyp 8 (ST8) kein Bestandteil kommerziell 

erhältlicher Kohlenhydrat-Protein-Konjugatimpfstoffe ist, behandeln nur sehr wenige 

Vorarbeiten die Synthese von ST8-basierten Oligosacchariden. Der zweite Teil dieser 

Arbeit (Kapitel 3) beschreibt die Entdeckung einer Oligosaccharidstruktur, die eine 

protektive Immunantwort gegen ST8 CPS hervorzurufen vermag („protektives 

Glycotop“). Mit Hilfe einer neu entworfenen, divergenten Synthesestrategie wurde eine 

Reihe ST8-abgeleiteter Oligosaccharide hergestellt und zusammen mit anderen 

verfügbaren Glycanstrukturen dazu verwendet, das Bindungsmuster eines protektiven, 

ST8-Kapselpolysaccharid-gerichteten, monoklonalen Antikörpers (mAk) zu 

rekonstruieren. Dabei stellte sich heraus, dass eine spezielle Tetrasaccharidstruktur 

sowohl protektive als auch immunodominante, nichtprotektive Glycotope enthält. Ein in 

Mäusen durch Immunisierung mit einem entsprechenden Glycokonjugat hergestellter 

mAk gegen dieses Tetrasaccharid schützte Mäuse vor einer tödlichen Infektionsdosis mit 

Pneumokokken. Außerdem wurden die molekularen Grundlagen untersucht, die zu 

Unterschieden in der Bakterienerkennung durch verschiedene mAks in vitro führen. 

Dieser Teil der Arbeit beschreibt eine gegenüber herkömmlichen Herangehensweisen 

stark vereinfachte Strategie zur zielgerichteten Entwicklung oligosaccharidbasierter 

Impfstoffantigene. 

Trotz großer Fortschritte bei der Entwicklung von Impfstoffantigenen auf Basis 

synthetischer Oligosacccharide bestehen noch immer große Probleme mit deren 

organisch-chemischer Synthese, insbesondere mit der Knüpfung glycosidischer 

Bindungen. Vor allem die 1,2-cis-stereoselektive Einführung N-geschützter 

Aminoalkohole, die als Linker der späteren chemoselektiven Konjugation des 

ungeschützten Glycans dienen, stellt eine große synthetische Herausforderung dar. In 

Kapitel 4 wird die Entwicklung eines neuartigen Linkers beschrieben, der sich mit 

ausgezeichneten 1,2-cis-Stereoselektivitäten in synthetische Oligosaccharide einbringen 

lässt. Durch Einführung von zwei Fluorsubstituenten wurde die O-Nukleophilie eines 

herkömmlichen, aliphatischen Linkers stark herabgesetzt, was zu einer beachtlichen 
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Erhöhung der 1,2-cis-Selektivitäten in Glykosylierungsreaktionen führte. Dieser Effekt 

zeigte sich für eine große Bandbreite an Reaktionsbedingungen und sollte daher die 

Herstellung von konjugierbaren Oligosaccharidantigenen in Zukunft wesentlich 

vereinfachen. 

 



 

 
 



 

15 
 

1 Introduction 

This chapter has been modified in part from the following articles: 

Carbohydrate Vaccines. B. Schumann, C. Anish, C. L. Pereira and P. H. Seeberger, in 
Biotherapeutics: Recent Developments Using Chemical and Molecular Biology, RSC 
Drug Discovery Series No. 36, eds. L. Jones and A. J. McKnight, RSC Publishing, 
Cambridge, 2013, ch. 3, pp. 68-104.1 http://dx.doi.org/10.1039/9781849737159-00068 

Chemical biology approaches to designing defined carbohydrate vaccines. C. Anish, B. 
Schumann, C. L. Pereira and P. H. Seeberger, Chem. Biol., 2014, 21, 38-50.2 
http://dx.doi.org/10.1016/j.chembiol.2014.01.002 

1.1 Streptococcus pneumoniae 

1.1.1 Pneumococcal Disease 

Streptococcus pneumoniae is a Gram-positive, facultative anaerobic bacterium that 

colonizes the upper respiratory tract in healthy humans.3 Inflammatory diseases such as 

otitis media and pneumonia can arise after infection of normally sterile sites and turn 

into invasive pneumococcal diseases (IPD) that include meningitis and bacteremia. Risk 

groups for invasive disease include individuals with compromised immune systems, such 

as children, older adults and inhabitants of regions with poor health and hygiene 

standards. Accordingly, bacteremic pneumococcal pneumonia constitutes one of the 

leading causes of mortality and morbidity in HIV-infected individuals,4 and co-infections 

with S. pneumoniae have been connected to fatal cases of the 2009 influenza pandemic.5  

Children in developing countries are particularly susceptible to IPD. The global 

estimate by the World Health Organization (WHO) of pneumococcal diseases among 

children under the age of five years is 14.5 million, with more than 800000 deaths per 

year.6 Overall, approximately two million deaths worldwide are caused by pneumococcal 

infections.7 IPD is associated with a fatality rate of up to 10% even in the developed 

world, especially among the older population.3 Furthermore, S. pneumoniae is the major 

cause of acute respiratory infections in children in developing countries.6 
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Up to one third of all healthy adults, and an even higher percentage of young 

children, carry pneumococci in their nasopharynx. Colonization of the respiratory tract 

precedes infection and is an important mechanism of horizontal spread of this bacterium 

in public communities such as day care centers.8 Bloodstream invasion in 

immunocompromised individuals requires tight adherence to and subsequent damage of 

the bronchial epithelium and these processes are orchestrated by the interplay of 

multiple virulence factors.9 

1.1.2 Pneumococcal Capsules as Virulence Factors 

The pneumococcal surface displays a range of molecules that are important for infection. 

As a Gram-positive bacterium, S. pneumoniae is covered by invariant polymers that bear 

important physicochemical and regulative properties. The cell membrane is surrounded 

by several layers of peptidoglycan that are interspersed with lipoteichoic and teichoic 

acids, also known as F-antigen and C-polysaccharide, respectively (Fig. 1.1A).10-12 The 

most indispensable virulence factor of pneumococci, however, is the capsule (Fig. 1.1B). 

 

Figure 1.1. The pneumococcal cell surface. A, schematic representation. B, the pneumococcal 
capsule. Inactivated pneumococci are counter-stained (green fluorescence) and CPS is immuno-
labeled (red fluorescence). The cellular coating provided by the capsule is clearly visible. Images 
were taken along with an immunofluorescence experiment in Chapter 3. Scale bar: 1 µm. 

In the first decades of the 20th century, Heidelberger discovered that the 

immunodominant type-specific substance – the capsule – of S. pneumoniae is a 

polysaccharide.13 The capsule has since become the best studied pneumococcal virulence 

factor and is an important tool in biomedical research. Capsules serve multiple purposes 

during infection, including the protection from desiccation, shielding of surface antigens 
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from complement deposition and prevention of interaction of surface-associated 

immunoglobulins with immune cells.14, 15 The structures of capsular polysaccharides 

(CPSs) are the basis for the categorization of S. pneumoniae into more than 90 different 

serotypes (STs), and polysaccharide structures are highly heterogeneous.16, 17 Proteins 

that mediate the biosynthesis of these polysaccharides are generally encoded in gene 

clusters and include glycosyltransferases, transporters and enzymes responsible for the 

biosynthesis of activated monosaccharides.16, 18 Most pneumococal CPSs are built up 

from pre-assembled oligosaccharide precursors, and hence consist of repeating units of 

different lengths.15 The same polysaccharide can therefore be considered as a polymer of 

multiple frameshifts (FSs). These FSs, in turn, may harbor different immunological 

properties if presented as structurally defined oligosaccharides (see below). 

Pneumococcal STs differ in their invasiveness: less virulent types are associated 

with higher rates and longer periods of asymptomatic carriage, while highly invasive 

types are found to cause IPD shortly after colonization.19, 20 It has been reported that 

capsule structure determines virulence, and this connection has been traced back to 

capsule thickness and energy expense of repeating unit biosynthesis.21 Interestingly, 

pneumococci exhibit reduced capsule thickness upon adherence to and invasion of the 

alveolar epithelium.14, 22 However, ablation of CPS biosynthesis completely abrogates 

virulence.14, 23 

1.2 Carbohydrate-based Vaccines 

Pioneering the field of glycoimmunology, Avery and Goebel reported in the 1930s that 

saccharide-specific antibodies can be generated in vivo by conjugating monosaccharides 

to proteins.24-30 By this time, the term “hapten” had already been defined by Landsteiner 

for any molecule that can induce a specific immune response upon attachment to a 

protein.31 Francis and Tillett as well as Heidelberger discovered that immunization with 

CPSs from S. pneumoniae can induce protection from infections by this pathogen.32, 33 

Despite the successful research into the immunogenicity of bacterial 

polysaccharides,34 antibiotics rapidly gained importance and soon replaced vaccines as 

the most popular means to fight infectious diseases. However, the emergence of resistant 
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strains indicated that antibiotics would not be able to eradicate pathogenic bacteria,3, 35-

37 and the idea of vaccines based on CPSs was reconsidered. As a result of extensive 

research, polysaccharide vaccines (PSVs) against Neisseria meningitidis and S. 

pneumoniae were licensed in the 1970s. PSV formulations against pneumococci contained 

CPSs from 14 and, subsequently, 23 different serotypes. PSVs against other pathogenic 

bacteria followed.38 

Although PSVs were highly successful in preventing invasive disease, limited 

efficiency was observed in very young children.36 The classical approach of conjugating 

polysaccharides to proteins was thus reconsidered, furnishing carbohydrate conjugate 

vaccines (CCVs) that elicit a potent immune response even in infants.39, 40 With the help 

of CCVs, the incidence of invasive diseases caused by pathogenic bacteria has been 

tremendously reduced.41 In past decades, CCVs have developed into a multi-billion dollar 

market and are part of immunization programs recommended by health authorities.42, 43 

1.2.1 Bacterial Capsular Polysaccharides as Vaccine Candidates 

Vaccines can be generally subdivided into whole cell and subunit vaccines. The former 

class includes the first vaccines developed and is based upon either killed or attenuated 

organisms.44 Despite the potential of whole-cell vaccines to confer long-lasting immunity 

against infections, culturing the respective pathogenic organisms in sufficient quantities 

may be cumbersome.44-46 Subunit vaccines, in turn, comprise defined components of the 

target organisms, including cell surface or secreted proteins, virus-like particles and 

CPSs. Antigens employed in subunit vaccines can be obtained by recombinant 

expression.44 Due to the low immunogenicity of these preparations, adjuvants are usually 

used in subunit vaccine formulations.44, 46, 47 Proteins display a high immunogenic 

potential and are hence well-suited as antigens for subunit vaccines (see below). 

However, immunogenic proteins on the surface of pathogenic bacteria are often shielded 

by CPSs and thus inaccessible for components of the immune system. 

Antibody responses can be raised against bacterial CPSs due to the recognition of 

these structures as “non-self” (non-host-derived) by the mammalian immune system. 

Unusual linkages, rare monosaccharides and modifications are structural determinants 

that contribute to this recognition. 
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Figure 1.2. Examples of bacterial CPS structures. A plethora of unique functionalities is found 
due to the presence of phosphodiester linkages, rare monosaccharides, hydroxyl group 
modifications and unusual glycosidic linkages. Adapted from Schumann et al.2  

CPSs of pathogenic bacteria are structurally extremely diverse (Fig. 1.2).17, 48 The 

length of repeating units may range from mono- to octasaccharides.17, 49 Polysaccharides 

are either linear or branched and contain common or rare sugars. While the human 

glycome is composed of just nine different monosaccharides (D-Glc, D-Gal, D-Man, L-

Fuc, D-GlcNAc, D-GalNAc, D-Xyl, D-Sia and D-GlcA), the number of building blocks 

that make up the bacterial glycome easily exceeds one hundred.50 Monosaccharides are 

present in either pyranose or furanose forms or as polyalcohols. Variability is further 

elevated by the presence of chemical modifications, including acetate, pyruvate and 

glycerate groups.51 The multitude of structural peculiarities of bacterial CPSs influences 

the nature of immune responses directed against these glycans. 

1.2.2 Immunology of Carbohydrate-based Vaccines  

Antigens can invoke different types of immune responses and are categorized accordingly. 

The formation of immunological memory is a hallmark of thymus-dependent (TD) 
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antigens that are mainly protein-based, while thymus-independent (TI) antigens, usually 

polysaccharide- or lipid-based, do not elicit immunological memory.52 

TD antigens induce the immediate help of CD4+ T cells (T-helper or TH cells) to 

trigger antibody production. Pathogen-derived antigens are recognized by professional 

antigen-presenting cells (APCs). These include immunoglobulin-producing B cells, 

antigen-sampling dendritic cells and phagocytotically active macrophages. After 

recognition by an APC, antigens are internalized and degraded in endosomal 

compartments.45 The peptide fragments resulting from protein breakdown are then 

loaded onto major histocompatibility complex (MHC) class II molecules and this complex 

is transported to the surface of the APC. The peptide-MHCII complex is recognized by 

the αβ-T cell receptor (TCR) found on a specific TH cell. With the help of further APC-

T cell interactions, cytokines such as interleukin(IL)-4 are released by the T cell. 

Cytokine release and cell-cell interactions synergistically stimulate affinity maturation 

and class switch of immunoglobulin (Ig) genes in B cells to give rise to highly antigen-

specific antibodies of the IgG isotype. Concomitantly, B cells differentiate into 

specialized plasma cells that produce high levels of IgG to help fight invading pathogens 

(see below). Furthermore, memory B and T cells are produced that are re-activated upon 

re-encounter of the same TD antigen. Immunological memory thus facilitates the 

generation of an efficient immune response upon re-infection.45 

TI antigens stimulate B cells to produce antibodies without directly engaging T 

cells and are subdivided into two different groups. TI-1 antigens are B cell mitogens such 

as lipopolysaccharides (LPS) and activate even neonatal B cells.52  

In contrast, TI-2 antigens are polymers of high molecular weight, such as CPSs, 

and activate B cells by cross-linking membrane-bound B cell receptors (BCR).53 TI-2 

antigens fail to induce antibody production in neonatal, immature B cells.53 Furthermore, 

TI-2 antigens do not invoke CD4+ T cell help by classical MHC II-mediated antigen 

presentation.54 Consequently, Ig class switching and affinity maturation are inefficient, 

and low-affinity IgM and IgG antbodies are produced.53, 55 It has been suggested that 

functional Bruton’s tyrosine kinase, a signaling molecule important for B cell 

development, is needed for antibody generation against TI-2 antigens.55-58 In addition, 
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other cell types, such as macrophages and natural killer cells, are required to induce the 

production of antibodies in response to TI-2 antigens.54, 59, 60 

 
Figure 1.3. The mechanism of action of glycoconjugate vaccines. The glycan hapten is recognized 
by a specific BCR, internalized into endosomal compartments. After breakdown, carrier derived 
peptides (pathway 1) are presented on MHCII complexes to TCRs on the surface of specific TH 
cells. Additional cell-cell interactions (not shown) and the release of cytokines trigger B cell 
expansion, antibody class switch and affinity maturation to produce high-affinity IgG. 
Alternatively, glycopeptides can be presented on MHCII molecules (pathway 2) and recognized by 
glycan-specific T cells. Adapted from Schumann et al.2  

Pathogenic bacteria harbor a plethora of TI-1, TI-2 and TD antigens, and a potent 

immune response can be generated by the interplay of these stimuli upon infection. 

However, polysaccharide vaccines mainly display TI-2 antigens. Therefore, PSV do not 

elicit a protective antibody response in infants,61-63 and the pneumococcal polysaccharide 

vaccine PPV-23 (Pneumovax23®, Merck) is only recommended for children above two 

years of age.64 

The conjugation of a polysaccharide to a carrier protein converts a TI antigen into 

a TD antigen. This leads to a significant enhancement in the immune response by 

invoking T cell help. Inactivated bacterial toxoids, such as denatured diphtheria and 

tetanus toxins (DT and TT, respectively), and the non-toxic DT mutant CRM197 are 

widely used carrier proteins due to their potency to induce T cell activation.65, 66 

Following recognition of the saccharide moiety by a glycan-specific BCR and 

internalization, carrier-derived peptides are presented to TH cells to induce cellular and 

cytokine-mediated signals. As an alternative to this process, presentation of glycopeptides 
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can lead to the activation and expansion of glycan-specific TH cells (Fig. 1.3).67-71 High-

affinity antibodies against the CPS moiety and immunological memory are then elicited 

even in young infants.36, 72-74 Pneumococcal conjugate vaccines (PCV) cover a multitude 

of serotypes. Current formulations are 10- (Synflorix®, GSK) or 13-valent (Prevenar13®, 

Pfizer),75 and cover serotypes responsible for more than 70% of global pneumococcal 

disease incidence.76 

1.2.3 Antibodies and Their Role in Pneumococcal Disease 

Antibodies orchestrate several important defense mechanisms of the humoral immune 

system against pathogenic organisms. Antibodies neutralize viruses and bacterial toxins, 

opsonize bacteria for phagocytosis and trigger cell-dependent immune responses against 

tumors and multicellular parasites.45 A hallmark of the humoral immune system is the 

high diversity of proteins involved in antigen recognition and presentation, such as 

antibodies. Antibody diversity is further enhanced by genetic recombination and 

hypermutation mechanisms, especially of antigen-binding complementarity determining 

regions (CDRs).45 Class switching and affinity maturation events (see above) tailor Ig 

isotype and strength of antigen binding to effectively defend the host against an 

infection. 

CPSs are the immunodominant structures displayed by S. pneumoniae due to the 

abundance of unusual functionalities and their position as the outermost part of the 

pneumococcal cell surface. Antibodies raised by the host against the pneumococcal 

capsule protect from disease, and hence polysaccharides are the primary target antigens 

used in vaccines against that bacterium. The most important defense mechanism against 

pneumococci is opsonization by anticapsular antibodies with subsequent phagocytosis of 

antibody-bacteria-complexes by several effector cells such as macrophages and neutrophil 

granulocytes, although the precise mechanism of protection is still debated (see below).8 

The ability of antibodies to act as opsonins can be evaluated in vitro by assessing 

bacterial survival in the presence of phagocytes in an opsonophagocytic killing assay 

(OPKA). Since opsonophagocytosis titers of serum antibodies correlate with protection 

from disease,77 OPKA is an important tool to determine the success of vaccinations 

against pneumococci.78-80 
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The development of techniques to generate monoclonal antibodies (mAbs) that 

originate from a single B cell clone has tremendously driven the understanding of 

immune recognition. MAbs bind to defined structural entities with often high affinities, 

and have been useful in various areas of biomedical research and treatment.45 For 

instance, mAbs recognizing structures on the surface of pathogens can be applied in 

passive immunization experiments to treat disease, as seen in the experimental Ebola 

drug ZMapp.81 MAbs that bind carbohydrate epitopes (glycotopes) have rapidly gained 

importance in the past decade. The ability to bind to the most exposed sites of a 

pathogen renders mAbs well-suited to be used as diagnostic tools, and precedence has 

been set by the mAb-mediated detection of the bio-warfare agents Bacillus anthracis82 

and Yersinia pestis.83 Diagnostic kits to determine pneumococcal serotypes in clinical 

isolates are based on anticapsular antibodies that are not monoclonal, but cross-adsorbed 

against other serotypes. 

MAbs raised against S. pneumoniae CPSs are protective against pneumococcal 

infection in vivo.84-93 The precise mechanism of protection is not clear and may vary 

depending on determinants within the mAb and the antigen. For instance, mAbs that 

protect from infection with the same serotype may be effective opsonins or may rather 

cause agglutination of bacteria without promoting opsonophagocytosis in vitro, as 

observed for mAbs against ST3 and ST8.89, 91 Furthermore, certain mAbs do not require 

a complement source for opsonophagocytic killing, while others do.89 The mAb isotype 

has been shown to influence effectiveness during passive immunization against 

Cryptococcus neoformans,94 and the same correlation may exist in anti-pneumococcal 

mAbs. Recently, antibodies raised against Francisella tularensis LPS have been 

distinguished based on their ability to recognize either internal or terminal glycotopes of 

the same polysaccharide,95 introducing yet another layer of complexity into the mode of 

action of polysaccharide-specific antibacterial mAbs. The investigation of glycotopes 

recognized by protective mAbs can provide valuable information on putative antigens for 

vaccination. 

Of note, antibodies against phosphocholine, the most immunogenic epitope in 

pneumococcal C-polysaccharide, exhibit limited protectiveness, highlighting the 

importance of CPSs as antigens of choice in anti-pneumococcal vaccines.92 However, 
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certain shortfalls are associated with carbohydrate vaccines based on isolated 

polysaccharides. 

1.2.4 Production and Manufacture of Glycoconjugate Vaccines 

PCVs consist of multiple components from different origins and are thus unique 

medicinal products from a regulatory perspective. Quality control (QC) guidelines are to 

be met for each component prior to conjugation (Fig. 1.4).80, 96-98 Polysaccharides are 

purified in a number of laborious steps and depolymerized into smaller fragments that 

are activated for conjugation.92-94, 96 Two different concepts of conjugation are used. 

Methods of multipoint attachment introduce a number of reactive functionalities into 

CPS fragments, leading to the formation of cross-linked, “lattice-type” glycoconjugates 

(Fig. 1.4A). Single point attachment appends one reactive group per polysaccharide 

chain, usually at the reducing end of the glycan, and “neoglycoconjugates” are obtained. 

These procedures can result in the loss of labile modifications or the chemical 

derivatization of monosaccharides that are crucial for immunogenicity, leading to 

compromised PCV efficiency.99 Additionally, varying amounts of co-isolated impurities 

such as the pneumococcal C-polysaccharide (see Fig. 1.1) are frequently found in CPS 

preparations, and the implications of these impurities during immunization experiments 

are not known.100, 101  

To address the shortcomings associated with isolated polysaccharides, alternative 

strategies have been developed to produce immunogenic glycans.102-105 Oligosaccharide 

synthesis has become the most promising alternative method. 

1.3 Opportunities and Challenges of Vaccines Based 

on Synthetic Oligosaccharides 

Many of the QC steps necessary for the preparation of glycoconjugates based on isolated 

polysaccharides can be circumvented by chemical synthesis. Synthetic oligosaccharides 

are well-defined, homogeneous compounds that can be characterized in detail by utilizing 

standard tools of organic chemistry. Furthermore, a linker for conjugation can be 
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incorporated at a specific site. The structural complexity of conjugation-ready glycans is 

thus drastically reduced, and a more defined glycoconjugate is produced (Fig. 1.4B). 

In addition to their suitability as vaccine haptens, synthetic oligosaccharides allow 

for a detailed investigation of the mechanism of immunization. Defined glycan antigens 

can give insight into the immune recognition of individual functionalities and are key to 

the rational design of carbohydrate-based vaccines. 

 

Figure 1.4. Manufacture of glycoconjugate vaccines. Carrier proteins are produced by 
heterologous expression and purified to homogeneity. A, bacterial polysaccharides are isolated 
from liquid culture and subjected to a number of purification, depolymerization and activation 
steps. Quality control is necessary to monitor each stage. Depending on the conjugation chemistry 
used, either polysaccharide-protein lattices or neoglycoconjugates are obtained. B, oligosaccharide 
synthesis provides uniform oligosaccharides that are ready for conjugation to carrier protein to 
generate neoglycoconjugates. Adapted from Schumann et al.2  
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1.3.1 Chemical Immunology of Synthetic Oligosaccharides 

Due to the high structural heterogeneity of CPSs, the nature of glycotopes that confer a 

protective immune response (“protective glycotopes”) varies on a case-by-case basis. 

Knowing the minimal protective glycotopes of a polysaccharide is essential to designing a 

modern CCV. 

Classically, the antigenicity of oligosaccharides is determined by performing 

immunization trials with the respective glycoconjugates. The affinities of antisera 

towards synthetic oligosaccharides and native polysaccharides are measured,106, 107 and 

the capacity of serum samples to bind pathogens and promote opsonophagocytosis is 

tested.82, 108 Ideally, challenge studies are performed with live pathogenic bacteria to 

assess the potency of vaccination in immunized animals.109 Alternatively, mice can be 

passively immunized with sera from vaccinated animals or mAbs generated against the 

respective oligosaccharide.110 The latter approach offers the advantage that the 

variability of immune responses often observed by actively vaccinating mice is abrogated. 

1.3.1.1 The Effect of Saccharide Length 

Oligosaccharide synthesis can be significantly facilitated if insights into the minimal 

length of protective glycotopes are known. Two different structural concepts are at play. 

Sequential glycotopes are purely dependent upon the glycan sequence and can be covered 

by synthesizing small oligosaccharides. Certain S. pneumoniae serotypes, such as ST3,109 

ST6B111 and ST14,106, 112 have been shown to display sequential, protective glycotopes, 

and synthetic oligosaccharide haptens as small as tri- or tetrasaccharides have induced 

protective immune responses. In contrast, polysaccharides may display conformational 

epitopes only above a certain chain length, as seen in vaccine antigens against Group B 

Streptococcus (GBS) type III that require an optimal saccharide length of 40-70 

monosaccharides.71, 113, 114 The synthesis of glycans of that length is difficult to achieve by 

conventional methods. Therefore, the discovery of protective sequential epitopes is 

imperative to designing a synthetic carbohydrate-based vaccine on an industrial scale.  

An oligosaccharide hapten can elicit a robust anti-glycan immune response even if 

it does not display protective glycotopes. The induction of antibodies that target these 

non-protective glycotopes is not desirable in vaccination.113 
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1.3.1.2 The Effect of Exposed Epitopes 

The effectiveness of glycoconjugate vaccines requires immunogenic glycotopes to be 

exposed to the medium in order to bind to BCRs. It is therefore conceivable that the 

most exposed moiety of a hapten is most important for immune recognition.115 If an 

unusual glycotope such as a rare bacterial monosaccharide is fashioned at an exposed 

position of a glycan chain, the recognition of this glycotope as “non-self” should manifest 

in enhanced immunogenicity. However, increased immunogenicity does not necessarily 

correlate with protection from disease, and the role of immunogenic glycotopes must be 

carefully assessed. It is thought that certain bacteria expose non-protective epitopes to 

components of the immune system as decoys.116 On the other hand, CPSs may harbor 

epitopes that are not recognized as “non-self” by the host, contributing to immune 

evasion. Abrogating these epitopes may lead to increased vaccine efficacy, for example by 

removing sialic acid moieties from non-immunogenic GBS type V polysaccharide 

fragments.117  

1.3.1.3 The Immunomodulatory Properties of Zwitterionic Polysaccharides  

Most bacterial CPSs are negatively charged under physiological conditions, usually due 

to the presence of acidic uronic acid or phosphodiester groups. The repeating units of a 

particular class of CPSs display zwitterionic charge motifs, and positive charges are 

introduced through amine-containing monosaccharides such as the rare sugar 2-

acetamido-4-amino-2,4,6-trideoxygalactopyranose (D-AAT, Scheme 1.1).118 Zwitterionic 

polysaccharides (ZPSs) are displayed on the surface of certain commensal and symbiotic 

bacteria and bear important immunomodulatory properties.119-123 The most prominent 

ZPSs are Sp1 found on the surface of S. pneumoniae ST1 and PS A1 on Bacteroides 

fragilis (Scheme 1.1) In resemblance to the processing of protein antigens, ZPSs are 

internalized by APCs, fragmented in endosomal compartments and loaded onto MHC 

class II molecules.124-126 Together with the recognition of ZPSs by toll-like receptors 

(TLRs) on the surface of APCs, binding of MHC-presented ZPS fragments by specific 

TCRs leads to the expansion of certain T cell subsets and the modulation of immune 

processes, generating tolerance towards commensal bacteria.122, 124, 127-130 Thus, ZPSs are 

the first glycans known to hijack the classical antigen presentation pathway of TD 

antigens without the need of a carrier protein. 
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Scheme 1.1. Chemical structures of the ZPSs Sp1 and PS A1. The amino sugar D-AAT is found 
in the repeating units of both polysaccharides. 

 

The immunomodulatory properties of ZPSs have been attributed to the unique 

secondary structure of these polysaccharides. ZPSs adopt right-handed helices in aqueous 

solution that are dependent upon the presence of the zwitterionic charge motifs.131 A 

number of ZPS-derived oligosaccharides have been chemically synthesized (see below),132-

134 but have not been extensively studied in biochemical settings. Free of cellular 

contaminants, synthetic probes are essential to studying the immune recognition as well 

as the extent of immunomodulation of ZPSs. 

The immunomodulatory activity of ZPSs has been exploited in vaccine design. It 

has been found that the incorporation of zwitterionic charge motifs into polysaccharides 

enhances their immunogenicity.135-137 Furthermore, PS A1, a well-characterized ZPS 

representative found on the commensal bacterium B. fragilis, has been used as a carrier 

platform for the tumor-associated Tn antigen to generate an all-carbohydrate cancer 

vaccine formulation.138, 139 In proof-of-principle studies, the Tn-PS A1 conjugate invoked 

a Tn-directed IgG response in mice without addition of an external adjuvant, and 

antisera showed a slightly better recognition of cancer cells than sera raised against 

unmodified PS A1.138, 139 Despite the need to further optimize the formulation, the 

concept of all-carbohydrate vaccines is of high interest due to the biocompatibility and 

the enhanced stability of polysaccharide-based carriers in comparison to proteins.  

1.4 Novel Developments in Vaccine Design  

Based on the lessons learned after the introduction of glycoconjugate vaccines, numerous 

approaches have been followed to further improve vaccine efficacy by optimizing antigen 
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design, presentation and formulation. Concepts from different areas of biomedical 

research have been implemented in vaccine design, including immunology, structural 

biology and materials science. 

1.4.1 Rational Vaccine Design  

Finding the right antigen has always been an iterative process that is costly and time-

consuming. Current efforts in vaccine design are invested to narrow down the number of 

potential antigens to those that can induce protective immunity. 

Important precedence on the potential of rational vaccine design has been 

presented by Bundle and coworkers. Cell wall mannans found on the facultatively 

pathogenic yeast Candida albicans harbor β-(1→2)-linked oligo-D-mannosides.140 A 

neutralizing mAb was screened for binding to a panel of synthetic oligosaccharides by 

inhibition experiments. It was found that small oligosaccharides (di- and trisaccharides) 

exhibited higher affinities to the mAb than longer glycans.141 The synthesis of non-

natural oligosaccharide congeners then allowed for a view into glycan recognition by the 

mAb.142, 143 Nuclear magnetic resonance (NMR) spectroscopy and molecular modelling 

eventually revealed that the primary glycotope recognized by the mAb is a 

disaccharide.144, 145 Longer oligosaccharides are not recognized by the antigen binding 

pocket unless these structures undergo conformational changes. Based on these results, a 

disaccharide conjugate vaccine was designed that induced protective immunity against C. 

albicans in rabbits.145 While highly useful, the structural studies that led to the 

generation of a protective vaccine hapten took several years and were carried out to 

explain binding data obtained beforehand. Future vaccine design will likely make use of 

that knowledge and merge structural and design processes to enable faster antigen 

discovery.  

Further examples on structure-based glycotope discovery include the 

rationalization of serotype specificity of anti-Vibrio cholerae antibodies146 and the 

mapping of the glycotope bound by a protective mAb against Shigella flexneri serotype 

2a.147 Although this method of rational vaccine design is powerful, structure-guided 

antigen design is time-consuming and laborious. Furthermore, information on the 
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identity of a suitable ligand is crucial to enable co-crystallization experiments, and thus 

glycotope screening is a necessary prerequisite (see below). 

1.4.2 Epitope Discovery as a Driving Force in Vaccine 

Development 

Uncovering a potential antigenic glycotope of a polysaccharide by methods other than 

immunization can significantly reduce the number of animal trials. Information on the 

glycotopes that are recognized by the immune system is available in CPS-binding sera of 

infected or vaccinated individuals and protective mAbs. Recent years have seen progress 

in the development of methods to obtain this information. Conventional binding assays, 

such as enzyme-linked immunosorbent assay (ELISA) with immobilized CPSs, can be 

used to measure antibody titers, but give little insight into glycotope specificity. As an 

extension of classical binding assays, antibody-polysaccharide interactions can be 

inhibited with defined oligosaccharides to elucidate target glycotopes.141, 144, 148 Novel 

methods have been developed to quantitatively determine carbohydrate-protein 

interactions with high throughput. The most important methods include glycan 

microarrays and surface plasmon resonance. 

1.4.2.1 Glycan Microarrays 

Glycan microarrays have greatly advanced the field of glycobiology.149-154 Minute 

quantities of synthetic or isolated glycans are immobilized on surfaces either covalently 

or via non-covalent adsorption. Incubation with an antibody-containing sample results in 

specific antibody-glycan interactions that can be detected by utilizing fluorescence-

labeled detection antibodies.83, 155, 156 A large number of different glycans can be printed 

on the same microarray slide, including oligosaccharides with different chain lengths, FSs 

and oligosaccharide modifications. Carbohydrate microarrays are thus invaluable tools to 

study the interactions of antibodies with a multitude of synthetic oligosaccharides at the 

same time. Oligosaccharides produced through chemical synthesis usually harbor an 

amino group at the reducing terminus and can be coupled to glass slides functionalized 

with active esters (Fig. 1.5A).149 Alternatively, maleimide-functionalized slides can be 

used to attach thiol-bearing glycans.149, 157  



 

31 
 

 

Figure 1.5. Methods to characterize carbohydrate-protein interactions. A, glycan microarrays. 
Multiple oligosaccharides can be immobilized on the same glass slide by virtue of reactive 
functionalities such as amino or thiol groups. B, surface plasmon resonance. Both kinetics and 
affinity of a carbohydrate-protein interaction can be quantified. SPR data were obtained along 
with an experiment in Chapter 3. 

Glycan microarrays have become a standard tool in glycobiology and serve diverse 

purposes. Depending on the experimental setup, glycan microarray slides can be 

furnished either with large numbers of different oligosaccharides to map binding 

characteristics of a specific protein, or with few structures in repetitive wells to enable 

the screening of multiple biological samples.158 Therefore, glycan microarrays are of 

particular importance to analyze sera of animals vaccinated with glycoconjugates 

harboring synthetic haptens.155, 159, 160 

1.4.2.2 Surface Plasmon Resonance 

While glycan microarray experiments are powerful tools to assess the fine specificities of 

carbohydrate-binding proteins in a high-throughput format, these measurements are 

usually biased towards tight binding events. Surface plasmon resonance (SPR) has 

emerged as a suitable complementary method to study both thermodynamic and kinetic 

parameters of carbohydrate-protein-interactions. Typically, a carbohydrate binding 

protein is immobilized on a gold chip and subjected to a flow of a glycan in solution (Fig. 
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1.5B). Binding events are associated with a change of the intensity of totally reflected 

light on the chip. Thereby, association and dissociation kinetics as well as affinities can 

be measured in a label-free fashion. Recent examples have revealed the potential of SPR 

analysis in glycotope mapping, for instance to study the mode of binding of mAbs to of 

Yersinia pestis LPS structures161 and to characterize antibody furanoside recognition162. 

SPR has been used to determine whether the glycotopes bound by mAbs are found 

internally or on the non-reducing terminus of Francisella tularensis LPS.95 

1.4.3 Liposomes as Novel Carrier Platforms 

Immunogenic carrier proteins have been essential in the development of glycoconjugate 

vaccines. However, the high immunogenicity of commonly used carrier proteins as well as 

the cost associated with maintaining the cold chain have prompted the search for 

alternatives.163, 164 

Novel carrier strategies feature the multivalent presentation of haptens. 

Encouraging vaccination results have been obtained with oligosaccharide haptens 

presented on virosomes, gold nanoparticles and, importantly, liposomes.165, 166 

In contrast to carrier proteins, liposomal vaccine formulations are potentially 

traceless and may not interfere with the immune response against the carbohydrate 

antigen.167-169 Thereby, an antigen harboring a lipophilic tag is incorporated into a 

phospholipid bilayer that is physically transformed to maintain a spherical shape. 

Liposomes can be generated in a defined fashion using purely synthetic components, 

rendering the manufacturing process more concise. In addition, liposomal membrane 

contents can be adjusted by simply varying the lipid composition, enabling a close 

control over the physical properties and antigen density that is displayed.170 However, 

omitting the protein component may result in lower vaccine efficacy due to a lack of T 

cell help, and simple antigen-bearing liposomes are unlikely to invoke persistent 

immunological memory. Therefore, efforts have to be invested to increase 

immunogenicity and induce a T cell-dependent antibody response, for instance by co-

formulating an immunostimulatory adjuvant. Multiple adjuvants with lipophilic 

properties are known that efficiently increase the potency of vaccine antigens, such as 

saponins,171 monophosphoryl lipid A172 or certain glycosphingolipids.173 The latter group 
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has recently gained attention due to their interesting immunomodulatory properties. 

Certain glycosphingolipids, with an α-galactosylphytosphingolipid (KRN7000 or α-

GalCer) originally isolated from a marine sponge as the most important representative, 

can activate invariant natural killer T (iNKT) cells after being presented by MHC I-like 

CD1d molecules found on antigen-presenting cells.174, 175 Important progress has been 

brought forward by conjugating α-GalCer to isolated S. pneumoniae serotype 4 CPS.85 

The resulting conjugate significantly augmented the anti-polysaccharide immune 

response in mice. Co-administering a synthetically accessible glycosphingolipid derivative 

in conjunction with structurally defined oligosaccharide antigens holds great promise in 

the development of fully synthetic carbohydrate-based vaccines.  

1.5 Organic Chemistry Approaches to 

Manufacturing Oligosaccharide-based Vaccines 

1.5.1 The Glycosylation Reaction as a Key Transformation in 

Carbohydrate Synthesis 

Although oligosaccharide synthesis is one of the oldest disciplines of organic chemistry, 

the details of glycosidic bond-forming reactions are still ill-defined. Multiple parameters 

determine the outcome of glycosylations, hence these reactions are typically the most 

time-consuming steps in oligosaccharide synthesis. 

The glycosidic bond is a cyclic acetal that can be formally generated by 

condensation of a monosaccharide lactol at the anomeric center (C-1) with an alcoholic 

hydroxyl group (Scheme 1.2A). This simplest method of glycoside formation, the Fischer 

glycosylation,176 is applicable only under special circumstances, for instance if the alcohol 

nucleophile can be used in large excess and if all reactants are compatible with harsh, 

acidic conditions. For all other glycosylation reactions, monosaccharides are equipped 

with reactive leaving groups to furnish glycosylating agents that can be activated under 

suitable conditions. The most commonly used leaving groups include thioglycosides that 

are susceptible towards oxidative or thiophilic activators, and glycosyl imidates and 

phosphates that can be activated using Lewis or Brønsted acids (Scheme 1.2B).177 In 
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conventional kinetic considerations, all glycosylations employing these leaving groups 

proceed via the formation of an oxacarbenium ion that is then trapped with a 

nucleophilic alcohol. However, it has been found that isolated oxacarbenium ions are rare 

and energetically unfavored, and it is likely that ion pairs or covalent intermediates 

predominate depending on the leaving groups and activating agents used.178 Thus, the 

choice of the leaving group can influence both reactivity- and stereoselectivity-

determining steps of a glycosylation. 

 

Scheme 1.2. Reaction pathways of chemical glycosylations. A, Fischer glycosylation. α-configured 
products are favored. B, glycosylation pathways using common leaving groups. Glycosylating 
agents employed in this work are shown, leading to product formation through different proposed 
intermediates. 

Thioglycosides are particularly useful glycosylating agents due to their 

compatibility with the majority of chemical transformations used in building block 

synthesis. Furthermore, the reactivity of thioglycosides in glycosylation reactions can be 

altered by applying different activating agents. (Scheme 1.2B). Reactive activators 

include the Ph2SO/Tf2O and NIS/TfOH systems that can be used to activate unreactive 

glycosylating agents at low temperatures, while the mild thiophilic activator dimethyl 

(methylthio) sulfonium trifluoromethanesulfonate (DMTST) is suited to activate more 

reactive thioglycosides. 

Differences in glycosylating agent reactivities are associated with the protecting 

group patterns found elsewhere in the molecule: the deactivating (“disarming”) property 

of ester groups is contrasted by the activating (“arming”) effect of ether groups.177 
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1.5.2 Challenges Associated with the Synthesis of Zwitterionic 

Polysaccharide Fragments 

Synthetic carbohydrates are usually equipped with an amino group found at the reducing 

end of the glycan chain to facilitate chemoselective conjugation with reporter probes or 

carrier proteins (see above). Attention has to be paid when the target molecule itself 

harbors a monosaccharide with a free amine. The key structural feature of Zwitterionic 

Polysaccharides is the presence of both positive and negative charges in every repeating 

unit (Scheme 1.3A). Thereby, the positive charge is usually provided by the rare 

monosaccharide D-AAT. 

 

Scheme 1.3. Reported total syntheses of oligosaccharide representing the ZPSs Sp1 and PS A1. 
A, Bundle’s synthesis of Sp1 tri- and hexasaccharide 1-1 and 1-2, respectively.133 B, Codee’s 
synthesis of Sp1 trisaccharide 1-5 and two more FSs of the same polysaccharide, making use of 
galacturonic acid lactones 1-6 and 1-7.134 C, total synthesis of PS A1 repeating unit 1-8 utilizing 
D-AAT building block 1-9 by Pragani and Seeberger.132, 179 
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Several total syntheses have targeted the generation of ZPS fragments. The 

preparation of monomeric and dimeric repeating units of S. pneumoniae Sp1 (1-1 and 1-

2, respectively) by Bundle and coworkers featured the late stage oxidation of multiple 

galactose moieties to the respective galacturonic acids in the precursors 1-3 and 1-4 

(Scheme 1.3B),133, 180 while Codee and colleagues employed galacturonic acid lactones 1-6 

and 1-7 to furnish all three trisaccharide FSs of the same polysaccharide, such as 1-5 

(Scheme 1.3C).134 In an effort to generate repeating unit 1-8 of B. fragilis PS A1, the 

assembly of the tetrasaccharide backbone proved to be somewhat demanding.181 The 

synthetic challenge was ultimately overcome by Pragani and Seeberger by carefully 

developing an appropriate synthetic strategy and employing de novo-accessible D-AAT 

building block 1-9 that partook in high-yielding glycosylation reactions (Scheme 

1.3C).132, 179 

None of these synthetic ZPS fragments is amenable for conjugation to reporter 

moieties without further modification. Due to the free amino group found on D-AAT, the 

use of commonly employed amine-containing linkers is precluded. Thus, the generation of 

conjugation-ready ZPS fragments should likely employ linker chemistry that is 

orthogonal to free amines. 

 

1.5.3 Stereoselectivity of Glycosylation Reactions 

A particular challenge of glycosidic bond formation is the construction of the desired 

stereoconfiguration at the anomeric carbon atom. 1,2-trans linkages (e.g. “β” in gluco and 

galacto series and “α” in manno series) can generally be produced with high 

stereoselectivities by providing anchimeric assistance at the 2-position of the same 

glycosylating agent (Scheme 1.4A). Alternatively, nitrile solvents significantly alter the 

1,2-trans-stereoselectivities in many cases.177 Axial leaving groups can be displaced in an 

SN2-reaction by alkoxide nuclophiles to give β-configured 2-deoxy glycosides.182 
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Scheme 1.4. Methods of stereoselective glycosylation. A, common strategies to increase β-
selectivity (1,2-trans in gluco and galacto series). B, common strategies to increase α-selectivity 
(1,2-cis in gluco and galacto series). 

The introduction of 1,2-cis-linkages is often accompanied by considerable amounts 

of the respective 1,2-trans-stereoisomer that lowers synthetic efficiency. A great number 

of concepts have been devised to optimize stereoselectivity. Similar to the anchimeric 

effect used to enhance 1,2-trans-stereoselectivity, remote anchimeric participation can be 

achieved by furnishing ester protecting groups at 3-, 4- or 6-positions of glycosylating 

agents (Scheme 1.4B).183, 184 Furthermore, ethereal solvents are known to increase the α-

selectivity of glycosylations using glucose and galactose glycosylating agents, for 

instance.177 A classical strategy to improve 1,2-cis-selectivities is the in situ-

anomerization of glycosyl halides. Thereby, an excess of a halide source is added to 

generate small amounts of the less stable, but more reactive anomeric halide in 

equilibrium that, in turn, reacts with an alcohol nucleophile in an SN2-like reaction.177 

Similarly, anomeric triflates as intermediates in glycosylation reactions have been found 
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to significantly increase 1,2-cis-selectivities in certain cases, such as structurally confined 

4,6-O-benzylidene mannose glycosylating agents.185, 186 Recently, intermolecular hydrogen 

bonding has been introduced as a concept to increase 1,2-cis-selectivities, and was 

successfully applied in the total syntheses of α-glucans.187 

A shortfall of most methods so far reported for the 1,2-cis-selective installation of 

glycosidic bonds is the low reproducibility for glycosylating agents with different 

monosaccharide configurations, protecting group patterns and leaving groups. 

Furthermore, alterations in the nature of the nucleophile are usually associated with 

unpredictable stereochemical outcomes. For instance, the 1,2-cis-selective introduction of 

protected amino alcohols as precursors of reducing-end linkers used for conjugation is a 

recurring obstacle in oligosaccharide synthesis, and conventional stereoselective 

glycosylation strategies often fail in these cases. In contrast to carbohydrate-borne 

hydroxyl groups that are classically used as nucleophiles to compare and optimize 

methodologies,188-192 these primary alcohols differ in both steric demand and 

nucleophilicity, two major determinants to control stereoselectivities in glycosylations. 

 

Scheme 1.5. Effect of alcohol nucleophilicity on the stereoselectivity of glycosylation reactions. 
Modified from Beaver et al.193  NIS = N-iodosuccinimide. 

The effect of nucleophilicity on the stereochemical outcome of glycosylation 

reactions has been the subject of elegant studies by Woerpel and colleagues.193 By 

comparing ethanol with various 2-haloethanols as nucleophiles in glycosylation reactions, 

it has been found that stereoselectivity inversely correlates with nucleophilicity, and 

weakly nucleophilic alcohols produced high α-selectivities in 2-deoxyglucose series such as 

1-10 (Scheme 1.5). It was proposed that reactions that proceed at the diffusion limit, 

such as those using highly nucleophilic alcohols, lead to an erosion of stereoselectivity 

while reactions with weaker nucleophiles are more susceptible to stereoelectronic factors 

in the reaction intermediate(s).193-196 As an equivalent of the so-called anomeric effect 

that prefers α-glycosides in rarely-performed thermodynamically controlled 

glycosylations, a “kinetic anomeric effect” has been discussed and correlated to several 

stereoelectronic factors in the glycosylating agent.176, 197-200 However, the precise 
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mechanisms that govern the increase of α-selectivity are yet to be determined. 

Furthermore, the effects of nucleophilicity on the outcome of a glycosylation reaction 

have not been harnessed to produce biologically active, conjugation-ready glycans thus 

far. 

1.6 Aims of This Thesis 

The objective of this work was to contribute to the improvement of synthetic 

oligosaccharide-based vaccine generation on multiple levels. To gain insight into the 

immune recognition of ZPSs, a synthetic strategy was devised that would yield ZPS 

substructures with an orthogonal functional group for conjugation despite the presence of 

a variety of unusual functionalities within these structures (Chapter 2). Immunological 

and biochemical evaluation of these glycans in vivo and in vitro would elucidate the 

mechanisms of ZPS immune recognition and reveal their potency as vaccine antigens. 

The search for an optimal vaccine antigen against ST8 inspired the development of 

a straightforward synthetic route to produce a collection of ST8-related oligosaccharides 

(Chapter 3). These glycans would help to characterize available antibody samples to 

allow for the rational design of vaccine antigens. Antibodies raised against these antigens 

after immunization of mice could be compared to available mAb samples raised against 

the native polysaccharide to assess the details of polysaccharide recognition in vitro and 

protection in vivo. 

Based on recent mechanistic findings that proposed a connection between alcohol 

nucleophilicity and glycosylation stereoselectivity, a novel linker was designed with an 

inherent propensity to give high 1,2-cis-selectivities during glycosylation reactions 

(Chapter 4). Screening the compatibility of this linker with a range of different reaction 

conditions and glycosylating agents would reveal its suitability for oligosaccharide 

synthesis. Overcoming the drawbacks of stereoselective glycosylation reactions would 

immensely facilitate the generation of future oligosaccharide haptens. 
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2 Synthesis and Immunological 
Evaluation of Conjugation-ready 
Zwitterionic Oligosaccharides 

This chapter has been modified in part from the following article: 

Synthesis of conjugation-ready zwitterionic oligosaccharides by chemoselective 
thioglycoside activation. B. Schumann, R. Pragani, C. Anish, C. L. Pereira and P. H. 
Seeberger, Chem. Sci., 2014, 5, 1992-2002.201 http://dx.doi.org/10.1039/C3SC53362J 

2.1 Introduction 

2.1.1 Commensal Bacteria 

Human mucosal surfaces are constantly exposed to a myriad of microbes. The 

gastrointestinal tract alone is colonized by 1014
 bacteria of one thousand different 

species.202, 203 While a fraction of these are potentially pathogenic, the vast majority of 

gut bacteria live in coexistence with the host in a commensal relationship. Commensal 

bacteria may support the host in a symbiotic fashion to degrade nutrients and suppress 

pathogenic organisms. Furthermore, these bacteria are crucial in maintaining the 

integrity of the gut epithelial barrier.202, 204
 

The host immune system must be tailored to distinguish between pathogenic and 

commensal organisms. Tolerance must be established towards the latter, while the former 

must be recognized and fought by both adaptive and innate immune systems. Any 

disturbance in this sensitive homeostasis may result in the activation of pro-

inflammatory signal cascades by the host and result in chronic inflammatory states, such 

as Crohn’s disease.202, 205 The primary mediators of these processes are pro-inflammatory 

cytokines such as interferon (IFN)-γ, IL-17 or IL-23.203 Commensal bacteria have 
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developed strategies to contribute to the maturation of the host immune system.206, 207 

Although the precise mechanisms of immunomodulation are complex and still ill-defined, 

certain molecules presented by commensal organisms have been found to play an 

important role in this process. 

2.1.2 Zwitterionic Polysaccharides 

Zwitterionic Polysaccharides (ZPSs) harbor both positive and negative charges in their 

repeating units. The most prominent and best-studied ZPS representatives are found on 

the surfaces of Streptococcus pneumoniae serotype 1 (ST1 CPS, also named “Sp1” 

polysaccharide) and Bacteroides fragilis (“PS A1” polysaccharide).118 Both bacteria 

asymptomatically colonize mucosal surfaces of healthy individuals. B. fragilis is a gut 

commensal and induces sterile abscesses upon intra-abdominal lesions during surgery.122 

S. pneumoniae is found in the respiratory tract of healthy humans and can cause 

invasive disease upon colonization of otherwise sterile sites, especially in 

immunocompromised individuals.208 

ZPSs are key players in the immunomodulatory function of commensal bacteria. 

Isolated ZPSs have the ability to correct abnormalities in the immune system of germ-

free mice, such as reduced Peyer’s patches and a dysbalance between two subsets of 

helper T cell responses, TH1 and TH2.209 Furthermore, ZPSs can induce the expansion of 

CD4+ T cells mediated by IL-12, a signaling molecule produced by stimulated dendritic 

cells.209 These effects help the host to develop a mature immune system. A hallmark of 

ZPSs is the potency to induce anti-inflammatory immune responses, including the 

expansion of regulatory T cells that, in turn, protect from inflammatory disease.123, 129, 210  

ZPSs are the first and only pure carbohydrates so far known to be presented on 

MHC class II molecules of APCs.125, 211-214 After internalization by yet unknown 

receptors, ZPSs are depolymerized by nitric oxide in endosomal compartments. The 

polysaccharide fragments are loaded onto MHC class II molecules, and the resulting 

complex is transported to the APC surface.125, 126, 211 An immunological synapse is then 

formed between APC and CD4+ T cell, leading to T cell expansion and cytokine 

production.124, 215 
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Despite the progress in understanding the modes of action of ZPSs, the precise 

mechanisms of immunomodulation are still unclear. Mechanistic investigations have been 

complicated by the routine use of isolated, labeled polysaccharides that are structurally 

heterogeneous and potentially harbor contaminations by other cellular components.100 

Furthermore, the process of purification, fragmentation and labeling inevitably changes 

the structure of the glycan and may influence the immunological effects observed with 

ZPS probes. In addition, the role of individual monosaccharides in immunomodulation 

cannot be uncovered with isolated polysaccharides. Albeit the rare amino sugar D-AAT 

is part of the repeating units of both Sp1 and PS A1, the role of this monosaccharide for 

ZPS immune recognition has not been studied in detail. Thus, defined synthetic 

zwitterionic oligosaccharides are necessary tools to study immune recognition of ZPSs. 

2.1.3 Streptococcus pneumoniae Serotype 1 

The immunomodulatory function of the ZPS representative Sp1 suggests a role of S. 

pneumonaie serotype 1 (ST1) as a facultative commensal bacterium.125, 129, 216 

Interestingly, bacterial lineages closely related to S. pneumoniae are purely commensal.217 

However, the incidence of pneumococcal infections is critically dependent upon 

environmental factors, such as nutrition and the availability of medical treatment.218, 219 

Developing countries are thus highly susceptible to IPD. Among the >90 serotypes 

described so far, ST1 is particularly aggressive and is the predominant serotype causing 

meningitis in sub-Saharan Africa.220, 221 ST1 is the serotype with the highest incidence of 

IPD in children in Asia.222 

Albeit ST1 has been included into 10- (Synflorix®) and 13-valent (Prevenar13®) 

PCV formulations, levels of functional anti-ST1 CPS antibodies raised by these vaccines 

have been low in clinical evaluations, with limited opsonophagocytic activity of immune 

sera from immunized humans.80, 223-225 Additionally, contradictory results have been 

reported regarding the efficacy of ST1 conjugate vaccines in Africa.226-228 Since the 

conjugation strategies of both marketed vaccines employ amine-reactive chemical 

modifications (1-cyano-4-dimethylaminopyridinium tetrafluoroborate activation and 

reductive amination, respectively),80, 229 derivatization of the amino group found in D-

AAT may mask crucial epitopes and compromise vaccine efficiency. Thus, a chemically 
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defined ST1 glycoconjugate vaccine is needed that does not modify the D-AAT moiety 

during conjugation. 

2.1.4 Conjugation-Ready Zwitterionic Oligosaccharides 

Both Sp1 and PS A1 polysaccharides are of high molecular weight and harbor a variety 

of highly unusual monosaccharides, even for bacterial glycans (Scheme 2.1). 126, 230, 231 

The repeating unit of S. pneumoniae Sp1 is a trisaccharide consisting of two D-

galacturonic acid moieties and D-AAT.16, 17, 232, 233 The native B. fragilis PS A1 repeating 

unit is a branched tetrasaccharide, and the positive and negative charges are found on D-

AAT and 4,6-O-pyruvalated D-galactose moieties, respectively.234 

 

Scheme 2.1. Natural ZPSs and synthetic target molecules. 

To date, several homogeneous ZPS fragments have been prepared by chemical 

synthesis, including a PS A1 tetrasaccharide and a Sp1 hexasaccharide.132-134, 180 While 

these glycans are valuable tools to study the structural requirements of ZPS recognition, 

they do not bear a linker readily capable of chemoselective conjugation. In turn, forging 

an orthogonal linker at the reducing end of an oligosaccharide enables the conjugation to 
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reporter moieties, such as carrier proteins and microarray surfaces.156, 235-239 In most 

cases, synthetic glycans are equipped with amine-containing linkers at the reducing end 

to form adducts with suitable electrophiles. Thiol linkers have been used in the 

conjugation of oligosaccharides to proteins, gold nanoparticles and surfaces.169, 239-243 

However, the thiol moiety is usually introduced at the very end of a synthetic route due 

to incompatibilities with oxidation reactions in oligosaccharide assembly, such as 

thioglycoside activation.169, 238-245 Thus, thiol-linked glycans have seen limited use for 

oligosaccharide conjugation chemistry due to shortfalls associated with their synthesis. 

2.1.5 Liposomal Display of Antigen-Adjuvant Systems as Promising 

Vaccine Formulations 

The group of α-galactosylceramides that engage APC-associated CD1d presentation has 

recently gained attention due to their unique immunomodulatory properties. The 

glycolipid-CD1d complex is recognized by a T cell receptor bearing a genetically 

invariant α-chain (Vα14Jα18 in mice, Vα24Jα18 in humans) on a subset of natural killer 

T (NKT) cells called iNKT cells, thereby inducing a cytokine burst.173 The predominant 

cytokines that play a role in iNKT-mediated immune responses are IL-4 and IFN-γ, 

leading to the recruitment of further immune cells and, eventually, the enhancement of 

immune responses.173, 246 

The efficacy of vaccinations including KRN7000 or similar glycosphingolipids as 

adjuvants has been studied in pre-clinical and clinical trials.173, 247, 248 Bendelac, Savage 

and coworkers co-formulated a KRN7000 derivative with a lipid-bearing tetrasaccharide 

derived from S. pneumoniae ST14 CPS in liposomes that elicited a long-lasting IgG 

response after immunization of mice.249, 250 Care has to be taken with respect to the 

immunization regime: It is widely known that iNKT cells become anergic after systemic 

stimulation with α-galactosylceramides,251-253 and a boost immunization must not be 

administered before these cells exit anergy. The optimal immunization regime is thus not 

known yet, and different schedules have been followed.249, 250 

Here, the first total syntheses of conjugation-ready repeating units of the two most 

prominent ZPSs, S. pneumoniae Sp1 (2-1) and B. fragilis PS A1 (2-2), and their 

immunological characterization after conjugation to reporter moieties is disclosed 



2 CONJUGATION-READY ZWITTEROINIC OLIGOSACCHARIDES 

46 
 

(Scheme 2.1). The introduction of a thioether-containing linker at an early stage of the 

synthesis called for establishing a method to chemoselectively activate thioglycosides in 

the presence of benzylthioethers. A collection of synthetic fragments of ZPS repeating 

units 2-1 and 2-2 were prepared and conjugated to glycan microarray slides and a 

carrier protein by virtue of the appended thiol groups. It was found that D-AAT plays a 

crucial role in the immune recognition of ZPS fragments, but a CRM197-D-AAT 

glycoconjugate did not raise an immune response against native ZPSs. Sp1 trisaccharide 

2-1 was then studied as a vaccine hapten against S. pneumoniae ST1 both as a 

carbohydrate-protein conjugate and displayed on liposomes including the 

immunomodulatory adjuvant KRN7000. 

2.2 Results 

2.2.1 Development of a Chemoselective Thioglycoside Activation 

Strategy 

Synthetic S. pneumoniae Sp1 and B. fragilis PS A1 disulfides (2-1 and 2-2, respectively) 

were targeted as homogeneous conjugation-ready ZPS fragments to study ZPS biology 

(Scheme 2.1). The use of an amine-functionalized linker toward this end was precluded 

by the presence of free primary amines in both ZPSs, which would complicate site-

selective conjugation. Thiol groups can be chemoselectively coupled with suitable 

electrophiles in the presence of free amines.254-256 Thus, oligosaccharides were targeted 

that were equipped with a thiol linker at the reducing end of the fragments as shown in 

2-1 and 2-2 from the outset.i Introduction of the thiol linker at an early stage of the 

synthesis was proposed as this approach could be translated to solid-phase synthesis that 

originates from the reducing end, and also renders the synthesis more convergent. 

However, in an earlier synthesis of the PS A1 tetrasaccharide repeating unit,132 the key 

[3+1] glycosylation could only be executed using thioglycoside chemistry (Scheme 2.2). 

Literature precedence did not provide any indication as to whether a protected thiol 

would survive thioglycoside activation conditions.238, 244, 245 

                                         
i ZPS fragments 2-1 and 2-2 were furnished with different linkers in line with studies on the 
immunological implications of linker length. 
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Scheme 2.2. Key step in a previous PS A1 synthesis.132 

Thus, known thioglycoside 2-3257 and thioether-containing alcohol 2-4258 were used 

in a model glycosylation to evaluate the chemoselectivity of different thioglycoside 

activation methods (Table 2.1). The use of strong promoters, such as the well-known 

Ph2SO/Tf2O
259, 260 combination or the more recently reported Me2S2/Tf2O system,261 

resulted in product formation in 43% and 51% yield, respectively (Table 2.1, entries 1 

and 2). While in both cases a considerable amount of the hydrolyzed thioglycoside could 

be identified as a major side product, thioether 2-4 could not be recovered when 

Ph2SO/Tf2O was used as an activator system (entry 1). In the presence of NIS/TfOH262 

as a promoter mixture, the glycosylation reaction did not proceed to completion (Table 

2.1, entry 3), resulting in 54% yield of 2-5 and recovery of unreacted thioglycoside 2-3 

and alcohol 2-4. Employing 3 Å acid-washed molecular sieves instead of unwashed 3 Å 

molecular sieves did not improve the outcome of the glycosylation (Table 2.1, entry 4). 

Incomplete turnover in these reactions was unexpected because of the highly reactive 

nature of thioglycoside 2-3.263 Indeed, a test glycosylation between 2-3 and monobenzyl 

ethylene glycol instead of thioether 2-4 with NIS/TfOH led to complete conversion (see 

Experimental Section). Thus, it is proposed in these glycosylation reactions (Table 2.1, 

entries 3 and 4) that the electrophilic iodonium species is in part sequestered by the alkyl 

benzylthioether moiety in 4, resulting in incomplete turnover.238  

When MeOTf was used as a promoter in presence of the acid scavenger 2,4,6-tri-

tert-butylpyridine, only traces of product were obtained (Table 2.1, entry 5). Methylation 

of the benzyl thioether in 2-4 and 2-5 was observed instead, indicating that MeOTf does 

not discriminate between the thioglycoside and alkyl benzylthioether functional groups. 

Using mild activating agent dimethyl (methylthio) sulfonium trifluoromethanesulfonate 

(DMTST)264 as a promoter provided glycoside 2-5 in 76% yield (Table 2.1, entry 6), 

with hydrolysis of the glycosylating agent being the only observable side reaction. Thus, 
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DMTST was found to be the best promoter for the chemoselective activation of 

thioglycoside 2-3 in presence of the benzyl thioether found in 2-4. Of note, the 

diastereoselectivities of the depicted glycosylations between 2-3 and 2-4 were in the 

range of 2.1:1 to 2.4:1 (α:β). Neither additives, such as DMF265 or thiophene,190 nor the 

use of toluene/1,4-dioxane as a solvent mixture266 altered this ratio significantly. 

Table 2.1. Compatibility of thioglycoside activation methods with alkyl benzylthioether 2-4. 

 

Entrya Promoter (equiv.)b,c Temperature Yield, % 

1 Ph2SO/Tf2O (1.1/1.1), TTBPy (1.5)d,e -60 °C to -10 °C 43g 

2 Me2S2/Tf2O (1.5/1.5), TTBPy (1.5) -40 °C 51 

3 NIS/TfOH (1.5/0.2) -40 °C to 5 °C 54h 

4 NIS/TfOH (1.5/0.2)f -40 °C to 5 °C 42h 

5 MeOTf (1.2), TTBPy (2.0) 0 °C to r.t. < 10g 

6 DMTST (1.5), TTBPy (2.0) 0 °C 76 

a1.0 equiv. glycosylating agent, 1.5 equiv. alcohol 2-4. bReactions performed in CH2Cl2/Et2O 1:3 (v/v). c3 Å 
mol. sieves were used. dReaction performed in CH2Cl2. 

ePre-activation of glycosylating agent. f3 Å-AW mol. 
sieves were used. gThioether decomposed. hReaction incomplete. DMTST = dimethyl (methylthio) sulfonium 
trifluoromethanesulfonate. MeOTf = methyl trifluoromethanesulfonate. NIS = N-iodosuccinimide. Tf2O = 
trifluoromethanesulfonic anhydride. TfOH = trifluoromethanesulfonic acid. TTBPy = 2,4,6-tri-tert-
butylpyridine. 

Next, the substrate scope of the DMTST-mediated thioglycoside activation in the 

presence of benzyl thioether 2-11 was evaluated (Table 2.2).ii267 Nucleophile 2-11 was 

used in glycosylation reactions with reactive thioglycosides 2-3 and 2-6268 using DMTST 

activation at low temperature to provide glycosides 2-12 and 2-13 in 70% and 75% 

yield, respectively (Table 2.2, entries 1 and 2). Glycosylating agent 2-7269 (Table 2.2, 

entry 3) required reaction optimization due to the presence of the participating benzoyl 

ester protecting group at C2. Employing an excess of TTBPy (neutral conditions) led to 

the formation of high amounts of the respective orthoester as a side product, whereas 

benzylidene cleavage was observed when the scavenger was omitted (acidic conditions). 

It was found that using 1.0 to 1.2 equivalents of scavenger and two equivalents of 

                                         
ii Alcohol 2-11 was chosen instead of alcohol 2-4 for further method evaluation because the 
respective products were easier to purify by flash chromatography. 
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DMTST produced a weakly acidic environment that yielded glycoside 2-14 without any 

major side reactions. Activation of galacturonic acid thioglycoside 2-8 (see Experimental 

Section) in the presence of alcohol 2-11 provided glycoside mixture 2-15 in 52% yield 

over two steps after removal of the C4 Lev ester (Table 2.2, entry 4). The moderate yield 

is consistent with previous reports on the low reactivity of galacturonic acid glycosylating 

agents.134, 270-273 Nevertheless, complete chemoselectivity was observed in the activation of 

glycosylating agent 2-8, leaving the alkyl benzylthioether intact. 

Table 2.2. Scope and limitations of the chemoselective thioglycoside activation with 
DMTST/TTBPy. 

 

aReactions performed in CH2Cl2.
 bReaction performed in CH2Cl2/Et2O 1:3 (v/v). c1.0 equiv. glycosylating 

agent, 1.5 equiv. alcohol 2-11. d1.4 equiv. glycosylating agent, 1.0 equiv. alcohol 2-11. eIsolated yields. 
fIsolated yield after consecutive step. 

As a brief look at other anomeric thioether leaving groups, the chemoselective 

activation of p-tolyl thioglycoside 2-9iii132 in the presence of the benzylthioether found in 

2-11 was executed (Table 2.2, entry 5). It is known that aryl thioglycosides are less 

readily activated by DMTST than alkyl thioglycosides.274 However, even tolyl 

thioglycoside 2-9 was chemoselectively activated by DMTST, giving pyruvalated 

                                         
iii Building block 2-9 was synthesized by Dr. Rajan Pragani. 

Entrya Thioglycosidec DMTST/ 
TTBPy, equiv. Time/temp. Product (α:β) Yield, 

%e 

1 2-3 1.5/2.0 1 h/0 °C 2-12 (1:1.6) 70 
2 2-6 1.5/2.0 2 h/-10 °C 2-13 (1:1.1) 75 
3 2-7 2.0/1.2 1.5 h/r.t. 2-14 (0:1) 70 
4b 2-8 1.5/2.0 8 h/r.t. 2-15 (4:3) 52f 
5 2-9 1.8/1.1 16 h/r.t. 2-16 (0:1) 58f 
6 2-10 2.0/1.1 >100 h/r.t. - < 20 
7 2-3d 1.5/2.0 2 h/0 °C 2-12 (1:1.6) 91 
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galactoside 2-16 in 58% yield after removal of the C3 Fmoc group. Finally, 

perbenzoylated galactose thioglycoside 2-10275 was employed as a highly electron-

deficient glycosylating agent (Table 2.2, entry 6). Even after prolonged stirring at room 

temperature, only very little consumption of the starting material was observed. 

Increased amounts of DMTST or higher reaction temperatures did not result in the 

formation of the desired product, but led to decomposition of the thioether group in 2-11 

(data not shown). It is speculated that the reactivities of both sulfur atoms in 

thioglycoside 2-10 and thioether 2-11 are comparable,276 and thus, both compete for 

DMTST, leading to the decomposition of 2-11.  

To fully confirm the chemoselectivity of DMTST-mediated thioglycoside 

activation, alcohol 2-11 was reacted with an excess of thioglycoside 2-3 and DMTST 

(Table 2.2, entry 7). Nearly full conversion of 2-11 was achieved, giving glycoside 2-12 

in 91% yield without affecting the alkyl benzylthioether. Taken together, a wide range of 

thioglycosides of different reactivities can be efficiently activated by DMTST in presence 

of a benzyl thioether. However, highly deactivated thioglycosides, such as 2-10, do not 

couple under these conditions. 

 

Scheme 2.3. Retrosynthesis of Sp1 repeating unit disulfide 2-1. 

2.2.2 Total Synthesis of a Conjugation-ready Sp1 Repeating Unit 

Trisaccharide 

With a method to conveniently introduce a benzyl thioether at an early stage in hand, 

attention was directed toward the synthesis of conjugation-ready zwitterionic 

oligosaccharides. It was envisaged that Sp1 trisaccharide dimer 2-1 could be assembled 

from D-AAT building block 2-17, galacturonic acid diol 2-18, and thioether 2-4 

(Scheme 2.3). 
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Scheme 2.4. Synthesis of building blocks for the assembly of Sp1 repeating unit disulfide 2-1. 
Reagents and conditions: a) LevOH, EDC, DMAP, pyr., CH2Cl2, r.t., 92%; b) CAN, NaN3, 
CH3CN, -20 °C; c) CsOPO(OBu)2, DMF, r.t., 37% (two steps from 21); d) i. BnBr, NaH, DMF, 0 
°C to r.t.; ii. TBAF, THF, 0 °C to r.t., 81% (two steps); e) i. PhI(OAc)2, TEMPO, CH2Cl2, H2O, 
0 °C to r.t., 3 h; ii.AcCl, MeOH, 0 °C to r.t., 60% (two steps); f) PhCH(OMe)2, TsOH, CH3CN, 
r.t., 92% (1:1 endo:exo); g) TES, TFA, TFAA, 0 °C to r.t., 65%; h) FmocCl, pyr., 0 °C to r.t., 
90%; i) NIS, HOPO(OBu)2, CH2Cl2, r.t., 89%. CAN = ceric ammonium nitrate. DMAP = 4-
(dimethylamino)pyridine. EDC = 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide. TEMPO = 
2,2,6,6-tetramethylpiperidine 1-oxyl. TES = triethylsilane. TFA = trifluoroacetic acid. TFAA = 
trifluoroacetic anhydride. TsOH = p-toluenesulfonic acid. 

D-AAT building block 2-17 was prepared via a de novo synthetic route established 

recently, using Cbz-L-threonine 2-19 as a chiral, inexpensive precursor (Scheme 2.4A).179 

Alcohol 2-20 was condensed with levulinic acid to give ester 2-21 in 92% yield. 

Azidonitration provided glycosyl nitrate 2-22 as an inseparable 4:1 galacto:talo isomeric 

mixture.179 Nucleophilic displacement of the anomeric nitrate with cesium dibutyl 

phosphate provided D-AAT phosphate 2-17 in 37% yield over two steps.277, 278 Compared 

to already known D-AAT imidates,134, 179, 279, 280 it was anticipated that a D-AAT 
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phosphate glycosylating agent would display enhanced stability towards decomposition 

while reducing the number of synthetic steps for preparation. 

The native Sp1 repeating unit contains two galacturonic acid residues that are 

glycosylated at either C3 or C4 positions, respectively.16, 17, 232, 233 For the generation of 

differentially C3-OH/C4-OH functionalized GalA building blocks, diol 2-18 was targeted 

as a common intermediate to minimize the total number of synthetic steps. 

Commercially available galactose pentaacetate 2-23 served as the starting point for the 

synthesis of diol 2-18. Alcohol 2-24 was synthesized according to a literature procedure 

from 2-23 (Scheme 2.4B).281 Benzyl protection of the C2-hydroxyl group followed by 

TBS deprotection at the C6 position afforded alcohol 2-25 in 81% yield over two steps. 

TEMPO-mediated oxidation and subsequent treatment with anhydrous hydrogen 

chloride in methanol then gave galacturonic acid diol 2-18 in 60% yield over two steps.  

At this stage, attempts to introduce benzyl protecting groups under either basic 

(BnBr, NaH) or strongly acidic conditions (benzyl trichloroacetimidate, TfOH) resulted 

in the decomposition of compound 2-18 (not shown). Therefore, a two-step procedure 

was envisioned for the selective benzyl protection of either the C3- or C4-hydroxyl 

groups via intermediate 3,4-O-benzylidene acetals. In the first step, diol 2-18 was treated 

with benzaldehyde dimethyl acetal under weakly acidic conditions to furnish isomeric 

benzylidene acetals 2-26 and 2-27 in a 1:1 ratio in 92% overall yield. Since the 

regioselectivity of the second step, a reductive benzylidene acetal ring-opening, is 

dependent on the benzylidene configuration,282-287 the generation of an equimolar mixture 

of both epimers was important for the synthesis of both galacturonic acids in Sp1 target 

trisaccharide 2-1.iv The configurations of endo-acetal 2-26 and exo-acetal 2-27 were 

confirmed by HH-NOESY NMR spectroscopy (not shown).288 As anticipated, exo-acetal 

2-27 was ring-opened using TES and TFA to give dibenzyl ether 2-28 in 65% yield and 

complete regioselectivity. Fmoc protection of the free C4 hydroxyl group furnished 

carbonate 2-29 in 90% yield. To enable the screening of different glycosylating agents at 

a later stage, thioglycoside 2-29 was transformed into glycosyl phosphate 2-30 in 89% 

yield. 

                                         
iv Dioxolane-type benzylidine protection may result in the preferential formation of one 
diastereomer for other monosaccharides.284, 287 
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Scheme 2.5. Assembly of Sp1 trisaccharide 2-34. Reagents and conditions: a) 1.5 equiv. 2-4, 
DMTST, TTBPy, THF, 0 °C to r.t., 73% (1.7:1 α:β); b) BH3•NMe3, AlCl3, THF, r.t., 70%. c) i. 
1.5 equiv. 2-30, TBSOTf, CH2Cl2, 80% (3:1 α:β) or 2.3 equiv. 2-29, DMTST, TTBPy, 
Et2O/CH2Cl2 3:1, r.t., 50% (3:1 α:β) ii. Et3N, CH2Cl2, r.t., 68%; d) 1.5 equiv. 2-17, TMSOTf, 
CH2Cl2, 0 °C, 85% (>19:1 α:β). TBSOTf = tert-butyldimethylsilyl trifluoromethanesulfonate. 
TMSOTf = trimethylsilyl trifluoromethanesulfonate. 

With the building blocks in hand, the assembly of Sp1 trisaccharide disulfide 2-1 

was undertaken (Scheme 2.5). DMTST-mediated glycosylation of thioglycoside 2-26 with 

thioether-containing alcohol 2-4 in THF gave glycoside 2-31 in 73% yield with modest α-

selectivity. The low diastereoselectivity of this glycosylation is consistent with the results 

usually obtained with highly nucleophilic, primary alcohols.193 A completely 

regioselective ring-opening of the endo-benzylidene in 2-31 using BH3•NMe3 and AlCl3 

gave alcohol 2-32 in 70% yield.284, 289, 290 Glycosylation of alcohol 2-32 with glycosyl 

phosphate 2-30 (80% yield) with subsequent Fmoc removal (68% yield) provided 

digalacturonic acid 2-33 in a 3:1 α:β anomeric ratio. The use of ethereal solvents in the 

glycosylation reaction did not alter the diastereoselectivity. DMTST-mediated 

glycosylation of thioglycoside 2-29 with alcohol 2-32 was unable to undergo complete 

conversion, presumably due to the low reactivity of both alcohol and glycosylating 

agent.273 Glycosylation of alcohol 2-33 with D-AAT phosphate 2-17 proceeded 

uneventfully using TMSOTf as the promoter. Thus, trisaccharide 2-34 was obtained in 

85% yield and with complete α-selectivity, highlighting the suitability of AAT phosphate 

building block 2-17 in oligosaccharide synthesis. 

With the fully protected Sp1 trisaccharide core (2-34) in hand, global deprotection 

strategies were assessed. Reductive acetylation of the azide followed by sequential 
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removal of all protecting groups present in 2-34 was attempted (Scheme 2.6, path A). 

Thus, acetamide 2-35 was obtained in 72% yield after treatment of 2-34 with thioacetic 

acid and pyridine.132, 291 It was now important to hydrolyze the methyl esters prior to 

Birch reduction to prevent β-elimination of the galacturonic acid moieties under the 

harshly basic Birch conditions.292 However, saponification of the methyl and Lev esters 

using either NaOH or Cs2CO3 in THF, water and methanol resulted in the concomitant 

cyclization of the D-AAT-NHCbz group to the corresponding cyclic carbamate. This side 

reaction has been associated with Cbz-protected AAT moieties previously.132, 134  

Scheme 2.6. Global deprotection to yield Sp1 repeating unit disulfide 2-1. Reagents and 
conditions: a) AcSH, pyr., r.t., 72%.; b) NaOH, H2O, THF, 0 °C to r.t.; or Cs2CO3, H2O, THF, 0 
°C to r.t.; c) H4N2

•H2O, AcOH, pyr., CH2Cl2, r.t., quant.; d) BOMCl, iPr2NEt, CH2Cl2, reflux; e) 
2-38, DMTST, TTBPy, CH2Cl2, 0 °C to 15 °C, 84%; f) AcSH, pyr., 0 °C to r.t., 72%; g) i. NaOH, 
H2O, THF, MeOH, 0 °C to r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, 93% (two steps). 

A capping step of the D-AAT C3-OH was thus introduced to circumvent 

cyclization of the Cbz moiety (Scheme 2.6, path B). Capping of the D-AAT C3 hydroxyl 

group should ideally involve a stable, permanent protecting group. Thus, Lev 

deprotection of trisaccharide 2-34 gave C3 alcohol 2-36 in quantitative yield. 

Introduction of benzylic ethers under highly basic conditions was excluded due to the 

base-lability of alcohol 2-36. Introduction of a p-methoxybenzyl (PMB) ether from the 

corresponding trichloroacetimidate under acidic conditions was also attempted, but was 
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not compatible with the thioether moiety.v Benzyloxymethyl (BOM) ethers can be 

introduced under mild, weakly basic conditions.293, 294 Unfortunately, treatment of 

trisaccharide 2-36 with BOMCl and DIPEA in refluxing CH2Cl2 led to decomposition of 

the starting material. To enable the introduction of the BOM acetal moiety under milder 

conditions, a method described for the generation of formyl acetals by activation of S,O-

acetal precursors was adapted.295-297 Thereby, the established conditions on the 

chemoselective activation of thioglycosides in presence of thioethers were used to develop 

a procedure for introducing a BOM group under mild conditions. S,O-acetal 2-38, 

readily prepared from commercially available reagents (see Experimental Section), was 

chosen as a suitable BOM precursor with a reactive S-cyclohexyl leaving group.274 

DMTST-mediated activation of S,O-acetal 2-38 under buffered reaction conditions and 

at low temperature converted alcohol 2-36 into the desired BOM-protected trisaccharide 

2-37 in 85% yield. As anticipated, the alkyl benzylthioether remained unharmed despite 

the use of excess BOM precursor 2-38 as well as DMTST. This presents the mildest 

method so far to introduce a benzyloxymethyl ether into a complex substrate like 2-36. 

With capped trisaccharide 2-37 in hand, the stage was set for the completion of 

the synthesis. Reductive acetylation provided acetamide 2-39 in 72% yield. With the D-

AAT C3 hydroxyl group capped, saponification of both methyl esters with NaOH in 

THF, methanol and water proceeded without any side reactions. Finally, Birch reduction 

was carried out to remove all benzyl ethers as well as the Cbz and BOM groups to afford 

disulfide 2-1 in 93% yield over two steps after size exclusion chromatography.vi298 The 

identity of disulfide 2-1 was confirmed unambiguously by comparison of the analytical 

data with published results.133, 134 Particularly, the presence of three α-anomeric linkages 

can be deduced from the small 3JH,H coupling constants of the anomeric protons (3.8 Hz 

each; Fig. 2.1A) in 1H NMR. 

                                         
v Treatment of thioether-containing alcohols, such as 2-36, with PMB trichloroacetimidate under 
acidic conditions led to the p-methoxybenzylation of the thioether to form a sulfonium ion, 
identified by the formation of a highly polar product on TLC as well as the presence of a bis-PMB 
adduct by mass spectrometry. 
vi Oligosaccharides were left at room temperature under air for 16 h after global deprotection to 
induce disulfide formation. Only traces of free thiol were observed. 
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2.2.3 Total Synthesis of a Conjugation-Ready PS A1 Repeating 

Unit Tetrasaccharide 

Based on the lessons learned synthesizing the Sp1 repeating unit disulfide 2-1, the 

preparation of PS A1 repeating unit disulfide 2-2 was undertaken. To assemble the 

tetrasaccharide backbone of 2-2, the previously established [3+1] strategy was adapted 

in the retrosynthetic analysis based on building blocks 2-40,vii 2-41,vii 2-17 and 2-16 

(Scheme 2.7).132, 179 

 

Scheme 2.7. Retrosynthesis of PS A1 repeating unit disulfide 2-2. 

Synthesis of PS A1 repeating unit disulfide 2-2 commenced with the glycosylation 

of D-AAT glycosylating agent 2-17 and D-galactosamine nucleophile 2-40 to give 

disaccharide 2-42 in 77% yield and 19:1 α:β selectivity (Scheme 2.8). Removal of the Nap 

group (84% yield) was followed by glycosylation of disaccharide 2-43 with 

galactofuranose imidate 2-41 to provide trisaccharide 2-44 in 90% yield. Modification of 

the trisaccharide reducing end included TBS deprotection to give lactol 2-45 (89% 

yield), formation of the corresponding trifluoroacetimidate and thioglycoside installation 

to obtain glycosylating agent 2-46 in 75% over two steps. Chemoselective glycosylation 

of thioglycoside 2-46 with thioether-containing alcohol 2-16 (see Table 2.2) was 

performed using DMTST to give tetrasaccharide 2-47 in 57% yield as the sole 

diastereomer without affecting the alkyl benzylthioether. Lev deprotection provided 

alcohol 2-48 in 96% yield, which was capped using novel reagent 2-38 and DMTST to 

give BOM protected tetrasaccharide 2-49 in 87% yield. Conversion of both azides to the 

corresponding acetamides with AcSH/pyridine produced diamide 2-50 in 60% yield. 

                                         
vii Building blocks 2-40 and 2-41 were synthesized by Dr. Rajan Pragani. 
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Global deprotection of tetrasaccharide 2-50 was achieved in a straightforward two-

step procedure. Saponification of all esters followed by Birch reduction provided fully-

deprotected disulfide 2-2 in 88% over two steps after size exclusion chromatography. No 

major side reactions were observed during global deprotection, highlighting the feasibility 

of introducing a thioether at an early synthetic stage. The identity of disulfide 2-2 was 

confirmed by comparing the analytical data of 2-2 with published data on a similar 

synthetic PS A1 repeating unit (Fig. 2.1B).132 

Scheme 2.8. Synthesis of PS A1 repeating unit disulfide 2-2. Reagents and conditions: a) 1.5 
equiv. 2-17, TMSOTf, CH2Cl2, 0 °C, 77% (19:1 α:β); b) DDQ, MeOH, CH2Cl2, 0 °C to r.t., 84%; 
c) 1.4 equiv. 2-41, TMSOTf, CH2Cl2, -30 °C, 90% (>19:1 β:α); d) TBAF, AcOH, THF, 0 °C to 
r.t., 89%; e) i. F3CC(NPh)Cl, Cs2CO3, CH2Cl2, r.t.; ii. EtSH, TfOH, CH2Cl2, 0°C, 76% (two 
steps); f) 2.0 equiv. 2-16, DMTST, TTBPy, CH2Cl2, r.t., 57% (>19:1 α:β); g) H4N2, pyridine, 
AcOH, CH2Cl2, r.t., 96%; h) 2-38, DMTST, TTBPy, CH2Cl2, 0 °C to 10 °C, 87%; i) AcSH, pyr., 
r.t., 60%; j) i. NaOH, H2O, THF, MeOH, 0 °C to r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, 88% (two 
steps). 
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Figure 2.1. 1H NMR spectra (600 MHz, D2O, 25 °C) of Sp1 trisaccharide disulfide 2-1 (A) and 
PS A1 tetrasaccharide disulfide 2-2 (B). 
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Scheme 2.9. Synthesis of ZPS repeating unit substructures. A-B, common substructures of Sp1 
and PS A1 2-51 and 2-52. C-E, Sp1 substructures 2-53, 2-54 and 2-55. F, PS A1 substructure 
2-56. Reagents and conditions: a) i. 2-11, TMSOTf, CH2Cl2, 0 °C (1:1 α:β); ii.AcSH, pyr., r.t., 
29% (two steps); b) i. H4N2

.H2O, AcOH, pyr., CH2Cl2, r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, r.t, 
34% (two steps); c) i. 2-4, TMSOTf, Et2O/CH2Cl2 5:2, 0 °C, 48% (5:2 α:β); ii. AcSH, pyr., r.t., 
76%; d) i. H4N2

.H2O, AcOH, pyr., ii. Na, NH3, tBuOH, THF, -78 °C, r.t, 71% (two steps); e) i. 
NaOH, H2O, THF, MeOH, 0 °C to r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, r.t, 60% (two steps); f) 
i. NaOH, H2O, THF, MeOH, 0 °C to r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, r.t, 61% (two steps); 
g) i. 2-4, TMSOTf, Et2O/CH2Cl2 5:2, 0 °C, 48% (5:2 α:β); H4N2

.H2O, AcOH, pyr., CH2Cl2, r.t., 
92%; h) i. 2-8, DMTST, TTBPy, THF, 0 °C to r.t.; ii. AcSH, pyr., r.t.; iii. H4N2

.H2O, AcOH, 
pyr., CH2Cl2, r.t., 21% (three steps, based on recovered 2-59); i) NaOH, H2O, THF, MeOH, 0 °C 
to r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, 83% (two steps); j) NaOH, H2O, THF, MeOH, 0 °C to 
r.t.; ii. Na, NH3, tBuOH, THF, -78 °C, r.t, 56% (two steps). 
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2.2.4 Synthesis of Conjugation-ready ZPS Repeating Unit Frag-

ments 

To allow for a detailed view into the structural requirements of ZPS recognition by 

components of the immune system, a panel of oligosaccharides were prepared that 

represent Sp1 and PS A1 repeating unit substructures (Scheme 2.9 and Fig. 2.2A). Thiol 

groups were introduced at the reducing ends of all glycans to enable the conjugation of 

these probes to suitable electrophilic reporters. 

Conjugation-ready D-AAT was equipped with both 6- and 2-carbon linkers (2-51 

and 2-52, respectively, Scheme 2.9A and B). The longer aliphatic chain in 2-51 was 

chosen as a handle suitable for glycan microarray analysis, while the shorter linker in 2-

52 was assumed to be less immunogenic during immunization experiments (see below). 

The thiol linkers were appended by glycosylation of phosphate 2-17 with alcohols 2-11 

and 2-4. Ensuing reductive acetylation gave acetamides 2-57 and 2-58 in 29% and 26% 

yield over two steps, respectively. Lev ester cleavage and Birch reduction of benzyl and 

Cbz groups afforded disulfides 2-51 and 2-52 in 34% and 71% yield, respectively. 

Galacturonic acid 2-53 and digalacturonic acid 2-54 were prepared to assess the 

role of D-AAT in immune recognition of ZPS fragments (Scheme 2.9C and D). Both 

glycans were accessed by global deprotection of intermediates 2-15α and 2-33 (see 

above), including ester saponification and Birch reduction to provide carboxylic acids 2-

53 and 2-54 in 60% and 61% yield, respectively. 

A D-AAT moiety was furnished at the reducing end of disaccharide 2-55 to probe 

the relevance of the position of this unusual monosaccharide within a glycan chain 

(Scheme 2.9E). Glycosylation of D-AAT precursor 2-17 with alcohol 2-4 furnished a 5:2 

α:β anomeric mixture of the corresponding glycosides in 48% yield. Alcohol 2-59 was 

prepared by Lev deprotection in 92% yield. DMTST-mediated union of 2-59 with 

galacturonic acid thioglycoside 2-8, reductive acetylation of the azide group and Lev 

deprotection gave disaccharide 2-60 in 21% over three steps, based on recovered 2-59. 

The low yield of this synthetic sequence is mainly attributed to the low reactivity of 
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thioglycoside 2-8. Global deprotection afforded disulfide 2-55 in 83% yield over two 

steps. 

 

Figure 2.2. Immune recognition of synthetic ZPS substructures. A, synthetic fragments of ZPS 
repeating units 2-1 and 2-2. B, glycanmicroarray printing pattern. C, recognition of synthetic Sp1 
substructures by rabbit ST1 typing serum by glycan microarray at different concentrations (left 
and middle panel) and inhibition of antibody binding to Sp1 trisaccharide 2-1 by pre-adsorption 
with native Sp1 polysaccharide (10 µg/mL). Serum was pre-adsorbed with pneumococcal C-
polysaccharide before application. Histograms show mean + SD of eight spots. Bars depict mean 
± SD. D, recognition of synthetic PS A1 substructures by rabbit anti-B. fragilis antiserum by 
glycan microarray at different concentrations (left and middle panel) and inhibition of antibody 
binding to D-AAT by pre-adsorption with native PS A1 polysaccharide (10 µg/mL). Histograms 
show mean + SD of eight spots. Statistical analysis (One-tailed, unpaired t test with Welch’s 
correction) of eight spots was performed of one out of at least two independent experiments. 
Asterisks indicate P values: n.s. not significant; *** P < 0.001; **** P < 0.0001. MFI = mean 
fluorescence intensity. 
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 Finally, pyruvalated galactose 2-56 was synthesized to address the potentially 

immunodominant role of the pyruvate ketal, as seen for other polysaccharides (Scheme 

2.9F).299 Saponification and ensuing Birch reduction of intermediate 2-16 (see above) 

afforded disulfide 2-56 in 56% yield over two steps. 

2.2.5 Recognition of Synthetic ZPS Fragments by Components of 

the Immune System 

With a panel of synthetic, conjugation-ready ZPS fragments in hand, immune 

recognition of these oligosaccharides was examined. Disulfides 2-1, 2-2, 2-51, 2-52, 2-

53, 2-54, 2-55 and 2-56 were reduced in situ with tris(2-carboxyethyl)phosphine 

(TCEP) and immobilized on maleimide-functionalized glass slides by virtue of the 

appended thiol functionalities (Fig. 2.2B).149, 157, 300 Native Sp1 and PS A1 

polysaccharidesviii were included in the experiment as positive binding controls. 

Furthermore, proteins were immobilized to analyze the outcome of immunization 

experiments (see below). First, recognition of the synthetic ZPS substructures by 

recombinant human MHCII complexesix and murine C-type lectinsx was assessed, but no 

interaction was observed (data not shown). 

Next, binding was examined of rabbit antisera against either Sp1 polysaccharide or 

whole B. fragilis bacteria (Fig. 2.2C and D).viii Both antisera bound to the respective 

immobilized native ZPSs, confirming the viability of these sera. A robust interaction was 

found between synthetic Sp1 trisaccharide 2-1 and antiserum against native Sp1 

polysaccharide (Fig. 2.2C, left panel), indicating that the synthetic repeating unit 

efficiently presents epitopes found in the polysaccharide. Significant abrogation of 

binding by pre-adsorption of the antiserum to Sp1 polysaccharide confirmed this finding 

(Fig. 2.2C, right panel). Digalacturonic acid 2-54 was recognized with an at least 

threefold lower intensity than 2-1, indicating that the D-AAT moiety plays a crucial role 

for immune recognition of Sp1. However, no binding was observed to D-AAT alone (2-
                                         
viii anti-B. fragilis antiserum and purified PS A1 polysaccharide were kindly provided by Prof. 
Dennis Kasper, Harvard Medical School, Boston, USA. 
ix Recombinant MHCII complexes were kindly provided by Dr. Eddie James, Benaroya Research 
Institute, Seattle, USA. 
x In collaboration with Prof. Bernd Lepenies, Max Planck Institute of Colloids and Interfaces, 
Potsdam, Germany. 
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51) or disaccharide 2-55 that harbors this rare monosaccharide at the reducing end. 

Thus, displaying the D-AAT moiety at the non-reducing end of an oligosaccharide is 

proposed to be important for antibody binding of Sp1 fragments. Negligible interaction 

was found between anti-B. fragilis antiserum and synthetic PS A1 repeating unit 2-2 

(Fig. 2.2D, left panel). Recognition of pyruvalated galactose 2-56 was equally weak. In 

contrast, a robust interaction was observed towards D-AAT when presented as a linker-

bearing monosaccharide (2-51), underlining the importance of this rare sugar for 

immune recognition of ZPSs. This interaction was physiologically relevant, as seen by the 

significant inhibition observed by antibody pre-adsorption to native PS A1 

polysaccharide (Fig. 2.2D, right panel). Taken together, D-AAT plays an important role 

in the recognition of ZPS fragments by antisera against native ZPSs. 

2.2.6 Evaluation of the Immune Response Against D-AAT 

Unusual monosaccharides likely contribute to the “non-self” recognition of bacterial 

polysaccharides by the mammalian immune system.301 To closer evaluate the role of the 

rare amino sugar D-AAT in immune recognition of ZPSs, thiol-containing D-AAT 2-52 

was conjugated to the immunogenic carrier CRM197 (Fig. 2.3A). The carrier was first 

activated with thiophilic 2-bromoacetates on lysine residues by treatment with 

heterobifunctional spacer N-succinimidyl 3-(2-bromoacetamido)propionoate (SBAP). 

Approximately ten spacer molecules were introduced on average per protein molecule, as 

assessed by matrix-assisted laser desorption/ionization with time of flight detection 

(MALDI-TOF) mass spectrometry, and reacted with in situ-reduced D-AAT 2-52 in a 

second step to yield a glycoconjugate carrying on average five glycan moieties per protein 

molecule (Fig. 2.3B and C). 

The immunogenicity of D-AAT as a hapten was evaluated in a mouse 

immunization model (Fig.2.4). C57BL/6 mice were immunized twice with the 

glycoconjugate formulated either with or without Freund’s adjuvant (Fig. 2.4A). The 

immune response was monitored by glycan microarray (Fig. 2.4B). A consistent immune 

response against D-AAT was mounted by the CRM197-D-AAT (2-52) glycoconjugate in 

the presence of Freund’s adjuvant, but not when the adjuvant was omitted (Fig. 2.4C 

and D). Cross-reactivity towards Sp1 trisaccharide 2-1 and PS A1 tetrasaccharide 2-2 

was observed in one mouse (mouse 780, Fig. 2.4C), indicating that the corresponding 
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antibodies recognized D-AAT even when present on an oligosaccharide scaffold 

independent from a linker moiety. 

 

Figure 2.3. Preparation of a CRM197-D-AAT glycoconjugate. A, conjugation of D-AAT 2-52 to 
CRM197 using SBAP as a spacer. B, characterization by 10% SDS-PAGE. C, characterization by 
MALDI-TOF MS. Axes were re-drawn and labeled to improve visibility. Reagents and conditions: 
a) SBAP, 0.1 M NaPi pH 7.4, r.t.; b) i. 2-52, TCEP, 0.1 M NaPi pH 7.4, r.t.; ii. L-cysteine, 0.1 M 
NaPi pH 7.4, r.t. a.u. = arbitrary units. NaPi = sodium phosphate buffer. SBAP = N-
succinimidyl 3-(2-bromoacetamido)propanoate. TCEP = tris(2-carboxyethyl)phosphine. 

No binding was found towards disaccharide 2-55 that contains D-AAT at the 

reducing end. Background binding events observed in glycan microarray experiments 

were attributed to the reactivity of antisera towards the reducing agent TCEP 

(background spots, Fig. 2.4C). Albeit commonly believed to be a disulfide-specific 

reducing agent, TCEP has been found to react with different electrophiles frequently (see 

below),302 and may have reacted with α-bromoacetate and maleimide groups during 

glycoconjugate formation and glycan microarray fabrication, respectively. 

Additionally, antisera were reactive towards the carrier protein CRM197 and a 

glycoconjugate containing non-related protein (bovine serum albumin, BSA) and glycan 

(D-galactose) components connected via the same linker/spacer chemistry (Fig. 2.4C). 
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Figure 2.4. Evaluating a glycoconjugate of D-AAT in mice. A, immunization strategy. C57BL/6 
mice (n = 3) were immunized two times with CRM197-D-AAT (2-52) with or without Freund’s 
adjuvant. Sera were collected at days 0, 14 and 21. B, glycan microarray printing pattern. C, 
immune response at day 21 of mice immunized with CRM197-D-AAT (2-52) formulated with 
Freund’s adjuvant, as assessed by glycan microarray. D, time course of the immune response 
against D-AAT in individual mice, as assessed by glycan microarray. Values show fluorescence of 
D-AAT binding after substracting the fluorescence intensity of a non-related glycan (D-GalA 2-
53) associated with TCEP-reactive antibodies. Values are given as individual data and median. E, 
IgG isotype distribution in antisera of mice immunized with CRM197-D-AAT formulated with 
Freund’s adjuvant. Endpoint titers are shown as the reciprocal of the highest dilution of pooled 
sera (n = 3) with measurable fluorescence intensity on glycan microarray. F, Evaluation of the 
recognition of native ZPSs by antisera against D-AAT, as assessed by polysaccharide ELISA. Bars 
depict mean ± SD of triplicate measurements of one experiment. 

Analysis of antibody subtypes revealed that the IgG response induced by the 

CRM197-D-AAT (2-52) glycoconjugate was mainly skewed towards IgG1 (endpoint titer 

12800) and IgG2c (12800) rather than IgG3 (200) subtypes, consistent with a carrier 

protein-dependent Ig class switch (Fig. 2.4E).45 Antisera raised against D-AAT did not 

recognize native Sp1 and PS A1 polysaccharides, as assessed by polysaccharide ELISA 

(Fig. 2.4F). Thus, despite the high immunogenicity of D-AAT as a hapten when 

conjugated to CRM197, antibodies raised by this glycoconjugate do not recognize D-AAT 

unless it is presented at the non-reducing end of a glycan chain. 
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2.2.7 Evaluation of an Sp1 Trisaccharide Repeating Unit as a 

Vaccine Hapten Against Streptococcus pneumoniae Serotype 1 

The rare monosaccharide D-AAT is highly immunogenic as a hapten in mice, but did not 

induce an immune response against native Sp1. However, this monosaccharide was 

strongly recognized by S. pneumoniae ST1-reactive antiserum (that is directed against 

native Sp1) as a part of trisaccharide repeating unit 2-1. This trisaccharide was thus 

deemed a suitable vaccine hapten against highly invasive ST1 (Fig. 2.5). CRM197 was 

functionalized with α-bromoacetate groups (see above) and reacted with in situ-reduced 

Sp1 trisaccharide 2-1 (Fig. 2.5A). On average, eight glycan chains were introduced per 

protein molecule (Fig. 2.5B and C). 

 

Figure 2.5. Preparation of a CRM197-Sp1 (2-1) glycoconjugate. A, conjugation of Sp1 
trisaccharide 2-1 to CRM197 using SBAP as a spacer. B, characterization by 10% SDS-PAGE. C, 
characterization by MALDI-TOF MS. Axes were re-drawn and labeled to improve visibility. 
Reagents and conditions: a) SBAP, 0.1 M NaPi pH 7.4, r.t.; b) i. 2-1, TCEP, 0.1 M NaPi pH 8.0, 
r.t.; ii. L-cysteine, 0.1 M NaPi pH 7.4, r.t. 
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Figure 2.6. Evaluating a glycoconjugate of synthetic Sp1 trisaccharide 2-1 in mice. A, 
immunization strategy. NMRI mice (n = 7-13) were subcutaneously (s.c.) immunized three times 
with CRM197-Sp1 trisaccharide (2-1) formulated with or without Alum. Control immunizations 
contained Alum adjuvant alone or PBS. Sera were collected at several time points. B, glycan 
microarray printing pattern and glycan microarray exemplary of a detectable immune response 
against hapten 2-1. C, immune responses of individual mice after immunization with CRM197-
Sp1 trisaccharide (2-1) or controls, as assessed by glycan microarray. Values are given as 
individual data and median. D, time course of immune responses against Sp1 trissaccharide (2-1) 
of individual mice, as assessed by glycan microarray. Values are given as individual data and 
median. E, binding of antisera to native Sp1 polysaccharide, as assessed by polysaccharide ELISA. 
Values are given as individual data and median. Values in C and D show fluorescence of Sp1 
trisaccharide (2-1) binding after substracting the fluorescence intensity of a non-related glycan 
(D-Gal-4,6-pyr. 2-56) associated with TCEP-reactive antibodies. Statistical analysis was 
performed (one-way ANOVA with Bonferroni correction) and Asterisk indicates P value: n.s., 
non-significant; * P < 0.05. Reagents and conditions: a) SBAP, 0.1 M NaPi pH 7.4, r.t.; b) i. 2-1, 
TCEP, 0.1 M NaPi pH 8.0, r.t.; ii. L-cysteine, 0.1 M NaPi pH 7.4, r.t. 
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To assess the immune response against Sp1 trisaccharide 2-1 in vivo, NMRI 

micexi were immunized three times with the CRM197-Sp1 (2-1) glycoconjugate 

formulated either with or without the human-approved adjuvant Alum.304 Control 

groups were treated with Alum or PBS, respectively, and the immune response was 

assessed by glycan microarray analysis (Fig. 2.6B). Mice immunized with CRM197-Sp1 

(2-1) developed a pronounced immune response against the hapten 2-1 compared to 

control groups. The obtained immune response was independent from the use of adjuvant 

(Fig. 2.6C), highlighting the immunogenicity of trisaccharide 2-1. An evaluation of the 

antibody time course revealed that immunizations at days 14 and 28 efficiently boosted 

the immune response, as increases in antibody levels were observed at days 20 and 35, 

respectively (Fig. 2.6D).  

The primary goal of vaccination with glycoconjugates against encapsulated bacteria 

is the induction of an immune response directed against the respective native CPS. The 

capacity of antisera against CRM197-Sp1 trisaccharide 2-1 to bind native Sp1 was 

assessed by polysaccharide ELISA. A subset of mice (n = 2 out of 7) immunized with the 

glycoconjugate formulated with Alum, but neither with non-adjuvanted glycoconjugate 

nor with control formulations developed an anti-polysaccharide immune response (Fig. 

2.6E). The high variability of antibody responses precludes the use of CRM197-Sp1 (2-1) 

as an antigen in the system studied. 

The response to an immunogen may be dependent upon the animal system used. 

Despite the establishment of NMRI mice in pneumococcal challenge models, immune 

responses achieved in this outbred mouse strain are highly variable.305 Therefore, inbred 

C57BL/6 mice were employed in further immunization experiments described below. 

  

                                         
xi The NMRI mouse strain was employed here because a ST1 infection model has been described 
using this strain,303 facilitating challenge experiments prospectively. 
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2.2.8 Liposomal Presentation of a Sp1 Trisaccharide as a Fully 

Synthetic Antigen Formulation 

Multivalent presentation of glycans is a promising approach to induce anti-carbohydrate 

immune responses. Liposomal display of antigens is of special interest since this 

formulation offers the potential to develop fully synthetic vaccines devoid of protein 

components and the need to maintain a cold chain.165, 167 

 

Figure 2.7. Preparation of liposomes displaying Sp1 trisaccharide 2-1. A, synthesis of alkyl-
derivatized Sp1 trisaccharide 2-62. B, Structure of KRN7000. C, preparation of Sp1-displaying 
liposomes without (left panel) or with KRN7000 (right panel). Sizes depict average ± SD of three 
independent liposome preparations. The size distribution of a representative liposome preparation 
is shown, as determined by dynamic light scattering. Reagents and conditions: a) DTT, 0.1 M 
NaPi pH 7.4, r.t., then 2-61, CHCl3, MeOH, H2O, r.t., 51%. 

To enable the construction of a Sp1 trisaccharide-containing liposome system, 

disulfide 2-1 was first conjugated to maleimide-functionalized octadecylamine 2-61 (Fig. 

2.7A). The disulfide in 2-1 was first reduced in aqueous phosphate buffer and directly 

reacted with 2-61 in a ternary CHCl3/methanol/water solvent system. 1,4-Dithiothreitol 

(DTT) was used as a disulfide reducing agent as the water-soluble phosphine reagent 

TCEP was found to react with the maleimide moiety.302 Thus, alkyl-containing, 

amphiphilic Sp1 trisaccharide derivative 2-62 was obtained in 51% yield after 

purification by solid-phase extraction and size exclusion chromatography. 
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Next, liposomes were fabricated by incorporating alkyl-derivatized trisaccharide 2-

62 and, optionally, the lipophilic immunomodulator KRN7000 (Fig. 2.7B) into a mixture 

of distearyl phosphatidyl choline and cholesterol (Fig. 2.7C).306 Liposomes were found to 

be of reproducible size, with a radius of 146 nm ± 3.7 nm (292 nm diameter, Sp1-alkyl 2-

62 liposomes) and 140.0 nm ± 32.1 nm (280 nm diameter, Sp1-alkyl 2-62 liposomes + 

KRN7000), respectively, as determined by dynamic light scattering (Fig. 2.7C). 

 

Figure 2.8. Evaluating different antigen formulations on the immune response against Sp1 
trisaccharide 2-1. A, immunization regime. C57BL/6 mice (n = 6) were intraperitoneally (i.p.) 
immunized three times either with CRM197-Sp1 trisaccharide (2-1) formulated with Alum, 
liposomes containing Sp1 derivative 2-62 or liposomes containing 2-62 and KRN7000. Sera were 
collected at several time points. B, time course of the IgG response of individual mice against Sp1 
trisaccharide 2-1, as assessed by glycan microarray. Values are given as individual data and 
median. C, time course of the IgM response of individual mice against Sp1 trisaccharide 2-1, as 
assessed by glycan microarray. Values are given as individual data and median. Values of 
CRM197-Sp1 trisaccharide 2-1 immune sera in C and D show fluorescence of Sp1 trisaccharide 
(2-1) binding after substracting the fluorescence intensity of a non-related glycan (D-Gal-4,6-pyr. 
2-56) associated with TCEP-reactive antibodies. Arrows depict time points of immunization. 
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The potency of liposomal formulations of Sp1 trisaccharide 2-1 to elicit anti-

carbohydrate antibody responses was elucidated in vivo (Fig. 2.8). C57BL/6 mice were 

immunized three times with liposomes containing either alkyl-linked Sp1 trisaccharide 2-

62 alone or in conjunction with KRN7000. A CRM197-Sp1 trisaccharide (2-1) conjugate 

(see above) was utilized as a control antigen. The immunization regime was adjusted to 

the physiological prerequisites of KRN7000 immunomodulation: As KRN7000-sensitive 

iNKT cells become anergic for several weeks after stimulation,249, 251-253 the first boost 

immunization was administered eight weeks after the prime immunization. A recall of 

the immune response was performed by administration of a second boost immunization 

after 94 days, and sera were collected at regular intervals. Antibody responses against 

Sp1 trisaccharide 2-1 were monitored by glycan microarray. As expected, the CRM197-

Sp1 (2-1) glycoconjugate induced a robust immune response that was associated with a 

long-term antibody response with measurable IgG levels (Fig. 2.8B). However, antisera of 

CRM197-Sp1 (2-1)-immunized mice did not cross-react with native Sp1 polysaccharide 

in an ELISA assay (data not shown). In contrast to the protein-based antigen, neither 

liposome formulation invoked an IgG response against Sp1 trisaccharide 2-1 (Fig. 2.8B). 

IgM responses were observed in mice immunized with a CRM197-Sp1 (2-1) conjugate 

one week after each boost immunization (days 63 and 101, respectively, Fig. 2.8C). 

Liposomes containing the alkyl-Sp1 (2-62) construct without KRN7000 induced a 

pronounced IgM response, as expected after administration of a T cell-independent, 

multivalent antigen presentation. IgM levels were lower when KRN7000 was included in 

the formulation. The lack of antibody responses after administration of a co-formulation 

of carbohydrate antigen and iNKT cell agonist is in stark contrast to literature reports, 

and it is concluded that KRN7000 is not suitable as an adjuvant to increase the immune 

response against trisaccharide 2-1.249, 250 

2.3 Conclusion and Outlook 

Despite the progress in studying the molecular determinants of ZPS-based 

immunomodulation, the precise mechanisms remain ill-defined. ZPSs have been 

depolymerized to study the effect of polysaccharide size on immunomodulation.230 

Thereby, it has been found that ZPS fragments as small as 5 kDa (six repeating units) 
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do not efficiently activate T cells. Due to their complexity, no synthetic ZPS fragments 

larger than two repeating units have been prepared, and these synthetic glycans did not 

result in T cell activation in vitro (Wu et al.133 and own observations). However, immune 

recognition of oligosaccharides may be dependent upon factors other than size. The 

abundance of unusual monosaccharides, glycosidic linkages and modifications called for 

the generation of defined, synthetic ZPS fragments to study the role of these structural 

attributes. 

Amine-containing linkers, commonly used to couple synthetic oligosaccharides to 

reporter molecules or carrier proteins, are not compatible with oligosaccharides derived 

from ZPSs Sp1 and PS A1. These molecules already contain free primary amines leading 

to a chemoselectivity problem during conjugation reactions. The synthetic approach to 

generating conjugation-ready homogeneous Sp1 (2-1) and PS A1 (2-2) oligosaccharides 

presented here relied on known orthogonal conjugation conditions that chemoselectively 

couple thiols and electrophiles in the presence of a free amine.254, 255, 307 It was 

demonstrated that benzyl thioethers can be introduced early in the synthesis of 

oligosaccharides 2-1 and 2-2 without considerably decreasing the variability of chemical 

transformations. This approach depended on the finding that thioglycosides can generally 

be activated by DMTST without affecting thioethers found elsewhere in the molecule. 

This strategy will influence the generation of other disulfide conjugation-ready 

oligosaccharides by solution and solid phase syntheses. The approach was illustrated by 

the total syntheses of Sp1 (2-1) and PS A1 (2-2) conjugation-ready oligosaccharides, 

along with a panel of synthetic substructures. 

Immune recognition of these glycans was studied after immobilization on 

functionalized glass slides. While recombinant MHCII molecules and C-type lectins did 

not bind to zwitterionic oligosaccharides on glycan microarray slides (data not shown), 

incubation with antisera against native ZPSs revealed a distinct role of the amino sugar 

D-AAT for antibody binding. The positive charge found on D-AAT under physiological 

conditions is essential for immunomodulation in vitro and in vivo, and abrogation of that 

charge by N-acylation leads to loss of function.118, 308 In line with these findings, the 

charge motifs in every ZPS repeating are important to maintain the three-dimensional 

structure of these polysaccharides.131, 309 The importance of D-AAT for antibody 
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recognition even in short oligosaccharides points towards a function during carbohydrate-

protein interaction. Immunization with a D-AAT-containing glycoconjugate induced a 

robust antibody response against this monosaccharide in vivo, and antiserum even 

recognized D-AAT when present on an oligosaccharide scaffold. Antibodies recognizing 

exposed monosaccharides have been reported, albeit rarely.146 Despite the high structural 

variety of antigen binding sites of antibodies,310 carbohydrate-reactive antibodies are 

thought to require oligosaccharides of a certain size.311 Concomitantly, precedence on the 

immunization with monosaccharide-based glycoconjugates is scarce.312 The finding that 

antibodies can be raised against D-AAT irrespective of the scaffold this monosaccharide 

is connected to may require a reconsideration of the minimal size of carbohydrate 

antigens. It is important to note that mAbs generated from splenocytes of mice 

immunized with the CRM197-D-AAT glycoconjugate did not bind that monosaccharide 

with sufficiently high affinity to allow for detailed binding characterization. 

Glycoconjugate vaccines against S. pneumoniae are highly successful in preventing 

IPD caused by the most common serotypes.224, 313 Clinical assessment of current 10- or 

13-valent vaccines has revealed shortcomings in the induction of functional immune 

responses against certain serotypes, including ST1, ST3 and ST5.80, 223 The capsules 

synthesized by these serotypes are unique with respect to either structure, stability or 

biosynthesis,15, 17 and ST1 and ST5 are particularly resistant towards antibody-

dependent complement deposition and opsonization.314 Due to the high invasiveness of 

these serotypes, it is imperative to develop novel vaccines with optimized efficiency.  

Synthetic oligosaccharide haptens have to be carefully designed with respect to the 

position of unusual functionalities that will be recognized as non-self by the mammalian 

immune system. Sp1 trisaccharide 2-1 harbors the immunogenic monosaccharide D-AAT 

at the non-reducing end. A hapten-specific immune response was induced in mice upon 

immunization with a CRM197-Sp1 trisaccharide (2-1) glycoconjugate even when Alum 

adjuvant was omitted, confirming the high immunogenicity of this trisaccharide. Cross-

reactivity to native Sp1 polysaccharide was found in a small subset of mice, and 

changing the mouse model from outbred NMRI to inbred C57BL/6 mice did not improve 

this outcome. Despite its immunogenicity, it is likely that Sp1 trisaccharide 2-1 is too 

short to efficiently display protective glycotopes of native Sp1 and is thus not sufficiently 
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recognized by appropriate B cells. Alternatively, furnishing D-AAT, presumably the most 

immunogenic monosaccharide within native Sp1, at the outermost part of a hapten may 

divert induced antibody responses away from protective glycotopes. It has been proposed 

that certain immunogenic glycotopes function as decoys to induce non-protective immune 

responses,116 and highly immunogenic D-AAT may play that role in Sp1 polysaccharide. 

In that respect, it is noteworthy that D-AAT is found at the reducing end of the 

biological repeating unit of Sp1,16 and hence unlikely to be displayed at the outermost 

end of each polysaccharide chain. However, it is unclear why disaccharide 2-55, 

containing D-AAT at the reducing end, is not recognized by antiserum against the native 

polysaccharide. 

Fully synthetic formulations carry great potential as novel carbohydrate-based 

vaccines. α-Galactosylceramides have been employed as adjuvants in various vaccination 

settings to stimulate either antibody-dependent or cellular immune responses.85, 249, 250 In 

contrast to recent reports,249, 250 immunization of liposomes containing an amphiphilic 

glycan derivative co-formulated with an iNKT cell agonist did not result in an IgG 

response against the synthetic hapten. Insufficient glycan presentation on the liposomes 

was excluded by the induction of a robust IgM response, especially in the absence of 

KRN7000. iNKT cell anergy is induced after stimulation with CD1d ligands.251-253 

Anergy was excluded here by carefully adjusting the immunization regime according to 

literature precedence.249 Thus, the lack of induced antibody responses in the KRN7000-2-

62 co-formulation cannot be explained by suboptimal iNKT cell help, and further efforts 

need to be invested into optimizing either antigen presentation or nature of the adjuvant. 

Taken together, a panel of oligosaccharide fragments derived from ZPSs Sp1 and 

PS A1 were prepared using a newly developed chemoselective thioglycoside activation 

protocol. Immunological evaluation of these glycans gave insight into the role of the rare 

monosaccharide D-AAT for immune recognition of ZPSs. A Sp1 repeating unit 

trisaccharide was evaluated as a vaccine hapten against S. pneumoniae ST1 in vivo using 

both carbohydrate-protein conjugate and liposomal antigen formulations. Further efforts 

will target the generation of alternative oligosaccharide haptens and the optimization of 

vaccine formulations. 
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2.5 Experimental Section 

2.5.1 Methods of Synthetic Chemistry  

General Experimental Details 

Commercial grade solvents and reagents were used unless stated otherwise. Anhydrous 

solvents were obtained from a Dry Solvent System (Waters, Milford, USA). Solvents for 

chromatography were of technical grade and distilled under reduced pressure prior to 

use. Sensitive reactions were carried out in oven-dried glassware and under an argon 

atmosphere. Molecular sieves were activated by heating under high vacuum prior to use. 

Analytical thin layer chromatography (t.l.c.) was performed on Kieselgel 60 F254 glass 

plates pre-coated with silica gel of 0.25 mm thickness (Macherey-Nagel, Düren, 

Germany). Spots were visualized with sugar stain (0.1% (v/v) 3-methoxyphenol, 2.5% 

(v/v) sulfuric acid in EtOH) or CAM stain (5% (w/v) ammonium molybdate, 1% (w/v) 

cerium(II) sulfate and 10% (v/v) sulfuric acid in water) dipping solutions. Flash 

chromatography was performed on Kieselgel 60 with 230-400 mesh (Sigma-Aldrich, St. 

Louis, USA). Automated flash chromatography was carried out with a Biotage flash 

purification system using high-purity Kieselgel 60 with 230-400 mesh (Sigma-Aldrich). 

Solvents were removed under reduced pressure using a rotary evaporator and high 

vacuum (<1 mbar). Freeze-drying of aqueous solutions was performed using an Alpha 2-

4 LD Lyophilizer (Christ, Osterode am Harz, Germany). 

1H, 13C and two-dimensional NMR spectra were measured with a Varian 400-MR 

spectrometer or a Varian 600 spectrometer (both Agilent, Santa Clara, USA) at 298 K. 

1D HH-NOESY measurements were performed at Freie Universität Berlin, NMR Core 

Facility, with a AMX500 spectrometer (Bruker, Billerica, USA), at 298 K. Chemical 

shifts (δ) are reported in parts per million (ppm) relative to the respective residual 

solvent peaks (CDCl3: δ 7.26 in 1H and 77.16 in 13C NMR; acetone-D6: δ 2.05 in 1H and 

29.84 in 13C NMR; CD3OD: δ 3.31 in 1H and 49.00 in 13C NMR; D2O: δ 4.79 in 1H 

NMR). Two-dimensional NMR experiments (HH-COSY, CH-HSQC, CH-HMBC) were 

performed to assign peaks in 1H and 13C spectra. The following abbreviations are used to 

indicate peak multiplicities: s singlet; d doublet; dd doublet of doublets; t triplet; dt 

doublet of triplets; m multiplet; br s broad singlet. Coupling constants (J) are reported 
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in Hertz (Hz). NMR spectra were evaluated using MestreNova 6.2 (MestreLab Research 

SSL, Santiago de Compostella, Spain). Optical rotation (OR) measurements were carried 

out with a UniPol L1000 polarimeter (Schmidt&Haensch, Berlin Germany) at λ = 589 

nm and a concentration (c) expressed in g/100 mL in the solvent noted in parentheses. 

High resolution mass spectrometry by electrospray ionization (ESI-HRMS) was 

performed at Freie Universität Berlin, Mass Spectrometry Core Facility, with a 6210 

ESI-TOF mass spectrometer (Agilent). Matrix-assisted laser desorption ionization-time of 

flight (MALDI-TOF) high resolution mass spectra were recorded on a Daltonics Autoflex 

Speed spectrometer (Bruker, Billerica, USA) using 2,5-dihydroxyacetophenone and 2,4,6-

trihydroxyacetophenone matrices for proteins and organic compounds, respectively. 

Infrared (IR) spectra were measured with a 100 FTIR spectrometer (Perkin Elmer, 

Waltham, USA). Schemes were prepared using ChemBioDraw Ultra 12.0.2 

(Cambridgesoft, Waltham, USA). 

When handling small quantities (<5 mg) of thioether-containing compounds for 

analytical measurements, a drop of dimethyl sulfide (0.1% v/v) was added to the 

solution to avoid sulfoxide formation under the influence of air. 

Monosaccharide residues are labeled in 1H NMR spectra according to the following 

scheme: 

 

Chemoselective Thioglycoside Activation using DMTST 

Typically, thioglycoside (0.20 mmol) and thioether-containing alcohol (0.3 mmol) were 

co-evaporated twice with anhydrous toluene and kept for 1 h under high vacuum. The 

mixture was dissolved in anhydrous CH2Cl2 or a mixture of anhydrous CH2Cl2 and Et2O 

(4 mL), and 2,4,6-tri-tert-butylpyridine (TTBPy) and activated molecular sieves (3 Å) 
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were added. The solution was stirred for 30 min at room temperature and cooled to the 

indicated temperature. The mixture was treated with DMTST264, 315 and stirred until 

t.l.c. indicated complete consumption of the thioglycoside. The reaction was then diluted 

with CH2Cl2 (10 mL) and quenched by addition of 10% aq. Na2S2O3 (10 mL) and sat. aq. 

NaHCO3 (10 mL). After separation, the aqueous fraction was extracted with CH2Cl2 

(3x10 mL). The organic fractions were pooled, dried over Na2SO4 and concentrated. The 

product was purified by flash chromatography using the indicated solvents. 

2,6-Di-O-benzyl-3,4-O-isopropylidene-α-D-galactopyranosyl-(1→1)-2-

(benzylthio)ethanol (2-5α) and 2,6-di-O-benzyl-3,4-O-isopropylidene-β-D-

galactopyranosyl-(1→1)-2-(benzylthio)ethanol (2-5β) 

 

Thioglycoside 2-3257 (98 mg, 0.221 mmol) was glycosylated with alcohol 2-4258 (56 mg, 

0.331 mmol) using DMTST (85 mg, 0.331 mmol) and TTBPy (109 mg; 0.441 mmol) in 

Et2O (3.3 mL) and CH2Cl2 (1.1 mL) from -10 °C to 0 °C for 1 h. Flash chromatography 

was performed (EtOAc/hexanes 0:1 to 1:3) to give thioethers 2-5α (63 mg, 0.114 mmol, 

52%) and 2-5β (29 mg, 0.052 mmol, 24%). Analytical data for 2-5α: Clear oil; Rf 

(EtOAc/hexanes 1:2) = 0.77; [α]D
20 = +75.4° (c = 2.0, CHCl3); 

1H NMR (600 MHz, 

CDCl3,) δ 7.39 – 7.19 (m, 15H, arom.), 4.80 (m, 2H, H-1, A of AB, PhCH2), 4.70 (d, J = 

12.5 Hz, 1H, B of AB, PhCH2), 4.65 (d, J = 12.1 Hz, 1H, A of AB, PhCH2), 4.55 (d, J = 

12.1 Hz, 1H, B of AB, PhCH2), 4.35 (dd, J = 7.8, 5.5 Hz, 1H, H-3), 4.29 (dt, J = 5.1, 2.5 

Hz, 1H, H-5), 4.21 (dd, J = 5.5, 2.5 Hz, 1H, H-4), 3.81 (dt, J = 10.2, 6.9 Hz, 1H, A of 

AB, O-CH2-CH2), 3.78 – 3.68 (m, 4H, PhCH2, H-6), 3.57 (dt, J = 10.2, 6.9 Hz, 1H, B of 

AB, O-CH2-CH2), 3.53 (dd, J = 7.9, 3.5 Hz, 1H, H-2), 2.71 – 2.58 (m, 2H, CH2-CH2-S), 

1.40 (s, 3H, iPr-CH3), 1.34 (s, 3H, iPr-CH3); 
13C NMR (150 MHz, CDCl3) δ 138.4, 138.3, 

129.1, 128.6, 128.42, 128.41, 128.0, 127.8, 127.67, 127.66, 127.1, 109.2, 97.3, 76.6, 76.0, 

73.8, 73.5, 72.4, 69.6, 67.9, 66.9, 36.5, 30.3, 28.2, 26.5; IR (thin film) 3063, 3029, 2985, 

2916, 2869, 2340, 1953, 1812, 1576, 1495, 1453, 1380, 1370, 1313, 1243, 1218, 1165, 1099, 

1074, 1044, 1028, 906, 873, 845, 791, 737, 698 cm-1; HRMS (ESI) calcd. for C32H38O6S 

(M+Na)+ 573.2287 found 573.2288 m/z. Analytical data for 2-5β: Clear oil; Rf 



2 CONJUGATION-READY ZWITTEROINIC OLIGOSACCHARIDES 

78 
 

(EtOAc/hexanes 1:2) = 0.63. [α]D
20 = +16.4° (c = 1.0, CHCl3); 

1H NMR (600 MHz, 

CDCl3) δ 7.44 – 7.20 (m, 15H, arom.), 4.84 (d, J = 11.7 Hz, A of AB, 1H, PhCH2), 4.79 

(d, J = 11.7 Hz, B of AB, 1H, PhCH2), 4.64 (d, J = 11.9 Hz, A of AB, 1H, PhCH2), 4.57 

(d, J = 11.9 Hz, B of AB, 1H, PhCH2), 4.30 (d, J = 8.0 Hz, 1H, H-1), 4.15 (m, 2H, H-3, 

H-4), 4.01 (m, 1H, A of AB, O-CH2-CH2), 3.90 (ddd, J = 5.3, 1.5, 6.9 Hz, 1H, H-5), 3.83 

– 3.72 (m, 4H, H-6, PhCH2), 3.66 (m, 1H, B of AB, O-CH2-CH2), 3.42 – 3.36 (m, 1H, H-

2), 2.79 – 2.65 (m, 2H, CH2-CH2-S), 1.37 (s, 3H, iPrCH3), 1.34 (s, 3H, iPr-CH3); 
13C 

NMR (150 MHz, CDCl3) δ 138.5, 138.4, 138.3, 129.0, 128.6, 128.5, 128.3, 128.3, 127.82, 

127.78, 127.7, 127.2, 110.12, 110.05, 103.1, 79.6, 79.1, 73.9, 73.8, 73.7, 72.4, 69.6, 69.1, 

36.6, 30.9, 27.9, 26.5. IR (thin film) 3063, 3030, 2986, 2924, 2870, 1602, 1496, 1454, 1397, 

1242, 1219, 1161, 1097, 1079, 1045, 872, 801, 738, 698 cm-1; HRMS (ESI) calcd. for 

C32H38O6S (M+Na)+ 573.2287 found 573.2286 m/z. 

Control Reaction: Activation of Thioglycoside 2-3 with NIS/TfOH 

 

Thioglycoside 2-3 (65 mg, 0.146 mmol) and monobenzyl ethylene glycol (33 mg, 0.219 

mmol) were co-evaporated with anhydrous toluene (2x10 mL) and kept for 1 h under 

high vacuum. The mixture was dissolved in anhydrous Et2O (2.1 mL) and anhydrous 

CH2Cl2 (0.7 mL) and activated molecular sieves (3 Å-AW) were added. The solution was 

stirred for 30 min at room temperature and cooled to -40 °C. The mixture was treated 

with NIS (49 mg, 0.219 mmol) and triflic acid (1.7 µL, 0.019 mmol) and slowly warmed 

to -10 °C over a period of 2 h, when t.l.c. indicated complete conversion of thioglycoside 

2-3. The reaction was diluted with CH2Cl2 (10 mL), quenched by adddition of Et3N (0.2 

mL), filtered and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:3) to give glycosides SI 2-1 as an inseparable 1.9:1 (α:β) mixture of 

both isomers (48 mg, 0.090 mmol, 61%) as a clear oil. Rf (EtOAc/hexanes 1:3) = 0.47; 

[α]D
20 = +51.8° (c = 1.0, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.42 – 7.21 (m, 15H), 

4.89 (dd, J = 9.5, 7.7 Hz, 1.00H), 4.84 – 4.76 (m, 1H), 4.75 – 4.68 (m, 0.65H), 4.64 (d, J 

= 7.0 Hz, 0.35H), 4.61 (d, J = 7.2 Hz, 0.65H), 4.58 – 4.50 (m, 2H), 4.42 – 4.34 (m, 1H), 

4.32 (m, 0.65H), 4.18 (dd, J = 5.6, 2.5 Hz, 0.65H), 4.15 (dd, J = 3.4, 1.2 Hz, 0.65H), 4.12 

– 4.04 (m, 0.35H), 3.94 – 3.89 (m, 0.35H), 3.89 – 3.84 (m, 0.35H), 3.81 – 3.77 (m, 0.65H), 
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3.75 – 3.65 (m, 3H), 3.53 (dd, J = 7.8, 3.5 Hz, 0.65H), 3.45 – 3.39 (m, 0.35H), 1.39 (s, 

1.95H), 1.37 (s, 1.05H), 1.34 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 138.6, 138.49, 138.48, 

138.47, 138.43, 138.37, 133.1, 129.83, 129.80, 128.52, 128.47, 128.44, 128.43, 128.37, 

128.34, 128.28, 128.0, 127.9, 127.79, 127.78, 127.76, 127.71, 127.69, 127.67, 127.65, 127.64, 

127.57, 110.14, 110.13, 110.0, 109.2, 103.3, 97.4, 79.7, 79.1, 76.6, 76.0, 73.96, 73.94, 73.73, 

73.70, 73.5, 73.4, 73.2, 72.4, 72.3, 69.7, 69.5, 69.4, 69.0, 67.5, 66.7, 28.3, 28.0, 26.5, 26.5; 

IR (thin film) 3031, 2986, 2931, 2968, 1721, 1497, 1454, 1380, 1370, 1243, 1219, 1166, 

1100, 1074, 1044, 873, 737, 698 cm-1; HRMS (ESI) calcd. for C32H38O7 (M+Na)+ 557.2515 

found 557.2489 m/z. 

2,6-Di-O-benzyl-3,4-O-isopropylidene-α-D-galactopyranosyl-(1→1)-6-

(benzylthio)hexanol (2-12α) and 2,6-di-O-benzyl-3,4-O-isopropylidene-β-D-

galactopyranosyl-(1→1)-6-(benzylthio)hexanol (2-12β) 

 

Thioglycoside 2-3 (95 mg, 0.214 mmol) was glycosylated with alcohol 2-11267 (72 mg, 

0.321 mmol) using DMTST (83 mg, 0.321 mmol) and TTBPy (79 mg; 0.321 mmol) in 

CH2Cl2 (4.3 mL) at 0 °C for 1.5 h. Flash chromatography was performed 

(EtOAc/hexanes 0:1 to 1:4) to give thioethers 2-12α (35 mg, 0.058 mmol, 27%, clear oil) 

and 2-12β (56 mg, 0.092 mmol, 43%, clear oil). Analytical data for 2-12α: Rf 

(EtOAc/hexanes 1:4) = 0.60; [α]D
20 = +54.6° (c = 0.2, CH2Cl2); 

1H NMR (400 MHz, 

CDCl3) δ 7.39 – 7.20 (m, 15H, arom.), 4.78 (m, 2H, H-1, A of AB, PhCH2), 4.69 (d, J = 

12.6 Hz, 1H, B of AB, PhCH2), 4.64 (d, J = 12.1 Hz, 1H, A of AB, PhCH2), 4.53 (d, J = 

12.1 Hz, 1H, B of AB, PhCH2), 4.33 (dd, J = 7.8, 5.4 Hz, 1H, H-3), 4.23 – 4.11 (m, 2H, 

H-4, H-5), 3.77 – 3.61 (m, 5H, H-6, PhCH2, A of AB, O-CH2-CH2), 3.51 (dd, J = 7.8, 3.5 

Hz, 1H, H-2), 3.38 (dt, J = 9.8, 6.6 Hz, 1H, B of AB, O-CH2-CH2), 2.43 – 2.36 (m, 2H, S-

CH2-CH2), 1.65 – 1.50 (m, 4H, aliph.), 1.44 – 1.28 (m, 10H, aliph, iPr-CH3); 
13C NMR 

(100 MHz, CDCl3) δ 138.8, 138.6, 138.5, 129.0, 128.6, 128.48, 128.45, 128.0, 127.8, 127.71, 

127.67, 127.0, 109.2, 97.2, 76.1, 74.0, 73.6, 72.4, 69.8, 68.4, 66.8, 36.5, 31.5, 29.4, 29.3, 

28.8, 28.3, 26.6, 25.9; IR (thin film) 3029, 2929, 1496, 1454, 1380, 1243, 1219, 1167, 1102, 

1073, 1044, 874, 735, 698 cm-1; HRMS (ESI) calcd. for C36H46O6S (M+Na)+ 629.2913 
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found 629.2889 m/z. Analytical data for 2-12β: Rf (EtOAc/hexanes 1:4) = 0.27; [α]D
20 = 

+12.6° (c = 0.33, CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 7.41 – 7.18 (m, 15H, arom.), 

4.84 (d, J = 11.7 Hz, 1H, A of AB, PhCH2), 4.78 (d, J = 11.7 Hz, 1H, B of AB, PhCH2), 

4.64 (d, J = 11.9 Hz, 1H, A of AB, PhCH2), 4.56 (d, J = 11.9 Hz, 1H, B of AB, PhCH2), 

4.29 (d, J = 8.1 Hz, 1H, H-1), 4.16 – 4.11 (m, 2H, H-3, H-4 or H-5), 3.97 – 3.87 (m, 2H, 

H-4 or H-5, A of AB, H-6), 3.82 – 3.76 (m, 2H, B of AB, H-6, A of AB, O-CH2-CH2), 

3.69 (s, 2H, PhCH2), 3.55 – 3.45 (m, 1H, B of AB, O-CH2-CH2), 3.43 – 3.34 (m, 1H, H-2), 

2.40 (t, J = 7.2 Hz, 2H, S-CH2-CH2), 1.69 – 1.49 (m, 4H, aliph.), 1.41 – 1.31 (m, 10H, 

aliph., iPr-CH3); 
13C NMR (100 MHz, CDCl3) δ 138.8, 138.5, 138.4, 128.9, 128.54, 128.49, 

128.3, 128.2, 127.8, 127.7, 127.6, 127.0, 110.0, 103.1, 79.8, 79.2, 74.0, 73.73, 73.71, 72.4, 

69.9, 69.7, 36.5, 31.5, 29.7, 29.3, 28.8, 27.9, 26.5, 25.9; IR (thin film) 2934, 1454, 1370, 

1219, 1076, 1045, 872, 737, 697 cm-1; HRMS (ESI) calcd. for C36H46O6S (M+Na)+ 

629.2913 found 629.2990 m/z. 

2,3-Di-O-benzyl-4,6-O-benzylidene-α-D-galactopyranosyl-(1→1)-6-(benzylthio)hex-

anol (2-13α) and 2,3-di-O-benzyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→1)-6-

(benzylthio)hexanol (2-13β) 

 

Thioglycoside 2-6268 (110 mg, 0.223 mmol) was glycosylated with alcohol 2-11 (75 mg, 

0.335 mmol) using DMTST (87 mg, 0.335 mmol) and TTBPy (110 mg; 0.447 mmol) in 

CH2Cl2 (4.5 mL) from -10 °C to 0 °C for 1.5 h. Flash chromatography was performed 

twice (EtOAc/hexanes 1:6, then EtOAc/toluene 1:10) to give thioethers 2-13α (52 mg, 

0.080 mmol, 35%, white foam) and 2-13β (58 mg, 0.089 mmol, 40%, clear oil). 

Analytical data for 2-13α: Rf (EtOAc/hexanes 1:4) = 0.5; [α]D
20 = +84.3° (c = 0.5, 

CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 7.55 – 7.50 (m, 2H, arom.), 7.44 – 7.22 (m, 18H, 

arom.), 5.47 (s, 1H, PhCH), 4.89 (d, J = 3.5 Hz, 1H, H-1), 4.88 – 4.78 (m, 2H, PhCH2), 

4.74 (d, J = 12.2 Hz, 1H, B of AB, PhCH2), 4.66 (d, J = 12.0 Hz, 1H, B of AB, PhCH2), 

4.22 – 4.17 (m, 2H, H-4, A of AB, H-6), 4.06 (dd, J = 10.1, 3.5 Hz, 1H, H-2), 4.03 – 3.96 

(m, 2H, H-3, B of AB, H-6), 3.70 (s, 2H, PhCH2), 3.65 – 3.57 (m, 2H, H-5, A of AB, O-

CH2-CH2), 3.49 – 3.40 (m, 1H, B of AB, O-CH2-CH2), 2.41 (t, J = 5.6 Hz, 2H, S-CH2-
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CH2), 1.62 – 1.51 (m, 4H, aliph.), 1.40 – 1.26 (m, 4H, aliph.); 13C NMR (100 MHz, 

CDCl3) δ 139.1, 139.0, 138.8, 138.1, 129.0, 128.6, 128.43, 128.42, 128.2, 128.0, 127.8, 

127.7, 127.6, 127.0, 126.5, 101.2, 98.3, 76.3, 75.9, 75.0, 73.7, 72.3, 69.7, 68.5, 62.8, 36.54, 

31.53, 29.5, 29.3, 28. 8, 26.0; IR (thin film) 3030, 2922, 2858, 1496, 1454, 1400, 1364, 

1340, 1247, 1100, 1049, 1028, 796, 739, 697 cm-1; HRMS (ESI) calcd. for C40H46O6S 

(M+Na)+ 677.2912 found 677.2905 m/z. Analytical data for 2-13β: Rf (EtOAc/hexanes 

1:4) = 0.29; [α]D
20 = +41.1° (c = 0.33, CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 7.61 – 7.52 

(m, 2H, arom.), 7.42 – 7.21 (m, 18H, arom.), 5.50 (s, 1H, PhCH), 4.92 (d, J = 10.9 Hz, 

1H, A of AB, PhCH2), 4.81 – 4.74 (m, 3H, PhCH2), 4.37 (d, J = 7.8 Hz, 1H, H-1), 4.30 

(dd, J = 12.3, 1.5 Hz, 1H, A of AB, H-6), 4.11 (dd, J = 3.7, 0.8 Hz, 1H, H-4), 4.01 (dd, J 

= 12.3, 1.8 Hz, 1H, B of AB, H-6), 3.96 (dt, J = 9.4, 6.4 Hz, 1H, A of AB, O-CH2-CH2), 

3.83 (dd, J = 9.7, 7.7 Hz, 1H, H-2), 3.68 (s, 2H, PhCH2), 3.55 (dd, J = 9.7, 3.7 Hz, 1H, 

H-3), 3.49 (dt, J = 9.4, 6.8 Hz, 1H, B of AB, O-CH2-CH2), 3.31 (d, J = 1.0 Hz, 1H, H-5), 

2.43 – 2.35 (t, J = 5.2 Hz, 2H, S-CH2-CH2), 1.71 – 1.59 (m, 2H, aliph.), 1.58 – 1.50 (m, 

2H, aliph.), 1.44 – 1.30 (m, 4H, aliph.); 13C NMR (100 MHz, CDCl3) δ 139.1, 138.8, 

138.7, 138.1, 129.02, 128.97, 128.6, 128.5, 128.41, 128.25, 128.1, 127.9, 127.8, 127.7, 127.0, 

126.7, 103.9, 101.5, 79.5, 78.6, 75.4, 74.23, 72.17, 70.0, 69.5, 66.6, 36.5, 31.5, 29.8, 29.3, 

28.9, 25.9; IR (thin film) 3031, 2925, 2858, 1496, 1454, 1365, 1178, 1101, 1057, 1028, 734, 

698 cm-1; HRMS (ESI) calcd. for C40H46O6S (M+Na)+ 677.2912 found 677.2905 m/z. 

2,3-Di-O-benzoyl-4,6-O-benzylidene-β-D-galactopyranosyl-(1→1)-6-

(benzylthio)hexanol (2-14) 

 

Thioglycoside 2-7269 (100 mg, 0.192 mmol) was glycosylated with alcohol 2-11 (65 mg, 

0.288 mmol) using DMTST (99 mg, 0.384 mmol) and TTBPy (57 mg; 0.231 mmol) in 

CH2Cl2 (3.2 mL) at room temperature for 3 h. Flash chromatography was performed 

(EtOAc/CH2Cl2/hexanes 1:1:3 to 1:1:2) to give thioether 2-14 (92 mg, 0.134 mmol, 70%) 

as a clear oil, which solidified upon standing. Rf (EtOAc/CH2Cl2/hexanes 1:1:2) = 0.66; 

[α]D
20 = +100.2° (c = 1.0, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 8.15 – 7.89 (m, 4H, 

arom.), 7.58 – 7.43 (m, 4H, arom.), 7.43 – 7.19 (m, 12H, arom.), 5.87 (dd, J = 10.4, 8.0 
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Hz, 1H, H-2), 5.55 (s, 1H, PhCH), 5.38 (dd, J = 10.4, 3.6 Hz, 1H, H-3), 4.73 (d, J = 8.0 

Hz, 1H, H-1), 4.62 – 4.56 (m, 1H, H-4), 4.41 (dd, J = 12.4, 1.4 Hz, 1H, A of AB, H-6), 

4.14 (dd, J = 12.4, 1.7 Hz, 1H, B of AB, H-6), 3.96 (dt, J = 9.6, 6.1 Hz, 1H, A of AB, O-

CH2-CH2), 3.69 – 3.62 (m, 3H, H-5, S-CH2-Ph), 3.51 (dt, J = 9.6, 6.7 Hz, 1H, B of AB, 

O-CH2-CH2), 2.26 (t, J = 7.4 Hz, 2H, CH2-SBn), 1.59 – 1.41 (m, 2H, aliph.), 1.31 (m, 

2H, aliph.), 1.17 (m, 4H, aliph.); 13C NMR (100 MHz, CDCl3) δ 166.4, 165.3, 138.8, 

137.7, 133.5, 133.1, 130.1, 129.9, 129.8, 129.3, 129.0, 128.9, 128.5, 128.5, 128.4, 128.2, 

127.0, 126.4, 101.4, 101.0, 73.8, 72.9, 69.6, 69.3, 69.1, 66.6, 36.4, 31.4, 29.4, 29.1, 28.6, 

25.6; IR (thin film) 2933, 2857, 1723, 1602, 1451, 1368, 1315, 1275, 1179, 1110, 1097, 

1000, 737, 709 cm-1; HRMS (ESI) calcd. for C40H42O8S (M+Na)+ 705.2498 found 

705.2476 m/z. 

Methyl (2,3-di-O-benzyl-4,6-O-benzylidene-α-D-galactopyranosid)uronate-(1→1)-6-

(benzylthio)hexanol (15α) and methyl (2,3-di-O-benzyl-4,6-O-benzylidene-β-D-

galactopyranosid)uronate-(1→1)-6-(benzylthio)hexanol (2-15β) 

 

Thioglycoside 2-8 (87 mg, 0.164 mmol; see below) was glycosylated with alcohol 2-11 

(85 mg, 0.379 mmol) using DMTST (63.5 mg, 0.246 mmol) and TTBPy (97 mg; 0.392 

mmol) in Et2O (2.4 mL) and CH2Cl2 (0.8 mL) at room temperature for 8 h. Flash 

chromatography was performed (EtOAc/CH2Cl2/hexanes 0:0:1 to 2:1:1) to give the 

corresponding glycosides as an inseparable 1.4:1 (α:β) mixture of both isomers as a clear 

oil (60 mg). The compound mixture in CH2Cl2 (2.2 mL) was then treated with a mixture 

of glacial acetic acid (0.14 mL, 2.393 mmol) and pyridine (0.2 mL, 2.411 mmol), and 

subsequently with hydrazine hydrate (5.9 µL, 0.121 mmol) at room temperature. The 

reaction was stirred for 2 h at that temperature, quenched by addition of acetone (0.2 

mL) and concentrated. The residue was dissolved in CH2Cl2 (20 mL) and washed with 1 

M aq. HCl (10 mL) and sat. aq. NaHCO3 (10 mL). The combined aqueous fractions were 

extracted with CH2Cl2 (2x10 mL), the combined organic fractions were dried over 

Na2SO4 and concentrated. Flash chromatography was performed (EtOAc/hexanes 1:2) to 

give alcohols 2-15α (29 mg, 0.049 mmol, 30% over two steps, clear oil) and 2-15β (22 
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mg, 0.037 mmol, 22% over two steps, clear oil). Analytical data for 2-15α: Rf 

(EtOAc/hexanes 1:1) = 0.57; [α]D
20 = +47.1° (c = 1.0, CHCl3); 

1H NMR (400 MHz, 

CDCl3) δ 7.42 – 7.18 (m, 15H, arom.), 4.87 (d, J = 3.5 Hz, 1H, H-1), 4.83 – 4.77 (m, 2H, 

PhCH2), 4.72 (d, J = 11.4 Hz, 1H, B of AB, PhCH2), 4.62 (d, J = 12.1 Hz, 1H, B of AB, 

PhCH2), 4.39 (m, 2H, H-4, H-5), 3.95 (dd, J = 9.8, 3.0 Hz, 1H, H-3), 3.86 (dd, J = 9.8, 

3.5 Hz, 1H, H-2), 3.81 (s, 3H, COOCH3), 3.70 (s, 2H, PhCH2), 3.63 (dt, J = 9.7, 6.9 Hz, 

1H, A of AB, O-CH2-CH2), 3.42 (dt, J = 9.7, 6.9 Hz, 1H, B of AB, O-CH2-CH2), 2.52 (br 

s, 1H, OH), 2.40 (t, J = 7.3 Hz, 2H, CH2-CH2-S), 1.57 (m 4H, aliph.), 1.45 – 1.22 (m, 4H, 

aliph.); 13C NMR (100 MHz, CDCl3) δ 169.4, 138.7, 138.4, 138.0, 128.9, 128.7, 128.58, 

128.56, 128.18, 128.11, 128.07, 128.0, 127.9, 127.0, 97.7, 77.0, 75.3, 73.6, 73.0, 69.9, 68.9, 

52.7, 36.5, 31.4, 29.3, 29.2, 28.7, 25.8; IR (thin film) 2929, 1764, 1454, 1208, 1101, 1028, 

738, 699 cm-1; HRMS (ESI) calcd. for C34H42O7S (M+Na)+ 617.2548 found 617.2542 m/z. 

Analytical data for 2-15β: Rf (EtOAc/hexanes 1:1) = 0.63; [α]D
20 = -7.1° (c = 1.0, 

CHCl3); 
1H NMR (400 MHz, CDCl3) δ 7.38 – 7.19 (m, 15H, arom.), 4.90 (d, J = 11.1 Hz, 

1H, A of AB, PhCH2), 4.77 – 4.67 (m, 3H, B of AB, PhCH2), 4.34 (d, J = 7.7 Hz, 1H, H-

1), 4.31 (dd, J = 3.5, 1.4 Hz, 1H, H-4), 4.04 (d, J = 1.4 Hz, 1H, H-5), 4.00 (dt, J = 9.4, 

6.4 Hz, 1H, A of AB, O-CH2-CH2), 3.82 (s, 3H, COOCH3), 3.69 – 3.63 (m, 3H, PhCH2, 

H-2), 3.55 (dd, J = 9.3, 3.4 Hz, 1H, H-3), 3.49 (dt, J = 9.4, 6.8 Hz, 1H, B of AB, O-CH2-

CH2), 2.47 – 2.34 (t, J = 7.6 Hz, 2H, CH2-SBn), 1.62 (d, J = 6.2 Hz, 2H, aliph.), 1.52 

(dd, J = 14.1, 6.8 Hz, 2H, aliph.), 1.45 – 1.28 (m, 4H, aliph.); 13C NMR (100 MHz, 

CDCl3) δ 168.7, 138.8, 138.6, 137.7, 129.0, 128.7, 128.6, 128.5, 128.20, 128.17, 128.0, 

127.8, 127.0, 103.5, 79.8, 78.4, 75.3, 73.8, 72.7, 70.2, 68.1, 52.7, 36.5, 31.5, 29.7, 29.3, 28.8, 

25.9; IR (thin film) 2930, 1765, 1454, 1211, 1099, 1040, 738, 698 cm-1; HRMS (ESI) calcd. 

for C34H42O7S (M+Na)+ found 617.2548 found 617.2547 m/z. 

2-O-Benzoyl-4,6-[1-(R)-(methoxycarbonyl)-ethylidene]-β-D-galactopyranosyl-(1→1)-

6-(benzylthio)hexanol (2-16) 

 

Thioglycoside 2-9132 (200 mg, 0.287 mmol) was glycosylated with alcohol 2-11 (129 mg, 

0.574 mmol) using DMTST (148 mg, 0.574 mmol) and TTBPy (74.7 mg, 0.301 mmol) in 
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CH2Cl2 (5.7 mL) at room temperature for 20 h. Flash chromatography was performed 

(EtOAc/hexanes 1:3 to 1:1) to give the crude glycoside, which contained excess alcohol 

2-11. The material was then dissolved in CH2Cl2 (5.2 mL) and treated with Et3N (0.3 

mL, 2.15 mmol) at room temperature. The mixture was stirred for 1.5 h at that 

temperature, diluted with toluene (10 mL) and concentrated. The crude product was 

purified by flash chromatography (EtOAc/hexanes 1:2 to 1:1) to give alcohol 2-16 (96 

mg, 0.167 mmol, 58% over two steps) as a clear oil. Rf (EtOAc/hexanes 1:2) = 0.18; 

[α]D
20 = -8.7° (c = 1.0, CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 8.12 – 7.89 (m, 2H, 

arom.), 7.73 – 7.12 (m, 8H, arom.), 5.32 (dd, J = 10.0, 8.0 Hz, 1H, H-2), 4.50 (d, J = 8.0 

Hz, 1H, H-1), 4.18 (dd, J = 3.8, 0.9 Hz, 1H, H-4), 4.08 (ddd, J = 32.6, 12.8, 1.7 Hz, 2H, 

H-6), 3.90 (dt, J = 9.7, 6.1 Hz, 1H, A of AB, O-CH2-CH2), 3.84 – 3.78 (m, 4H, COOCH3, 

H-3), 3.62 (s, 2H, PhCH2), 3.42 (m, 2H, B of AB, O-CH2-CH2, H-5) 2.43 (br s, 1H, OH), 

2.23 (t, J = 7.3 Hz, 2H, CH2-SBn), 1.63 (s, 3H, CH3), 1.53 – 1.38 (m, 2H, aliph.), 1.38 – 

1.07 (m, 6H, aliph.); 13C NMR (100 MHz, CDCl3) δ 170.3, 166.2, 138.7, 133.2, 130.1, 

129.9, 128.9, 128.5, 128.44, 128.42, 126.9, 101.0, 98.9, 72.7, 71.6, 71.4, 69.9, 65.8, 65.2, 

52.9, 36.3, 31.3, 29.3, 29.0, 28.6, 25.9, 25.6; IR (thin film) 2935, 1726, 1452, 1373, 1270, 

1206, 1178, 1121, 1087, 983, 711 cm-1; HRMS (ESI) calcd. for C30H38O9S (M+Na)+ 

597.2134 found 597.2119 m/z. 

4-O-(Benzyloxycarbonyl)amino-3-O-levulinoyl-4,6-dideoxy-D-galactal (2-21) 

 

To a stirred solution of alcohol 2-20179 (1.64 g, 6.21 mmol) in CH2Cl2 (40 mL) were 

added at 0 °C pyridine (0.5 mL, 6.23 mmol), levulinic acid (0.96 mL, 9.32 mmol), DMAP 

(0.15 g, 1.24 mmol) and EDC (1.2 mL, 6.83 mmol). The mixture was warmed to room 

temperature and stirred at that temperature. After 3 h, 0.5 equiv. levulinic acid and 0.5 

equiv. EDC were added to drive the reaction to completion. After 5 h, the mixture was 

diluted with 100 mL CH2Cl2 and washed with water (50 mL), sat. aq. NH4Cl (50 mL), 

sat. aq. NaHCO3 (50 mL) and brine (50 mL). The organic fraction was dried over 

Na2SO4 and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:1) to give ester 2-21 (2.07 g, 5.73 mmol, 92%) as a clear oil. Rf 

(EtOAc/hexanes 3:7) = 0.40; [α]D
20 = +1.2° (c = 1.0, CHCl3); 

1H NMR (400 MHz, 
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CDCl3) δ 7.44 – 7.28 (m, 5H, arom.), 6.41 (dd, J = 6.3, 1.8 Hz, 1H, H-1), 5.50 (d, J = 

5.5 Hz, 1H, H-3), 5.17 (d, J = 12.2 Hz, 1H, A of AB, PhCH2), 5.07 (d, J = 12.3 Hz, 1H, 

B of AB, PhCH2), 4.99 (d, J = 10.0 Hz, 1H, NH), 4.65 (dt, J = 6.3, 1.7 Hz, 1H, H-2), 

4.20 (m, 2H, H-4, H-5), 2.87 – 2.69 (m, 1H, Lev-CH2), 2.68 – 2.47 (m, 2H, Lev-CH2), 2.35 

(dt, J = 17.1, 6.2 Hz, 1H, Lev-CH2), 2.15 (s, 3H, Lev-CH3), 1.29 (d, J = 6.5 Hz, 3H, H-

6); 13C NMR (100 MHz, CDCl3) δ 206.7, 172.3, 157.0, 146.3, 136.6, 128.6, 128.3, 128.1, 

99.6, 76.8, 72.9, 67.0, 66.5, 48.5, 38.0, 29.9, 28.0, 16.7; HRMS (ESI) calcd. for C19H23NO6 

(M+Na)+ 384.1423 found 384.1415 m/z. 

Dibutyl [2-azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-αβ-2,4,6-trideoxy-D-

galactopyranosyl] phosphate (2-17) 

 

To a stirred solution of galactal 2-21 (3.17 g, 8.77 mmol) in anhydrous MeCN (44 mL) 

were added at -25°C ceric ammonium nitrate (14.42 g, 26.3 mmol) and sodium azide 

(0.86 g, 13.15 mmol). The reaction was stirred vigorously between -25 °C and -20 °C for 

6 h. The mixture was diluted with cold Et2O (50 mL), washed with cold water (3x30 

mL), dried over Na2SO4 and concentrated. The residue was filtered through a plug of 

silica gel (EtOAc/hexanes/Et3N 1:1:0.01) to give crude glycosyl nitrate 2-22 as a 4:1 

galacto:talo mixture (2.0 g) as a slightly yellow oil. 

To crude glycosyl nitrate 2-22 (2.0 g) was added at room temperature a solution 

of cesium dibutyl phosphate (2.21 g, 6.45 mmol) in anhydrous DMF (28 mL). The 

mixture was stirred at that temperature for 4.5 h, diluted with EtOAc (100 mL) and 

poured into water (100 mL). The organic phase was washed with water (5x50 mL) and 

the combined aqueous fractions were extracted with EtOAc (50 mL). The combined 

organic fractions were dried over Na2SO4 and concentrated. The residue was purified by 

flash chromatography (EtOAc/hexanes 45:55 to 50:50) to give glycosyl phosphate 2-17 

(1.84 g, 3.00 mmol, 37%, 1:10 α:β) as a clear oil. Rf (EtOAc/hexanes 4:1) = 0.50 (β-

anomer) & 0.72 (α-anomer). Analytical data for the β-anomer: [α]D
20 = +10.8° (c = 1.0, 

CHCl3); 
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.28 (m, 5H, arom.), 5.15 (d, J = 12.1 Hz, 

2H, NH, A of AB, PhCH2), 5.10 – 5.03 (d, J = 12.3 Hz, 1H, B of AB, PhCH2), 4.98 (t, J 
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= 8.6 Hz, 1H, H-1), 4.74 (dd, J = 10.7, 3.9 Hz, 1H, H-3), 4.22 – 4.00 (m, 5H, H-4, PO-

CH2-CH2), 3.91 – 3.79 (m, 1H, H-5), 3.61 (dd, J = 10.7, 8.2 Hz, 1H, H-2), 2.87 – 2.72 (m, 

1H, Lev-CH2), 2.72 – 2.51 (m, 2H, Lev-CH2), 2.41 (ddd, J = 13.1, 9.4, 5.5 Hz, 1H, Lev-

CH2), 2.21 – 2.11 (s, 3H, Lev-CH3), 1.79 – 1.56 (m, 4H, aliph.), 1.53 – 1.31 (m, 4H, 

aliph.), 1.30 – 1.19 (s, 3H, H-6), 0.92 (t, J = 7.4 Hz, 6H, aliph.); 13C NMR (100 MHz, 

CDCl3) δ 206.4, 172.0, 156.6, 136.4, 128.7, 128.4, 128.1, 97.83, 97.77, 73.3, 70.6, 68.3, 

68.22, 68.16, 68.1, 67.3, 61.5, 61.4, 51.8, 38.0, 32.3, 32.24, 32.21, 32.17, 29.89, 27.91, 18.71, 

18.70, 16.5, 13.67, 13.65; IR (thin film) 3658, 2981, 2115, 1720, 1462, 1382, 1252, 1153, 

1073, 1030, 957, 820, 755 cm-1; HRMS (ESI) calcd. for C27H41N4O10P (M+Na)+ 635.2458 

found 635.2422 m/z. 

Ethyl 2-O-benzyl-3,4-isopropylidene-1-thio-β-D-galactopyranoside (2-25) 

 

To a stirred solution of alcohol 2-24281 (45.7 g, 121 mmol) in DMF (150 mL) and THF 

(75 mL) were added at 0 °C first portionwise sodium hydride (60% (w/w), 7.24 g, 181 

mmol) and then benzyl bromide (17.2 mL, 145 mmol). The mixture was stirred for 1 h at 

0 °C, slowly warmed to room temperature and stirred for 16 h at that temperature. The 

reaction was quenched at 0 °C with sat. aq. NH4Cl (20 mL), diluted with water (200 mL) 

and EtOAc (150 mL) and stirred for 15 min at 0 °C. After separation, the organic phase 

was washed with water (5x100 mL) and the combined aqueous fractions were extracted 

with EtOAc (2x100 mL). The combined organic extracts were dried over Na2SO4 and 

concentrated to give the crude benzyl ether (61 g) as a yellow oil. 

To a stirred solution of the crude benzyl ether (61 g) in THF (370 mL) was added 

at 0 °C tetrabutylammonium fluoride (1 M in THF, 166 mL, 166 mmol). The mixture 

was warmed to room temperature and stirred for 1 h at that temperature. The reaction 

was diluted with sat. aq. NaHCO3 (200 mL) and EtOAc (100 mL). After separation, the 

aqueous phase was extracted with EtOAc (3x100 mL), the combined organic fractions 

were dried over MgSO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 0:1 to 1:3 to 1:1) to give alcohol 2-25 (35 g, 98 mmol, 

81% over two steps) as a clear oil. Rf (EtOAc/hexanes 1:2) = 0.25; [α]D
20 = +1.1° (c = 



 

87 
 

2.0, CHCl3); 
1H NMR (400 MHz, CDCl3) δ 7.45 – 7.38 (m, 2H, arom.), 7.37 – 7.23 (m, 

3H, arom.), 4.84 (d, J = 11.4 Hz, 1H, A of AB, PhCH2), 4.76 (d, J = 11.4 Hz, 1H, B of 

AB, PhCH2), 4.43 (d, J = 9.6 Hz, 1H, H-1), 4.25 (dd, J = 13.1, 7.2 Hz, 1H, H-3), 4.19 

(dd, J = 5.7, 2.0 Hz, 1H, H-4), 3.94 (dd, J = 11.1, 6.9 Hz, 1H, A of AB, H-6), 3.84 – 3.73 

(m, 2H, H-5, B of AB, H-6), 3.46 (dd, J = 9.6, 5.3 Hz, 1H, H-2), 2.72 (m, 2H, S-CH2-

CH3), 2.22 (s, 1H, OH), 1.43 (s, 3H, iPr-CH3), 1.35 (s, 3H, iPr-CH3), 1.33 – 1.26 (m, 3H, 

S-CH2-CH3); 
13C NMR (100 MHz, CDCl3) δ 137.9, 128.41, 128.37, 127.9, 110.3, 83.9, 

79.8, 79.1, 76.8, 74.1, 73.6, 62.7, 27.9, 26.5, 24.8, 15.1; IR (thin film) 3234, 2980, 2934, 

1455, 1381, 1368, 1245, 1217, 1079, 1037, 875, 743, 697 cm-1; HRMS (ESI) calcd. for 

C18H26O5S (M+Na)+ 377.1398 found 377.1416 m/z. 

Methyl (ethyl 1-thio-β-D-galactopyranosid)uronate (2-18) 

 

To a vigorously stirred solution of alcohol 2-25 (6.0 g, 16.9 mmol) in CH2Cl2 (50 mL) 

and water (25 mL) were added at 0 °C TEMPO (0.53 g, 3.4 mmol) and BAIB (10.9 g, 

33.9 mmol). The mixture was warmed to room temperature and stirred for 1 h at that 

temperature. The reaction was quenched with 10% aq. Na2S2O3 (10 mL) and diluted 

with EtOAc (30 mL). After separation, the organic phase was washed with 10% Na2S2O3 

(4x20 mL). The aqueous phase was extracted with EtOAc (2x20 mL), the combined 

organic fractions were dried over Na2SO4 and concentrated to give the crude acid (7.92 

g) as a yellow oil. 

To a stirred solution of acetyl chloride (6.04 mL, 85 mmol) in MeOH (300 mL) 

was added dropwise at 0 °C a solution of the crude acid (7.92 g) in MeOH (40 mL). The 

mixture was warmed to room temperature and stirred for 2 h at that temperature. The 

reaction was quenched at 0 °C with sat. aq. NaHCO3 (30 mL) and neutralized to pH 7 

with solid NaHCO3. The volatiles were evaporated and the mixture was diluted with 

EtOAc (70 mL). After separation, the aqueous phase was extracted with EtOAc (5x50 

mL). The combined organic fractions were dried over Na2SO4 and concentrated. Flash 

chromatography was performed (EtOAc/hexanes 2:3 to 1:1 to 1:0) to give the crude 

product, which was crystallized in methanol at -20 °C (5 mL/g crude product) to give 
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diol 2-18 (3.47 g, 10.1 mmol, 60% over two steps) as a white solid. Rf (EtOAc) = 0.51; 

[α]D
20 = -32.0° (c = 0.50, MeOH); 1H NMR (400 MHz, CD3OD) δ 7.46 – 7.40 (m, 2H, 

arom.), 7.34 – 7.23 (m, 3H, arom.), 4.84 – 4.77 (m, 2H, PhCH2), 4.49 (d, J = 9.7 Hz, 1H, 

H-1), 4.26 (s, 1H, H-5), 4.18 (dd, J = 3.4, 1.3 Hz, 1H, H-4), 3.77 (s, 3H, COOCH3), 3.70 

(dd, J = 9.2, 3.5 Hz, 1H, H-3), 3.52 (t, J = 9.4 Hz, 1H, H-2), 2.88 – 2.66 (m, 2H, S-CH2-

CH3), 1.30 (t, J = 7.4 Hz, 3H, S-CH2-CH3); 
13C NMR (100 MHz, CD3OD) δ 170.5, 139.9, 

129.3, 129.1, 128.6, 86.1, 79.6, 78.7, 76.3, 75.7, 71.9, 52.6, 25.6, 15.5. IR (thin film) 3461, 

2929, 1744, 1440, 1350, 1267, 1216, 1101, 1029, 836, 741, 699 cm-1; HRMS (ESI) calcd. 

for C16H22O6S (M+Na)+ 365.1034 found 365.1058 m/z. 

Methyl (ethyl 2-O-benzyl-3,4-O-endo-benzylidene-1-thio-β-D-

galactopyranosid)uronate (26) and methyl (ethyl 2-O-benzyl-3,4-O-exo-benzylidene-

1-thio-β-D-galactopyranosid)uronate (2-27) 

 

To a stirred solution of diol 2-18 (2.99 g, 8.73 mmol) in anhydrous MeCN (29 mL) were 

added at room temperature benzaldehyde dimethyl acetal (6.57 mL, 43.6 mmol) and DL-

camphorsulfonic acid (0.51 g, 2.18 mmol). The mixture was stirred at room temperature 

for 5 h and the reaction was quenched by addition of Et3N (0.35 mL). The mixture was 

concentrated and the residue was filtered through a short plug of silica gel 

(EtOAc/hexanes/Et3N 1:8:0.02 to 1:1:0.02) to give benzylidene acetals 2-26 (endo) and 

2-27 (exo) (3.46 g, 8.03 mmol, 92%) as a 1:1 mixture. The isomers were separated by 

selective crystallization of exo-isomer 2-27 from EtOAc/hexanes and chromatographic 

separation of the mother liquor (Biotage, flat gradient of 10% to 40% (v/v) EtOAc in 

hexanes + 0.5% Et3N). Analytical data for 2-26: Clear oil; Rf (EtOAc/hexanes 1:2) = 

0.40; [α]D
20 = -59.3° (c = 2.0, CHCl3); 

1H NMR (400 MHz, CDCl3,) δ 7.37 (m, 10H, 

arom.), 5.93 (s, 1H, PhCH), 4.69 (dd, J = 11.5 Hz, 2H, PhCH2), 4.64 – 4.61 (dd, J = 6.4 

Hz, 2.5 Hz, 1H, H-4), 4.58 (d, J = 8.6 Hz, 1H, H-1), 4.46 (m, 2H, H-3, H-5), 3.81 (s, 3H, 

COOCH3) 3.61 (dd, J = 8.6, 5.7 Hz, 1H, H-2), 2.88 – 2.60 (m, 2H, S-CH2-CH3), 1.30 (t, J 



 

89 
 

= 7.4 Hz, 3H, S-CH2-CH3); 
13C NMR (100 MHz, CDCl3) δ 167.5, 137.5, 136.8, 129.5, 

128.4, 128.39, 128.35, 127.9, 127.1, 104.9, 84.1, 78.6, 78.1, 75.7, 75.1, 73.3, 52.6, 24.8, 

14.9; IR (thin film) 2928, 2874, 1767, 1737, 1455, 1438, 1267, 1216, 1150, 1091, 1076, 

1028, 756, 698 cm-1; HRMS (ESI) calcd. for C23H26O6S (M+Na)+ 453.1348 found 

453.1352 m/z. Analytical data for 2-27: White foam; Rf (EtOAc/hexanes 1:2) = 0.50; 

[α]D
20 = -42.0° (c = 2.0, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.46 – 7.22 (m, 10H, 

arom.), 6.06 (s, 1H, PhCH), 4.91 – 4.76 (dd, 2H, J = 15.2, 11.5 Hz, PhCH2), 4.71 – 4.55 

(m, 3H, H-1, H-3, H-4), 4.37 (d, J = 1.8 Hz, 1H, H-5), 3.79 (s, 3H, COOCH3), 3.69 (dd, J 

= 8.4, 5.1 Hz, 1H, H-2), 2.93 – 2.59 (m, 2H, S-CH2-CH3), 1.33 (t, J = 7.4 Hz, 3H, S-CH2-

CH3); 
13C NMR (100 MHz, CDCl3) δ 167.6, 138.0, 137.3, 129.4, 128.5, 128.5, 128.1, 126.4, 

104.0, 83.7, 79.3, 75.6, 75.5, 74.3, 73.4, 52.6, 25.1, 15.0; IR (thin film) 2903, 2873, 1765, 

1738, 1497, 1455, 1438, 1344, 1267, 1213, 1140, 1098, 1075, 1028, 1002, 969, 920, 758, 737, 

697 cm-1; HRMS (ESI) calcd. for C23H26O6S (M+Na)+ 453.1348 found 453.1338 m/z. 

Methyl (ethyl 2,3-O-benzyl-1-thio-β-D-galactopyranosyl)uronate (2-28) 

 

To a stirred solution of acetal 2-27 (206 mg, 0.48 mmol) and triethylsilane (2.29 mL, 

14.35 mmol) in CH2Cl2 (7 mL) over activated molecular sieves (3 Å-AW) were added at 

0 °C trifluoroacetic anhydride (20 µL, 0.14 mmol) and then trifluoroacetic acid (0.22 mL, 

2.87 mmol). The reaction was warmed to room temperature and stirred for 5 h at that 

temperature. The mixture was diluted with EtOAc (10 mL), quenched with Et3N (0.4 

mL) at 0 °C and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:1) to give alcohol 2-28 (134 mg, 0.31 mmol, 65%) as a white foam. Rf 

(EtOAc/hexanes 2:3) = 0.47; [α]D
20 = -14.0° (c = 1.0, CHCl3); 

1H NMR (400 MHz, 

CDCl3) δ 7.44 – 7.27 (m, 10H, arom.), 4.89 (d, J = 10.3 Hz, 1H, A of AB, PhCH2), 4.81 

– 4.67 (m, 3H, PhCH2), 4.43 (d, J = 9.6 Hz, 1H, H-1), 4.39 (d, J = 0.9 Hz, 1H, H-4), 

4.06 (s, 1H, H-5), 3.82 (s, 3H, COOCH3), 3.71 (t, J = 9.3 Hz, 1H, H-2), 3.61 (dd, J = 8.9, 

3.3 Hz, 1H, H-3) 2.96 – 2.67 (m, 2H, S-CH2-CH3), 2.52 (d, J = 1.8 Hz, 1H, OH), 1.32 (t, 

J = 7.4 Hz, 3H, S-CH2-CH3); 
13C NMR (100 MHz, CDCl3) δ 168.5, 138.1, 137.5, 128.7, 

128.51, 128.50, 128.3, 128.1, 128.0, 85.2, 81.7, 77.4, 77.1, 76.0, 72.4, 68.1, 52.8, 25.0, 15.1; 

IR (thin film) 3492, 2927, 2870, 1764, 1736, 1497, 1454, 1351, 1266, 1210, 1128, 1098, 
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1029, 903, 844, 741, 698 cm-1; HRMS (ESI) calcd. for C23H28O6S (M+Na)+ 455.1504 

found 455.1511 m/z. 

Methyl (ethyl 2,3-O-benzyl-4-O-levulinoyl-1-thio-β-D-galactopyranosyl)uronate (2-8) 

 

To a stirred solution of alcohol 2-28 (94 mg, 0.217 mmol) in CH2Cl2 (1.9 mL) were 

added at room temperature levulinic acid (386 mg, 3.26 mmol), DCC (673 mg, 3.26 

mmol) and pyridine (0.26 mL, 3.26 mmol). The mixture was stirred at that temperature 

for 35 h, diluted with CH2Cl2 (5 mL) and filtered through Celite. The mixture was 

concentrated, the residue was dissolved in a minimal volume of CH2Cl2 (1-3 mL) and 

filtered through cotton wool. The same procedure was repeated 3 times. The residue was 

purified by flash chromatography (EtOAc/toluene 1:1) to give ester 2-8 (91 mg, 0.171 

mmol, 79%) as a slightly yellow oil. Rf (EtOAc/toluene 2:3) = 0.57; [α]D
20 = +24.2° (c = 

1.0, CHCl3); 
1H NMR (400 MHz, CDCl3) δ 7.45 – 7.28 (m, 10H, arom.), 5.84 (dd, J = 

3.3, 1.3 Hz, 1H, H-4), 4.83 (d, J = 10.2 Hz, 1H, A of AB, PhCH2), 4.79 – 4.74 (m, 2H, B 

of AB, PhCH2, A of AB, PhCH2), 4.53 (d, J = 11.3 Hz, 1H, B of AB, PhCH2), 4.48 (d, J 

= 9.4 Hz, 1H, H-1), 4.16 (d, J = 1.3 Hz, 1H, H-5), 3.79 (s, 3H, COOCH3), 3.64 (m, 2H, 

H-2, H-3), 2.87 – 2.59 (m, 6H, Lev-CH2, S-CH2-CH3), 2.16 (s, 3H, Lev-CH3), 1.33 (t, J = 

7.4 Hz, 3H, S-CH2-CH3); 
13C NMR (100 MHz, CDCl3) δ 206.1, 171.8, 167.2, 138.1, 137.6, 

128.50, 128.46, 128.4, 128.3, 128.0, 127.9, 85.4, 80.4, 77.3, 76.0, 75.9, 72.0, 68.1, 52.8, 

38.1, 29.9, 28.1, 25.1, 15.1; IR (thin film) 2968, 2868, 1746, 1720, 1497, 1454, 1363, 1264, 

1213, 1156, 1124, 1104, 1028, 988, 736, 699 cm-1; HRMS (ESI) calcd. for C28H34O8S 

(M+Na)+ 553.1872 found 553.1872 m/z. 

Methyl (ethyl 2,3-O-benzyl-4-O-fluorenylmethoxycarbonyl-1-thio-β-D-

galactopyranosyl)uronate (2-29) 

 

To a stirred solution of alcohol 2-28 (160 mg, 0.370 mmol) in pyridine (1.2 mL) was 

added at 0 °C FmocCl (383 mg, 1.48 mmol). The mixture was warmed to room 
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temperature and stirred for 3 h at that temperature. The mixture was diluted with 

EtOAc (50 mL) and washed with 1 M aq. HCl (2x30 mL) and sat. aq. NaHCO3 (30 mL). 

The organic phase was dried over Na2SO4 and concentrated. The residue was purified by 

flash chromatography (EtOAc/hexanes 1:2) to give carbonate 2-29 (217 mg, 0.331 mmol, 

90%) as a white foam. Rf (EtOAc/hexanes 1:4) = 0.35; [α]D
20 = -0.3° (c = 3.0, CHCl3); 

1H NMR (400 MHz, CDCl3) δ 7.77 (dd, J = 7.6, 0.8 Hz, 2H, arom.), 7.66 – 7.58 (m, 2H, 

arom.), 7.44 – 7.27 (m, 11H, arom.), 7.24 – 7.19 (m, 3H, arom.), 5.72 (dd, J = 3.1, 1.3 

Hz, 1H, H-4), 4.85 (dt, J = 10.2, 8.7 Hz, 3H, PhCH2), 4.61 (d, J = 11.4 Hz, 1H, PhCH2), 

4.51 (d, J = 9.2 Hz, 1H, H-1), 4.42 – 4.32 (m, 2H, Fmoc), 4.28 – 4.18 (m, 2H, H-5, 

Fmoc), 3.81 – 3.69 (m, 5H, COOCH3, H-2, H-3), 2.92 – 2.72 (m, 2H, S-CH2-CH3), 1.36 (t, 

J = 7.4 Hz, 3H, S-CH2-CH3); 
13C NMR (100 MHz, CDCl3) δ 167.2, 154.8, 143.6, 143.3, 

141.4, 138.0, 137.5, 128.44, 128.42, 128.39, 128.0, 127.93, 127.87, 127.2, 125.5, 125.3, 

120.1, 120.0, 99.5, 85.5, 80.5, 76.1, 75.8, 72.2, 72.0, 70.4, 52.8, 46.6, 25.1, 15.1; IR (thin 

film) 2953, 1752, 1451, 1386, 1257, 1108, 1028, 741, 699 cm-1; HRMS (ESI) calcd. for 

C38H38O8S (M+Na)+ 677.2185 found 677.2167 m/z. 

Dibutyl [methyl (2,3-O-benzyl-4-O-fluorenylmethoxycarbonyl-αβ-D-

galactopyranosyl)uronate] phosphate (2-30) 

 

Thioglycoside 2-29 (200 mg, 0.31 mmol) was co-evaporated with anhydrous toluene 

(2x30 mL), kept under high vacuum for 1 h and dissolved in anhydrous CH2Cl2 (3 mL). 

Activated molecular sieves (3 Å-AW) were added and the solution was stirred for 15 min 

at room temperature. The solution was then cooled to 0 °C, treated with dibutyl 

phosphoric acid (128 mg, 0.61 mmol) and stirred for another 15 min. The mixture was 

then treated with NIS (89 mg, 0.40 mmol), warmed to room temperature and stirred for 

3 h at that temperature. The reaction was diluted with CH2Cl2 (20 mL) and quenched 

with a 1:1 (v/v) mixture of 10% aq. Na2S2O3 and sat. aq. NaHCO3 (20 mL). After 

separation, the aqueous phase was extracted with CH2Cl2 (3x30 mL), the combined 

organic fractions were dried over Na2SO4 and concentrated. The residue was purified by 

flash chromatography (EtOAc/hexanes 1:1 to 2:1) to give glycosyl phosphate 2-30 (218 

mg, 0.27 mmol, 89%, 10:1 α:β) as a clear oil. Analytical data for 2-30α: Rf 
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(EtOAc/hexanes 1:2) = 0.44; [α]D
20 = +61.8° (c = 3.0, CHCl3); 

1H NMR (400 MHz, 

CDCl3) δ 7.77 (d, J = 7.5 Hz, 2H, arom.), 7.59 (ddd, J = 8.3, 7.5, 0.8 Hz, 2H, arom.), 

7.47 – 7.19 (m, 14H, arom.), 5.99 (dd, J = 6.9, 2.9 Hz, 1H, H-1), 5.77 (dd, J = 2.7, 1.7 

Hz, 1H, H-4), 4.81 (m, 4H, H-5, PhCH2), 4.67 (d, J = 11.6 Hz, 1H, PhCH2), 4.37 (m, 2H, 

Fmoc), 4.21 (t, J = 7.6 Hz, 1H, Fmoc), 4.12 – 3.97 (m, 6H, P-O-CH2, H-2, H-3), 3.76 (s, 

3H, COOCH3), 1.68 – 1.52 (m, 4H, aliph.), 1.45 – 1.24 (m, 4H, aliph.), 0.91 (dt, J = 11.5, 

7.4 Hz, 6H, aliph.); 13C NMR (100 MHz, CDCl3) δ 167.1, 154.6, 143.5, 143.2, 141.33, 

141.25, 137.9, 137.6, 128.4, 128.3, 128.0, 127.94, 127.89, 127.85, 127.8, 127.24, 127.23, 

125.4, 125.2, 120.1, 120.0, 95.7, 95.6, 77.4, 74.7, 74.4, 74.3, 73.8, 72.5, 72.3, 70.4, 70.3, 

68.1, 68.0, 67.84, 67.78, 52.8, 46.6, 32.3, 32.21, 32.19, 32.1, 18.7, 18.6, 13.63, 13.61; IR 

(thin film) 3065, 3033, 2960, 2934, 2874, 1755, 1452, 1385, 1351, 1259, 1113, 1028, 997, 

956, 910, 858, 781, 758, 741, 699 cm-1; HRMS (ESI) calcd. for C44H51O12P (M+Na)+ 

825.3015 found 825.3020 m/z.  

Methyl (2-O-benzyl-3,4-O-endo-benzylidene-α-D-galactopyranosyl)uronate-(1→1)-2-

(benzylthio)ethanol (2-31) 

 

Thioglycoside 2-26 (102 mg, 0.237 mmol), alcohol 2-4 (60 mg, 0.355 mmol) and TTBPy 

(117 mg, 0.474 mmol) were co-evaporated with anhydrous toluene (3x10 mL) and kept 

under high vacuum for 30 min. The mixture was dissolved in THF (4.8 mL) and stirred 

over activated molecular sieves (3 Å) for 30 min at room temperature. The solution was 

cooled to 0 °C and treated with DMTST (92 mg, 0.355 mmol in 0.2 mL anhydrous 

CH2Cl2). The reaction was warmed to room temperature and stirred for 2 h at that 

temperature. The reaction was quenched with a 1:1 (v/v) mixture of MeOH and Et3N 

(0.1 mL) and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes/Et3N 0:1:0.01 to 30:70:0.01 to 45:55:0.01) to give thioether 2-31 (59 

mg, 0.110 mmol, 46%), along with the corresponding β-isomer (35 mg, 0.065 mmol, 27%). 

Analytical data for 2-31: Clear oil; Rf (EtOAc/hexanes 2:3) = 0.56; [α]D
20 = +25.0° (c = 

2.0, CHCl3);
 1H NMR (400 MHz, CDCl3) δ 7.52 – 7.14 (m, 15H, arom.), 5.96 (s, 1H, 

PhCH), 4.88 (d, J = 3.0 Hz, 1H, H-5), 4.86 (d, J = 3.6 Hz, 1H, H-1), 4.71 (d, J = 12.3 
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Hz, 1H, A of AB, PhCH2), 4.64 (dd, J = 6.1, 3.0 Hz, 1H, H-4), 4.58 – 4.50 (m, 2H, H-3, 

B of AB, PhCH2), 3.84 (s, 3H, COOCH3), 3.82 – 3.73 (m, 3H, PhCH2, A of AB, O-CH2-

CH2), 3.67 – 3.57 (m, 2H, H-2, B of AB, O-CH2-CH2), 2.75 – 2.59 (m, 2H, CH2-CH2-S); 
13C NMR (100 MHz, CDCl3) δ 168.5, 138.2, 138.0, 137.4, 129.4, 129.0, 128.7, 128.49, 

128.47, 128.1, 127.9, 127.3, 126.8, 104.2, 98.0, 76.1, 75.8, 75.6, 72.9, 68.5, 67.9, 52.7, 36.8, 

30.6; IR (thin film) 2918, 1767, 1737, 1495, 1454, 1215, 1166, 1094, 1045, 923, 759, 698 

cm-1; HRMS (ESI) calcd. for C30H32O7S (M+Na)+ 559.1766 found 559.1731 m/z. 

Methyl (2,4-di-O-benzyl-α-D-galactopyranosid)uronate-(1→1)-2-(benzylthio)ethanol 

(2-32) 

 

To a stirred solution of acetal 2-31 (100 mg, 0.186 mmol) in anhydrous THF (5.3 mL) 

were added at room temperature borane trimethylamine complex (57 mg, 0.745 mmol) 

and then aluminium chloride (149 mg, 1.12 mmol). The reaction was stirred at that 

temperature for 4.5 h and quenched by addition of water (10 mL) and 1 M aq. HCl (5 

mL). The mixture was extracted with EtOAc (3x10 mL), the combined organic fractions 

were dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 2:5 to 1:1) to give alcohol 2-32 (70.0 mg, 0.130 mmol, 

70%) as a clear oil. Rf (EtOAc/hexanes 1:1) = 0.71; [α]D
20 = +60.8° (c = 3.0, CHCl3); 

1H 

NMR (400 MHz, CDCl3) δ 7.39 – 7.17 (m, 15H, arom.), 4.93 (d, J = 3.5 Hz, 1H, H-1), 

4.84 (d, J = 11.7 Hz, 1H, A of AB, PhCH2), 4.70 (d, J = 11.9 Hz, 1H, A of AB, PhCH2), 

4.66 – 4.59 (m, 2H, B of AB, PhCH2), 4.53 (d, J = 1.6 Hz, 1H, H-5), 4.28 (dd, J = 3.2, 

1.7 Hz, 1H, H-4), 4.22 – 4.08 (m, 1H, H-3), 3.88 (dd, J = 10.1, 3.5 Hz, 1H, H-2), 3.78 – 

3.68 (m, 3H, PhCH2, A of AB, O-CH2-CH2), 3.66 (s, 3H, COOCH3), 3.49 (m, 1H, B of 

AB, O-CH2-CH2), 2.63 – 2.54 (m, 2H, 2H, CH2-CH2-S), 2.43 – 2.35 (m, 1H, OH); 13C 

NMR (100 MHz, CDCl3) δ 169.2, 138.3, 138.2, 138.0, 129.0, 128.62, 128.58, 128.4, 128.23, 

128.17, 128.0, 127.8, 127.1, 97.3, 77.9, 76.7, 75.2, 73.1, 70.7, 69.8, 68.1, 52.3, 50.3, 36.6, 

30.6; IR (thin film) 3506, 3029, 2918, 1762, 1496, 1454, 1344, 1211, 1152, 1106, 1060, 

1026, 917, 739, 698 cm-1; HRMS (ESI) calcd. for C30H34O7S (M+Na)+ 561.1923 found 

561.1879 m/z. 
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Methyl (2,3-di-O-benzyl-4-O-fluorenylmethoxycarbonyl-α-D-galactopyranosyl)uronate-

(1→3)-methyl (2,4-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→1)-(2-

(benzylthio)ethanol (2-33)  

 

Alcohol 2-32 (90 mg, 0.166 mmol) and glycosyl phosphate 2-30 (208 mg, 0.259 mmol) 

were co-evaporated with anhydrous toluene (3x10 mL) and kept under high vacuum for 1 

h. The mixture was dissolved in anhydrous CH2Cl2 (3.3 mL) and stirred over activated 

molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was cooled to 0 

°C and treated dropwise with TBSOTf (57 µL, 0.133 mmol, in 0.2 mL anhydrous 

CH2Cl2). The solution was warmed to room temperature and stirred for 20 h at that 

temperature. The reaction was diluted with CH2Cl2 (10 mL) and quenched with a 1:1 

(v/v) mixture of MeOH and pyridine (0.2 mL). The solution was filtered through Celite 

and concentrated. The crude product was filtered through a short plug of silica gel 

(EtOAc/hexanes 1:1) to give the intermediate disaccharide mixture (150 mg, 0.133 

mmol, 80%, 3:1 α:β) as an inseparable mixture as a clear oil.  

To a stirred solution of the disaccharide mixture (150 mg) in CH2Cl2 (2.6 mL) 

was added at room temperature Et3N (1.1 mL, 7.96 mmol). The reaction was stirred for 

3 h at that temperature and co-evaporated with toluene (2x10 mL). The residue was 

purified by flash chromatography (EtOAc/hexanes 1:6 to 2:3 to 1:1) to give alcohol 2-33 

(62 mg, 0.068 mmol, 51%) along with the corresponding β-anomer (20 mg, 0.022 mmol, 

17%). Analytical data for 2-33: Clear oil; Rf (EtOAc/hexanes 1:1) = 0.36; [α]D
20 = 

+86.3° (c = 0.50, CHCl3); 
1H NMR (400 MHz, CDCl3) δ 7.39 – 7.15 (m, 23H, arom.), 

7.04 (dd, J = 6.6, 2.6 Hz, 2H, arom.), 5.28 (d, J = 2.4 Hz, 1H, H-1’), 5.03 (A of AB, d, J 

= 11.6 Hz, 1H, PhCH2), 4.96 (d, J = 3.5 Hz, 1H, H-1), 4.84 (dd, J = 11.6, 6.4 Hz, 2H, A 

of AB, PhCH2, H-5’), 4.75 – 4.63 (m, 3H, PhCH2), 4.61 – 4.52 (m, 2H, PhCH2), 4.45 (s, 

1H, H-5), 4.37 (B of AB, d, J = 11.5 Hz, 1H, PhCH2), 4.30 (s, 1H, H-4), 4.26 (dd, J = 

10.2, 2.6 Hz, 1H, H-3), 4.19 (m, 1H, H-4’), 4.05 (dd, J = 10.2, 3.5 Hz, 1H, H-2), 3.98 (m, 
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2H, H-2’, H-3’), 3.82 – 3.68 (m, 3H, A of AB, O-CH2-CH2, PhCH2), 3.63 (s, 3H, 

COOCH3), 3.56 – 3.47 (m, 4H, B of AB, O-CH2-CH2, COOCH3), 2.54 (m, 2H, CH2-CH2-

S), 2.44 (br s, 1H, OH); 13C NMR (100 MHz, CDCl3) δ 169.2, 169.1, 138.7, 138.4, 138.2, 

137.9, 137.7, 129.2, 128.7, 128.62, 128.56, 128.55, 128.3, 128.2, 128.1, 128.02, 127.98, 

127.9, 127.7, 127.3, 127.1, 97.6, 95.8, 76.0, 75.2, 75.1, 74.6, 74.1, 72.9, 72.4, 71.0, 70.2, 

68.8, 68.6, 52.4, 52.2, 36.7, 30.3; IR (thin film) 3517, 3062, 3030, 2933, 1763, 1735, 1603, 

1496, 1454, 1344, 1273, 1212, 1148, 1105, 1061, 1028, 916, 805, 740, 698 cm-1; HRMS 

(ESI) calcd. for C51H56O13S (M+Na)+ 931.3339 found 931.3340 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-

(1→3)-methyl (2,4-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→1)-2-

(benzylthio)ethanol (2-34)  

 

Alcohol 2-33 (65 mg, 0.062 mmol) and glycosyl phosphate 2-17 (61 mg, 0.100 mmol) 

were co-evaproated with anhydrous toluene (3x10 mL) and kept under high vacuum for 

30 min. The mixture was dissolved in CH2Cl2 (2.1 mL) and stirred over activated 

molecular sieves (3 Å-AW) for 1 h at room temperature. The solution was cooled to 0 °C 

and treated with TMSOTf (17 µL, 0.093 mmol in 0.2 mL anhydrous CH2Cl2). The 

reaction was stirred for 3 h at that temperature and quenched with a 1:1 (v/v) mixture 

of MeOH and Et3N (0.5 mL). The mixture was diluted with CH2Cl2 (20 mL), filtered 

through Celite and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:2 to 1:1) to give trisaccharide 2-34 (69 mg, 0.053 mmol, 85%) as a 

clear oil. Rf (EtOAc/hexanes 2:3) = 0.43; [α]D
20 = +116.6° (c = 0.50, acetone); 1H NMR 

(400 MHz, acetone-D6) δ 7.51 – 7.10 (m, 30H, arom.), 6.28 (d, J = 10.1 Hz, 1H, NH), 

5.45 (d, J = 3.1 Hz, 1H, H-1’), 5.22 – 5.11 (m, 3H, H-3’’, 2x A of AB, PhCH2), 5.05 – 

4.97 (m, 2H, H-1, A of AB, PhCH2), 4.93 – 4.81 (m, 5H, H-1’’, H-5’, PhCH2), 4.76 (d, J 

= 12.8 Hz, 1H, B of AB, PhCH2), 4.61 (d, J = 11.7 Hz, 1H, A of AB, PhCH2), 4.54 (m, 
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2H, H-5, B of AB, PhCH2), 4.49 (m, 2H, H-4, H-5’’), 4.43 (d, J = 1.4 Hz, 1H, H-4’), 4.39 

(d, J = 11.2 Hz, 1H, B of AB, PhCH2), 4.29 (dd, J = 10.4, 2.8 Hz, 1H, H-3), 4.16 – 4.01 

(m, 3H, H-2’, H-3’, H-4’’), 3.91 (dd, J = 10.4, 3.5 Hz, 1H, H-2), 3.83 – 3.73 (m, 3H, 

PhCH2, A of AB, O-CH2-CH2), 3.70 – 3.63 (m, 4H, H-2’’, COOCH3), 3.61 – 3.52 (m, 1H, 

B of AB, O-CH2-CH2), 3.44 (s, 3H, COOCH3), 2.80 – 2.63 (m, 2H, Lev-CH2), 2.63 – 2.45 

(m, 3H, Lev-CH2, CH2-CH2-S), 2.38 (m, 1H, Lev-CH2), 2.13 (s, 3H, Lev-CH3), 0.92 – 0.81 

(m, 3H, H-6’’); 13C NMR (100 MHz, acetone-D6) δ 206.0, 172.3, 169.5, 169.3, 157.8, 

140.3, 139.7, 139.4, 139.0, 138.3, 129.4, 129.14, 129.11, 129.08, 129.06, 129.05, 128.7, 

128.6, 128.6, 128.5, 128.4, 128.31, 128.26, 128.17, 128.15, 127.7, 127.5, 99.9, 97.9, 96.3, 

77.6, 77.3, 76.2, 75.8, 75.7, 75.1, 74.6, 73.0, 72.8, 71.4, 71.0, 70.2, 69.4, 66.7, 65.8, 58.3, 

53.8, 52.0, 51.8, 38.1, 36.9, 17.8, 16.6; IR (thin film) 2925, 2210, 1719, 1497, 1454, 1347, 

1215, 1147, 1108, 1028, 742, 699 cm-1; HRMS (ESI) calcd.. for C70H78N4O19S (M+Na)+ 

1333.4879 found 1333.4911 m/z. 

2-Acetamido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-

(1→3)-methyl (2,4-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→1)-(2-

(benzylthio)ethanol (2-35) 

 

To a stirred solution of azide 2-34 (20.0 mg, 0.015 mmol) in anhydrous pyridine (0.4 

mL) was added at room temperature thioacetic acid (0.4 mL). The reaction was stirred 

for 24 h at that temperature. The mixture was co-evaporated with toluene (2x5 mL) and 

the residue was purified by flash chromatography (EtOAc/hexanes 1:8 to 5:1) to give 

acetamide 2-35 (15 mg, 0.011 mmol, 72%) as a white foam. Rf (EtOAc/hexanes 4:1) = 

0.25; [α]D
20 = +99.5° (c = 1.0, MeOH); 1H NMR (400 MHz, CD3OD) δ 7.47 – 7.13 (m, 

30H, arom.), 5.43 (d, J = 3.3 Hz, 1H, H-1’), 5.17 (d, J = 12.6 Hz, 1H, A of AB, PhCH2), 

5.11 (d, J = 11.0 Hz, 1H, A of AB, PhCH2), 5.05 – 4.99 (m, 2H, H-1, B of AB, PhCH2), 

4.93 (dd, J = 6.6, 2.5 Hz, 1H, H-3’’), 4.80 (m, 3H, PhCH2), 4.73 – 4.65 (m, 3H, H-5, 



 

97 
 

PhCH2), 4.60 (d, J = 3.9 Hz, 1H, H-1’’), 4.57 (d, J = 1.2 Hz, 1H, H-5’), 4.51 (d, J = 11.1 

Hz, 1H, A of AB, PhCH2), 4.48 (d, J = 2.4 Hz, 1H, H-4’), 4.42 – 4.33 (m, 3H, H-5’’, B of 

AB, PhCH2), 4.25 – 4.19 (m, 2H, H-2’’, H-3’), 4.16 (d, J = 1.9 Hz, 1H, H-4), 4.07 (dd, J 

= 10.4, 3.3 Hz, 1H, H-2’), 3.99 (dd, J = 3.9, 1.9 Hz, 1H, H-4’’), 3.96 – 3.90 (m, 2H, H-2, 

H-3), 3.78 – 3.67 (m, 6H, A of AB, O-CH2-CH2, COOCH3, PhCH2), 3.59 – 3.52 (m, 1H, 

B of AB, O-CH2-CH2), 3.25 (s, 3H, COOCH3), 2.75 – 2.47 (m, 4H, Lev-CH2, CH2-CH2-S), 

2.41 – 2.31 (m, 1H, A of AB, Lev-CH2), 2.31 – 2.18 (m, 1H, B of AB, Lev-CH2), 2.10 (s, 

3H, Ac-CH3), 1.94 (s, 3H, Lev-CH3), 0.89 (d, J = 6.3 Hz, 3H, H-6’’); 13C NMR (100 MHz, 

CD3OD) δ 209.2, 173.9, 173.7, 171.0, 160.0, 159.5, 140.2, 140.1, 139.8, 139.3, 139.1, 138.6, 

130.3, 130.1, 129.6, 129.53, 129.49, 129.41, 129.38, 129.1, 129.0, 128.9, 128.81, 128.77, 

128.4, 127.9, 100.3, 98.4, 96.8, 78.2, 77.4, 76.4, 76.3, 75.9, 75.5, 75.0, 73.8, 73.7, 71.9, 71.6, 

71.1, 70.0, 67.5, 66.4, 54.1, 52.7, 52.4, 38.4, 37.5, 31.2, 29.7, 29.1, 23.1, 16.9; IR (thin 

film) 3444, 2927, 2112, 1763, 1724, 1660, 1497, 1455, 1349, 1263, 1111, 1028, 913, 743, 700 

cm-1; HRMS (ESI) calcd. for C72H82N2O20S (M+Na)+ 1349.5079 found 1349.5029 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→4)-

methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→3)-methyl (2,4-di-O-

benzyl-α-D-galactopyranosyl)uronate-(1→1)-2-(benzylthio)ethanol (2-36) 

 

To a stirred solution of Lev ester 2-34 (30 mg, 0.023 mmol) in CH2Cl2 (1.0 mL) was 

added at room temperature first a mixture of pyridine (56 µL, 0.692 mmol) and acetic 

acid (37 µL, 0.646 mmol), and then hydrazine hydrate (2 µL, 0.041 mmol). The mixture 

was stirred for 4 h at room temperature, diluted with EtOAc (2 mL), quenched with 

acetone (0.1 mL) and poured into water (15 mL). The aqueous phase was extracted with 

EtOAc (4x10 mL), the combined organic extracts were dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 0:1 to 

1:2 to 2:3) to give alcohol 2-36 (28 mg, 0.023 mmol, quant.) as a clear oil. Rf 

(EtOAc/hexanes 1:1) = 0.34; [α]D
20 = +122.0° (c = 0.36, acetone); 1H NMR (400 MHz, 
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acetone-D6) δ 7.52 – 7.08 (m, 30H, arom.), 6.14 (d, J = 10.1 Hz, 1H, NH), 5.48 (d, J = 

2.8 Hz, 1H, H-1’), 5.15 (d, J = 11.2 Hz, 1H, A of AB, PhCH2), 5.10 (d, J = 12.6 Hz, 1H, 

A of AB, PhCH2), 5.05 – 4.99 (m, 2H, H-1, B of AB, PhCH2), 4.91 (d, J = 11.7 Hz, 3H, 

PhCH2), 4.82 – 4.73 (m, 3H, H-1’’, H-5’, B of AB, PhCH2), 4.60 (d, J = 11.7 Hz, 1H, A 

of AB, PhCH2), 4.54 (m, 2H, H-5, B of AB, PhCH2), 4.49 (s, 1H, H-4), 4.44-4.35 (m, 4H, 

H-4’, H-5’’, PhCH2), 4.29 (dd, J = 10.4, 2.8 Hz, 1H, H-3), 4.16 – 4.09 (m, 1H, H-3’), 4.08 

– 4.02 (dd, J = 2.6, 5.8 Hz, 1H, H-2’), 3.96 (dd, J = 10.1, 2.7 Hz, 1H, H-4’’), 3.91 (dd, J 

= 10.4, 3.5 Hz, 1H, H-2), 3.82 – 3.74 (m, 3H, PhCH2, A of AB, O-CH2-CH2), 3.68 (s, 3H, 

COOCH3), 3.56 (m, 1H, B of AB, O-CH2-CH2), 3.43 (s, 3H, COOCH3), 3.38 (dd, J = 

11.3, 3.9 Hz, 1H, H-2’’), 2.59 (dd, J = 7.4, 5.3 Hz, 2H, CH2-CH2-S), 0.86 (d, J = 6.4 Hz, 

3H, H-6’’); 13C NMR (100 MHz, acetone-D6) δ 169.6, 169.4, 158.3, 140.4, 139.9, 139.8, 

139.5, 139.3, 138.3, 130.0, 129.3, 129.2, 129.13, 129.12, 129.08, 128.8, 128.7, 128.6, 128.53, 

128.45, 128.4, 128.3, 128.2, 127.8, 127.6, 100.2, 97.9, 96.3, 77.4, 77.1, 76.4, 75.8, 75.2, 

74.5, 72.8, 71.5, 71.2, 69.5, 67.6, 66.70, 66.66, 61.2, 57.2, 52.1, 51.8, 37.0, 30.8, 16.9; IR 

(thin film) 3363, 3031, 2929, 2111, 1764, 1728, 1522, 1497, 1455, 1347, 1263, 1107, 1028, 

915, 741, 699 cm-1; HRMS (ESI) calcd. for C65H72N4O17S (M+Na)+ 1235.4511 found 

1235.4539 m/z. 

Benzyloxymethyl cyclohexyl sulfide (2-38) 

 

To a stirred solution of cyclohexanethiol (1.46 mL, 11.9 mmol) in DMF (36 mL) was 

added at 0 °C sodium hydride (0.338 g, 14.1 mmol). The mixture was treated with 

benzyloxymethyl chloride (2.0 mL, 75% (w/w), 10.8 mmol) and warmed to room 

temperature. The reaction was stirred at that temperature for 16 h, quenched at 0 °C 

with 1 M aq. NaOH (20 mL) and diluted with water (100 mL) and hexanes (70 mL). 

After separation, the aqueous phase was extracted with hexanes (3x70 mL), the 

combined organic fractions were dried over Na2SO4 and concentrated. The residue was 

purified by flash chromatography (EtOAc/hexanes 0:1 to 1:50) to give S,O-acetal 2-38 

(2.1 g, 8.9 mmol, 82%) as a slightly yellow oil. Rf (EtOAc/hexanes 1:10) = 0.80; 1H 

NMR (400 MHz, CDCl3) δ 7.38 – 7.27 (m, 5H, arom.), 4.77 (s, 2H, O-CH2-S), 4.63 (s, 

2H, O-CH2Ph), 2.93 – 2.80 (m, 1H, S-CH), 2.07 – 1.98 (m, 2H, aliph.), 1.83 – 1.70 (m, 
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2H, aliph.), 1.61 (dd, J = 10.1, 4.0 Hz, 1H, aliph.), 1.47 – 1.20 (m, 5H, aliph.); 13C NMR 

(100 MHz, CDCl3) δ 137.8, 128.6, 128.3, 127.9, 71.8, 69.6, 43.3, 34.2, 26.3, 25.9; IR (thin 

film) 2928, 2852, 1497, 1449, 1310, 1265, 1061, 1028, 739, 697 cm-1; HRMS (ESI) calcd 

for C14H20OS (M+Na)+ 259.1133 found 259.1132 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-3-O-benzyloxymethyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-

(1→3)-methyl (2,4-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→1)-2-

(benzylthio)ethanol (2-37) 

 

Alcohol 2-36 (49 mg, 0.040 mmol), S,O-acetal 2-38 (180 mg, 0.81 mmol) and TTBPy 

(400 mg, 1.62 mmol) were co-evaporated with anhydrous toluene (3x10 mL). The 

mixture was dissolved in anhydrous CH2Cl2 (2.0 mL) and stirred over activated 

molecular sieves (3 Å) for 30 min at room temperature. The mixture was cooled to 0 °C 

and DMTST (24 mg, 0.598 mmol in 0.3 mL CH2Cl2) was added dropwise over a period 

of 1.5 h, while the reaction temperature was kept below 10 °C. The reaction was stirred 

for another 45 min, quenched by addition of a 10:1 (v/v) mixture of MeOH and Et3N 

(0.5 mL) and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:10 to 1:2) to give acetal 2-37 (46 mg, 0.034 mmol, 84%) as a clear oil. 

Rf (EtOAc/hexanes 2:3) = 0.58; [α]D
20 = +127.0° (c = 0.27, acetone); 1H NMR (400 

MHz, acetone-D6) δ 7.54 – 7.03 (m, 35H, arom.), 6.24 (d, J = 9.5 Hz, 1H, NH), 5.48 (d, J 

= 2.8 Hz, 1H, H-1’), 5.15 (d, J = 11.3 Hz, 1H, A of AB, PhCH2), 5.08 (s, 2H, PhCH2), 

5.03 (d, J = 3.5 Hz, 1H, H-1), 4.98 (d, J = 7.2 Hz, 1H, A of AB, BnO-CH2-O), 4.87 – 

4.80 (m, 5H, H-1’’, PhCH2, H-5’), 4.78 – 4.71 (m, 3H, B of AB, BnO-CH2-O, PhCH2), 

4.66 (d, J = 11.7 Hz, 1H, B of AB, PhCH2), 4.61 (d, J = 11.7 Hz, 1H, A of AB, PhCH2), 

4.54 (m, 2H, H-5, B of AB, PhCH2), 4.49 (m, 1H, H-4), 4.42 (s, 1H, H-4’), 4.40 – 4.34 

(m, 2H, H-5’’, B of AB, PhCH2), 4.30 (dd, J = 10.4, 2.8 Hz, 1H, H-3), 4.15 (d, J = 9.4 
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Hz, 2H, H-3’’, H-4’’), 4.05 (m, 2H, H-2’,H-3’), 3.91 (dd, J = 10.4, 3.5 Hz, 1H, H-2), 3.84 – 

3.73 (m, 3H, PhCH2, A of AB, O-CH2-CH2), 3.68 (s, 3H, COOCH3), 3.60 – 3.54 (m, 2H, 

H-2’’, B of AB, O-CH2-CH2), 3.44 (s, 3H, COOCH3), 2.59 (dd, J = 7.5, 5.2 Hz, 2H, CH2-

CH2-S), 0.88 (d, J = 6.3 Hz, 3H, H-6’’); 13C NMR (100 MHz, acetone-D6) δ 169.6, 169.4, 

158.0, 140.4, 139.9, 139.8, 139.5, 139.20, 139.16, 138.4, 130.0, 129.4, 129.2, 129.14, 129.11, 

129.0, 128.8, 128.7, 128.6, 128.5, 128.38, 128.36, 128.3, 128.2, 127.8, 127.6, 100.0, 98.0, 

96.3, 93.1, 77.53, 77.48, 77.0, 76.3, 75.9, 75.8, 75.3, 74.5, 73.0, 72.9, 72.1, 71.5, 71.2, 70.4, 

69.5, 66.7, 66.4, 60.2, 53.7, 52.1, 51.9, 37.0, 30.9, 16.9; IR (thin film) 2925, 2110, 1765, 

1727, 1497, 1455, 1345, 1238, 1106, 1039, 915, 739, 698 cm-1; HRMS (ESI) calcd. for 

C73H80N4O18S (M+Na)+ 1355.5086 found 1355.5071 m/z. 

2-Acetamido-4-(benzyloxycarbonyl)amino-3-O-benzyloxymethyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-

(1→3)-methyl (2,4-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→1)-2-

(benzylthio)ethanol (2-39) 

 

To a stirred solution of azide 2-37 (29 mg, 0.022 mmol) in anhydrous pyridine (0.35 mL) 

was added at 0 °C thioacetic acid (0.35 mL). The mixture was warmed to room 

temperature and stirred for 24 h at that temperature. The solution was co-evaporated 

with toluene (2x5 mL) and the residue was purified by flash chromatography 

(EtOAc/hexanes 1:10 to acetone/hexanes 1:7 to 1:5 to 1:3) to give acetamide 2-39 (21 

mg, 0.016 mmol, 72%) as a white foam. Rf (acetone/hexanes 2:3) = 0.25; [α]D
20 = 

+104.7° (c = 0.36, acetone); 1H NMR (600 MHz, acetone-D6) δ 7.48 (d, J = 7.0 Hz, 2H, 

arom.), 7.42 – 7.18 (m, 31H, arom.), 7.16 – 7.08 (m, 2H, arom.), 6.49 (d, J = 10.3 Hz, 

1H, NH), 5.93 (d, J = 9.5 Hz, 1H, NH), 5.52 (d, J = 2.9 Hz, 1H, H-1’), 5.15 (d, J = 11.2 

Hz, 1H, A of AB, PhCH2), 5.09 (s, 2H, PhCH2), 5.05 (d, J = 3.5 Hz, 1H, H-1), 4.92 – 

4.80 (m, 4H, PhCH2, A of AB, BnO-CH2-O), 4.77 (d, J = 12.8 Hz, 2H, PhCH2, H-5’), 

4.71 – 4.56 (m, 5H, H-1’’, PhCH2, B of AB, Bn-O-CH2-O), 4.51 (d, J = 11.4 Hz, 2H, H-5, 



 

101 
 

B of AB, PhCH2), 4.48 (m, 1H, H-4), 4.43 – 4.33 (m, 2H, H-4’, H-5’’, B of AB, PhCH2), 

4.29 (dd, J = 10.4, 2.8 Hz, 1H, H-3), 4.24 – 4.15 (m, 1H, H-2’’), 4.14 – 4.01 (m, 3H, H-2’, 

H-3’, H-4’’), 3.91 (dd, J = 10.3, 3.5 Hz, 1H, H-2), 3.86 (dd, J = 11.4, 4.2 Hz, 1H, H-3’’), 

3.83 – 3.72 (m, 3H, PhCH2, A of AB, O-CH2-CH2), 3.69 (s, 3H, COOCH3), 3.62 – 3.54 

(m, 1H, B of AB, O-CH2-CH2), 3.33 (s, 3H, COOCH3), 2.60 (dd, J = 8.1, 4.7 Hz, 2H, 

CH2-CH2-S), 1.81 (s, 3H, Ac-CH3), 0.92 (d, J = 6.3 Hz, 3H, H-6’’); 13C NMR (100 MHz, 

acetone-D6) δ 170.0, 169.6, 169.2, 158.1, 140.4, 140.0, 139.8, 139.6, 139.4, 139.2, 130.0, 

129.3, 129.18, 129.15, 128.9, 128.7, 128.6, 128.5, 128.4, 128.32, 128.28, 127.9, 127.6, 99.9, 

97.9, 96.7, 93.6, 77.6, 77.1, 76.0, 75.8, 75.6, 74.4, 73.4, 73.1, 72.9, 71.6, 71.1, 69.8, 69.49, 

66.47, 54.0, 52.1, 51.9, 49.2, 37.0, 30.9, 23.5, 17.2; IR (thin film) 3030, 2933, 1764, 1718, 

1670, 1520, 1455, 1368, 1248, 1107, 1043, 916, 740, 699 cm-1; HRMS (ESI) calcd. for 

C75H84N2O19S (M+Na)+ 1371.5281 found 1371.5314 m/z. 

2,2’-Dithiobis[2-acetamido-4-amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→4)-α-D-

galactopyranosyluronate-(1→3)-α-D-galactopyranosyluronate-(1→1)-1-ethanol] (2-1) 

 

To a stirred solution of ester 2-39 (18 mg, 13.3 µmol) in THF (2.0 mL) and MeOH (0.75 

mL) was added at 0 °C a 1 M aq. solution of NaOH (0.8 mL, 0.800 mmol). The reaction 

was slowly warmed to room temperature and stirred for 16 h. The reaction was diluted 

with water (5 mL), acidified to pH 4 with 0.5 M aq. NaHSO4, and poured into EtOAc (5 

mL). After separation, the aqueous fraction was extracted with EtOAc (8x10 mL), the 

combined organic fractions were dried over Na2SO4 and concentrated to give the 

intermediate diacid as a white foam. 

To a stirred solution of liquid ammonia (10 mL) was added at -78 °C a solution of 

the crude diacid in THF (2.0 mL). The mixture was treated with tBuOH (0.8 mL) and 

lumps of freshly cut sodium (90 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition of solid NH4OAc (300 
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mg). The solution was warmed to room temperature under a stream of argon and co-

evaporated with MeOH (2x10 mL) and water (2x5 mL). The residue was left exposed to 

air for 16 h, purified by size exclusion chromatography (MeOH/5 mM aq. NH4OAc 1:10, 

Sephadex® G-25, GE Healthcare, Little Chalfont, UK) and lyophilized repeatedly to give 

disulfide 2-1 (7.6 mg, 6.2 µmol, 93% over two steps) as a white solid. [α]D
20 = +80.3° (c 

= 0.10, H2O); 1H NMR (600 MHz, D2O) δ 5.32 (d, J = 3.8 Hz, 1H, H-1’), 5.12 (d, J = 

3.8 Hz, 1H, H-1), 5.05 (d, J = 3.8 Hz, 1H, H-1’’), 4.83 (d, J = 5.3 Hz, 1H, H-5’’), 4.66 (s, 

1H, H-5’), 4.59 (s, 1H, H-4), 4.48 (s, 1H, H-4’), 4.45 (d, J = 2.5 Hz, 1H, H-5), 4.26 (d, J 

= 11.1 Hz, 1H, H-3’’), 4.21 (dd, J = 10.6, 3.0 Hz, 1H, H-3’), 4.11 (m, 3H, H-2’’, H-3, A of 

AB, O-CH2-CH2), 4.03 – 3.96 (m, 2H, H-2, H-2’), 3.96 – 3.89 (m, 1H, B of AB, O-CH2-

CH2), 3.67 (s, 1H, H-4’’), 3.11 – 3.01 (m, 2H, CH2-CH2-S-S), 2.20 (s, 3H, Ac-CH3), 1.35 

(d, J = 6.6 Hz, 3H, H-6’’); HRMS (MALDI) calcd. for C44H70N4O32S2 (M-H)- 1229.3330 

found 1229.3342 m/z. 

tert-Butyldimethylsilyl 2-azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-

trideoxy-α-D-galactopyranosyl-(1→4)-2-azido-6-O-benzyl-2-deoxy-3-O-naphthyl-β-D-

galactopyranoside (2-42) 

 

Alcohol 2-40132 (40 mg, 0.073 mmol) and glycosyl phosphate 2-17 (67 mg, 0.109 mmol) 

were co-evaporated with anhydrous toluene (3x5 mL) and kept under high vacuum for 48 

h. The mixture was dissolved in anhydrous CH2Cl2 (3.7 mL) and stirred over activated 

molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was cooled to 0 

°C and treated dropwise with TBSOTf (25 µL, 0.109 mmol). The reaction was stirred for 

1.5 h at that temperature and quenched by addition of a 1:1 (v/v) mixture of MeOH and 

Et3N. The mixture was diluted with CH2Cl2 (20 mL), filtered through Celite and 

concentrated. The crude product was purified by flash chromatography (EtOAc/hexanes 

1:4 to 1:2) to give disaccharide 2-42 (53 mg, 0.056 mmol, 77%) as a clear oil. Rf 

(EtOAc/hexanes 1:2) = 0.63; [α]D
20 = +66.1° (c = 5.0, CHCl3); 

1H NMR (400 MHz, 

CDCl3) δ 7.84 (dd, J = 7.6, 2.9 Hz, 4H, arom.), 7.63 – 7.46 (m, 3H, arom.), 7.43 – 7.28 
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(m, 10H, arom.), 5.30 (dd, J = 11.3, 3.8 Hz, 1H, H-3c), 5.14 (d, J = 12.2 Hz, 1H, A of 

AB, PhCH2), 5.03 (d, J = 12.3 Hz, 1H, B of AB, PhCH2), 4.96 – 4.89 (m, 3H, H-1c, A of 

AB, CH2Ph, NapCH2), 4.84 (d, J = 12.5 Hz, 1H, B of AB, NapCH2), 4.73 – 4.64 (m, 1H, 

H-5c), 4.51 (d, J = 1.4 Hz, 2H, PhCH2), 4.42 (d, J = 7.5 Hz, 1H, H-1b), 4.17 (dd, J = 

9.5, 2.1 Hz, 1H, H-4c), 4.11 (d, J = 2.9 Hz, 1H, H-4b), 3.92 (t, J = 9.1 Hz, 1H, H-6b), 

3.67 (dd, J = 10.7, 7.5 Hz, 1H, H-2b), 3.55 (dd, J = 9.1, 5.6 Hz, 1H, H-6b), 3.44 (dd, J = 

8.9, 5.7 Hz, 1H, H-5b), 3.31 (dd, J = 11.3, 3.9 Hz, 1H, H-2c), 3.18 (dd, J = 10.7, 3.0 Hz, 

1H, H-3b), 2.91 – 2.56 (m, 3H, Lev-CH2), 2.46 (m, 1H, Lev-CH2), 2.18 (d, J = 4.5 Hz, 

3H, Lev-CH3), 0.92 (s, 9H, TBS), 0.84 (d, J = 6.4 Hz, 3H, H-6c), 0.12 (d, J = 0.4 Hz, 

6H, TBS); 13C NMR (100 MHz, CDCl3) δ 206.6, 172.2, 156.7, 137.6, 136.5, 135.1, 133.3, 

133.2, 128.7, 128.6, 128.42, 128.38, 128.11, 128.09, 128.07, 128.0, 127.8, 126.6, 126.3, 

126.1, 125.7, 98.9, 97.8, 78.1, 77.4, 73.6, 72.9, 72.8, 70.2, 67.1, 65.5, 64.9, 58.0, 52.9, 38.1, 

29.9, 28.1, 25.8, 25.7, 18.1, 16.4, -4.1, -5.0; IR (thin film) 3346, 2931, 2858, 2109, 1718, 

1603, 1510, 1408, 1349, 1253, 1146, 1076, 1040, 895, 839, 784, 752, 698 cm-1; HRMS (ESI) 

calcd. for C49H61N7O11Si (M+Na)+ 974.4096 found 974.4051 m/z. 

tert-Butyldimethylsilyl 2-azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-

trideoxy-α-D-galactopyranosyl-(1→4)-2-azido-6-O-benzyl-2-deoxy-β-D-

galactopyranoside (2-43) 

 

To a stirred solution of naphthyl ether 2-42 (270 mg, 0.28 mmol) in a CH2Cl2 (5.1 ml) 

and MeOH (0.6 mL) was added at 0 °C DDQ (193 mg, 0.85 mmol). The mixture was 

slowly warmed to room temperature and stirred for 12 h at that temperature. The 

reaction was diluted with Et2O (20 mL), quenched by addition of a 1:1 (v/v) mixture of 

sat. aq. NaHCO3 and 10% aq. Na2S2O3 (10 mL) and stirred vigorously for 15 min. After 

separation, the aqueous layer was extracted with Et2O (3x20 mL). The combined organic 

fractions were dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 1:8 to 1:1) to give alcohol 2-43 (230 mg, 0.24 mmol, 

84%) as a clear oil. Rf (EtOAc/hexanes 1:2) = 0.31; [α]D
20 = +66.4° (c = 1.0, CHCl3); 

1H 
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NMR (400 MHz, CDCl3) δ 7.43 – 7.28 (m, 10H, arom.), 5.24 (dd, J = 11.2, 3.7 Hz, 1H, 

H-3c), 5.16 (d, J = 12.2 Hz, 1H, A of AB, PhCH2), 5.06 (d, J = 12.3 Hz, 1H, B of AB, 

PhCH2), 5.00 (d, J = 9.4 Hz, 1H, NH), 4.90 (d, J = 4.0 Hz, 1H, H-1c), 4.65 (dd, J = 

13.0, 6.5 Hz, 1H, H-5c), 4.53 (s, 2H, PhCH2), 4.48 (d, J = 7.1 Hz, 1H, H-1b), 4.26 (dd, J 

= 9.5, 2.2 Hz, 1H, H-4c), 3.97 (d, J = 1.7 Hz, 1H, H-4b), 3.92 (t, J = 10.4 Hz, 1H, A of 

AB, H-6b), 3.59 (m, 2H, H-5b, B of AB, H-6b), 3.51 (dd, J = 11.2, 4.0 Hz, 1H, H-2c), 

3.42 – 3.33 (m, 2H, H-2b, H-3b), 3.00 – 2.53 (m, 4H, Lev-CH2, OH), 2.51 – 2.39 (m, 1H, 

Lev-CH2), 2.18 (s, 3H, Lev-CH3), 1.16 (d, J = 6.5 Hz, 3H, H-6c), 0.93 (s, 9H, TBS), 0.14 

(s, 6H, TBS); 13C NMR (100 MHz, CDCl3) δ 206.5, 172.2, 156.7, 137.9, 136.4, 129.72, 

128.71, 128.6, 128.4, 128.1, 127.9, 127.8, 99.3, 97.7, 77.3, 73.5, 73.3, 71.7, 70.8, 67.6, 67.2, 

67.0, 65.6, 58.3, 52.7, 38.0, 29.9, 28.1, 25.8, 18.1, 16.4, -4.1, -5.0; IR (thin film) 3355, 

2930, 2858, 2111, 1719, 1719, 1524, 1456, 1363, 1253, 1179, 1253, 1145, 1116, 1076, 840, 

784, 751, 699, 676 cm-1; HRMS (ESI) calcd. for C38H53N7O11Si (M+Na)+ 834.3470 found 

834.3439 m/z. 

tert-Butyldimethylsilyl 2-azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-

trideoxy-α-D-galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-

(1→3)]-2-azido-6-O-benzyl-2-deoxy-β-D-galactopyranoside (2-44) 

 

Alcohol 2-43 (181 mg, 0.22 mmol) and imidate 2-41132 (250 mg, 0.33 mmol) were co-

evaporated with anhydrous toluene (3x20 mL) and kept under high vacuum for 16 h. 

The mixture was dissolved in anhydrous CH2Cl2 (11 mL) and stirred over activated 

molecular sieves (3 Å-AW) for 1 h at room temperature. The solution was cooled to -30 

°C and treated dropwise with TMSOTf (10 µL, 0.055 mmol in 0.2 mL anhydrous 

CH2Cl2). The reaction was stirred for 1.5 h at that temperature, quenched with a 1:1 

(v/v) mixture of EtOH and Et3N (0.5 mL) and diluted with CH2Cl2 (20 mL). The 

mixture was filtered through Celite and concentrated. The residue was purified by flash 
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chromatography (EtOAc/hexanes 1:3 to 2:3) to give trisaccharide 2-44 (280 mg, 0.20 

mmol, 90%) as a clear oil; Rf (EtOAc/hexanes 2:3) = 0.59; [α]D
20 = +46.5° (c = 1.0, 

CHCl3); 
1H NMR (400 MHz, CDCl3) δ 8.08 (d, J = 7.2 Hz, 2H, arom.), 8.00 (dd, J = 

13.7, 7.2 Hz, 4H, arom.), 7.89 – 7.82 (m, 2H, arom.), 7.58 – 7.45 (m, 5H, arom.), 7.42 – 

7.27 (m, 17H, arom.), 6.02 (dt, J = 6.4, 4.5 Hz, 1H, H-5d), 5.63 (m, 3H, H-1d, H-2d, H-

3d), 5.29 – 5.13 (m, 2H, H-3c, A of AB, PhCH2), 5.06 (d, J = 12.3 Hz, 1H, B of AB, 

PhCH2), 4.94 (d, J = 3.6 Hz, 1H, H-1c), 4.87 – 4.69 (m, 4H, H-4d, NH, H-6d), 4.63 – 

4.44 (m, 4H, H-5c, PhCH2, H-1b), 4.18 (d, J = 7.1 Hz, 1H, H-4c), 4.03 (d, J = 2.1 Hz, 

1H, H-4b), 3.85 (dd, J = 10.4, 10.4 Hz, 1H, H-6b), 3.71 – 3.51 (m, 4H, H-2b, H-3b, H-5b, 

H-6b), 3.10 (dd, J = 11.2, 3.6 Hz, 1H, H-2c), 2.92 – 2.52 (m, 3H, Lev-CH2), 2.50 – 2.37 

(m, 1H, Lev-CH2), 2.18 (s, 3H, Lev-CH3), 1.18 (d, J = 6.4 Hz, 3H, H-6c), 0.91 (s, 9H, 

TBS), 0.13 (s, 6H, TBS); 13C NMR (100 MHz, CDCl3) δ 206.6, 172.2, 166.3, 165.9, 165.8, 

156.7, 137.9, 136.6, 133.8, 133.5, 133.3, 130.1, 130.0, 129.94, 129.89, 129.7, 129.5, 129.1, 

129.0, 128.8, 128.7, 128.62, 128.58, 128.5, 128.4, 128.2, 128.0, 127.9, 106.3, 98.6, 98.0, 

82.1, 81.7, 78.2, 77.4, 76.2, 75.0, 73.6, 70.7, 70.6, 68.1, 67.2, 65.3, 65.1, 63.5, 58.6, 52.9, 

38.1, 30.0, 29.9, 28.1, 25.8, 18.1, 16.7, -4.0, -5.0; IR (thin film) 3419, 2930, 2858, 2113, 

1725, 1602, 1585, 1507, 1492, 1316, 1264, 1178, 1109, 1096, 1070, 1027, 840, 785, 711 cm-

1; HRMS (ESI) calcd. for C72H79N7O20Si (M+Na)+ 1412.5047 found 1412.5050 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-

azido-6-O-benzyl-2-deoxy-αβ-D-galactopyranose (2-45) 

 

To a stirred solution of silyl ether 2-44 (280 mg, 0.20 mmol) in THF (10 mL) were 

added at 0 °C acetic acid (115 µL, 2.014 mmol) and tetrabutylammonium fluoride (1 M 

in THF, 2.0 mL, 2.0 mmol). The reaction was slowly warmed to room temperature and 

stirred for 2 h at that temperature. The mixture was diluted with Et2O (50 mL) and 
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washed with water (3x30 mL). The combined aqueous fractions were extracted with 

Et2O (2x20 mL). The combined organic extracts were dried over Na2SO4 and 

concentrated. The residue was filtered through a short plug of silica gel (EtOAc/hexanes 

1:2 to 1:1) to give lactol 2-45 (229 mg, 0.18 mmol, 89%, 3:2 α:β) as a clear oil. Rf 

(EtOAc/hexanes 2:3) = 0.20; [α]D
20 = +69.2° (c = 1.0, CH2Cl2); 

1H NMR (400 MHz, 

CDCl3) δ 8.06 (dd, J = 11.0, 4.0 Hz, 2H), 8.03 – 7.93 (m, 5H), 7.90 – 7.84 (m, 2H), 7.55 

– 7.42 (m, 5H), 7.42 – 7.27 (m, 22H), 6.08 – 5.83 (m, 1.5H), 5.74 – 5.57 (m, 3H), 5.37 (t, 

J = 3.0 Hz, 0.6H), 5.26 – 5.02 (m, 4H), 4.98 – 4.65 (m, 6H), 4.65 – 4.43 (m, 4.4H), 4.26 

(dd, J = 12.2, 4.9 Hz, 1.4H), 4.20 – 4.10 (m, 2H), 4.04 (d, J = 2.2 Hz, 0.4H), 4.00 (d, J 

= 7.1 Hz, 0.4H), 3.84 – 3.57 (m, 5H), 3.22 (dd, J = 11.2, 3.7 Hz, 0.6H), 3.13 (dd, J = 

11.2, 3.7 Hz, 0.4H), 2.89 – 2.74 (m, 1H), 2.72 – 2.51 (m, 2H), 2.49 – 2.36 (m, 1H), 2.21 – 

2.13 (m, 3H), 1.18 (d, J = 6.4 Hz, 3H); 13C NMR (100 MHz, CDCl3) δ 206.7, 172.1, 

166.3, 166.2, 165.9, 165.79, 165.78, 165.6, 165.0, 156.7, 138.0, 137.7, 137.6, 136.5, 133.83, 

133.76, 133.6, 133.52, 133.49, 133.4, 130.1, 130.04, 129.98, 129.92, 129.90, 129.85, 129.8, 

129.59, 129.57, 129.38, 129.35, 129.1, 128.99, 128.95, 128.9, 128.8, 128.72, 128.68, 128.6, 

128.5, 128.4, 128.33, 128.30, 128.25, 128.14, 128.07, 128.0, 125.4, 107.0, 106.3, 98.8, 98.4, 

97.0, 92.1, 82.09, 82.08, 81.99, 81.95, 81.9, 81.8, 81.4, 78.1, 77.7, 77.4, 76.6, 75.2, 74.6, 

73.62, 73.55, 70.6, 70.5, 69.8, 67.2, 65.3, 63.3, 60.5, 58.9, 52.8, 38.0, 29.9, 28.1, 21.6, 16.7; 

IR (thin film) 3426, 2935, 2111, 1722, 1602, 1505, 1452, 1316, 1264, 1778, 1109, 1070, 

1027, 711 cm-1; HRMS (ESI) calcd. for C66H65N7O20 (M+Na)+ 1298.4182 found 1298.4198 

m/z. 
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Ethyl 2-azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-

azido-6-O-benzyl-2-deoxy-1-thio-αβ-D-galactopyranoside (2-46) 

 

To a stirred solution of alcohol 2-45 (115 mg, 0.090 mmol) in CH2Cl2 (4.5 mL) were 

added at room temperature 2,2,2-trifluoro-N-phenylacetimidoyl chloride (47 mg, 0.225 

mmol) and cesium carbonate (73 mg, 0.225 mmol). The reaction was stirred for 1.5 h, 

diluted with hexanes/0.5% Et3N (20 mL) and filtered through basic Celite. The mixture 

was concentrated and the residue was filtered through a short plug of silica gel 

(EtOAc/hexanes/Et3N 1:10:0.05 to 1:2:0.15) to give the crude imidate (125 mg) as a 

clear oil. 

To a stirred solution of the crude imidate (125 mg) in CH2Cl2 (4.3 mL) over 

activated molecular sieves (3 Å-AW) was added ethanethiol (7 µL, 0.095 mmol) and the 

mixture was stirred for 30 min at room temperature. The solution was cooled to 0 °C and 

treated with trifluoromethanesulfonic acid (1.5 µL, 0.017 mmol). The reaction was stirred 

for 1.5 h at that temperature, quenched with Et3N (0.05 mL) and concentrated. The 

residue was purified by flash chromatography (EtOAc/hexanes 0:1 to 1:8 to 1:5) to give 

thioglycoside 2-46 (90 mg, 0.068 mmol, 76% over two steps, 1:1 α:β) as a clear oil. Rf 

(EtOAc/hexanes 1:2) = 0.44-0.59; [α]D
20 = +74.3° (c = 1.0, CHCl3); 

1H NMR (400 MHz, 

acetone-D6) δ 8.18 – 8.03 (m, 4H), 8.01 – 7.96 (m, 2H), 7.95 – 7.89 (m, 2H), 7.65 – 7.56 

(m, 4H), 7.52 – 7.23 (m, 18H), 6.24 – 6.16 (m, 1H), 6.09 – 6.01 (m, 1H), 5.91 (d, J = 1.5 

Hz, 0.5H, H-1d), 5.85 (d, J = 1.3 Hz, 0.5H, H-1d), 5.83 – 5.73 (m, 2H), 5.65 (d, J = 5.5 

Hz, 1H), 5.32 – 5.24 (m, 1H), 5.22 – 5.17 (m, 1H, H-1c), 5.16 – 5.09 (m, 2H), 5.05 (d, J = 

12.5 Hz, 0.5H), 4.89 – 4.69 (m, 3H), 4.60 – 4.48 (m, 3H), 4.43 – 4.31 (m, 2H), 4.23 (ddd, 

J = 10.1, 4.1, 2.1 Hz, 1H), 4.16 (dd, J = 10.7, 2.5 Hz, 0.5H), 4.05 (dd, J = 10.2, 2.6 Hz, 

0.5H), 3.98 – 3.83 (m, 3H), 3.74 – 3.64 (m, 1H), 2.81 – 2.47 (m, 5H), 2.44 – 2.29 (m, 1H), 

2.13 (s, 3H), 1.40 – 1.18 (m, 6H); 13C NMR (100 MHz, acetone-D6) δ 206.1, 172.40, 



2 CONJUGATION-READY ZWITTEROINIC OLIGOSACCHARIDES 

108 
 

172.35, 166.5, 166.31, 166.29, 166.2, 166.00, 165.96, 157.8, 139.3, 139.2, 138.3, 134.48, 

134.45, 134.35, 134.32, 134.29, 134.13, 134.10, 130.7, 130.58, 130.56, 130.54, 130.49, 

130.47, 130.3, 130.18, 130.16, 130.1, 129.54, 129.52, 129.47, 129.43, 129.41, 129.32, 129.29, 

129.14, 129.12, 128.8, 128.72, 128.65, 128.5, 128.42, 128.36, 108.1 (C-1d), 107.8 (C-1d), 

99.74 (C-1c), 99.65 (C-1c), 85.1, 83.2, 82.9, 82.7, 82.2, 82.0, 80.4, 78.9, 78.8, 77.9, 77.4, 

77.3, 76.4, 73.7, 71.7, 71.6, 71.3, 70.9, 69.1, 68.7, 66.9, 66.1, 64.3, 63.9, 61.1, 59.6, 53.9, 

38.2, 28.8, 28.7, 24.41, 24.37, 17.24, 17.19, 15.7, 15.1; IR (thin film) 3365, 2927, 2111, 

1724, 1585, 1504, 1452, 1316, 1264, 1178, 1109, 1097, 1027, 975, 740, 711 cm-1; HRMS 

(ESI) calcd. for C68H69N7O19S (M+Na)+ 1342.4267 found 1342.4253 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-

azido-6-O-benzyl-2-deoxy-α-D-galactopyranosyl-(1→3)-2-O-benzoyl-4,6-O-[1-(R)-

(methoxycarbonyl)-ethylidene]-β-D-galactopyranosyl-(1→1)-6-(benzylthio)-1-hexanol 

(2-47) 

 

Thioglycoside 2-46 (88 mg, 0.067 mmol) and alcohol 2-16 (77 mg, 0.133 mmol) were 

glycosylated using DMTST (34 mg, 0.167 mmol) and TTBPy (116 mg, 0.467 mmol) in 

CH2Cl2 (3.3 mL) at room temperature for 14 h. Then, 0.5 equiv. of DMTST were added 

to drive the reaction to completion and stirring was continued for 6 h. The reaction was 

quenched with a 1:1 (v/v) mixture of sat. aq. NaHCO3 and 10% aq. Na2S2O3 (10 mL), 

and diluted with CH2Cl2 (10 mL). After separation, the aqueous layer was extracted with 

CH2Cl2 (5x10 mL), the combined organic fractions were dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (EtOAc/toluene 0:1 to 

1:4 to 1:3) to obtain a mixture of tetrasaccharide 2-47 and excess acceptor 2-16. The 

residue was subjected to size exclusion chromatography (MeOH/CH2Cl2 1:1, Sephadex® 
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LH-20, GE Healthcare) to give tetrasaccharide 2-47 (70 mg, 57%) as a white foam. Rf 

(EtOAc/toluene 1:2) = 0.46; [α]D
20 = +40.0° (c = 0.74, acetone); 1H NMR (600 MHz, 

acetone-D6) δ 8.13 (d, J = 7.9 Hz, 2H, arom.), 8.09 (d, J = 7.1 Hz, 2H, arom.), 8.05 (d, J 

= 7.7 Hz, 2H, arom.), 7.98 (d, J = 7.3 Hz, 2H, arom.), 7.86 (d, J = 7.7 Hz, 2H, arom.), 

7.62 (m, 5H, arom.), 7.53 – 7.25 (m, 25H, arom.), 6.19 (d, J = 10.0 Hz, 1H, NH), 6.00 

(dd, J = 4.1, 3.2 Hz, 1H, H-5d), 5.76 (s, 1H, H-1d), 5.74 (s, 1H, H-2d), 5.71 – 5.68 (m, 

1H, H-3d), 5.53 (dd, J = 5.2 Hz, 6.4 Hz, 1H, H-2a), 5.45 (s, 1H, H-1b), 5.25 (dd, J = 

11.4, 3.9 Hz, 1H, H-3c), 5.15 (d, J = 12.5 Hz, 1H, A of AB, PhCH2), 5.06 – 5.02 (m, 2H, 

H-1c, B of AB, PhCH2), 4.95 (s, 1H, H-4d), 4.80 – 4.74 (m, 1H, A of AB, H-6d), 4.72 (m, 

1H, H-5c), 4.63 (m, 2H, H-1a, B of AB, H-6d), 4.50 (d, J = 3.6 Hz, 1H, H-4a), 4.42 (dd, 

J = 8.4 Hz, 2H, PhCH2), 4.24 – 4.17 (m, 2H, H-3a, H-4c), 4.14 (d, J = 10.8 Hz, 1H, H-

3b), 4.10 (s, 3H, H-4b, H-5b, A of AB, H-6a), 3.99 (d, J = 12.3 Hz, 1H, B of AB, H-6a), 

3.88 – 3.80 (m, 2H, A of AB, O-CH2-CH2, H-2b), 3.80 – 3.73 (m, 5H, COOCH3, A of AB, 

H-6b, H-2c), 3.63 (m, 3H, S-CH2-Ph, B of AB, H-6b), 3.58 (s, 1H, H-5a), 3.46 (dt, J = 

10.0, 6.4 Hz, 1H, B of AB, O-CH2-CH2), 2.74 (m, 1H, Lev-CH2), 2.66 (m, 1H, Lev-CH2), 

2.50 (dt, J = 17.0, 7.4 Hz, 1H, Lev-CH2), 2.43 – 2.33 (m, 1H, Lev-CH2), 2.22 (t, J = 7.3 

Hz, 2H, CH2-CH2-S), 2.11 (s, 3H, Lev-CH3), 1.51 (s, 3H, pyruv.-CH3), 1.47 – 1.37 (m, 3H, 

aliph.), 1.25 (m, 5H, aliph., H-6c), 1.19 – 1.11 (m, 3H, aliph.); 13C NMR (150 MHz, 

acetone-D6) δ 206.1, 172.4, 171.1, 166.5, 166.3, 166.2, 165.8, 165.7, 157.8, 140.0, 138.3, 

134.4, 134.33, 134.25, 134.1, 134.00, 130.8, 130.7, 130.6, 130.5, 130.4, 130.3, 130.2, 130.1, 

129.7, 129.6, 129.5, 129.42, 129.37, 129.3, 129.2, 129.1, 128.74, 128.69, 128.4, 128.3, 127.5, 

108.5 (C-1d), 101.8 (C-1a), 99.6, 99.5 (C-1c), 94.4 (C-1b), 82.6, 82.0, 78.6, 75.9, 73.73, 

73.71, 73.6, 71.7, 71.3, 70.9, 69.9, 67.4, 66.9, 66.5, 66.0, 64.3, 60.0, 59.3, 53.9, 52.8, 38.2, 

36.5, 31.7, 26.3, 26.2, 26.1, 17.2; IR (thin film) 2111, 1726, 1452, 1266, 1110, 711 cm-1; 

HRMS (ESI) calcd. for C96H101N7O28S (M+Na)+ 1854.6307 found 1854.6344 m/z. 
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2-Azido-4-(benzyloxycarbonyl)amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→4)-

[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-azido-6-O-benzyl-2-deoxy-α-

D-galactopyranosyl-(1→3)-2-O-benzoyl-4,6-O-[1-(R)-(methoxycarbonyl)-ethylidene]-

β-D-galactopyranosyl-(1→1)-6-(benzylthio)-1-hexanol (2-48) 

 

To a stirred solution of Lev ester 2-47 (49 mg, 0.027 mmol) in CH2Cl2 (2.7 mL) was 

added at room temperature first a mixture of pyridine (65 µL, 0.802 mmol) and acetic 

acid (43 µL, 0.749 mmol), and then hydrazine hydrate (2.3 µL, 0.045 mmol). The 

mixture was stirred for 1.5 h at room temperature, quenched with acetone (0.1 mL) and 

subjected to size exclusion chromatography (MeOH/CH2Cl2 1:1, Sephadex® LH-20, GE 

Healthcare) to give alcohol 2-48 (45 mg, 0.026 mmol, 96%) as a white foam. Rf 

(EtOAc/toluene 2:3) = 0.31; [α]D
20 = +98.9° (c = 0.27, acetone); 1H NMR (600 MHz, 

acetone-D6) δ 8.13 (d, J = 7.7 Hz, 2H, arom.), 8.09 (d, J = 7.2 Hz, 2H, arom.), 8.03 (d, J 

= 7.7 Hz, 2H, arom.), 7.98 (d, J = 7.6 Hz, 2H, arom.), 7.87 (d, J = 7.7 Hz, 2H, arom.), 

7.62 (m, 4H, arom.), 7.54 – 7.25 (m, 26H, arom.), 6.05 (d, J = 9.9 Hz, 1H, NH), 5.98 (dd, 

J = 9.3, 5.3 Hz, 1H, H-5d), 5.76 – 5.71 (m, 2H, H-1d, H-2d), 5.70 (dd, J = 5.9, 3.2 Hz, 

1H, H-3d), 5.57 – 5.49 (dd, J = 6.8, 5.2 Hz, 1H, H-2a), 5.45 (s, 1H, H-1b), 5.12 (d, J = 

12.6 Hz, 1H, A of AB, PhCH2), 5.04 (d, J = 12.6 Hz, 1H, B of AB, PhCH2), 4.94 (m, 2H, 

H-1c, H-4d), 4.74 (dd, J = 11.9, 3.9 Hz, 1H, A of AB, H-6d), 4.66 – 4.56 (m, 3H, H-1a, 

H-5c, B of AB, H-6d), 4.51 (d, J = 3.7 Hz, 1H, H-4a), 4.47 – 4.39 (m, 2H, PhCH2), 4.34 – 

4.26 (m, 1H, H-3c), 4.19 (dd, J = 10.0, 3.7 Hz, 1H, H-3a), 4.14 – 4.03 (m, 5H, H-3b, H-

4b, H-5b, A of AB, H-6a, H-4c), 3.99 (d, J = 12.8 Hz, 1H, B of AB, H-6a), 3.85 – 3.74 

(m, 6H, A of AB, O-CH2-CH2, H-2b, A of AB, H-6b, COOCH3), 3.70 – 3.62 (m, 3H, S-

CH2-Ph, B of AB, H-6b), 3.58 (s, 1H, H-5a), 3.52 – 3.43 (m, 2H, H-2c, B of AB, O-CH2-

CH2), 2.22 (t, J = 7.4 Hz, 2H, CH2-CH2-S), 1.51 (s, 3H, pyruv.-CH3), 1.44 (m, 2H, 

aliph.), 1.34 – 1.19 (m, 6H, aliph., H-6c), 1.15 (m, 3H, aliph.); 13C NMR (150 MHz, 

acetone-D6) δ 171.1, 166.4, 166.3, 165.8, 165.7, 158.3, 140.0, 138.3, 134.4, 134.3, 134.2, 
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134.1, 130.73, 130.65, 130.6, 130.49, 130.46, 130.4, 130.3, 130.2, 130.1, 129.7, 129.6, 129.5, 

129.37, 129.35, 129.23, 129.16, 129.14, 128.70, 128.67, 128.4, 128.2, 127.5, 108.2 (C-1d), 

101.8 (C-1a), 99.5 (C-1c), 94.1 (C-1b), 82.5, 81.7, 78.5, 76.0, 73.6, 71.6, 71.3, 69.9, 67.4, 

66.8, 66.5, 66.1, 64.2, 62.0, 60.1, 57.3, 52.8, 36.5, 31.7, 30.4, 29.8, 29.1, 26.2, 26.1, 17.4; IR 

(thin film) 2936, 2326, 2163, 2111, 1728, 1602, 1452, 1266, 1109, 1071, 1029, 985, 711 cm-

1; HRMS (ESI) calcd. for C91H95N7O26S (M+Na)+ 1756.5940 found 1756.5895 m/z. 

2-Azido-4-(benzyloxycarbonyl)amino-3-O-benzyloxymethyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-

azido-6-O-benzyl-2-deoxy-α-D-galactopyranosyl-(1→3)-2-O-benzoyl-4,6-O-[1-(R)-

(methoxycarbonyl)-ethylidene]-β-D-galactopyranosyl-(1→1)-6-(benzylthio)-1-hexanol 

(2-49) 

 

Alcohol 2-48 (23 mg, 0.013 mmol), S,O-acetal 2-38 (95 mg, 0.401 mmol) and TTBPy 

(132 mg, 0.535 mmol) were co-evaproated with anhydrous toluene (3x10 mL). The 

mixture was dissolved in CH2Cl2 (2.0 mL) and stirred over activated molecular sieves (3 

Å) for 30 min at room temperature. The mixture was cooled to 0 °C and DMTST (16 

mg, 0.401 mmol in 0.3 mL CH2Cl2) was added dropwise over a period of 1.5 h, while the 

reaction temperature was kept below 10 °C. The reaction was stirred for another 45 min, 

quenched by addition of a 10:1 (v/v) mixture of MeOH and Et3N (0.5 mL) and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 0:1 to 

1:1) to give acetal 2-49 (22 mg, 0.012 mmol, 87%) as a white foam. Rf (EtOAc/hexanes 

2:3) = 0.46; [α]D
20 = +76.5° (c = 0.53, acetone); 1H NMR (400 MHz, acetone-D6) δ 8.16 – 

8.07 (m, 4H, arom.), 8.04 (d, J = 7.3 Hz, 2H, arom.), 8.01 – 7.96 (d, J = 7.6 Hz, 2H, 

arom.), 7.86 (d, J = 8.3 Hz, 2H, arom.), 7.70 – 7.55 (m, 5H, arom.), 7.52 – 7.24 (m, 30H, 

arom.), 6.09 (d, J = 10.1 Hz, 1H, NH), 5.98 (dt, J = 7.4, 3.8 Hz, 1H, H-5d), 5.76 – 5.72 

(m, 2H, H-1d, H-2d), 5.70 (dd, J = 5.8, 3.2 Hz, 1H, H-3d), 5.54 (dd, J = 10.0, 8.1 Hz, 
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1H, H-2a), 5.46 (s, 1H, H-1b), 5.13 – 5.06 (m, 2H, PhCH2), 5.01 (dd, J = 8.1, 5.5 Hz, 2H, 

H-1c, A of AB, BnO-CH2-O), 4.95 (dd, J = 5.8, 3.0 Hz, 1H, H-4d), 4.75 (m, 3H, A of 

AB, H-6d, A of AB, PhCH2, B of AB, BnO-CH2-O), 4.69 – 4.54 (m, 4H, H-1a, H-5c, B of 

AB, H-6d, B of AB, PhCH2), 4.52 (d, J = 3.6 Hz, 1H, H-4a), 4.43 (s, 2H, PhCH2), 4.35 

(dd, J = 11.0, 4.2 Hz, 1H, H-3c), 4.30 (d, J = 10.0 Hz, 1H, H-4c), 4.20 (dd, J = 10.1, 3.8 

Hz, 1H, H-3a), 4.15 – 4.03 (m, 4H, H-3b, H-4b, H-5b, A of AB, H-6a), 3.99 (d, J = 12.6 

Hz, 1H, B of AB, H-6a), 3.88 – 3.76 (m, 3H, A of AB, O-CH2-CH2, H-2b, A of AB, H-

6b), 3.74 (s, 3H, COOCH3), 3.72 – 3.65 (m, 2H, H-2c, B of AB, H-6b), 3.64 (s, 2H, CH2-

Ph), 3.57 (s, 1H, H-5a), 3.46 (dt, J = 10.0, 6.5 Hz, 1H, B of AB, O-CH2-CH2), 2.23 (t, J 

= 7.3 Hz, 2H, CH2-CH2-S), 1.51 (s, 3H, pyruv-CH3), 1.49 – 1.37 (m, 2H, aliph.), 1.35 – 

1.20 (m, 6H, H-6c, aliph.), 1.19 – 1.12 (m, 3H, aliph.); 13C NMR (100 MHz, acetone-D6) δ 

171.2, 166.5, 166.3, 165.9, 165.7, 157.9, 140.0, 139.4, 139.2, 138.4, 134.4, 134.34, 134.27, 

131.1, 130.8, 130.7, 130.64, 130.57, 130.5, 130.4, 130.3, 130.2, 130.1, 129.72, 129.65, 129.5, 

129.43, 129.39, 129.24, 129.18, 129.16, 128.9, 128.7, 128.41, 128.37, 128.3, 127.5, 108.6 (C-

1d), 101.9 (C-1a), 99.7, 99.5 (C-1c), 94.2 (C-1b), 92.9, 82.6, 81.8, 78.6, 76.1, 73.67, 73.65, 

73.62, 72.5, 71.7, 71.4, 71.1, 70.3, 69.9, 69.2, 67.4, 66.8, 66.6, 66.5, 66.1, 64.2, 61.1, 60.1, 

53.6, 52.8, 36.5, 31.8, 30.1, 29.9, 29.7, 26.2, 26.1, 17.4; IR (thin film) 2940, 2111, 1728, 

1452, 1264, 1110, 1042, 711 cm-1; HRMS (ESI) calcd. for C99H103N7O27S (M+Na)+ 

1876.6520 found 1876.6628 m/z. 
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2-Acetamido-4-(benzyloxycarbonyl)amino-3-O-benzyloxymethyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-[2,3,5,6-tetra-O-benzoyl-β-D-galactofuranosyl-(1→3)]-2-

acetamido-6-O-benzyl-2-deoxy-α-D-galactopyranosyl-(1→3)-2-O-benzoyl-4,6-O-[1-

(R)-(methoxycarbonyl)-ethylidene]-β-D-galactopyranosyl-(1→1)-6-(benzylthio)-1-

hexanol (2-50) 

 

To a stirred solution of diazide 2-49 (21 mg, 0.011 mmol) in anhydrous pyridine (0.22 

mL) was added at 0 °C thioacetic acid (0.2 mL). The mixture was warmed to room 

temperature and stirred for 48 h at that temperature. The solution was co-evaporated 

with toluene (2x5 mL) and the residue was purified by flash chromatography 

(EtOAc/hexanes 1:2 to acetone/hexanes 1:3 to 1:2 to 3:4) to give diacetamide 2-50 (13 

mg, 0.007 mmol, 60%) as a white foam. Rf (acetone/hexanes 1:2) = 0.29; [α]D
20 = +56.4° 

(c = 0.25, acetone); 1H NMR (400 MHz, acetone-D6) δ 8.11 – 8.08 (m, 2H, arom.), 8.06 – 

7.92 (m, 8H, arom.) 7.68 – 7.54 (m, 4H, arom.), 7.52 – 7.27 (m, 31H, arom.), 6.86 (d, J = 

9.8 Hz, 1H, NH), 6.71 (d, J = 7.2 Hz, 1H, NH), 5.92 (m, 2H, NH, H-5d), 5.71 – 5.64 (m, 

3H, H-1d, H-2d, H-3d), 5.41 (dd, J = 10.2, 8.1 Hz, 1H, H-2a), 5.10 (d, J = 3.9 Hz, 3H, H-

1b, PhCH2), 5.06 – 5.01 (m, 1H, H-1c), 4.98 (dd, J = 7.1, 3.4 Hz, 1H, H-4d), 4.89 (d, J = 

6.9 Hz, 1H, A of AB, BnO-CH2-O), 4.79 – 4.49 (m, 8H, H-1a, H-2b, H-5c, H-6d, B of AB, 

BnO-CH2-O, PhCH2), 4.46 – 4.35 (m, 3H, H-4a, PhCH2), 4.07 (m, 7H, H-2c, H-3a, H-4b, 

H-4c, H-5b, H-6a), 3.90 – 3.78 (m, 3H, H-3c, H-3b, A of AB, O-CH2-CH2), 3.77 (s, 3H, 

COOCH3), 3.70 – 3.58 (m, 3H, PhCH2, A of AB, H-6b), 3.54 (s, 1H, H-5a), 3.51 – 3.39 

(m, 2H, B of AB, O-CH2-CH2, B of AB, H-6b), 2.21 (t, J = 6.4 Hz, 2H, CH2-CH2-S), 1.83 

(s, 3H, Ac-CH3), 1.80 (s, 3H, Ac-CH3), 1.49 (s, 3H, pyruv.-CH3), 1.47 – 1.37 (m, 2H, 

aliph.), 1.31 – 1.09 (m, 9H, H-6c, aliph.); 13C NMR (100 MHz, acetone-D6) δ 171.2, 170.2, 

170.1, 166.5, 166.2, 166.0, 165.6, 140.0, 139.6, 139.54, 138.51, 134.46, 134.3, 134.2, 134.1, 

130.82, 130.81, 130.78, 130.7, 130.6, 130.5, 130.4, 130.1, 129.7, 129.6, 129.47, 129.45, 
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129.4, 129.22, 129.19, 129.15, 128.7, 128.64, 128.58, 128.4, 128.3, 128.21, 128.18, 127.6, 

109.1 (C-1d), 101.9 (C-1a), 99.6, 99.5 (C-1b), 94.5 (C-1c), 93.8, 82.9, 80.9, 78.6, 76.6, 

73.6, 73.2, 71.6, 71.5, 71.1, 70.03, 69.98, 67.7, 66.7, 66.5, 66.3, 66.0, 64.2, 54.1, 53.0, 50.6, 

49.1, 36.5, 32.3, 31.8, 30.6, 30.3, 30.1, 29.9, 29.1, 26.4, 26.2, 23.3, 23.2, 17.7; IR (thin film) 

2928, 1726, 1683, 1509, 1452, 1267, 1111, 1071, 1047, 711 cm-1; HRMS (ESI) calcd. for 

C103H111N3O29S (M+Na)+ 1908.6921 found 1908.6906 m/z. 

6,6’-Dithiobis[2-N-acetyl-4-amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→4)-[β-D-

galactofuranosyl-(1→3)]-2-N-acetyl-2-deoxy-α-D-galactopyranosyl-(1→3)-4,6-O-[1-

(R)-(carboxy)-ethylidene]-β-D-galactopyranoside-(1→1)-1-hexanol] (2-2) 

 

To a stirred solution of ester 2-50 (12 mg, 6.4 µmol) in THF (1.5 mL) and MeOH (0.75 

mL) was added at 0 °C a 1 M aq. solution of NaOH (0.8 mL). The reaction was slowly 

warmed to room temperature and stirred for 16 h at that temperature. The mixture was 

diluted with water (5 mL), acidified to pH 4 with 0.5 M aq. NaHSO4, and poured into 

EtOAc (5 mL). After separation, the aqueous fraction was extracted with EtOAc (8x10 

mL), the combined organic fractions were dried over Na2SO4 and concentrated to give 

the intermediate acid as a white foam. 

To a stirred solution of liquid ammonia (8 mL) was added at -78 °C a solution of 

the crude acid in THF (2.0 mL). The mixture was treated with tBuOH (0.8 mL) and 

lumps of freshly cut sodium (65 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition of solid NH4OAc (200 

mg). The solution was warmed to room temperature under a stream of argon and co-

evaporated with MeOH (2x10 mL) and water (2x5 mL). The residue was left exposed to 

air for 16 h, purified by size exclusion chromatography (MeOH/5 mM aq. NH4OAc 4:6, 

Sephadex® G-25, GE Healthcare) and lyophilized repeatedly to give disulfide 2 (5 mg, 



 

115 
 

2.8 µmol, 88%) as a white solid, containing approx. 10% of the corresponding thiol. [α]D
20 

= +60.6° (c = 0.14, H2O); 1H NMR (600 MHz, D2O) δ 5.42 (d, J = 3.7 Hz, 1H, H-1b), 

5.18 (d, J = 3.4 Hz, 1H, H-1d), 5.10 (d, J = 3.8 Hz, 1H, H-1c), 4.77 (d, J = 8.1 Hz, 1H, 

H-5c), 4.70 (dd, J = 11.2, 3.5 Hz, 1H, H-2b), 4.59 (d, J = 7.9 Hz, 1H, H-1a), 4.55 (d, J = 

4.0 Hz, 1H, H-4a), 4.41 (dd, J = 11.4, 4.3 Hz, 1H, H-3c), 4.32 (dd, J = 7.5, 5.5 Hz, 1H, 

H-5b), 4.26 (d, J = 2.2 Hz, 1H, H-4d or H-3d), 4.22 (dd, J = 11.1, 2.4 Hz, 1H, H-3b), 

4.18 – 4.08 (m, 5H, H-2c, H-2d, H-4d or H-3d, H-4b, A of AB, H-6a), 4.04 (m, 2H, B of 

AB, H-6a, A of AB, O-CH2-CH2), 3.92 – 3.86 (m, 2H, H-3a, H-5d), 3.87 – 3.72 (m, 6H, 

H-2a, H-6b, H-6d, B of AB, O-CH2-CH2), 3.67 (s, 1H, H-5a), 3.55 (s, 1H, H-4c), 3.02 (dd, 

J = 9.1, 6.8 Hz, 0.2H, CH2-CH2-SH), 2.88 (t, J = 7.2 Hz, 1.9H, CH2-CH2-S-S), 2.18 (s, 

3H, Ac-CH3), 2.16 (s, 3H, Ac-CH3), 1.85 – 1.73 (m, 4H, aliph.), 1.56 (s, 3H, pyruv.-CH3), 

1.55 – 1.50 (m, 4H, aliph.), 1.39 (d, J = 6.7 Hz, 3H, H-6c); HRMS (MALDI) calcd. for 

C74H124N6O42S2 (M+Na)+ 1855.7085 found 1855.7010 m/z. 

6,6’-Dithiobis[α-D-galactopyranosyluronate-(1→1)-1-hexanol] (2-53) 

 

To a stirred solution of ester 2-15α (10 mg, 0.017 mmol) in THF (1.0 mL) and MeOH 

(0.5 mL) was added at 0 °C 1 M aq. NaOH (0.8 mL). The reaction was slowly warmed to 

room temperature and stirred for 16 h at that temperature. The reaction was diluted 

with EtOAc (5 mL) and water (5 mL) and acidified to pH 4 with 0.5 M aq. NaHSO4. 

After separation, the aqueous fraction was extracted with EtOAc (8x5 mL), the 

combined organic fractions were dried over Na2SO4 and concentrated to give the 

intermediate acid as a white foam. 

To a stirred solution of liquid ammonia (8 mL) was added at -78 °C a solution of 

the crude acid in THF (2 mL). The mixture was treated with tBuOH (0.4 mL) and 

lumps of freshly cut sodium (45 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition of solid NH4OAc (100 

mg). The solution was warmed to room temperature under a stream of argon and co-

evaporated with MeOH (2x10 mL) and water (2x5 mL). The residue was left exposed to 

air for 16 h, purified by size exclusion chromatography (9:1 MeOH/5 mM aq. NH4OAc, 



2 CONJUGATION-READY ZWITTEROINIC OLIGOSACCHARIDES 

116 
 

Sephadex® G-25, GE Healthcare) and lyophilized repeatedly to give disulfide 2-53 (3.1 

mg, 5.1 µmol, 60% over two steps) as a white solid. [α]D
20 = +29.8° (c = 0.29, H2O); 1H 

NMR (400 MHz, D2O) δ 5.09 (d, J = 3.7 Hz, 1H, H-1), 4.47 – 4.33 (m, 2H, H-4, H-5), 

4.04 (dd, J = 10.1, 3.1 Hz, 1H, H-3), 3.97 (dd, J = 10.1, 3.7 Hz, 1H, H-2), 3.90 – 3.76 (m, 

1H, A of AB, O-CH2-CH2), 3.74 – 3.63 (m, 1H, B of AB, O-CH2-CH2), 2.91 (t, J = 7.2 

Hz, 2H, CH2-CH2-S), 1.91 – 1.68 (m, 4H, aliph.), 1.67 – 1.46 (m, 4H, aliph.); HRMS 

(MALDI) calcd. for C24H42O14S2 (M-H)- 617.1938 found 617.1954 m/z.  

2-Acetamido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→1)-6-(benzylthio)hexanol (2-57) 

 

Alcohol 2-11 (29 mg, 0.171 mmol) and glycosyl phosphate 2-17 (70 mg, 0.114 mmol) 

were co-evaproated with anhydrous toluene (3x10 mL) and kept under high vacuum for 

30 min. The mixture was dissolved in CH2Cl2 (1.8 mL) and stirred over activated 

molecular sieves (4 Å-AW) for 1 h at room temperature. The solution was cooled to 0 °C 

and treated with TMSOTf (31 µL, 0.171 mmol in 0.2 mL anhydrous CH2Cl2). The 

mixture was stirred for 3 h at that temperature, quenched with a 1:1 (v/v) mixture of 

MeOH and Et3N (0.5 mL), diluted with CH2Cl2 (20 mL) and filtered through Celite. The 

residue was purified by flash chromatography (EtOAc/hexanes 2:3 to 3:2) to give the 

corresponding glycosides (57 mg) as an inseparable α/β mixture. 

To a stirred solution of the glycoside mixture in anhydrous pyridine (0.9 mL) was 

added at 0 °C thioacetic acid (0.9 mL). The mixture was warmed to room temperature 

and stirred for 24 h at that temperature. The solution was co-evaporated with toluene 

(2x5 mL) and the residue was purified by flash chromatography (EtOAc/hexanes 1:2 to 

2:1 to 6:1) to give acetamide 2-57 (22 mg, 0.034 mmol, 29% over two steps) as a white 

solid, along with the corresponding β-isomer (21.6 mg, 0.034 mmol, 29%). Rf 

(EtOAc/hexanes 4:1) = 0.36; [α]D
20 = +24.7° (c = 0.50, CH2Cl2); 

1H NMR (400 MHz, 

CDCl3) δ 7.45 – 7.28 (m, 8H, arom.), 7.28 – 7.20 (m, 2H), 5.57 (d, J = 9.3 Hz, 1H, NH), 
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5.09 (m, 4H, PhCH2, H-3, NH), 4.74 (d, J = 3.9 Hz, 1H, H-1), 4.34 – 4.22 (m, 1H, H-2), 

4.11 (dt, J = 13.0, 5.3 Hz, 2H, H-4, H-5), 3.71 (s, 2H, PhCH2), 3.61 (m, 1H, A of AB, O-

CH2-CH2), 3.35 (m, 1H, B of AB, O-CH2-CH2), 2.68 (m, 1H, Lev-CH2), 2.61 – 2.30 (m, 

5H, Lev-CH2, CH2-CH2-S), 2.12 (s, 3H, Ac-CH3 or Lev-CH3), 1.98 (s, 3H, Ac-CH3 or Lev-

CH3), 1.56 (dd, J = 15.6, 8.3 Hz, 4H, aliph.), 1.43 – 1.23 (m, 4H, aliph.), 1.15 (d, J = 6.4 

Hz, 3H, H-6); 13C NMR (100 MHz, CDCl3) δ 206.7, 172.6, 170.2, 156.7, 138.6, 136.4, 

128.8, 128.5, 128.4, 128.1, 128.0, 126.9, 97.4, 77.2, 70.2, 68.2, 66.9, 64.4, 52.8, 47.7, 37.7, 

36.3, 31.3, 29.7, 29.2, 29.1, 28.5, 28.1, 25.8, 23.3, 16.5; IR (thin film) 2927, 1719, 1665, 

1533, 1242, 1122, 1045, 699 cm-1; HRMS (ESI) calcd. for C34H46N2O8S (M+Na)+ 665.2872 

found 665.2865 m/z. 

6,6’-Dithiobis[2-acetamido-4-amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→1)-1-

hexanol] (2-51) 

 

To a stirred solution of ester 2-57 (10 mg, 0.016 mmol) in anhydrous CH2Cl2 (1.0 mL) 

were added at room temperature first a mixture of pyridine (38 µL, 0.467 mmol) and 

acetic acid (24.9 µL, 0.436 mmol), and then hydrazine hydrate (1.0 µL, 0.020 mmol). The 

mixture was stirred for 2 h at that temperature, quenched with acetone (0.1 mL) and 

purified by size exclusion chromatography (CH2Cl2/MeOH 2:1, Sephadex® LH-20, GE 

Healthcare) to give the corresponding alcohol as a clear oil. 

To a stirred solution of liquid ammonia (5 mL) was added at -78 °C a solution of the 

intermediate alcohol in THF (1.2 mL). The mixture was treated with tBuOH (0.5 mL) 

and lumps of freshly cut sodium (80 mg) were added until a deeply blue color persisted. 

The reaction was stirred at -78 °C for 45 min and quenched by addition of solid 

ammonium acetate (100 mg). The solution was warmed to room temperature under a 

stream of argon and co-evaporated with MeOH (2x10 mL) and water (2x5 mL). The 

residue was left under air for 16 h, purified by size exclusion chromatography (9:1 

MeOH/5 mM aq. NH4OAc, Sephadex® G-25, GE Healthcare) and lyophilized repeatedly 

to give thiol-linked monosaccharide 2-51 (acetate salt, 1.7 mg, 2.7 µmol, 33% over two 

steps) as a mixture of thiol and disulfide as a white solid. [α]D
20 = +19.9° (c = 0.02, 
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H2O); 1H NMR (400 MHz, D2O) δ 4.76 (d, J = 3.1 Hz, 1H), 4.11 (d, J = 6.9 Hz, 1H), 

3.99 – 3.91 (m, 2H), 3.65 – 3.55 (m, 1H), 3.43 – 3.34 (m, 1H), 3.19 – 3.04 (m, 1H), 2.88 – 

2.76 (m, 0.5H), 2.68 (t, J = 7.1 Hz, 1H), 1.95 (s, 3H), 1.82 (s, 3H), 1.71 – 1.57 (m, 2H), 

1.56 – 1.42 (m, 2H), 1.39 – 1.27 (m, 4H), 1.19 – 1.13 (m, 3H). HRMS (ESI) calcd. for 

C28H54N4O8S2 (M+Na)+ 661.3281 found 661.3306 m/z. 

2-Acetamido-4-(benzyloxycarbonyl)amino-3-O-levulinoyl-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→1)-6-(benzylthio)hexanol (2-58) 

 

Alcohol 2-4 (71 mg, 0.421 mmol) and glycosyl phosphate 2-17 (171 mg, 0.281 mmol) 

were co-evaproated with anhydrous toluene (3x10 mL) and kept under high vacuum for 

30 min. The mixture was dissolved in CH2Cl2 (1.8 mL) and stirred over activated 

molecular sieves (4 Å-AW) for 1 h at room temperature. The solution was then cooled to 

-40 °C and treated with TMSOTf (56 µL, 0.309 mmol in 0.2 mL anhydrous CH2Cl2). The 

mixture was slowly warmed to 0 °C (2 h), quenched with a 1:1 (v/v) mixture of MeOH 

and Et3N (0.5 mL), diluted with CH2Cl2 (20 mL), filtered through Celite and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 1:3 to 

1:1) to give the corresponding α-glycoside (55 mg, 0.096 mmol, 34%) along with the 

corresponding β-glycoside (22 mg, 0.039 mmol, 14%). 

To a stirred solution of the intermediate α-glycoside (40 mg, 0.070 mmol) in 

anhydrous pyridine (0.4 mL) was added at 0 °C thioacetic acid (0.4 mL). The mixture 

was warmed to room temperature and stirred for 24 h at that temperature. The solution 

was co-evaporated with toluene (2x5 mL) and the residue was purified by flash 

chromatography (EtOAc/hexanes 1:3 to acetone/hexanes 1:2 to 2:3) to give acetamide 2-

58 (31 mg, 0.053 mmol, 76%) as a white solid. Rf (acetone/hexanes 2:3) = 0.43; [α]D
20 = 

+109.5° (c = 0.50, acetone); 1H NMR (400 MHz, CD3OD) δ 7.46 – 7.14 (m, 10H, arom.), 

5.18 (d, J = 12.6 Hz, 1H, A of AB, PhCH2), 5.07 – 4.99 (m, 2H, H-2, B of AB, PhCH2), 

4.75 (d, J = 3.8 Hz, 1H, H-1), 4.30 (dd, J = 11.7, 3.8 Hz, 1H, H-3), 4.23 – 4.16 (m, 1H, 
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H-5), 4.11 – 4.04 (m, 1H, H-4), 3.77 (s, 2H, PhCH2), 3.75 – 3.67 (m, 1H, A of AB, O-

CH2-CH2), 3.53 (m, 1H, B of AB, O-CH2-CH2), 2.71 – 2.50 (m, 4H, Lev-CH2, CH2-CH2-

S), 2.42 – 2.18 (m, 2H, Lev-CH2), 2.09 (s, 3H, Lev-CH3 or Ac-CH3), 1.93 (s, 3H, Lev-CH3 

or Ac-CH3), 1.11 (d, J = 6.5 Hz, 3H, H-6); 13C NMR (100 MHz, CD3OD) δ 209.3, 173.8, 

173.5, 159.5, 140.0, 138.6, 1230.0, 129.52, 129.48, 129.0, 128.8, 128.1, 99.0, 71.5, 68.4, 

67.5, 65.8, 54.0, 38.5, 37.2, 31.9, 29.7, 29.1, 22.7, 16.9; IR (thin film) 3322, 2930, 1718, 

1667, 1533, 1423, 1244, 1158, 1122, 1050, 699 cm-1; HRMS (ESI) calcd. for C30H38N2O8S 

(M+Na)+ 609.2246 found 609.2256 m/z. 

2,2’-Dithiobis[2-acetamido-4-amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→1)-1-

hexanol] (2-52) 

 

To a stirred solution of ester 2-58 (20.7 mg, 0.035 mmol) in anhydrous CH2Cl2 (3.0 mL) 

were added at room temperature first a mixture of pyridine (86 µL, 1.058 mmol) and 

acetic acid (57 µL, 0.988 mmol), and then hydrazine hydrate (3.4 µL, 0.071 mmol). The 

mixture was stirred for 5 h at that temperature, diluted with EtOAc (2 mL), quenched 

with acetone (0.1 mL) and poured into water (10 mL). The aqueous phase was extracted 

with EtOAc (4x5 mL), the combined organic fractions were dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (acetone/hexanes 1:1) 

to give the intermediate alcohol as a white solid. 

To a stirred solution of liquid ammonia (6 mL) was added at -78 °C a solution of 

the intermediate alcohol in THF (1.5 mL). The mixture was treated with tBuOH (0.5 

mL) and lumps of freshly cut sodium (45 mg) were added until a deeply blue color 

persisted. The reaction was stirred at -78 °C for 45 min and quenched by addition of 

solid ammonium acetate (100 mg). The solution was warmed to room temperature under 

a stream of argon and co-evaporated with MeOH (2x10 mL) and water (2x5 mL). The 

residue was left under air for 16 h, purified by size exclusion chromatography (1:10 

MeOH/5 mM aq. NH4OAc, Sephadex® G-25, GE Healthcare) and lyophilized repeatedly 

to give disulfide 2-52 as the corresponding diacetate salt (7.91 mg, 12.3 µmol, 70% over 

two steps) as a white solid. [α]D
20 = +130.9° (c = 0.11, H2O); 1H NMR (400 MHz, D2O) δ 
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5.09 (d, J = 3.9 Hz, 1H, H-1), 4.56 (q, J = 6.6 Hz, 1H, H-5), 4.36 (dd, J = 11.2, 4.4 Hz, 

1H, H-3), 4.13 (m, 2H, H-2, A of AB, O-CH2-CH2), 3.95 (m, 1H, B of AB, O-CH2-CH2), 

3.75 (d, J = 4.1 Hz, 1H, H-4), 3.11 (t, J = 5.7 Hz, 2H, CH2-CH2-S), 2.19 (s, 3H, Ac-

CH3), 1.45 (d, J = 6.7 Hz, 3H, H-6); HRMS (ESI) calcd. for C20H38N4O8S2 (M+Na)+ 

549.2029 found 549.2086 m/z. 

2,2’-Dithiobis[α-D-galactopyranosyluronate-(1→3)-α-D-galactopyranosyluronate-

(1→1)-1-ethanol] (2-54) 

 

To a stirred solution of ester 2-33 (8.6 mg, 9.5 µmol) in THF (0.6 mL) and MeOH (0.3 

mL) was added at 0 °C a 1 M solution of NaOH in water (0.5 mL). The reaction was 

slowly warmed to room temperature and stirred for 16 h at that temperature. The 

reaction was diluted with EtOAc (5 mL) and water (5 mL) and acidified to pH 4 with 

0.5 M aq. NaHSO4. After separation, the aqueous fraction was extracted with EtOAc 

(8x5 mL), the combined organic fractions were dried over Na2SO4 and concentrated to 

give the intermediate diacid as a white solid. 

To a stirred solution of liquid ammonia (6 mL) was added at -78 °C a solution of 

the crude diacid in THF (1.5 mL). The mixture was treated with tBuOH (0.4 mL) and 

lumps of freshly cut sodium (75 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition of solid ammonium 

acetate (100 mg). The solution was warmed to room temperature under a stream of 

argon and co-evaporated with MeOH (2x10 mL) and water (2x5 mL). The residue was 

left under air for 16 h, purified by size exclusion chromatography (1:9 MeOH/5 mM aq. 

NH4OAc, Sephadex® G-25, GE Healthcare) and lyophilized repeatedly to give disulfide 

2-54 (2.5 mg, 2.9 µmol, 61% over two steps) as a white solid. [α]D
20 = +21.4° (c = 0.10, 

H2O); 1H NMR (600 MHz, D2O) δ 5.32 (s, 1H), 5.13 (s, 1H), 4.71 (s, 1H), 4.61 (s, 1H), 

4.55 (s, 1H), 4.41 (s, 1H), 4.21 – 3.88 (m, 6H), 3.13 – 3.00 (m, 2H); HRMS (MALDI) 

calcd. for C28H42O26S2 (M+2Na+-3H+) 901.0966 found 901.0981 m/z. 
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2-Azido-4-(benzyloxycarbonyl)amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→1)-6-

(benzylthio)ethanol (2-59) 

 

Alcohol 2-4 (71 mg, 0.421 mmol) and glycosyl phosphate 2-17 (171 mg, 0.281 mmol) 

were co-evaproated with anhydrous toluene (3x10 ml) and kept under high vacuum for 

30 min. The mixture was dissolved in CH2Cl2 (1.8 ml) and stirred over activated 

molecular sieves (4 Å-AW) for 1 h at room temperature. The solution was then cooled to 

-40 °C and treated with TMSOTf (56 µl, 0.309 mmol in 0.2 ml anhydrous CH2Cl2). The 

mixture was slowly warmed to 0 °C (2 h), quenched with a 1:1 (v/v) mixture of MeOH 

and triethylamine (0.5 ml), diluted with CH2Cl2 (20 ml), filtered through Celite and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 1:3 to 

1:1) to give the corresponding α-glycoside (55 mg, 0.096 mmol, 34%) along with the 

corresponding β-glycoside (22 mg, 0.039 mmol, 14%). 

To a stirred solution of the intermediate Lev ester (17 mg, 0.03 mmol) in 

anhydrous CH2Cl2 (1 mL) were added at room temperature first a mixture of pyridine 

(72 µl, 0.894 mmol) and acetic acid (48 µl, 0.834 mmol), and then hydrazine hydrate (3 

µl, 0.062 mmol). The mixture was stirred for 5 h at that temperature, diluted with 

EtOAc (2 ml), quenched with acetone (0.1 mL) and poured into water (10 mL). The 

aqueous phase was extracted with CH2Cl2 (4x5 ml), the combined organic fractions were 

dried over Na2SO4 and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 3:1) to give alcohol 2-58 (13 mg, 0.028 mmol, 92%) as a clear oil. [α]D
20 

= +105.3° (c = 0.57, acetone); 1H NMR (400 MHz, acetone-D6) δ 7.41 – 7.16 (m, 10H), 

6.24 (d, J = 10.0 Hz, 1H), 5.12 – 4.96 (m, 2H), 4.82 (d, J = 3.7 Hz, 1H), 4.46 (d, J = 6.0 

Hz, 1H), 4.33 – 3.97 (m, 4H), 3.80 – 3.42 (m, 4H), 2.65 (t, J = 6.6 Hz, 2H), 1.08 (d, J = 

6.4 Hz, 3H); 13C NMR (100 MHz, acetone-D6) δ 129.9, 129.23, 129.17, 128.58, 128.55, 

127.7, 99.2, 68.7, 68.1, 68.0, 66.7, 66.3, 61.2, 57.1, 36.9, 31.3, 16.9; IR (thin film) 3416, 
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2924, 2109, 1701, 1522, 1454, 1347, 1240, 1106, 1074, 1032, 828, 741, 699 cm-1; HRMS 

(ESI) calcd. for C23H28N4O5S (M+Na)+ 495.1678 found 495.1679 m/z. 

Methyl (2,3-di-O-benzyl-α-D-galactopyranosyl)uronate-(1→3)-2-azido-4-

(benzyloxycarbonyl)amino-2,4,6-trideoxy-α-D-galactopyranosyl-(1→1)-2-

(benzylthio)ethanol (2-60)  

 

Alcohol 2-59 (13 mg, 0.028 mmol), TTBPy (45, 0.138 mmol) and thioglycoside 2-8 (37 

mg, 0.069 mmol) were co-evaporated with anhydrous toluene (3x10 mL) and kept under 

high vacuum for 1 h. The mixture was dissolved in anhydrous THF (1.5 mL) and stirred 

over activated molecular sieves (3 Å) for 30 min at room temperature. The solution was 

cooled to 0 °C and treated dropwise with DMTST (17 mg, 0.069 mmol). The mixture 

was warmed to room temperature and treated with an additional 2 equiv. of DMTST 

after 2 h. The reaction was stirred for 16 h and quenched with 1:1 (v/v) mixture of 10% 

aq. Na2S2O3 and sat. aq. NaHCO3 (5 mL). The mixture was extracted with CH2Cl2 (3x10 

mL), dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 1:2) to give the intermediate disaccharide as a clear 

oil. 

To a stirred solution of the intermediate disaccharide in anhydrous pyridine (0.2 

ml) was added at 0 °C thioacetic acid (0.2 ml). The mixture was warmed to room 

temperature and stirred for 24 h at that temperature. The solution was co-evaporated 

with toluene (2x5 ml) and the residue was purified by flash chromatography 

(EtOAc/hexanes 1:3 to acetone/hexanes 1:2) to give the intermediate acetamide as a 

white foam. 

To a stirred solution of the intermediate acetamide in anhydrous CH2Cl2 (0.6 mL) 

and MeOH (60 µL) were added at room temperature first a mixture of pyridine (12 µl, 

0.16 mmol) and acetic acid (8 µl, 0.15 mmol), and then hydrazine hydrate (1 µl, 0.021 
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mmol). The mixture was stirred for 3 h at that temperature, diluted with CH2Cl2 (2 ml), 

quenched with acetone (0.1 mL) and poured into water (5 mL). The aqueous phase was 

extracted with CH2Cl2 (4x5 ml), the combined organic fractions were dried over Na2SO4 

and concentrated. The residue was purified by flash chromatography (acetone/hexanes 

0:1 to 1:1) to give acetamide 2-60 (2.7 mg, 3.14 µmol, 21% over 3 steps based on 

recovered 2-69) as a white foam. Rf (acetone/hexanes 1:1) = 0.46; [α]D
20 = +90.9° (c = 

0.14, acetone); 1H NMR (400 MHz, acetone-D6) δ 7.43 – 7.17 (m, 20H), 6.98 (d, J = 9.3 

Hz, 1H), 6.71 (d, J = 10.1 Hz, 1H), 5.28 (d, J = 2.8 Hz, 1H), 5.07 (d, J = 12.8 Hz, 1H), 

4.77 (t, J = 13.5 Hz, 2H), 4.71 – 4.64 (m, 2H), 4.62 – 4.50 (m, 2H), 4.45 – 4.29 (m, 3H), 

4.13 – 4.07 (m, 2H), 4.04 – 3.89 (m, 2H), 3.88 – 3.80 (m, 1H), 3.78 (s, 2H), 3.75 – 3.68 

(m, 2H), 3.64 (s, 3H), 3.59 – 3.35 (m, 2H), 2.61 (dd, J = 12.1, 5.3 Hz, 3H), 1.11 (d, J = 

7.0 Hz, 3H); IR (thin film) 3459, 2931, 1723, 1652, 1424, 1347, 1246, 1122, 1036, 823, 742, 

699 cm-1; HRMS (ESI) calcd. for C46H54N2O12S (M+Na)+ 881.3295 found 881.3286 m/z. 

2,2’-Dithiobis[α-D-galactopyranosyluronate-(1→3)-2-acetamido-4-amino-2,4,6-

trideoxy-α-D-galactopyranosyl-(1→1)-1-ethanol] (2-55) 

 

To a stirred solution of ester 2-60 (2.7 mg, 3.14 µmol) in THF (1 mL) and MeOH (0.25 

mL) was added at 0 °C a 1 M solution of NaOH in water (0.4 mL). The reaction was 

slowly warmed to room temperature and stirred for 16 h. The reaction was diluted with 

EtOAc (5 ml) and water (5 ml) and acidified to pH 4 with 0.5 M aq. NaHSO4. After 

separation, the aqueous fraction was extracted with EtOAc (8x5 ml), the combined 

organic fractions were dried over Na2SO4 and concentrated to give the intermediate 

diacid as a white solid. 

To a stirred solution of liquid ammonia (10 ml) was added at -78 °C a solution of 

the crude diacid in THF (1.5 ml). The mixture was treated with tBuOH (0.4 ml) and 

lumps of freshly cut sodium (80 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition of solid ammonium 
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acetate (100 mg). The solution was warmed to room temperature under a stream of 

argon and co-evaporated with MeOH (2x10 ml) and water (2x5 ml). The residue was left 

under air for 16 h, purified by size exclusion chromatography (1:3 MeOH/5 mM aq. 

NH4OAc Sephadex® G-25, GE Healthcare) and lyophilized repeatedly to give disulfide 

2-55 (1.15 mg, 2.61 µmol, 83% over two steps) as a white solid. 1H NMR (600 MHz, 

D2O) δ 5.06 (d, J = 2.2 Hz, 1H), 4.88 (d, J = 3.8 Hz, 1H), 4.30 – 4.23 (m, 3H), 4.15 (s, 

1H), 4.04 (dd, J = 11.0, 3.5 Hz, 1H), 4.01 – 3.94 (m, 1H), 3.85 (s, 2H), 3.83 – 3.74 (m, 

2H), 3.32 (s, 1H), 3.30 (d, J = 26.8 Hz, 1H), 2.98 (t, J = 5.7 Hz, 2H), 2.02 (s, 3H), 1.28 

(d, J = 6.6 Hz, 3H); HRMS (ESI) calcd. for C32H54N4O20S2 (M+Na)+ 901.2670 found 

901.2681 m/z. 

6,6’-Dithiobis[4,6-O-[1-(R)-(carboxy)-ethylidene]-β-D-galactopyranoside-(1→1)-1-

hexanol] (2-56) 

 

To a stirred solution of ester 2-16 (30 mg, 0.052 mmol) in THF (0.6 mL) and MeOH 

(0.3 mL) was added at 0 °C a 1 M solution of NaOH in water (0.6 mL). The reaction was 

slowly warmed to room temperature and stirred for 16 h at that temperature. The 

reaction was diluted with MeOH (2 mL), neutralized with Amberlite 120 (H+), filtered 

and concentrated to give the intermediate acid as a white foam. 

To a stirred solution of liquid ammonia (8 mL) was added at -78 °C a solution of 

the crude acid in THF (2 mL). The mixture was treated with tBuOH (0.6 mL) and 

lumps of freshly cut sodium (80 mg) were added until a deeply blue color persisted. The 

reaction was stirred at -78 °C for 45 min and quenched by addition MeOH (2 mL) and 

solid NH4OAc (100 mg). The solution was warmed to room temperature under a stream 

of argon and co-evaporated with MeOH (2x5 mL) and water (2x5 mL). The residue was 

left exposed to air for 16 h, purified by size exclusion chromatography (4:1 MeOH/5 mM 

aq. NH4OAc, Sephadex® G-25, GE Healthcare) and solid phase extraction (Chromafix® 

C18 cartridge, Macherey-Nagel, Düren, Germany) and lyophilized repeatedly to give 

disulfide 2-56 (11 mg, 0.030 mmol, 58% over two steps) as a white solid, containing 
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approx. 10% of the corresponding thiol. [α]D
20 = -22.3° (c = 0.44, H2O); 1H NMR (400 

MHz, D2O) δ 4.53 (d, J = 7.8 Hz, 1H, H-1), 4.26 (d, J = 3.7 Hz, 1H, H-4), 4.13 (d, J = 

12.0 Hz, 1H, A of AB, H-6), 4.08 – 3.96 (m, 2H, B of AB, H-6, A of AB, O-CH2-CH2), 

3.83 – 3.63 (m, 4H, H-2, H-3, H-5, B of AB, O-CH2-CH2), 2.88 (t, J = 7.2 Hz, 1.65H, 

CH2-CH2-S-S), 2.66 (t, J = 7.3 Hz, 0.35H, CH2-CH2-SH), 1.92 – 1.69 (m, 4H, aliph.), 1.60 

– 1.46 (m, 7H, pyruv.-CH3, aliph.); HRMS (MALDI) calcd. for C30H50O16S2 (M-H)- 

729.2462 found 729.2480 m/z. 

3-Maleimido-(N-octadecyl)propionamide (2-61) 

 

To a stirred solution of 1-octadecylamine SI-2-2 (10 mg, 37 µmol) in CHCl3 (600 µL) 

and MeOH (200 µL) were added at room temperature 3-(maleimido)propionic acid N-

hydroxysuccinimide SI-2-1 (12.8 mg, 48 µmol) and pyridine (10 µL). The reaction was 

stirred for 1 h at that temperature. The solvents were evaporated, the residue was 

suspended in ice-cold MeOH (5 mL) and filtered. The solid residue was washed 

repeatedly with cold MeOH and dried to give maleimide 2-61 (15.6 mg, 37 µmol, quant.) 

as a white solid. Rf (EtOAc/hexanes 3:1) = 0.88; 1H NMR (400 MHz, CDCl3) δ 6.70 (s, 

2H), 5.57 (s, 1H), 3.83 (t, J = 7.2 Hz, 2H), 3.20 (dd, J = 13.3, 6.9 Hz, 2H), 2.51 (t, J = 

7.2 Hz, 2H), 1.51 – 1.37 (m, 2H), 1.25 (m, 32H), 0.87 (t, J = 6.8 Hz, 3H); 13C NMR (100 

MHz, CDCl3) δ 170.7, 169.4, 134.3, 39.8, 34.9, 34.4, 32.1, 29.9, 29.82, 29.80, 29.74, 29.69, 

29.7, 29.5, 29.4, 27.1, 22.8, 14.3; HRMS (ESI) calcd. for C25H44N2O3 (M+Na)+ 443.3249 

found 443.3256 m/z. 
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1-[2-(N-Octadecyl)ethanecarboxamidyl]-3-[2-acetamido-4-amino-2,4,6-trideoxy-α-D-

galactopyranosyl-(1→4)-α-D-galactopyranosyluronate-(1→3)-α-D-

galactopyranosyluronate-(1→2)-2-hydroxyethylthio]-2,5-dipyrrolidone (2-62) 

 

To a stirred solution of disulfide 2-1 (1.68 mg, 1.36 µmol) in water (54 µL) were added 

at room temperature 0.1 M sodium phosphate buffer (NaPi) pH 7.4 (20 µL) and 1,4-

dithiothreitol (DTT, 209 µg, 1.36 µmol) in water (14 µL). The mixture was stirred under 

argon for 1 h at that temperature and added to a solution of maleimide 2-61 (1.49 mg, 

3.54 µmol) in a 2:3 (v/v) mixture of CHCl3 and MeOH (300 µL). Water (approx. 50 µL) 

and a 1:1 (v/v) mixture of CHCl3 and MeOH (approx. 150 µL) were added until all 

components were dissolved, and the reaction was stirred at room temperature for 96 h 

under argon. The reaction had proceeded to completion when a white precipitate 

appeared, as indicated by mass spectrometry. The solvents were evaporated under a 

stream of nitrogen and the aqueous residue was directly loaded on a pre-conditioned 

solid-phase extraction cartridge (Chromabond C18ec 730015G, Macherey-Nagel). 

Thioether 2-62 was eluted using 30-40 % (v/v) MeCN in water, and concentrated. The 

residue was further purified by size exclusion chromatography (MeCN/water 1:1, 

Sephadex® LH-20, GE Healthcare) and concentrated. The residue was purified again by 

solid phase extraction (see above) to give thioether 2-62 (1.44 mg, 1.39 µmol, 51% with 

respect to free thiol from 2-1) as a white solid. 1H NMR [600 MHz, 

D2O/CD3CN/CD3OD 10:10:1 (v/v)] δ 5.43 (s, 1H), 5.28 – 5.17 (m, 1H), 5.16 – 5.06 (m, 

1H), 4.71 – 4.69 (m, 1H), 4.59 – 4.47 (m, 2H), 4.38 – 3.88 (m, 10H), 3.89 – 3.59 (m, 5H), 

3.46 – 3.27 (m, 3H), 3.23 – 2.80 (m, 2H), 2.75 – 2.58 (m, 2H), 2.32 (s, 3H), 1.78 – 1.64 

(m, 2H), 1.58 – 1.52 (m, 30H), 1.44 (d, J = 6.6 Hz, 3H), 1.15 (t, J = 6.8 Hz, 3H); HRMS 

(MALDI) calcd. for C47H80N4O19S (M+Na)+ 1059.5035 found 1059.5071 m/z. 
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2.5.2 Methods of Biochemistry 

Figures were prepared using Illustrator CS5 (Adobe Systems, San Jose, USA). 

Antisera, Polysaccharides and Carrier Protein 

Rabbit ST1 typing serum (Type 1 Neufeld antiserum, cat. no. 16744) and ST1 capsular 

polysaccharide (cat. no. 76851) was purchased from SSI Diagnostica (Hillerød, Denmark). 

Rabbit anti-B. fragilis serum and purified PS A1 polysaccharide were gifts from Prof. 

Dennis Kasper, Harvard Medical School, Boston, USA. CRM197 was purchased from 

Pfenex (San Diego, USA). 

Preparation of Glycan Microarray Slides 

Maleimide-functionalized glycan array slides were prepared as reported previously.10 

Disulfide-containing glycans [1 mM or 0.5 mM in phosphate-buffered saline (PBS, 10 

mM Na2HPO4, 1.8 mM K2HPO4, 137 mM NaCl, 2.7 mM KCl)] were reduced using 1.0 

equivalent of tris(2-carboxyethyl)phosphine (TCEP) and spotted onto the functionalized 

microarray slides using an automatic piezoelectric arraying robot (Scienion, Berlin, 

Germany) at 0.2 nL per spot. PS A1 polysaccharide was spotted onto the same slides at 

a concentration of 0.05 mg/mL in PBS. Slides were then incubated in a humid chamber 

for 24 h at room temperature and quenched in a 0.2% (v/v) solution of 2-

mercaptoethanol in PBS for 1 h at room temperature. The slides were washed with water 

(3x) and MeOH (3x), dried and stored under argon until use. 

Glycan Microarray Binding Experiments 

Glycan-functionalized slides were blocked using blocking solution [1% (w/v) BSA in 

PBS] for 1 h at room temperature. Slides were washed with water (3x) and MeOH (3x) 

and dried. A 64-well gasket (FlexWell 64, Grace Bio-Labs, Bend, US) was appended and 

antisera were applied in the depicted dilutions. The slides were incubated for 16 h at 4 

°C, washed with washing buffer [0.1% (v/v) Tween 20 in PBS, 3x] and incubated with 

secondary antibody [goat anti-rabbit-FITC conjugate (abcam, Cambridge, UK), 1:200 in 

blocking solution] for 2 h at room temperature. The slides were washed with washing 

buffer (3x) and water (3x) and dried by centrifugation in a 50 mL tube. Fluorescence 

readout was performed using an Axon GenePix 4300A microarray scanner and GenePix 



2 CONJUGATION-READY ZWITTEROINIC OLIGOSACCHARIDES 

128 
 

Pro 7 software (both MDS, Sunnyvale, US). Negative fluorescence intensities were 

arbitrarily set to 0. All statistical analyses were perfomed using Prism 6 (Graphpad 

Software Inc., La Jolla, USA). Brightness and contrast of images were adjusted equally 

using Photoshop CS5 (Adobe Systems). 

Conjugation of D-AAT (2-52) to CRM197 

To a stirred solution of CRM197 (2 mg, 34.5 nmol) in 0.1 M sodium phosphate buffer 

(NaPi) pH 7.4 (2 mL) was added at room temperature a solution of N-Succinimidyl-3-

(bromoacetamido)propionate (SBAP) (530 µg, 1.7 µmol) in DMF (40 µL). The mixture 

was stirred for 1 h at that temperature, and dialyzed using a centrifugal filter (10 kDa 

molecular weight cut-off, Millipore, Darmstadt, Germany). The protein solution was 

diluted to 4 mL with sterile water and concentrated again. This process was repeated 

three times and the solution was diluted to 0.5 mL using sterile water. 20 µL were taken 

for analysis, and the protein solution was re-buffered to 0.1 M NaPi pH 7.4 (2 mL) using 

membrane filtration. Disulfide-containing D-AAT 2-52 (336 µg acetate salt, 1.035 µmol 

resp. to the monomer) in 0.1 M NaPi pH 7.4 (15 µL) was treated at room temperature 

with tris(2-carboxyethyl)phosphine (TCEP, 25 µL of a 100 mM stock solution), left for 1 

h at that temperature under an argon atmosphere and added to the solution of the 

activated protein. The mixture was stirred at 4 °C for 16 h, and washed with sterile 

water using membrane filtration (see above). Another analytical sample was taken, and 

the solution was re-buffered to 0.1 M NaPi pH 7.4 (0.5 mL). The glycoconjugate was 

then treated at room temperature with L-cysteine (420 µg, 3.47 µmol) in 100 µL sterile 

water. The mixture was left for 1 h at that temperature and purified by membrane 

filtration. Incorporation of glycan into the glycoconjugate was assessed by MALDI-TOF-

MS. 

Conjugation of Sp1 Trisaccharide (2-1) to CRM197 

To a stirred solution of CRM197 (2 mg, 34.5 nmol) in 0.1 M NaPi pH 7.4 (1.33 mL) was 

added at room temperature a solution of N-succinimidyl-3-(bromoacetamido)propionate 

(SBAP) (1.05 mg, 3.4 µmol) in DMF (40 µL). The mixture was stirred for 1 h at that 

temperature, and dialyzed using a centrifugal filter. The protein solution was diluted to 4 

mL with sterile water and concentrated again. This process was repeated three times and 

the solution was diluted to 0.5 mL using sterile water. 20 µL were taken for analysis, and 
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the protein solution was re-buffered to 0.1 M NaPi pH 8.0 (0.5 mL) using membrane 

filtration. Disulfide-containing Sp1 trisaccharide 2-1 (1.44 mg, 2.33 µmol resp. to the 

monomer) in 0.1 M NaPi pH 8.0 (0.2 mL) was treated at room temperature with TCEP 

(25 µL of a 100 mM stock solution, pH 7.4), left for 1 h at that temperature under an 

argon atmosphere and added to the solution of the activated protein. The mixture was 

stirred at room temperature for 16 h, and washed with sterile water using membrane 

filtration (see above). Another analytical sample was taken, and the solution was re-

buffered to 0.1 M NaPi pH 7.4 (0.5 mL). The glycoconjugate was then treated at room 

temperature with L-cysteine (625 µg, 5.1 µmol) in 100 µl sterile water. The mixture was 

left for 2 h at that temperature and purified by membrane filtration. Incorporation of 

glycan into the glycoconjugate was assessed by MALDI-TOF MS. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Discontinuous SDS-PAGE was performed according to Lämmli’s protocol,316 using a 

MiniProtean system (Bio-Rad, Hercules, USA). An alkaline separating gel (375 mM 

Tris/HCl pH 8.8, 10 to 12% (w/v) of a 29:1 acrylamide/N,N’-methylenebisacrylamide 

mixture) and an acidic stacking gel (100 mM Tris/HCl pH 6.8, 4.5% (w/v) of a 29:1 

acrylamide/N,N’-methylenebisacrylamide mixture), polymerized by the addition of 

TEMED and 10% (w/v) ammonium peroxodisulfate, were used. Proteins were visualized 

using Coomassie G-250. Brightness and contrast of images were adjusted using 

Photoshop CS5 (Adobe Systems). 

Liposome Fabrication 

Liposomes were generated from lipid mixtures containing a 35:40:20:5 molar ration of 

distearyl phosphatidyl choline, cholesterol, antigen 2-62 and KRN7000, respectively. 

Control liposomes were fabricated without KRN7000. Lipids were dissolved in 

CHCl3/MeOH, mixed in the appropriate ratio and dried under a stream of nitrogen. 

Lipid mixtures were hydrated in sterile PBS (4 µg of glycan per 100 µL solution) and 

subjected to repeated freeze (-20 °C)-thaw (60 °C) cycles. Liposomes of defined sizes were 

then prepared by extrusion through a 400 nm membrane using a Mini-Extruder (both 

Avanti Polar Lipids, Inc., Alabaster, USA) and stored at 4 °C until use (not longer than 

two days). Liposome size was assessed by dynamic light scattering using a Zetasizer µV 

(Malvern, Worcestershire, UK). 
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Ethics Statement 

All animal experiments were approved by local institutional (Charité - 

Universitätsmedizin Berlin) and governmental authorities (Landesamt für Gesundheit 

und Soziales Berlin, approval ID G0128/12, A 0305/12 and G104/13). Animal housing 

and experiments were in strict accordance with the regulations of the Federation of 

European Laboratory Animal Science Associations (FELASA) and recommendations for 

the care and use of laboratory animals. All mice were housed under specific pathogen-free 

conditions. 

Immunization Experiments 

Mice (6-8 week old female NMRI or C57BL/6J mice, Charles River, Sulzfeld, Germany) 

were immunized subcutaneously with the respective glycoconjugates corresponding to 1.7 

µg (D-AAT 2-52) or 4 µg (Sp1 trisaccharide 2-1) synthetic glycan and formulated either 

as a 1:1 (v/v) emulsion with Complete Freund’s Adjuvant (CFA, Sigma-Aldrich), a 1:1 

(v/v) suspension with Alum (Alhydrogel, Brenntag, Mülheim, Germany) or without 

adjuvant at a total volume of 100 µL. Booster doses were given at days 14 and 28 using 

the same strategy (mice primed with CFA received booster doses with Incomplete 

Freund’s Adjuvant (Sigma-Aldrich). Blood (50 µL) was withdrawn once a week from the 

tail vein or the facial vein and centrifuged (5000 g, 10 min, room temperature) to 

retrieve serum. 

For liposome immunizations, liposome suspensions or CRM197-Sp1 trisaccharide 

2-1 were formulated in sterile PBS (liposomes) or with Alum (see above) and doses 

corresponding to 4 µg synthetic glycan were administered intraperitoneally (i.p.) at days 

0, 56 and 94. Serum was collected weekly. 

Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA was performed using Costar™ high-binding polystyrene 96-well plates (cat. no. 

3361, Corning, Corning, USA). Plates were coated using native ST1 capsular 

polysaccharide at a concentration of 10 µg/mL in PBS for 20 h at 4 °C. Plates were 

blocked with 10% (v/v) fetal calve serum in PBS for 2 h at 37 °C and washed once with 

PBS-T. After applying cell culture supernatants or mAb dilutions (30-50 µL), Plates 

were incubated for 1 h at 37 °C, washed with PBS-T three times and treated with a 
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horseradish peroxidase (HRP)-labeled secondary antibody [Goat anti-Mouse IgG HRP 

conjugate (cat. no. 115-035-062, dianova, Hamburg, Germany)]. Plates were washed with 

PBS-T three times and HRP activity was measured with TMB substrate (BD 

Biosciences, San Jose, USA) according to the manufacturer’s instructions. 
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3 Reverse Engineering of Anti-
bodies Against Streptococcus 
pneumoniae Serotype 8 Capsular 
Polysaccharide Using Synthetic 
Oligosaccharides 

3.1 Introduction 

3.1.1 Streptococcus pneumoniae Serotype 8 

Initially described in 1928 as a particularly virulent strain that is “related to, but not 

identical with typical strains of [serotype 3]”,317, 318 Streptococcus pneumoniae ST8 was 

soon categorized as a distinct serotype.319 To date, ST8 ranks amongst the most common 

serotypes causing IPD worldwide, and disease incidence seems to be highest amongst 

adults.20, 76, 320, 321 Outbreaks of invasive disease caused by ST8 are frequently reported in 

cohorts with comorbidities, such as human immunodeficiency virus, or low health 

standards, and isolates often display broad antibiotic resistance.19, 20, 322-324 In correlation 

to the high virulence of this serotype, low asymptomatic carriage rates are observed.19 

The severity of ST8-mediated infections underscores the need for highly efficient 

vaccines. While ST8 is a part of the polysaccharide vaccine Pneumovax23®, this 

serotype is not included in modern glycoconjugate vaccines, and thus poses a risk to 

replace serotypes that are eliminated by vaccine administration.325 
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3.1.2 Serotype 8 Capsular Polysaccharide 

The significant, albeit not complete, serological cross-reactivity of ST8 pneumococci with 

anti-ST3 immune sera has been the subject of multiple studies,317, 319, 326 and was 

ultimately attributed to the presence of the disaccharide cellobiuronic acid (β-D-GlcpA-

(1→4)-β-D-Glcp) in CPSs of both strains.327, 328 While this disaccharide constitutes the 

full repeating unit of ST3 CPS, cellobiuronic acid is embedded in a tetrasaccharide 

repeating unit in ST8 CPS with the glycan sequence [→4)α-D-Glcp-(1→4)-α-D-Galp-

(1→4)-β-D-GlcpA-(1→4)-β-D-Glcp-(1→] (Fig. 3.1A).16, 17, 327 In spite of the 

immunological overlap of both CPSs, cross-reactivity of antisera is incomplete, and 

vaccines containing either polysaccharide are unlikely to confer full protection against 

each other.326, 329-331 

 

Figure 3.1. Discovery of a protectice glycotope of S. pneumonie serotype 8 CPS. A, ST8 CPS 
structure and annotation of frameshifts. The cellobiuronic acid moiety (CA) is highlighted. B, 
discovery of both protective and non-protective glycotopes based on the reverse engineering of 
available antibody samples. 

The biosynthetic mechanism of ST8 CPS differs markedly from ST3 CPS: While 

the former is generated in vivo from tetrasasccharide precursors that are assembled by 

the action of distinct glycosyltransferases and added to the growing polysaccharide chain, 
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the latter is produced by a single processive polymerase.15 Thus, the structural similarity 

between CPSs of both strains is not caused by an evolutionary relationship, but probably 

associated with a functional advantage of cellobiuronic acid within CPS structures. The 

strict organization of ST8 CPS based on repeating units distinguishes four 

tetrasaccharide frameshifts (Fig. 3.1A). 

3.1.3 The Relevance of Monoclonal Antibodies Against Serotype 8 

Anticapsular antibodies are crucial mediators of protection against infections with 

Streptococcus pneumoniae. A multitude of mAbs have been raised against ST8 CPS and 

mechanisms of protection have been studied.86, 87, 91-93 For instance, immunization of mice 

with a glycoconjugate containing ST8 CPS and tetanus toxoid led to the generation of 

mAbs either recognizing the CPS or C-polysaccharide, a contaminant present in 

abundance in ST8 CPS preparations (see below).92 MAbs directed against C-

polysaccharide mainly target the immunogenic component phosphocholine, but do not 

protect from ST8 infections in vivo.92 

The importance of antibodies to orchestrate host immune responses against S. 

pneumoniae is indisputable.14 While opsonization of bacteria with subsequent phagocyte-

dependent clearance is the most important mechanism to defend the host from 

pneumococcal infections, it has been found that opsonization may not be essential for 

protection. Instead, certain protective mAbs directed against either ST8 or ST3 CPSs 

agglutinate pneumococci, but do not promote opsonophagocytosis in vitro.89, 91, 332 

Quorum sensing of bacterial populations is enhanced upon treatment with these mAbs, 

and the induction of bacterial fratricide has been discussed as a potential strategy of 

protection.91 Alternatively, simpler mechanisms, such as the deposition of complement 

component C3, could be at play.332 The molecular determinants that govern the different 

mechanisms of action have not been elucidated yet 

3.1.4 Reverse Engineering of Antibodies as a Concept of Vaccine 

Design 

Structural information on protective and non-protective glycotopes is key to the design 

of novel carbohydrate-based vaccine antigens. Chemically defined, synthetic 
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oligosaccharides are essential for this process since isolated structures are too 

heterogeneous to provide information on precise glycotopes. In addition to conventional 

iterative approaches of antigen synthesis and glycoconjugate evaluation, the reverse 

engineering of antigen binding sites of protective mAbs has greatly advanced the field of 

carbohydrate-based vaccines.1, 109, 111, 112, 144-146, 333-337 A shortfall of these conventional 

glycotope mapping strategies is the plethora of putative glycotopes within a 

polysaccharide that are laborious to obtain by traditional chemical synthesis. Since 

protective glycotopes can vary with respect to length, frameshift and covalent 

modifications, the number of putative immunogens is enormous. Therefore, methods that 

allow for educated antigen design by providing insight into structural determinants are 

key to the rational design of carbohydrate-based vaccines. 

Here, glycan microarray screening of a collection of synthetic oligosaccharides was 

combined with the reverse engineering of a protective mAb by chemical synthesis and 

immunological evaluation to elucidate a protective glycotope of CPS from S. pneumoniae 

ST8 (Fig. 3.1B). Furthermore, glycan-binding characteristics of a set of opsonic and non-

opsonic mAbs against ST8 CPS were mapped to give insight into the molecular 

principles of in vitro ST8 recognition phenotypes. 

 

Scheme 3.1. Synthetic ST8 CPS-derived oligosaccharides used for glycotope mapping of 
antibody samples.xii 

 

                                         
xii Tetrasaccharides 3-1, 3-2, 3-3 and 3-4 were synthesized by Heung Sik Hahm. 
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3.2 Results 

3.2.1 Glycotope Mapping of ST8-recognizing Antibody Samples 

The search for protective ST8 CPS glycotopes was prompted by the rather well-

established immunological implications of ST8 infections and the availability of 

protective mAbs against native CPS.86, 91-93 Due to a lack of synthetic, conjugation-ready 

glycan probes, no information regarding the contribution of distinct glycotopes to 

polysaccharide immunogenicity is available. 

 

Figure 3.2. Differential immune recognition of synthetic ST8 CPS frameshifts. A, glycan 
microarray analysis of pooled sera from Pneumovax23®-vaccinated humans (“007sp”), rabbit ST8 
typing serum and a protective murine mAb 28H11 at different concentrations. Sera were pre-
adsorbed with pneumococcal C-polysaccharide before application. Histograms show mean + SD of 
eight spots. B, inhibition of antibody binding by pre-adsorption with native ST8 CPS (10 
µg/mL). Statistical analysis (One-tailed, unpaired t test with Welch’s correction) of eight spots 
was performed of one out of at least two independent experiments. Asterisks indicate P values: 
n.s. not significant; ** P < 0.005; *** P < 0.001; **** P < 0.0001. Bars depict mean ± SD.MFI, 
mean fluorescence intensity. 
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In contrast to the long oligosaccharide haptens that are necessary to confer 

protection against bacteria that display structural CPS glycotopes,113, 335, 338 haptens as 

small as tri- or tetrasaccharides have been used to induce protective immunity against 

several S. pneumoniae serotypes.109, 334 Thus, to gain insight into the nature of glycotopes 

that confer protective immunity against ST8, all four tetrasaccharide frameshifts 

prepared by automated glycan assemblyxiii were used to map the binding specificities of 

several antibody samples in a glycan microarray experiment. Arrays were fabricated by 

covalent immobilization of amine-equipped oligosaccharides 3-1,xiii 3-2,xiii 3-3xiii and 3-

4xiii (Scheme 3.1) or native ST8 CPS28 on N-hydroxysuccinimide (NHS) ester-

functionalized glass slides.149 Fluorescently labeled secondary antibodies were employed 

to visualize binding of antibodies to the immobilized structures (Fig. 3.2). 

Initially, polyclonal antibody mixtures in commercially available sera raised against 

native ST8 CPS were screened. All four synthetic glycans were recognized along with the 

native polysaccharide by a human reference serum mixture (007sp339) as well as rabbit-

borne ST8 typing serum (Fig. 3.2A and B). Thereby, species-specific preferences for 

certain FSs were observed: The human serum bound preferentially to FSs B and C (3-2 

and 3-3, respectively, Fig. 3.2A), but only the latter interaction was inhibited by 

antibody pre-adsorption with native ST8 CPS (Fig. 3.2B). Non-ST8-dependent 

recognition of FS B may reflect the presence of naturally occurring antibodies recognizing 

certain glycotopes such as the terminal α-galactoside of that oligosaccharide in human 

sera.340 The rabbit-derived typing serum preferentially bound to FS A and, to a 

significantly (P < 0.0001) lesser extent, FS B (3-1 and 3-2, respectively, Fig. 3.2A). 

Binding was abrogated by ST8 CPS pre-adsorption (Fig. 3.2B). Thus, all synthetic ST8 

frameshifts are recognized by antisera against ST8 CPS with species-specific preferences 

mainly towards FS C (in humans) and FS A (in rabbits).54 

Binding analyses of complex, polyclonal antisera are unlikely to reveal the identity 

of protective glycotopes of a CPS due to the presence of non-protective antibodies that 

target immunogenic substructures (see above). We envisaged that a protective mAb 

would shed light onto the nature of the optimal frameshift representing ST8 CPS. MAb 

                                         
xiii See dissertation of Heung Sik Hahm for the synthesis of tetrasaccharides 3-1, 3-2, 3-2 and 3-
4. 
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28H11, a murine IgM raised against native ST8 CPS, is well-characterized and protects 

mice from infection with live ST8 pneumococci in various in vivo challenge models.xiv92 

Glycan microarray analysis revealed a robust interaction of mAb 28H11 with ST8 FS C 

(3-3, Fig. 3.2A), with at least five times higher binding intensities than FSs B and D (3-

2 and 3-4, respectively). In turn, no interaction was observed with FS A (3-1). 

Recognition of FS C was specific to ST8, as shown by the ablation of binding by native 

ST8 CPS at mAb concentrations of up to 10 µg/mL (Fig. 3.2B). Thus, FS C displays a 

protective glycotope of ST8 CPS. 

3.2.2 An Optimized Chemical Synthesis of ST8 Frameshift C 

To enable a detailed immunological evaluation of ST8 CPS-derived oligosaccharides, a 

convenient and scalable route to synthesize ST8 FSs A and C was targeted. Particularly, 

stereoselective installation of the 1,2-cis-glycosidic linkage at the reducing end of FS C 

had been found cumbersome during automated glycan assemblyxv and was a central goal 

in the synthetic strategy. 

A divergent route was designed to synthesize tetrasaccharides 3-5 and 3-6 based 

on disaccharide building blocks 3-7,xvi 3-8xvi and 3-9 (Scheme 3.2). In an attempt to 

produce an alternative disaccharide precursor to 3-9 in a smaller number of synthetic 

transformations, glycosyl phosphate 3-10 was reacted with alcohol 3-11, but no 

formation of the desired disaccharide 3-12 was obtained (Scheme 3.3A). Intermolecular 

aglycon transfer was observed instead, with thioglycoside 3-13 as the major product.341 

Thus, galactose derivative 3-14,342 bearing an anomeric silyl protecting group instead of 

a reactive leaving group, was employed. The benzylidene moiety in 3-14 was subjected 

to regioselective ring-opening under acidic conditions to give alcohol 3-15 in 87% yield 

(Scheme 3.3B). Union of 3-15 with glycosylating agent 3-13β343 furnished disaccharide 

3-16 in 75% yield and 2.4:1 α:β-selectivity. A two-step procedure of silyl ether cleavage 

and installation of an anomeric imidate leaving group was appended to give glycosylating 

                                         
xiv MAb 28H11 was kindly provided by Prof. Liise-anne Pirofski, Albert Einstein College of 
Medicine, New York, USA. 
xv See dissertation of Heung Sik Hahm. 
xvi Disaccharides 3-7 and 3-8 were synthesized by Dr. Sharavathi G. Parameswarappa and Dr. 
Subramanian Govindan. 
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agent 3-9 in 84% yield (from 3-16) that was key to the divergent synthetic strategy en 

route toward tetrasaccharides 3-5 and 3-6 (Scheme 3.3B). 

 

Scheme 3.2. Retrosynthesis of ST8 CPS frameshifts A (3-5) and C (3-6) from disacccharides 3-
7, 3-8 and 3-9. 

The reducing-end cellobiuronic acid moiety of FS A was generated by benzoylation of 

alcohol 3-7 with subsequent removal of the benzylidene acetal in 97% over two steps 

(Scheme 3.3C). The primary alcohol found in diol 3-17 was then oxidized to the 

corresponding uronic acid using TEMPO with PhI(OAc)2 as a co-oxidant, and treated 

with TMS-diazomethane to yield methyl ester 3-18 in 79% over two steps. Assembly of 

the FS A tetrasaccharide backbone proceeded smoothly under Lewis-acidic conditions 

with disaccharide precursors 3-9 and 3-18 as glycosylating agent and nucleophile, 

respectively. Thus, protected tetrasaccharide 3-19 was obtained in 71% yield and with 

complete 1,2-cis-stereoselectivity. Global deprotection commenced by mild hydrolysis of 

the methyl ester in 3-19 with aqueous lithium peroxide. All benzoate esters were then 

removed by the sequential use of aqueous sodium hydroxide and methanolic sodium 

methoxide. The resulting pentaol was finally subjected to hydrogenation conditions with 

Pd/C as a catalyst in a mixture of methanol, water and acetic acid to isolate 

tetrasaccharide 3-5 in 69% yield over three steps. 
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Scheme 3.3.Total synthesis of ST8 tetrasaccharide 3-5. Reagents and conditions: a) TBSOTf, , 
Et2O/CH2Cl2 3:1, -10 °C, 0%; b) TES, TFA, CH2Cl2, 0 °C to r.t., 87%; c) 3-13β, NIS, TfOH, 
Et2O/CH2Cl2 3:1, -20 °C to -10 °C, 75% (2.4:1 α:β); d) i. TBAF, AcOH, THF, 0 °C to r.t.; ii. 
F3CC(NPh)Cl, Cs2CO3, CH2Cl2, r.t., 84% (two steps); e) i. BzCl, pyr., 0 °C to r.t., ii. EtSH, 
pTsOH, CH2Cl2, r.t., 97% (two steps); f) i. PhI(OAc)2, TEMPO, CH2Cl2/H2O 5:2, 0 °C to r.t., ii. 
TMS-CHN2, tol./MeOH 2:1, r.t., 79% (two steps); g) TMSOTf, Et2O/CH2Cl2 3:1, -20 °C to 0 °C, 
71% (>19:1 α:β); h) H2O2, aq. LiOH, THF, MeOH, H2O, 0 °C to r.t., then aq. NaOH, 0 °C to r.t., 
ii. NaOMe, MeOH, r.t.; iii. H2, Pd/C, MeOH, H2O, AcOH, r.t., 69% (three steps). NIS = N-
iodosuccinimide; TBAF = tetra-n-butylammonium fluoride; TBSOTf = tert-butyldimethylsilyl 
trifluoromethanesulfonate; TEMPO = 2,2,6,6-tetramethylpiperidine 1-oxyl; TES = triethylsilane; 
TFA = trifluoroacetic acid = TMSOTf, trimethylsilyl trifluoromethanesulfonate = pTsOH, p-
toluenesulfonic acid = TfOH, trifluoromethanesulfonic acid. 

The lessons learned during the assembly of ST8 FS A (3-5) were then applied to 

the generation of ST8 FS C tetrasaccharide 3-6 (Scheme 3.4). The synthetic route was 
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initiated by reacting protected linker moiety 3-20 with imidate 3-9 in a glycosylation 

reaction (Scheme 3.4A). A gratifying 5:1 cis:trans-stereoselectivity was obtained in this 

reaction despite the highly nucleophilic nature of alcohol 3-20, likely because the 

glucoside residue in 3-9 sterically shields the nucleophilic approach from the β-face of the 

electrophile. Thus, linker-containing disaccharide 3-21 was isolated in 79% yield. sodium 

methoxide-mediated removal of the benzoate ester then furnished alcohol 3-22 in 85% 

yield. Thioglycoside 3-8 served as a suitable glycosylating agent to effect the installation 

of the FS C tetrasaccharide backbone with 3-22 as a nucleophile and complete 1,2-trans-

stereoselectivity. The benzylidene moiety was then removed from the terminal glucose 

moiety to furnish tetrasaccharide 3-23 in 95% yield over two steps. Completion of the 

synthesis included selective oxidation of the primary alcohol in 3-23 using 

TEMPO/PhI(OAc)2 to give uronic acid 3-24 (74% yield), saponification of all esters and 

hydrogenation of benzyl and Cbz groups under acidic conditions to produce 

tetrasaccharide 3-6 in 70% yield over two steps. Of note, the use of Pearlman’s catalyst 

(Pd(OH)2) in dichloromethane, tert-butanol and water gave comparable results in the 

hydrogenation step (not shown). 

To enable initial screening of immune recognition of ST8 CPS substructures, 

disaccharide 3-22 was subjected to hydrogenation conditions to give deprotected ST8 

CPS fragment 3-25 in 87% yield (Scheme 3.4B). 

The anomeric configurations of saccharides 3-5, 3-6 and 3-25 were unambiguously 

confirmed through the corresponding 3JH,H coupling constants (J = 3.7 - 3.9 Hz for 1,2-

cis-linkages and 7.9 - 8.0 Hz for 1,2-trans-linkages) in 1H NMR and the spectral 

comparison with commercial ST8 CPS (see below). 
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Scheme 3.4. Total syntheses of ST8 tetrasaccharide 3-6 and disaccharide 3-25. Reagents and 
conditions: a) 3-20, TMSOTf, Et2O/CH2Cl2 4:1, -40 °C to -10 °C, 79% (5:1 α:β); b) NaOMe, 
MeOH, THF, 37 °C, 85%; c) i. 3-8, NIS, TfOH, CH2Cl2, -10 °C (>19:1 α:β), ii. EtSH, pTsOH, 
CH2Cl2, r.t., 95% (two steps); d) PhI(OAc)2, TEMPO, CH2Cl2/H2O 5:2, r.t., 74%; e) i. NaOH, 
THF, MeOH, H2O, 0 °C to r.t.; ii. H2, Pd/C, MeOH, H2O, AcOH, r.t., 70% (two steps); f) H2, 
Pd/C, EtOAc, MeOH, H2O, AcOH, r.t., 87%. 

3.2.3 Evaluation of the Immune Response Against Synthetic ST8 

Frameshifts A and C 

To recapitulate the glycan binding patterns of the screened antibody samples (rabbit 

typing serum and mAb 28H11, see above) by immunization, tetrasaccharides 3-5 and 3-

6 were conjugated to the immunogenic carrier protein CRM197 using bifunctional spacer 

di-N-succinimidyl adipate (DSAP, Fig. 3.3A). The resulting glycoconjugates were found 

to contain an average loading of 10.7 and 9.6 chains of oligosaccharides 3-5 and 3-6 on 

each protein, respectively, by MALDI-TOF MS (Fig. 3.3B) and SDS-PAGE (Fig. 3.3C, 
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top panel). Western blot analysis using either ST8 typing serum or mAb 28H11 as 

antibody sources confirmed the incorporation of ST8 oligosaccharide chains into the 

glycoconjugates (Fig. 3.3C, bottom panel). The typing serum exhibited a preference 

towards CRM197-FS A over CRM197-FS C, whereas mAb 28H11 displayed the reversed 

recognition pattern, in line with the binding profiles of the same antibody samples in 

glycan microarray experiments (see Fig. 3.2). 

 

Figure 3.3. Conjugation of ST8 FS A (3-5) and FS C (3-6) to CRM197. A, conjugation reaction 
using the bifunctional spacer DSAP. B, characterization by MALDI-TOF MS. Axes were re-
drawn and labeled to improve visibility. C, characterization by 10% SDS-PAGE (top panel) and 
immunoblot using either ST8 rabbit typing serum or mAb 28H11 as antibody sources (bottom 
panel). Reagents and conditions: a) i. DSAP, DMSO, Et3N, r.t.; ii. CRM197, 0.1 M sodium 
phosphate buffer pH 7.4, r.t. a.u.= arbitrary units. DSAP = di-N-succinimidyl adipate. 
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CRM197-ST8 oligosaccharide conjugates were then employed in an immunogenicity 

screening experiment with multiple variable parameters (Fig. 3.4). Mice (BALB/c or 

C57BL/6; n = 3 per group) were immunized subcutaneously with the CRM197-FS A (3-

5) and CRM197-FS C (3-6) conjugates formulated either with Freund’s adjuvant, Alum 

or without adjuvant in a prime-boost regime and a total of three immunization doses 

(Fig. 3.4A).34 The immune responses mounted by the glycoconjugates were monitored by 

glycan microarray analysis (Fig. 3.4B). To enable further evaluation of antibody 

specificities, synthetic saccharides 3-25 and 3-26xvii were included in the experiment.60 

Tetrasaccharide 3-26, a synthetic dimer of cellobiuronic acid, is under evaluation as a 

vaccine candidate against S. pneumoniae ST3109 and was chosen to analyze antibody 

cross-reactivity to ST3 CPS. A non-related glycoconjugate (BSA-GlcNAc) was used to 

assess the immunogenicity of the linker/spacer construct.159 

No anti-glycan antibodies were invoked upon immunization with FS A (3-5) as a 

hapten in any immunization setting used, indicating that FS A is not immunogenic in 

mice (Fig. 3.4C). Robust antibody responses against CRM197 and the linker/spacer 

construct were observed instead. Immunization with the CRM197-FS C glycoconjugate 

resulted in two opposing types of anti-glycan immune responses (Fig. 3.4D, left panel), 

depending on the cross-reactivity of antibodies either toward native ST8 CPS (as 

intended) or ST3 tetrasaccharide 3-26. The latter binding pattern was observed more 

frequently, indicating that cross-reactivity towards tetrasaccharide 3-26 was induced by 

a more immunogenic glycotope (Fig. 3.4D, right panel). Both types of immune response 

were mutually exclusive since no serum sample bound to both ST3 tetrasaccharide 3-26 

and ST8 CPS by glycan microarray (Fig. 3.4D, right panel). Immune responses were 

enhanced by boost immunizations, and no anti-glycan-antibodies were seen in naïve mice 

(Fig. 3.4E). Antibodies reactive towards both CRM197 and the linker/spacer construct 

were observed in all mice. 

Taken together, ST8 CPS-binding antibodies can be raised by immunization with 

a glycoconjugate containing synthetic FS C, but not FS A. The induction of antibodies 

                                         
xvii Tetrasaccharide 3-26 was synthesized by Dr. Sharavathi G. Parameswarappa and Dr. 
Subramanian Govindan. 
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reactive against FS C and native ST8 CPS is overshadowed by the immune response 

against a glycotope that is included in an ST3 CPS tetrasaccharide. 

 

Figure 3.4. Evaluating glycoconjugates of synthetic ST8 tetrasaccharides in mice. A, 
immunization strategy. Mice were subcutaneously (s.c.) immunized three times with CRM197-FS 
A (3-5) or CRM197-FS C (3-6). Different mouse strains and formulations were screened. B, 
glycan microarray printing pattern and structure of tetrasaccharide 3-26. C, immune response of 
C57BL/6 mice immunized with ST8 FS A (3-5) as a hapten, as assessed by glycan microarray of 
pooled sera (1:100 dilution). D, immune response of mice immunized with ST8 FS C (3-6) as a 
hapten, as assessed by glycan microarray (1:100 dilution). Antibody binding of sera from mice 
reacting in intended (cross-reactivity towards ST8 CPS) and unintended (cross-reactivity towards 
ST3 tetrasaccharide 3-26) manners is shown. E, time course of the immune response against ST8 
FS C. 
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Figure 3.5. Characterization of monoclonal antibodies raised against ST8 CPS frameshift C (3-
6). A, glycan microarray printing pattern. B, clone names (left) and glycan binding of cell culture 
supernatants by ST8 polysaccharide ELISA (middle) and glycan microarray (right). Since mAb 
isotypes were not determined for all clones, anti-mouse IgG secondary antibodies were used for 
ELISA and microarray analyses that display cross-reactivity towards IgM (our own observations). 
C, analysis of purified mAbs 1H8 and 1F1 by 12% SDS-PAGE. D, determination of mAb isotypes 
of 1H8 and 1F1 and anti-Y. pestis LPS core mAb 1E1283 that was used as an IgG1 isotype control 
in subsequent experiments. 



3 STREPTOCOCCUS PNEUMONIAE SEROTYPE 8 

148 
 

3.2.4 Monoclonal Antibodies Against ST8 Frameshift C Bind to 

Internal Glycotopes of Native ST8 Polysaccharide  

A closer investigation of the different types of immune response invoked by the CRM197-

FS C glycoconjugate followed (see Fig. 3.4D). MAbs were generated using splenocytes of 

a mouse that had shown an immune response against both synthetic FS C and ST8 CPS 

(no. 1160, see Fig. 3.4D). Two mAbs, 1H8 (IgG1[κ]) and 1F1 (IgM[κ]), were isolated out 

of a pool of more than 30 ST8 glycan-specific clones (Fig. 3.5) to enable both structural 

and functional characterization of saccharide binding. Both mAbs bound to immobilized 

ST8 CPS, as assessed by polysaccharide ELISA (Fig. 3.6A). Thereby, mAb 1H8 

exhibited a similar endpoint concentration as mAb 28H11, with detectable binding at 

antibody concentrations as low as 50 ng/mL. 

Binding to synthetic ST8 CPS frameshifts of mAbs 1H8 and 1F1 was then 

investigated by glycan microarray analysis and compared to mAb 28H11. Upon 

incubation with the array of synthetic ST8-derived oligosaccharides, mAb 1H8 closely 

resembled the binding pattern of mAb 28H11 (see Fig. 3.2), with specificity towards 

frameshift C and less robust binding to FSs B and D (Fig. 3.6A). These results confirm 

the finding that immunization with a FS C-containing glycoconjugate can induce an 

antibody response that recapitulates the binding of mAb 28H11. In contrast, mAb 1F1 is 

more promiscuous towards other synthetic glycans, especially FSs B and D (Fig. 3.6F). 

All interactions were blocked by mAb pre-adsorption to ST8 CPS (Fig. 3.6D and G), 

indicating that the observed antibody-glycan interactions are ST8-specific.  

Polysaccharide-binding antibodies can be classified into two categories depending 

on their specificity towards either internal glycotopes found in each repeating unit or 

terminal sugars at the non-reducing end of the glycan chain.95, 146, 344 Surface plasmon 

resonance (SPR) measurements can distinguish between the two modes of interaction. 

The recognition of terminal glycotopes by an immobilized antibody results in a 1:1 

binding pattern with detectable dissociation rates of a soluble polysaccharide analyte. 
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Figure 3.6. Binding characterization of ST8 CPS-related glycans by mAbs 1H8 and 1F1. A, 
comparison of ST8 CPS binding of mAbs 1H8 and 1F1 with mAb 28H11 by polysaccharide 
ELISA. A dotted line indicates signal background. B, glycan microarray printing pattern. C and 
F, glycan microarray analysis of mAbs 1H8 (C) and 1F1 (F). Histograms show mean + SD of 
fluorescence intensities normalized to background of eight spots. D and G, inhibition of 
oligosaccharide binding of mAbs 1H8 (D) and 1F1 (G) by pre-adsorption to ST8 CPS. Histpgrams 
show mean + SD of fluorescence intensities normalized to background of at least four spots. 
Statistical analysis (one-tailed, unpaired t test with Welch’s correction) of at least four spots was 
performed of one out of at least two independent experiments. Asterisks indicate P values: ** P < 
0.01; *** P < 0.001; **** P < 0.0001. E and H, SPR analysis of immobilized mAbs 1H8 (E) and 
1F1 (H) using ST8 CPS as an analyte in the indicated concentrations.  

When internal glycotopes are recognized by the immobilized antibody, extensive re-

binding occurs, and little dissociation of the polysaccharide analyte is observed.95 Both 

mAbs 1H8 and 1F1 exhibited interaction patterns by SPR that indicate that these 

antibodies recognize an internal glycotope (Fig. 3.6E and H). To test this notion, ST8 

CPS fragments of intermediate chain lengths (one to eight repeating units) were 

generated by acid-mediated partial depolymerization.345 Dissociation of partially 
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depolymerized ST8 CPS towards mAb 1H8 was markedly accelerated compared to full-

length polysaccharide (Fig. 3.7A and B). Finally, synthetic FS C tetrasaccharide 3-6 

that spans a single repeating unit exhibited a 1:1 binding pattern to immobilized mAb 

1H8 (Fig. 3.7C). These results confirm that dissociation is slow when the analyte 

contains multiple CPS repeating units, but fast when CPS fragments are used. Thus, 

mAbs raised against ST8 FS C recognize internal rather than terminal glycotopes of the 

native polysaccharide. 

 

Figure 3.7. Qualitative comparison of binding kinetics of mAb 1H8 towards ST8 CPS-derived 
glycans of different chain lengths. MAb 1H8 was immobilized (500-1000 RU) and subjected to a 
flow of native ST8 CPS (A), depolymerized ST8 CPS containing one to eight repeating units (B) 
or synthetic tetrasaccharide 3-6 (C). Sensorgrams (30 µL/min flow rate; 120 s association phase; 
280 s dissociation phase) were double-referenced to buffer and a flow cell containing a non-related, 
immobilized murine IgG. Analyte concentrations are calculated based on repeating units present 
(Mr = 664 for polysaccharide preparations and Mr = 723 for tetrasaccharide 3-6). Kinetic 
constants could not be determined due to the heterogeneous nature of polysaccharide analytes.  
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Figure 3.8. MAbs 1H8 and 1F1 specifically bind ST8 pneumococci. A, immunofluorescence of 
inactivated, FITC-labeled ST8 or ST1 pneumococci by 1H8 or an IgG1 isotype. Scale bar: 5 µm. 
B, flow cytometry of pneumococci after 1H8-mediated fluoredcent labeling. Left panel: 
Representative flow cytometry result after incubation with mAb 1H8 or IgG1 isotype (10 µg/mL) 
and Alexa Fluor® 635-labeled secondary antibody. Histograms show mean + SD of positive 
binding. Right panel: Cumulated results of at least three independent labeling experiments using 
mAb 1H8. C, flow cytometry of pneumococci after 1F1-mediated fluoredcent labeling. Left panel: 
Representative flow cytometry result after incubation with mAb 1F1 or IgM isotype (10 µg/mL) 
and Alexa Fluor® 680-labeled secondary antibody. Right panel: Cumulated results of at least 
three independent labeling experiments using mAb 1F1 Histograms show mean + SD of positive 
binding. Statistical analysis was performed (paired, one-tailed t test) and Asterisks indicate P 
values: *** P < 0.001; **** P < 0.0001. DIC = differential interference contrast. FITC = 
fluorescein isothiocyanate. RU = response units. 
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3.2.5 Monoclonal Antibodies Against ST8 Frameshift C Bind 

Serotype 8 Pneumococci and Protect from Lethal Pneumococcal 

Infection 

3.2.5.1 Binding of Serotype 8 Pneumococci 

MAbs 1H8 and 1F1 that are directed towards synthetic tetrasaccharide 3-6 specifically 

recognized native ST8 CPS. To assess whether capsule binding led to the recognition of 

bacteria, immunofluorescence labeling was performed using inactivated, fluorescein 

isothiocyanate-labeled S. pneumoniae. Both mAbs bound to the capsule of ST8, as 

assessed after incubation with secondary antibodies carrying compatible fluorescent 

labels by fluorescence microscopy (Fig. 3.8A) and flow cytometry (Fig. 3.8B and C). 

Interactions between mAbs and bacteria were ST8-specific, since no binding was 

observed by antibody isotype controls or towards S. pneumoniae ST1 or ST3. 

3.2.5.2 Opsonophagocytic Killing 

Next, the viability of mAbs raised against synthetic tetrasaccharide 3-6 to orchestrate 

anti-pneumococcal defense mechanisms in vitro was evaluated. MAb 1H8 was chosen 

over 1F1 due to the higher binding capacity towards ST8 CPS and the higher relevance 

of IgG over IgM in vaccinations.80 

Antibody-dependent opsonization of bacteria is the most important defense 

mechanism against S. pneumoniae infections.8 An opsonophagocytic killing assay was 

performed employing widely-used, differentiated HL-60 cells as a phagocyte source to 

elucidate the capability of antibodies against FS C (3-6) to opsonize ST8 bacteria.79 

MAb 1H8, but not an isotype-matched control mAb, efficiently triggered 

opsonophagocytic killing in the same order of magnitude as high concentrations of 

reference sera (Fig. 3.9A). 
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Figure 3.9. MAb 1H8 opsonizes bacteria and protects from lethal pneumococcal challenge. A, 
opsonophagocytic killing assay using differentiated HL-60 cells as phagocyte, rabbit serum as 
complement and mAbs as antibody sources, respectively. Reduction of cfu is shown relative to 
control wells lacking an antibody source. Histograms show mean + SD of triplicate wells. 
Statistical analysis (One-tailed, unpaired t test with Welch’s correction) was performed of one out 
of two independent experiments. Asterisk indicates P value: * P < 0.05. B-D, passive 
immunization and lethal challenge with S. pneumoniae ST8. B, passive immunization regime. 
Mice (n = 5-6 per group) were treated i.p. with 10 µg or 100 µg of mAb 1H8 or isotype control 2 
h prior to lethal t.n. challenge with ST8 bacteria. Blood was withdrawn at regular intervals and 
survival was monitored for 96 h. C, survival of antibody-treated mice after ST8 infection. 
Statistical analysis (Mantel-Cox log-rank test) was performed between groups of equal antibody 
doses: ** 100 µg mAb; # 10 µg mAb. D, bacterial burden in the blood of mice 30 h p.i. Values 
are given as individual data and median. Statistical analysis (Mann-Whitney U test) was 
performed between groups of equal antibody doses. Asterisks indicate P values: * P < 0.05; ** P 
< 0.005. 

3.2.5.3 Passive Immunization 

To determine whether polysaccharide binding of mAbs raised against FS C is functional 

in a disease setting, protection of mice from pneumococcal infection by mAb 1H8 was 

studied.xviii MAb 1H8 or an isotype-matched control mAb were administered at either 10 

                                         
xviii Passive immunization was performed together with Dr. Katrin Reppe, Denise Barthel and 
Prof. Dr. Martin Witzenrath at Charité Universitätsmedizin, Berlin, Germany. 
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µg or 100 µg doses two hours prior to transnasal infection with a lethal dose of S. 

pneumoniae serotype 8 (Fig. 3.9B). 57 The distinct glycan array binding pattern of mAb 

1H8 allowed for the monitoring of antibody levels during the course of infection by 

glycan microarray analysis. Both survival and bacteremia were monitored and correlated 

to bloodstream levels of mAb 1H8. 

A 10 µg dose of mAb 1H8 induced significantly prolonged survival of infected mice 

when compared to the isotype-matched control mAb (Fig. 3.9C), whereas a 100 µg dose 

of mAb 1H8 resulted in complete survival. Clinical parameters of bacterial sepsis were 

absent in mice treated with the 100 µg dose of mAb 1H8 (not shown). As expected, 

survival was inversely correlated to bacterial burden, and mice with measurable amounts 

of bacteria in the bloodstream died within 12 hours after detection of bacteremia (Fig. 

3.9D and Fig. 3.10A and B).  

Bacteremia of ST8-infected mice inversely correlated with bloodstream levels of 

mAb 1H8. Antibody levels in the same order of magnitude as the administered amounts 

(mAb concentrations of 6 to 13.5 µg/mL in blood for 10 µg and 15.5 to 44.1 µg/mL in 

blood for 100 µg groups, respectively) were observed in mice without bacteremia (Fig. 

3.10C and D). When no mAb 1H8 was present in the bloodstream, bacterial burden was 

observed to indicate that the presence of anti-capsular antibody excludes bloodstream 

invasion of pneumococci. Analysis of the time course of both bacteremia and mAb levels 

confirmed that the presence of antibody was essential for survival, as mice receiving the 

10 µg dose of mAb 1H8 survived until mAb levels disappeared and, simultaneously, 

bloodstream bacterial burden increased (Fig. 3.10C). 

3.2.6 Synthesis of Oligosaccharides Related to ST8 Frameshift C 

Immunization with FS C as a hapten can induce protective antibodies against ST8, but 

more frequently induces antibodies against a non-protective glycotope (see above) To 

foster the generation of optimized vaccine antigens, it was now important to uncover the 

nature of the protective glycotope within FS C. A panel of synthetic, FS C-related 

oligosaccharides was synthesized to this end (Scheme 3.5). 
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Figure 3.10. Correlation between mAb 1H8 levels and bacterial burden in blood after passive 
immunization and lethal pneumococcal challenge. Mice were passively immunized 
intraperitoneally (i.p.) with mAb 1H8 or IgG1 isotype and infected transnasally (t.n.) with 1x105 
cfu S. pneumoniae ST8 two hours later. Blood was withdrawn at regular intervals and upon 
euthanizing mice and analyzed for mAb 1H8 levels (glycan microarray) and bacterial burden. 
MAb concentrations were assessed by comparing fluorescent to standard curves of mAb 1H8. 
Mean values after fluorescence read-out of at least 8 spots are shown. Pooled sera of isotype-
treated mice 30 h p.i. are shown for comparison. A, 10 µg mAb. Blood was analyzed after 30 h 
and at indicated time points upon euthanizing (“final”). B, 100 µg mAb doses. Blood was analyzed 
after 30 h, 60 h and 96 h. C and D, correlation of mAb levels and bacterial burden in blood of 
mice receiving a 10 µg (C) or a 100 µg dose of mAb 1H8 (D). Values are given as individual data 
and median. 
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Scheme 3.5. Retrosynthesis of ST8 substructures 3-27, 3-28, 3-29 and 3-30 based on building 

blocks 3-22, 3-31, 3-32 and 3-33. 

Saccharides 3-27 and 3-28 were of interest due to the absence of the terminal 

glucuronic acid moiety that is found on ST3 tetrasaccharide 3-26. Particularly, 

tetrasaccharide 3-28 was chosen as a “reduced” congener of FS C containing a terminal 

glucose unit instead of glucuronic acid to evaluate the role of the negative charge present 

under physiological conditions. Penta- and hexasaccharides 3-29 and 3-30 served to 

study the effects of saccharide extensions at the non-reducing end of FS C. Disaccharide 

3-22 was used along with diglucoside 3-31 and protected monosaccharides 3-32 and 3-

33 to generate conjugation-ready glycans 3-27, 3-28, 3-29 and 3-30.  

The synthesis of trisaccharide 3-27 commenced by appending a terminal glycose 

moiety to alcohol 3-22 through thioglycoside 3-33333 (Scheme 3.6A). Subsequent 

removal of the benzylidene moiety from the trisaccharide intermediate under acidic 

conditions furnished diol 3-34 in 75% yield over two steps. Removal of all permanent 

protecting groups was effected by transesterification with methanolic sodium methoxide 

and hydrogenation of the benzyl and Cbz groups using Pearlman’s catalyst in a ternary 

mixture of dichloromethane, tert-butanol and water to give trisaccharide 3-27 in 79% 
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yield over two steps. Following tetrasaccharide assembly (see Scheme 3.4A), global 

deprotection of diol 3-23 produced FS C tetrasaccharide congener 3-28 in 89% yield 

over two steps (Scheme 3.6B). 

Scheme 3.6. Total syntheses of ST8 trisaccharide 3-27 and tetrasaccharide 3-28. Reagents and 
conditions: a) 3-33, NIS, TfOH, CH2Cl2, -20 °C, ii. EtSH, pTsOH, CH2Cl2, r.t., 75% (two steps); 
b) i. NaOMe, MeOH, CH2Cl2, r.t.; ii. H2, Pd(OH)2, CH2Cl2, tBuOH, H2O, r.t., 79% (two steps); i. 
NaOMe, THF, MeOH, 40 °C; ii. H2, Pd(OH)2, CH2Cl2, tBuOH, H2O, r.t., 89% (two steps). 

Further elongation of the FS C oligosaccharide backbone toward the generation of 

penta- and hexasaccharides commenced by treatment of carboxylate 3-24 with methyl 

iodide under basic conditions to afford ester 3-35 in 80% yield (Scheme 3.7). The use of 

trimethylsilyl diazomethane instead resulted in the formation of multiple products. The 

terminal galactose moiety was introduced through thioglycoside 3-32346 using NIS/TfOH 

as a promoter system to give pentasaccharide 3-36 in 89% yield and 4.7:1 α:β 

stereoselectivity. Global deprotection featured the initial mild hydrolysis of the methyl 

esters in 3-36 using lithium peroxide, transesterification of benzoate esters and 

hydrogenolysis using Pearlman’s catalyst (see above). Pentasaccharide 3-29 was 

obtained in 88% yield over three steps. 
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Scheme 3.7. Total synthesis of ST8 pentasaccharide 3-27. Reagents and conditions: a) MeI, 
Cs2CO3, DMF, r.t., 80%; b) 3-30, NIS, TMSOTf, Et2O/CH2Cl2 3:1, -20 °C to 0 °C, 89% (4.7:1 
α:β); c) i. H2O2, aq. LiOH, THF, MeOH, H2O, r.t., then aq. NaOH, r.t., ii. NaOMe, MeOH, r.t.; 
iii. H2, Pd(OH)2, CH2Cl2, tBuOH, H2O, r.t., 88% (three steps). 

Next, the total synthesis of hexasaccharide 3-30 was undertaken (Scheme 3.8). 

Methyl ester 3-35 and glycosylating agent 3-9 served as suitable precursors to give 

protected hexasaccharide 3-37 in a TMSOTf-catalyzed glycosylation reaction in 68% 

yield and complete α-selectivity. Careful analysis of anomeric 1JC-H coupling constants in 

3-37 confirmed the configurations of all anomeric linkages on that stage. Global 

deprotection of 3-37 proceeded uneventfully, using the reaction sequence established for 

the deprotection of pentassaccharide 3-36 (see Scheme 3.7) to give deprotected 

hexasaccharide 3-30 in 86% yield over three steps. 

Assessment of 3JH,H coupling constants in 1H NMR spectra of saccharides 3-27, 3-

28, 3-29 and 3-30 confirmed the configurations of all anomeric linkages. Furthermore, 

comparison of 1H NMR spectra of all synthetic ST8 CPS-derived oligosaccharides 

permitted the assignment of anomeric peaks and the confirmation of the ST8 CPS 

structure that had so far only been determined by wet chemical and biosynthetic 
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analyses (Fig. 3.10).16, 327 Thereby, commercial ST8 CPS turned out to be heavily 

contaminated with pneumococcal C-polysaccharide, in line with observations that 

antibodies against C-polysaccharide are generated in abundance after immunization with 

a ST8 CPS glycoconjugate.92 This finding further underscores the power of chemical 

synthesis to generate glycans devoid of cellular contaminants. 

Taken together, a collection of seven ST8 FS C-related oligosaccharides were 

synthesized from a small set of building blocks in a highly divergent manner, enabling 

the mapping of glycotopes recognized by FS C-directed antibody samples (see below). 

Scheme 3.8. Total synthesis of ST8 hexasaccharide 3-30. Reagents and conditions: k) 3-9, 
TMSOTf, Et2O/CH2Cl2 3:1, -20 °C to 0 °C, 68% (>19:1 α:β); l) i. H2O2, aq. LiOH, THF, MeOH, 
H2O, r.t., then aq. NaOH, r.t., ii. NaOMe, MeOH, r.t.; iii. H2, Pd(OH)2, CH2Cl2, tBuOH, H2O, 
r.t., 86% (three steps). 
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Figure 3.10. Comparison of 1H NMR spectra of native ST8 CPS (600 MHz) with ST8-derived 
oligosaccharides 3-25 (600 MHz), 3-27 (400 MHz), 3-28 (600 MHz), 3-6 (600 MHz), 3-29 (600 
MHz), 3-30 (600 MHz) and 3-5 (400 MHz). All spectra were recorded at 25 °C. C-polysaccharide 
impurities in commercial ST8 CPS are highlighted with black arrowheads according to Xu et 
al.100 Signals of anomeric protons different from spectra of smaller glycans are highlighted with 
red arrowheads. A red line depicts signals that are too close to differentiate. 

3.2.7 Mapping of Protective and Non-protective Glycotopes Within 

ST8 Frameshift C 

3.7.2.1 Mapping a Non-protective Glycotope Within ST8 Frameshift C 

Immunization with a CRM197-FS C glycoconjugate yielded immune responses either 

recognizing native ST8 CPS or cellobiuronic acid-containing tetrasaccharide 3-24 (see 

Fig. 3.4D). ST8 CPS recognition was key to protection from pneumococcal infection. In 

order to uncover the nature of non-protective glycotopes found in ST8 FS C, a collection 

of synthetic, ST3 CPS-derived oligosaccharides was first employed in a glycan microarray 

experiment (Fig. 3.11A).59 Antisera raised against ST8 FS C and binding to ST3 

tetrasaccharide 3-26 exhibited an even more robust interaction with cellobiuronic acid 3-

38, whereas mAb 1H8 did not recognize that disaccharide (Fig. 3.11B). Little or no 

binding was found to ST3 CPS-derived trisaccharides (3-40xix and 3-41xix), a 

                                         
xix Oligosaccharides 3-39, 3-40 and 3-41 were synthesized by Dr. Sharavathi G. Parameswarappa 
and Dr. Subramanian Govindan. 
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frameshifted ST3 disaccharide (3-39xix) or native ST3 CPS (Fig. 3.11B), confirming that 

cellobiuronic acid alone is highly immunogenic. 

 

Figure 3.11. Mapping the non-protective glycotope of ST8 FS C. A, synthetic ST3-related 
oligosaccharides 3-38, 3-39, 3-40 and 3-41,xix and glycan microarray printing pattern. 
Disaccharide 3-38 represents conjugation-ready cellobiuronic acid. B, glycan microarray analysis 
comparing ST8 CPS-recognizing mAb 1H8 and antiserum of mouse 741 recognizing a non-
protective glycotope of FS C (see Fig. 3.4) by using synthetic ST8 and ST3 CPS-derived 
oligosaccharides. C, SPR analysis of mAb 1H8 and antiserum 781 with immobilized glycans FS C 
(3-6, left panel) and disaccharide 3-38 (right panel). 

The binding preferences of serum 741 in contrast to mAb 1H8 were confirmed by 

SPR: While both serum and mAb interacted with immobilized ST8 FS C (3-6), only 

serum 741 bound cellobiuronic acid disaccharide 3-38 (Fig. 3.11C). Taken together, these 

findings indicate that the immunodominant glycotope within ST8 FS C is the terminal 

cellobiuronic acid moiety. The immune response induced by that glycotope does not 
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confer cross-reactivity towards ST8 or ST3 CPSs. Thus, the information conferring 

protective immunity against ST8 CPS is likely located elsewhere in the FS C 

tetrasaccharide. 

3.7.2.2 The Protective Glycotope Within ST8 Frameshift C Does not Include the Terminal 

Glucuronic Acid 

A detailed investigation of the protective glycotope of ST8 CPS that is recognized by 

mAbs 1H8 and 1F1 was then carried out making use of oligosaccharides 3-27, 3-28, 3-

29, 3-30 and 3-42xx in a glycan microarray experiment (Fig. 3.12). Omission of the 

terminal glucuronic acid moiety of FS C did not abrogate binding by either mAb as long 

as the reducing-end sequence β-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Galp was intact (Fig. 

3.12B and D): Both trisaccharide 3-27 and tetrasaccharide 3-28 were recognized with 

comparable intensities to FS C. In contrast, truncation of trisaccharide 3-27 by a single 

monosaccharide residue at either reducing or non-reducing end (3-25 and 3-42, 

respectively) led to almost complete ablation of binding. Longer oligosaccharides (3-29 

and 3-30) were recognized with intensities comparable to FS C, indicating that 

saccharide extensions at the non-reducing end neither ablate nor facilitate antibody 

interaction. All interactions of mAbs 1H8 and 1F1 with synthetic, ST8 FS C-related 

oligosaccharides were inhibited by mAb pre-adsorption to native ST8 CPS (Fig. 3.12C 

and E) to confirm that the observed oligosaccharide binding events are relevant for the 

recognition of ST8 pneumococci. 

To determine whether the binding preferences found for anti-ST8 mAbs correlate 

with affinities, the dissociation constants (KD) of mAb 1H8 and synthetic ST8 CPS-

derived oligosaccharides were measured by SPR (Fig. 3.13). Similar affinities were 

determined for mAb 1H8 binding of ST8 FS C 3-6 (KD = 5.8 ± 0.7 µM), trisaccharide 

3-27 (KD = 4.5 ± 1.5 µM) and tetrasaccharide congener 3-28 (KD = 2.0 ± 2.3 µM), 

while binding of disaccharide 3-25 was approximately fivefold weaker (KD =24.7 ± 2.7 

µM). These results are in good agreement with the microarray data on the respective 

mAb-oligosaccharide interactions (see Fig. 3.12B and D) and confirm the role of the 

trisaccharide found at the reducing end of FS C as a protective glycotope of ST8 CPS. 

                                         
xx Disaccharide 3-42 was synthesized by Dr. Sharavathi G. Parameswarappa. 
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Figure 3.12. Mapping the protective glycotope of ST8 FS C. A, glycan microarray printing 
pattern. B and D, glycan microarray analysis of mAb 1H8 (B) and 1F1 (D) using a collection of 
synthetic ST8 CPS-related oligosaccharides. Histograms show mean + SD of fluorescence 
intensities normalized to background of at least six spots. C and E, glycan microarray analysis of 
mAb 1H8 (C) and 1F1 (E) with pre-adsorption to ST8 CPS and quantitation of binding 
inhibition to oligosaccharides 3-27 - 3-30 by native ST8 CPS. Histograms show mean + SD. 
Statistical analysis (one-tailed, unpaired t test with Welch’s correction) of at least six spots was 
performed. Asterisks indicate P value: **** P < 0.0001. 
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Figure 3.13. Determination of affinities of mAb 1H8 towards synthetic, ST8 CPS-related 
oligosaccharides. MAb 1H8 was immobilized (500-1000 RU) and subjected to a flow of synthetic 
oligosaccharides (50 µL/min flow rate; 120 s association phase; 280 s dissociation phase). 
Sensorgrams were double-referenced to buffer and a flow cell containing a non-related, 
immobilized murine IgG.  

Thus, the trisaccharide β-D-Glcp-(1→4)-α-D-Glcp-(1→4)-α-D-Galp, represented by 

synthetic glycan 3-27, is identified as the smallest structure containing a protective 

glycotope of ST8 FS C, and further glycan extension does not lead to improved 

recognition by polysaccharide-binding mAbs (Fig. 3.14). Particularly, the charge present  
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Figure 3.14. Protective (blue) and non-protective (red) glycotopes of ST8 FS C.  

on the terminal GlcA moiety is dispensable for mAb recognition and a part of an 

immunodominant, non-protective glycotope. In turn, truncation of the protective 

trisaccharide by one monosaccharide at either end abrogates recognition by these mAbs.  

3.2.8 Mapping the Glycan Binding Characteristics of Opsonizing 

and Agglutinating mAbs Against ST8 CPS 

Contrasting the classical notion of opsonophagocytosis as the major mechanism of 

protection, recently-described, protective mAbs agglutinate pneumococci, but lack 

opsonophagocytic activity in vitro.91 MAbs that display either in vitro phenotype have 

been raised after immunization with a ST8 CPS-TT glycoconjugate.92 To shed light onto 

the molecular mechanisms governing these phenotypes, the glycan binding characteristics 

of three protective, ST8 CPS-directed murine mAbs were determined: 28H11,xxi an 

agglutinating IgM (see above), 31B12,xxi an opsonizing IgG and 30H9,xxi an IgG that has 

not been evaluated for opsonophagocytic potential.91, 92 Furthermore, opsonizing mAb 

1H8 raised against synthetic FS C (see above) was included in the evaluation. 

Glycan microarray analysis revealed differential recognition of synthetic ST8 FSs 

by all three ST8 CPS-directed mAbs (Fig. 3.15A): While 28H11 robustly bound to FS C 

(see above), mAbs 30H9 and 31B12 displayed a significant preference towards FSs D and 

A, respectively. All interactions were inhibited by antibody pre-adsorption to ST8 CPS 

(Fig. 3.15B), and all mAbs bound to native ST8 CPS. It is thus concluded that, in 

addition to ST8 FS C, FSs A and D display protective glycotopes of the native 

                                         
xxi MAbs 28H11, 30H9 and 31B12 were kindly provided by Prof. Liise-anne Pirofski, Albert 
Einstein College of Medicine, New York, USA. 
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polysaccharide. Since agglutinating 28H11 and opsonizing 1H8 target the same ST8 

frameshift, it is unlikely that glycotope specificity determines the in vitro phenotype. 

 

Figure 3.15. Glycotope mapping of protective, ST8 CPS-directed mAbs. A, glycan array analysis 
of mAbs 28H11 (absolute concentrations), 30H9 and 31B12 (dilutions of cell culture supernatants 
for both). Histograms show mean + SD of eight spots. B, inhibition of antibody binding of 
indicated FSs by pre-adsorption with native ST8 CPS (10 µg/mL). Statistical analysis (One-
tailed, unpaired t test with Welch’s correction) of eight spots was performed. Asterisks indicate P 
value: **** P < 0.0001. Bars depict mean + SD. 

The in vitro ST8 recognition phenotype of anti-capsular mAbs may be influenced 

by glycan binding characteristics other than targeted frameshifts. For instance, 

polysasccharide binding affinity or the specificity for internal versus terminal glycotopes 

may influence mAb behaviour (see above).95 Using SPR, the characteristics of ST8 CPS 

binding by mAbs 28H11, 30H9, 31B12 and 1H8 were studied (Fig. 3.16). 
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Figure 3.16. Characterization of ST8 CPS binding of protective anti-capsular mAbs by SPR. 
MAbs 28H11 (A), 30H9 (B) , 31B12 (C) or 1H8 (D) were immobilized (500-1000 RU) and 
subjected to a flow of ST8 CPS (30 µL/min flow rate; 120 s association phase; 280 s dissociation 
phase). Sensorgrams were double-referenced to buffer and a flow cell containing a non-related, 
immobilized murine IgG. 

Striking binding differences were observed, with 28H11 (KD = 678 nM ± 95 nM, 

Fig. 3.16A) displaying a five- to tenfold lower affinity towards ST8 CPS than 30H9 (KD 

= 110 nM ± 7 nM, Fig. 3.16B), 31B12 (KD = 62 nM ± 4 nM, Fig. 3.16C) and 1H8 (KD 
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= 90 nM ± nM, Fig. 3.16D). Affinities towards the preferred ST8 FSs (see Fig. 3.8) of 

mAbs 30H9 (KD = 50.1 µM ± 34 µM towards FS D (3-4), Fig. 3.17A) and 31B12 (KD = 

151.4 µM ± 15 µM towards FS A (3-5), Fig. 3.17B) were found to be in the micromolar 

range and one order of magnitude lower than the affinity of mAb 1H8 towards FS C (3-

6, 5.8 µM, see Supporting Fig. 3.11). The affinity of mAb 28H11 towards FS C (3-6) 

was not measurable by SPR (not shown). 

 

Supporting Figure 3.17. Characterization of synthetic ST8 tetrasaccharide binding of 
protective anti-capsular mAbs by SPR. MAbs 30H9 (A) or 31B12 (B) were immobilized (500-1000 
RU) and subjected to a flow of ST8 CPS (30 µL/min flow rate; 120 s association phase; 280 s 
dissociation phase). Sensorgrams were double-referenced to buffer and a flow cell containing a 
non-related, immobilized murine IgG. 

When assessing the ST8 CPS binding behavior by SPR, pronounced CPS 

dissociation was observed from immobilized mAb 28H11, but not from immobilized 

mAbs 30H9, 31B12 and 1H8 (Fig. 3.16). Glycan dissociation from the latter group of 

mAbs was enhanced when using synthetic tetrasaccharides as analytes (Fig. 3.17). These 

findings suggest that agglutinating mAb 28H11 may specifically bind terminal glycotopes 

at the non-reducing end of the polysaccharide chain with low affinity, while opsonizing 

mAbs 1H8 and 31B12 as well as mAb 30H9 display high affinities towards internal 

glycotopes (Table 3.1). 
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Table 3.1. ST8 CPS-binding mAbs used in this study. 

mAb Raised against Specificity 
(FS) 

In vitro 
phenotype 

Glycotope 
location 

Affinity to ST8 
CPS [nM] 

28H11 TT-ST8 CPS92 C agglutination terminal (?) 678 ± 95 
30H9 TT-ST8 CPS92 D unknown internal 110 ± 7 
31B12 TT-ST8 CPS92 A opsonization internal 62 ± 4 
1H8 CRM197-FS C (3-6) C opsonization internal 90 ± 13 

3.3 Conclusion and Outlook 

3.3.1 Elucidation of a Protective Glycotope of ST8 CPS 

The design of synthetic immunogens from first principles is key to the development of 

novel glycoconjugate vaccines but cannot yet be addressed satisfactorily. Some evidence 

into the role of distinct glycotopes for immunogenicity has been obtained during studies 

aimed at developing glycoconjugate vaccines based on synthetic oligosaccharides.1, 2 

Glycan-based antigens that induce a protective antibody response have been identified 

for S. pneumoniae serotypes 3 and 14 via laborious total synthetic efforts paired with 

immunization trials.109, 334 Bundle used structural analysis to reverse-engineer a 

carbohydrate-recognizing mAb and develop a vaccine hapten against Candida 

albicans.144, 145 This approach works well when structural information is available, but 

crystal structures are often difficult to obtain. 

Here, an approach is described to learn about glycan immunogenicity and 

protective glycotopes of S. pneumoniae serotype 8 CPS. This serotype was chosen to 

illustrate the principle since it is an important non-PCV target and had been studied 

only marginally by chemical synthesis.347, 348 No information was available on the 

immunogenicity of ST8 CPS fragments. The strategy employed here featured glycotope 

mapping using all four tetrasaccharide frameshifts of ST8 CPS. Depending on the 

geometry of antigen binding sites and the structure of glycan antigens,310 carbohydrate-

binding antibodies have been found to accommodate between one and six 

monosaccharide residues.146, 147, 311 In spite of the possibility to neglect longer glycotopes, 

screening all ST8 tetrasaccharide frameshifts was rationalized by the relatively small 

glycans associated with protective immunity in other S. pneumoniae serotypes.109, 111, 334 



3 STREPTOCOCCUS PNEUMONIAE SEROTYPE 8 

170 
 

Furthermore, utilizing longer oligosaccharides from the outset may impair glycotope 

mapping due to significant structural overlap between glycan probes. 

Antisera raised against polysaccharides can provide valuable information about the 

glycotopes that are predominantly recognized by the immune system. However, 

polyclonal sera often contain non-protective antibodies that may be induced by 

immunodominant glycotopes in native glycans, co-isolated impurities or artifacts arising 

during isolation and antigen preparation.92, 99, 116, 349, 350 Additionally, non-related 

antibodies in sera may cross-react with synthetic structures (see Fig. 3.2). The latter 

interaction can be uncovered by inhibition of binding with the native polysaccharide, 

ruling out potential false-positive screening results. Since mAbs recognize glycotopes of 

restricted lengths in a defined manner, information on a protective glycotope can be 

obtained easier by studying mAbs than by studying polyclonal antisera. Protective mAb 

28H11 exhibited a clear preference for FS C in glycan microarray screening experiments, 

and this binding event was chosen for mAb reverse engineering. 

The design of a scalable synthetic route for the generation of multiple, CPS-derived 

glycans can be challenging, especially if multiple 1,2-cis-linkages have to be introduced. 

An efficient strategy was developed for the synthesis of ST8 CPS-derived 

oligosaccharides that alleviates the difficulties in stereoselectivities seen during 

automated glycan assembly.xxii Remarkable 1,2-cis-stereoselectivities were achieved using 

disaccharide 3-9 as a glycosylating agent, even when a primary alcohol found in a linker 

precursor was employed as the nucleophile. This finding is in stark contrast to the low 

stereoselectivities often obtained using this and similar, highly nucleophilic alcohols in 

glycosylation reactions.193 The herein developed route served to access ST8 CPS FSs A 

(18% over 8 steps) and C (11% over 11 steps) in high-yielding linear syntheses from 

precursor 3-14 and was extended to the generation of a family of FS C-related glycans. 

Upon immunization, a CPS frameshift hapten that harbors a protective glycotope 

may still display glycotopes that induce non-protective immunity. The striking 

preference of mAb 28H11 for FS C was contrasted by the predominant induction of an 

antibody response against the terminal cellobiuronic acid moiety following immunization 

with a FS C glycoconjugate. Cellobiuronic acid represents the repeating unit of S. 

                                         
xxii See dissertation of Heung Sik Hahm. 



 

171 
 

pneumoniae serotype 3 CPS, and ST3-derived oligosaccharides are among the most 

immunogenic synthetic oligosaccharides described to date.109 It is thus not surprising 

that ST8 FS C primarily induced an immune response directed against the terminal 

cellobiuronic acid moiety, but not against native ST3 or ST8 polysaccharides. In spite of 

the immunodominance of cellobiuronic acid, murine FS C-directed mAbs were generated 

that specifically bound ST8 pneumococci and retained the frameshift binding pattern of 

anti-ST8 CPS mAb 28H11. Bacterial binding was associated with the recognition of 

internal glycotopes in the native ST8 polysaccharide, thus confirming the presence of a 

protective, albeit less immunogenic glycotope within that tetrasaccharide frameshift.  

S. pneumoniae ST8 is a particularly virulent serotype in both humans and mice, 

with rapid bloodstream invasion as a frequent clinical outcome of infections.19, 20, 92, 322, 323 

In contrast, clinical symptoms of pneumonia are mild compared to other serotypes such 

as ST3 (our own observations). Similar to mAbs raised against ST8 CPS,89, 91 mAb 1H8 

raised against synthetic FS C mediated opsonophagocytic killing of pneumococci and 

protected from infection by preventing bloodstream invasion in a dose-dependent fashion. 

A clear-cut correlation between systemic antibody levels and bacterial burden was 

observed, whereby bacteremia was not observed in the presence of mAb 1H8. A lower 

dose of mAb 1H8 was associated with delayed bacteremia and prolonged survival, 

connected to a steep decline of mAb levels that was probably caused by antibody 

consumption in the process of phagocyte-dependent bacterial killing. 

A detailed investigation of mAb 1H8 using an array of synthetic, ST8 CPS-derived 

oligosaccharides suggests that the minimal protective glycotope is the trisaccharide β-D-

Glpc-(1→4)-α-D-Glcp-(1→4)-α-D-Galp. Interestingly, a FS C-derived tetrasaccharide 

harboring a terminal glucose unit instead of glucuronic acid (3-28) was recognized by 

anti-FS C mAb 1H8 with a similar affinity as FS C, indicating that glucuronic acid is 

not part of the protective glycotope of ST8 FS C. Instead, the glucuronic acid-containing 

cellobiuronic acid moiety is a crucial determinant for the induction of a non-protective 

immune response upon immunization with FS C as a hapten. 

In preliminary experiments, immunization of mice with a glycoconjugate containing 

FS C tetrasaccharide congener 3-28 induced antibodies that were reactive towards ST8 

CPS and FS C (data not shown). However, these results could not be translated to a 
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statistically significant number of animals, underscoring the low immunogenicity of the 

protective glycotope. Presentation of the synthetic antigens used on a carrier protein 

may not be ideal to induce antibodies that are directed against an internal glycotope 

such as the protective trisaccharide identified herein. Thus, turning oligosaccharides that 

contain protective glycotopes of ST8 CPS, such as tetrasaccharide 3-28, into productive 

vaccine haptens may likely involve optimization of antigen presentation on the carrier 

protein. 

The immunogenicity of synthetic ST8-related glycans tested as haptens may be 

associated with the animal model used for immunizations. Antibody repertoires displayed 

by mice differ from other mammals, including humans,351, 352 and species-specific 

variations of antigen immunogenicity have been observed for certain carbohydrate 

haptens (observations by members of the Seeberger group). Thus, ST8 CPS-based 

oligosaccharides may be efficient immunogens in animal models other than mice, and the 

respective immunization experiments are underway. 

In summary, a protective trisaccharide glycotope of S. pneumoniae ST8 has been 

identified by combining automated glycan assembly, glycan microarray analysis and 

immunological evaluation. A plethora of synthetic oligosaccharides helped identifying 

both protective and non-protective glycotopes within a single synthetic frameshift. 

3.3.2 Characterization of Glycan Binding Properties of Opsonizing 

and Agglutinating Monoclonal Antibodies Against ST8 

Anticapsular antibodies are thought to protect from pneumococcal infection by 

mediating opsonophagocytic killing. This model has been extended by the recent 

discovery of mAbs that protect from S. pneumoniae infection, but do not trigger 

opsonophagocytosis.89, 91, 92, 332 These mAbs induce agglutination of bacteria and enhance 

the transformation efficiency of pneumococci,91 and fratricide as a result of bacterial 

quorum sensing has been suggested as a possible means of protection.353 Multiple factors 

may influence the function of these antibodies, including Ig isotype, structure of antigen 

binding sites and glycan binding characteristics. The results presented herein suggest 

that target glycotope does not correlate with in vitro phenotype. First, distinct glycotope 

specificities were found for all mAbs targeting ST8 CPS, including the two opsonizing 
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mAbs 31B12 (FS A) and 1H8 (FS C) as well as mAb 30H9 (FS D).91 Second, 

agglutinating mAb 28H11 displayed the same overall glycotope specificity to FS C as 

opsonizing mAb 1H8 (see above), incidating that specificity towards FS C alone does 

dictate an agglutinating phenotype. Marked differences in both affinity and location of 

target glycotopes were found for mAbs that either agglutinate or opsonize bacteria. Only 

agglutinating mAb 28H11 bound to terminal glycotopes at the non-reducing end of the 

polysaccharide chain. The affinity of IgM 28H11 towards ST8 CPS was at least fivefold 

weaker than the affinity of IgGs 30H9, 31B12 and 1H8, as expected considering affinity 

maturation during the generation of IgG isotypes. Of note, the Ig isotype is unlikely to 

be a major determinant for the in vitro phenotype, since an agglutinating IgG has been 

described against ST3 CPS89, 91 and antibodies of the IgM isotype are known to 

efficiently deposit C3 complement, priming bacteria to opsonophagocytosis by a range of 

effector cells.332, 354 

The three-dimensional structures of antigen binding sites that define antibody 

specificities are mainly determined by CDR sequences. Assigning these peptide sequences 

to target glycotopes is crucial to understand carbohydrate-protein interactions. 

Interestingly, the CDR3 peptide sequences of ST8 CPS-binding mAbs 28H11 and 30H9 

are nearly identical despite their differences of target glycotopes.92 The structural 

interpretation of antigen binding sites based on CDR sequences is hampered by the 

variability of these sites.310 More detailed structural analysis will be required to relate 

CDR sequences to glycotope specificity. 

Taken together, the results presented herein point towards a role of either 

glycotope location or affinity towards native CPS in determining the in vitro phenotype. 

MAb 30H9 has not been studied for opsonizing capacity. This mAb displays a strong 

preference for FS A and a binding behavior towards ST8 CPS similar to all other IgGs 

tested herein. It will be interesting to study the capacity of 30H9 to mediate 

opsonophagocytosis and correlate that data to glycan binding charcteristics. 

Additionally, the investigation of other ST8 CPS-targeting antibodies will provide 

further insight into the molecular mechanisms of protection from pneumococcal infection. 
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3.5 Experimental Section 

3.5.1 Methods of Synthetic Chemistry  

General Experimental Details 

Commercial grade solvents and reagents were used unless stated otherwise. Anhydrous 

solvents were obtained from a Dry Solvent System (Waters, Milford, USA). Solvents for 

chromatography were of technical grade and distilled under reduced pressure prior to 

use. Sensitive reactions were carried out in oven-dried glassware and under an argon 

atmosphere. Molecular sieves were activated by heating under high vacuum prior to use. 

Analytical thin layer chromatography (t.l.c.) was performed on Kieselgel 60 F254 glass 

plates pre-coated with silica gel of 0.25 mm thickness (Macherey-Nagel, Düren, 

Germany). Spots were visualized with sugar stain (0.1% (v/v) 3-methoxyphenol, 2.5% 

(v/v) sulfuric acid in EtOH) or CAM stain (5% (w/v) ammonium molybdate, 1% (w/v) 

cerium(II) sulfate and 10% (v/v) sulfuric acid in water) dipping solutions. Flash 

chromatography was performed on Kieselgel 60 with 230-400 mesh (Sigma-Aldrich, St. 

Louis, USA). Solvents were removed under reduced pressure using a rotary evaporator 

and high vacuum (<1 mbar). Freeze-drying of aqueous solutions was performed using an 

Alpha 2-4 LD Lyophilizer (Christ, Osterode am Harz, Germany). 

1H, 13C and two-dimensional NMR spectra were measured with a Varian 400-MR 

spectrometer or a Varian 600 spectrometer (both Agilent, Santa Clara, USA) at 298 K. 

Chemical shifts (δ) are reported in parts per million (ppm) relative to the respective 

residual solvent peaks (CDCl3: δ 7.26 in 1H and 77.16 in 13C NMR; acetone-D6: δ 2.05 in 
1H and 29.84 in 13C NMR; D2O: δ 4.79 in 1H NMR). Two-dimensional NMR experiments 

(HH-COSY, CH-HSQC, CH-HMBC) were performed to confirm newly-formed linkages. 

The following abbreviations are used to indicate peak multiplicities: s singlet; d doublet; 

dd doublet of doublets; t triplet; dt doublet of triplets; m multiplet. Coupling constants 

(J) are reported in Hertz (Hz). NMR spectra were evaluated using MestreNova 6.2 

(MestreLab Research SSL, Santiago de Compostella, Spain). Optical rotation (OR) 

measurements were carried out with a UniPol L1000 polarimeter (Schmidt+Haensch, 

Berlin, Germany) at λ = 589 nm and a concentration (c) expressed in g/100 mL in the 

solvent noted in parentheses. High resolution mass spectrometry by electrospray 
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ionization (ESI-HRMS) was performed at Freie Universität Berlin, Mass Spectrometry 

Core Facility, with a 6210 ESI-TOF mass spectrometer (Agilent). Matrix-assisted laser 

desorption ionization-time of flight (MALDI-TOF) high resolution mass spectra were 

recorded on a Daltonics Autoflex Speed spectrometer (Bruker, Billerica, USA) using 2,5-

dihydroxyacetophenone and 2,4,6-trihydroxyacetophenone matrices for proteins and 

organic compounds, respectively. Infrared (IR) spectra were measured with a Spectrum 

100 FTIR spectrometer (Perkin-Elmer, Waltham, USA). Schemes were prepared using 

ChemBioDraw Ultra 12.0.2 (Cambridgesoft, Waltham, USA). 

Dibutyl (4-O-benzoyl-2,3,6-tri-O-benzyl-D-galactopyranosyl) phosphate (3-10) 

 

Thioglycoside 3-13β343 (100 mg, 167 µmol) was co-evaproated with anhydrous toluene 

(2x5 mL), kept under high vacuum for 15 min and dissolved in anhydrous CH2Cl2 (2 

mL). The solution, over activated molecular sieves (3 Å-AW), was treated at room 

temperature with dibutyl phosphoric acid (66 µL, 334 µmol) and stirred for another 15 

min. The mixture was then treated with NIS (56 mg, 251 µmol) and stirred for 30 min. 

The reaction was diluted with CH2Cl2 (5 mL) and quenched with a 1:1 (v/v) mixture of 

10% aq. Na2S2O3 and sat. aq. NaHCO3 (5 mL). After separation, the aqueous phase was 

extracted with CH2Cl2 (3x10 mL), the combined organic fractions were dried over 

Na2SO4 and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:10 to 1:5 to 1:1) to give glycosyl phosphate mixture 3-10 (101 mg, 

135 µmol, 81%, 1:2 α:β) as a clear oil. Rf (EtOAc/hexanes 1:4) = 0.36; [α]D
20 = +26.8° (c 

= 1.00, CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 8.06 – 7.91 (m, 2H), 7.63 – 7.54 (m, 1H), 

7.51 – 7.02 (m, 17H), 5.90 (dd, J = 7.1, 3.1 Hz, 1H), 5.44 – 5.34 (m, 1H), 5.29 (t, J = 7.4 

Hz, 0.5H), 4.92 (dd, J = 13.0, 7.1 Hz, 0.5H), 4.84 – 4.69 (m, 3H), 4.62 (dd, J = 14.2, 11.5 

Hz, 1.5H), 4.54 – 4.41 (m, 2H), 4.31 – 4.15 (m, 1H), 4.15 – 3.95 (m, 5.5H), 3.87 – 3.70 

(m, 2H), 3.70 – 3.45 (m, 3H), 1.69 – 1.53 (m, 4H), 1.45 – 1.25 (m, 4H), 1.01 – 0.80 (m, 

6H). 13C NMR (100 MHz, CDCl3) δ 165.4, 165.3, 137.99, 137.97, 137.74, 137.70, 137.68, 

137.65, 133.4, 133.3, 129.92, 129.89, 129.7, 129.6, 128.51, 128.45, 128.32, 128.29, 128.27, 

128.2, 128.1, 128.0, 127.89, 127.87, 127.85, 127.79, 127.75, 127.73, 127.66, 127.65, 127.6, 

98.8, 98.7, 95.13, 95.07, 82.0, 81.9, 81.4, 79.2, 79.1, 78.0, 77.4, 75.3, 75.2, 75.1, 74.2, 73.7, 
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73.6, 73.2, 71.2, 70.9, 70.2, 69.3, 68.7, 68.00, 67.95, 67.8, 67.7, 32.34, 32.29, 32.3, 32.22, 

32.19, 18.72, 18.69, 18.66, 13.73, 13.69; IR (thin film) 2962, 2875, 1729, 1603, 1455, 1364, 

1267, 1104, 1028, 954, 737, 712, 698 cm-1; HRMS (ESI) calcd. for C42H51O10P (M+Na)+ 

769.3118 found 769.3140 m/z. 

Thexyl 2,3,6-tri-O-benzyl-β-D-galactopyranoside (3-15) 

 

To a stirred solution of benzylidene acetal 3-14342 (1.68 g, 2.84 mmol) in CH2Cl2 (60 mL) 

over activated molecular sieves (3 Å-AW) were added at 0 °C TES (2.72 mL, 17.06 

mmol) and trifluoroacetic acid (1.81 mL, 17.06 mmol). The mixture was slowly warmed 

to room temperature and stirred for 16 h at that temperature. The reaction was 

quenched with Et3N (2 mL), filtered through Celite and concentrated. The residue was 

purified by flash chromatography (EtOAc/hexanes 1:20 to 1:7) to give alcohol 3-15 (1.46 

g, 2.46 mmol, 87%) as a clear oil. Rf (EtOAc/toluene/hexanes 1:1:3) = 0.68; [α]D
20 = 

+12.5° (c = 2.20, CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 7.42 – 7.27 (m, 15H), 4.93 (d, J 

= 11.0 Hz, 1H), 4.75 (d, J = 11.0 Hz, 1H), 4.70 (s, 2H), 4.62 – 4.56 (m, 3H), 4.01 (s, 1H), 

3.80 (dd, J = 9.8, 5.9 Hz, 1H), 3.70 (dd, J = 9.8, 6.0 Hz, 1H), 3.57 (m, 2H), 3.49 (dd, J 

= 9.4, 3.4 Hz, 1H), 2.51 (d, J = 1.6 Hz, 1H), 1.69 (dt, J = 13.7, 6.8 Hz, 1H), 0.92 – 0.85 

(m, 12H), 0.20 (d, J = 10.5 Hz, 6H); 13C NMR (100 MHz, CDCl3) δ 138.8, 138.2, 138.1, 

128.6, 128.5, 128.4, 128.1, 127.99, 127.98, 127.8, 127.7, 98.4, 81.0, 80.9, 75.4, 73.8, 73.3, 

72.6, 69.5, 67.1, 33.9, 25.0, 20.3, 20.1, 18.8, 18.6, -1.6, -3.0; IR (thin film) 2866, 1497, 

1454, 1365, 1252, 1181, 1072, 1029, 876, 832, 781, 735, 696 cm-1; HRMS (ESI) calcd. for 

C35H48O6Si (M+Na)+ 615.3117 found 615.3104 m/z. 
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Thexyl 4-O-benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-

β-D-galactopyranoside (3-16)  

 

Alcohol 3-15 (550 mg, 0.93 mmol) and thioglycoside 3-13β343 (667 mg, 1.11 mmol) were 

co-evaporated with anhydrous toluene (3x10 mL) and kept under high vacuum for 30 

min. The mixture was dissolved in Et2O (14 mL) and CH2Cl2 (2.8 mL) and stirred over 

activated molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was 

cooled to -20 °C and treated with NIS (250 mg, 1.11 mmol) and TfOH (16 µL, 0.19 

mmol). The mixture was stirred for 1 h and slowly warmed to -10 °C. The reaction was 

quenched with Et3N (0.05 mL), diluted with CH2Cl2 (20 mL), filtered through Celite and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 0:1 to 

1:8 to 1:6) to give disaccharide 3-16 (553 mg, 0,490 mmol, 53%) along with the 

corresponding β-anomer (231 mg, 0.205 mmol, 22%). Analytical data for 3-16: Clear oil. 

Rf (EtOAc/hexanes 1:1) = 0.28; [α]D
20 = +70.6° (c = 1.46, CH2Cl2); 

1H NMR (400 MHz, 

CDCl3) δ 7.95 (dd, J = 8.3, 1.3 Hz, 2H), 7.64 – 7.52 (m, 1H), 7.49 – 7.02 (m, 32H), 5.52 

(dd, J = 10.1, 9.5 Hz, 1H), 5.12 (d, J = 3.4 Hz, 1H), 4.99 (d, J = 11.1 Hz, 1H), 4.88 (t, J 

= 12.0 Hz, 2H), 4.84 – 4.59 (m, 6H), 4.49 – 4.33 (m, 2H), 4.33 – 4.20 (m, 4H), 4.14 (d, J 

= 2.9 Hz, 1H), 4.01 (m, 1H), 3.83 – 3.63 (m, 2H), 3.62 – 3.48 (m, 2H), 3.44 (dd, J = 10.0, 

2.9 Hz, 1H), 3.05 (m, 2H), 1.80 – 1.64 (m, 1H), 1.04 – 0.84 (m, 12H), 0.29 (s, 3H), 0.23 

(s, 3H); 13C NMR (100 MHz, CDCl3) δ 165.2, 138.9, 138.61, 138.58, 138.2, 138.1, 137.9, 

133.0, 130.3, 129.8, 128.5, 128.43, 128.39, 128.37, 128.3, 128.2, 128.14, 128.12, 128.0, 

127.8, 127.7, 127.6, 127.5, 127.50, 127.45, 127.4, 99.5, 98.7, 81.3, 80.8, 80.3, 79.0, 75.1, 

75.0, 74.9, 73.7, 73.6, 73.4, 73.3, 72.7, 70.8, 69.5, 68.1, 67.6, 34.2, 25.0, 20.4, 18.8, 18.7, -

1.6, -2.3; IR (thin film) 2866, 1727, 1497, 1454, 1364, 1267, 1096, 834, 782, 734, 697 cm-1; 

HRMS (ESI) calcd. for C69H80O12Si (M+Na)+ 1151.5316 found 1151.5293 m/z. 
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4-O-Benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-αβ-D-

galactopyranosyl trifluoro-(N-phenyl)acetimidate (3-9)  

 

To a stirred solution of silyl ether 3-16 (470 mg, 0.416 mmol) in THF (8.3 mL) were 

added at 0 °C acetic acid (0.24 mL, 4.19 mmol) and tetrabutylammonium fluoride(1.0 M 

solution in THF, 4.2 mL, 4.20 mmol). The reaction was slowly warmed to room 

temperature and stirred for 2 h at that temperature. Acetic acid (0.24 mL, 4.19 mmol) 

and tetrabutylammonium fluoride (1.0 M solution in THF, 4.2 mL, 4.20 mmol) were 

added to drive the reaction to completion and the mixture was stirred for 16 h at room 

temperature. The reaction was diluted with Et2O (50 mL), washed with water (3x30 mL) 

and the aqueous phase was re-extracted with Et2O (2x20 mL). The combined organic 

fractions were dried over Na2SO4 and concentrated. The residue was filtered through a 

short plug of silica gel (EtOAc/hexanes 1:3 to 1:1) to give the intermediate lactol 

mixture as a clear oil. 

To a stirred solution of the intermediate lactol mixture in CH2Cl2 (7.8 mL) were 

added at room temperature cesium carbonate (318 mg, 0.975 mmol) and F3CC(NPh)Cl 

(202 mg, 0.975 mmol). The mixture was stirred for 2.5 h at that temperature, diluted 

with hexanes containing 0.5% (v/v) Et3N (10 mL) and filtered through Celite. The 

residue was purified by flash chromatography (EtOAc/hexanes 0:1 + 0.5% (v/v) Et3N to 

1:3 + 0.5% (v/v) Et3N) to give imidate mixture 3-9 (404 mg, 0.349 mmol, 84% over two 

steps, predominantly α-isomer) as a clear oil. Rf (EtOAc/hexanes 1:3) = 0.63 – 0.74; 

[α]D
20 = +65.4° (c = 1.00, acetone); 1H NMR (400 MHz, acetone-D6) δ 8.03 – 7.95 (m, 

2H), 7.76 – 7.61 (m, 1H), 7.56 – 7.00 (m, 35H), 6.93 – 6.72 (m, 2H), 5.44 (t, J = 9.8 Hz, 

1H), 5.25 (d, J = 3.3 Hz, 1H), 4.96 – 4.58 (m, 9H), 4.55 – 4.46 (m, 1H), 4.45 – 3.96 (m, 

10H), 3.77 (m, 1H), 3.64 (m, 1H), 3.30 – 3.13 (m, 2H); 13C NMR (100 MHz, acetone-D6) 

δ 165.7, 139.6, 139.4, 133.9, 131.3, 130.4, 129.9, 129.7, 129.4, 129.2, 129.1, 128.8, 128.8, 

128.6, 128.5, 128.41, 128.37, 128.3, 128.2, 128.1, 128.0, 126.6, 125.1, 121.6, 120.1, 99.8, 

81.6, 81.3, 79.7, 78.5, 75.5, 75.4, 74.1, 73.8, 73.5, 73.1, 72.2, 70.3, 69.5; IR (thin film) 
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2868, 1724, 1454, 1315, 1268, 1209, 1102, 1028, 737, 697 cm-1; HRMS (ESI) calcd. for 

C69H66F3NO12 (M+Na)+ 1180.4434 found 1180.4458 m/z. 

2,3-Di-O-benzoyl-β-D-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-

glucopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-17)  

 

 
 
To a stirred solution of alcohol 3-7xxiii (400 mg, 0.36 mmol) in pyridine (5.0 mL) was 

added at 0 °C benzoyl chloride (63 µL, 0.55 mmol). The reaction was slowly warmed to 

room temperature and stirred for 16 h at that temperature. An additional 0.5 equiv. 

BzCl was added to drive the reaction to completion. The mixture was stirred for 2 h at 

room temperature, quenched with water (30 ml) and diluted with EtOAc (50 mL). After 

separation, the organic fraction was washed with 0.1 M HCl (20 mL) and the aqueous 

fraction was re-extracted with EtOAc (30 mL). The combined organic fractions were 

washed with sat. aq. NaHCO3 (20 mL) and brine (10 mL), dried over Na2SO4 and 

concentrated to give the intermediate tetrabenzoate as a yellow oil. 

To a stirred solution of the intermediate tetrabenzoate in CH2Cl2 (6.5 mL) were 

added at room temperature ethanethiol (0.36 mL, 4.9 mmol) and p-toluenesulfonic acid 

(12 mg, 0.06 mmol). The mixture was stirred for 2 h at that temperature, quenched with 

Et3N (50 µL) and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 0:1 to 1:10 to 1:5) to give diol 3-17 (389 mg, 0.349 mmol, 97% over two 

steps) as a white foam. Rf (EtOAc/hexanes 1:1) = 0.34; [α]D
20 = +9.1° (c = 1.0, CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 8.02 (d, J = 8.0 Hz, 2H), 7.98 – 7.79 (m, 6H), 7.62 – 7.08 

(m, 27H), 7.04 – 6.86 (m, 1H), 5.68 – 5.52 (m, 1H), 5.51 – 5.34 (m, 1H), 5.30 – 5.24 (m, 

1H), 5.19 (m, 1H), 5.15 – 4.95 (m, 2H), 4.69 (t, J = 10.8 Hz, 2H), 4.53 (d, J = 7.9 Hz, 

1H), 4.48 – 4.29 (m, 3H), 4.28 – 4.14 (m, 1H), 4.04 – 3.93 (m, 1H), 3.84 (dd, J = 10.3, 

5.3 Hz, 1H), 3.64 (dd, J = 21.4, 10.1 Hz, 2H), 3.52 (d, J = 10.4 Hz, 1H), 3.48 – 3.13 (m, 

7H); 13C NMR (100 MHz, CDCl3) δ 167.3, 165.4, 165.2, 164.9, 156.3, 156.2, 137.92, 

                                         
xxiii Disaccharide 3-7 was synthesized by Dr. Sharavathi G. Parameswarappa and Dr. 
Subramanian Govindan. 
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137.85, 137.79, 136.7, 136.6, 133.60, 133.55, 133.47, 133.3, 130.0, 129.8, 129.5, 129.4, 

129.2, 129.0, 128.9, 128.8, 128.6, 128.53, 128.48, 128.4, 128.3, 128.2, 128.1, 128.0, 127.8, 

127.3, 127.2, 101.2, 100.3, 77.4, 76.9, 75.8, 75.3, 74.6, 73.8, 73.5, 71.9, 71.8, 71.6, 69.3, 

68.9, 67.4, 67.2, 67.1, 61.6, 51.7, 46.8, 45.8; IR (thin film) 3448, 2945, 1729, 1602, 1452, 

1418, 1365, 1315, 1264, 1093, 1069, 1027, 989, 854, 709 cm-1; HRMS (ESI) calcd. for 

C64H61NO17 (M+Na)+ 1138.3837 found 1138.3850 m/z. 

Methyl (2,3-di-O-benzoyl-β-D-glucopyranosyl)uronate-(1→4)-2,3-di-O-benzoyl-6-O-

benzyl-β-D-glucopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-

18) 

 

To a stirred solution of alcohol 3-17 (90 mg, 0.081 mmol) in CH2Cl2 (2.0 mL) and water 

(0.8 mL) were added at 0 °C TEMPO (2.5 mg, 0.016 mmol) and PhI(OAc)2 (55 mg, 

0.170 mmol). The reaction was stirred for 20 min at that temperature and warmed to 

room temperature. The mixture was stirred for 2 h at that temperature and diluted with 

EtOAc (20 mL) and water (10 mL). After separation, the aqueous fraction was extracted 

with EtOAc (2x10 mL), the combined organic fractions were dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 1:2 to 

1:1, then 1:1 + 5% AcOH) to give the intermediate carboxylic acid as a white foam. 

To a stirred solution of the intermediate carboxylic acid in toluene (1.6 mL) and 

MeOH (0.8 mL) was added at room temperature TMS-diazomethane (40 µL, 0.081 

mmol). The reaction was stirred for 2 h at that temperature. An additional 0.25 equiv. 

TMS-diazomethane was added to drive the reaction to completion. The mixture was 

stirred for 1 h, quenched with AcOH (0.1 mL) and concentrated. The residue was 

purified by flash chromatography (EtOAc/hexanes 0:1 to 1:1) to give methyl ester 3-18 

(73 mg, 0.064 mmol, 79% over two steps) as a clear oil. Rf (EtOAc/hexanes 1:1) = 0.47; 

[α]D
20 = +16.7° (c = 1.47, CH2Cl2); 

1H NMR (400 MHz, CDCl3) δ 7.90 (m, 8H), 7.58 – 

7.29 (m, 20H), 7.24 – 6.93 (m, 7H), 5.71 – 5.49 (m, 1H), 5.50 – 5.22 (m, 3H), 5.14 – 4.94 

(m, 2H), 4.77 – 4.62 (m, 2H), 4.55 – 4.17 (m, 5H), 4.09 – 3.78 (m, 2H), 3.65 (m, 3H), 

3.59 – 3.38 (m, 5H), 3.34 – 3.19 (m, 2H), 3.12 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 
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168.4, 166.6, 165.6, 165.4, 164.8, 156.4, 156.2, 138.0, 137.9, 137.8, 136.6, 133.5, 133.31, 

133.26, 133.0, 132.9, 130.06, 130.05, 130.0, 129.9, 129.7, 129.42, 129.38, 129.37, 129.11, 

129.10, 129.05, 128.9, 128.6, 128.53, 128.49, 128.3, 128.2, 128.10, 128.06, 128.0, 127.8, 

127.3, 127.2, 101.3, 100.4, 77.4, 75.1, 74.8, 74.6, 74.4, 73.8, 73.7, 73.4, 72.2, 72.1, 71.4, 

70.4, 68.9, 67.4, 67.2, 52.7, 51.7, 46.8, 45.8; IR (thin film) 3442, 2951, 1731, 1602, 1452, 

1366, 1270, 1094, 1069, 1028, 992, 752, 709 cm-1; HRMS (ESI) calcd. for C65H61NO18 

(M+Na)+ 1166.3786 found 1166.3762 m/z.  

4-O-Benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-

galactopyranosyl-(1→4)-methyl (2,3-Di-O-benzoyl-β-D-glucopyranosyl)uronate-

(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-glucoyranosyl-(1→1)-(2-N-benzyl-N-

benzyloxycarbonylamino)ethanol (3-19) 

 

Alcohol 3-18 (100 mg, 87 µmol) and imidate 3-9 (121 mg, 105 µmol) were co-evaproated 

with anhydrous toluene (3x10 mL) and kept under high vacuum for 30 min. The mixture 

was dissolved in Et2O (3.3 mL) and CH2Cl2 (1.1 mL) and stirred over activated 

molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was cooled to -

20 °C and treated with TMSOTf (3.2 µL, 17 µmol). The mixture was stirred for 1 h at 

that temperature and slowly warmed to 0 °C. The reaction was quenched with sat. aq. 

NaHCO3 (10 mL), extracted with CH2Cl2 (3x20 mL) and the combined organic fractions 

were dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes/toluene 1:3:3 to 1:2:2) to give tetrasaccharide 3-19 

(130 mg, 62 µmol, 71%) as a clear oil. Rf (EtOAc/hexanes/toluene 1:1:2) = 0.66; [α]D
20 = 

+35.8° (c = 1.03, CH2Cl2); 
1H NMR (400 MHz,CDCl3) δ 7.92 (m, 10H), 7.64 – 6.97 (m, 

60H), 5.54 (m, 3H), 5.37 (m, 2H), 5.16 – 4.97 (m, 3H), 4.86 – 4.58 (m, 8H), 4.56 – 4.45 

(m, 1H), 4.46 – 4.17 (m, 10H), 4.19 – 4.07 (m, 3H), 4.03 – 3.60 (m, 10H), 3.57 – 3.37 (m, 

3H), 3.32 – 3.18 (m, 3H), 3.13 (s, 3H), 3.07 – 2.92 (m, 2H); 13C NMR (100 MHz, CDCl3) 
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δ 167.0, 165.6, 165.5, 165.4, 165.1, 164.8, 156.3, 156.2, 138.8, 138.5, 138.4, 138.3, 138.1, 

138.0, 137.9, 137.8, 136.74, 136.66, 133.5, 133.3, 133.0, 132.7, 130.3, 129.9, 129.9, 129.7, 

129.42, 129.38, 129.2, 129.0, 128.6, 128.54, 128.49, 128.3, 128.2, 128.1, 127.9, 127.84, 

127.79, 127.7, 127.63, 127.58, 127.5, 127.4, 127.3, 127.2, 101.2, 100.6, 100.0, 99.3, 80.1, 

79.7, 77.4, 77.0, 75.8, 75.2, 75.2, 75.1, 74.7, 74.2, 73.9, 73.8, 73.5, 73.4, 73.2, 73.0, 72.4, 

72.3, 71.6, 71.0, 70.0, 69.1, 68.9, 67.4, 67.2, 67.1, 66.3, 52.3, 51.7; IR (thin film) 2870, 

1732, 1602, 1496, 1453, 1363, 1269, 1094, 1070, 1051, 1027, 738, 709 cm-1; HRMS (ESI) 

calcd. for C126H121NO29 (M+Na)+ 2134.7921 found 2134.7879 m/z. 

α-D-Glucopyranosyl-(1→4)-α-D-galactopyranosyl-(1→4)-β-D-glucopyranosyluronate-

(1→4)-β-D-glucoyranosyl-(1→1)-(2-amino)ethanol (3-5) 

 

To a stirred solution of ester 3-19 (56 mg, 26 µmol) in THF (5 mL) and MeOH (1 mL) 

were added at 0 °C H2O2 (6% aq. solution, 265 µL, 530 µmol) and LiOH (1 M aq. 

solution, 265 µL, 132 mol). The reaction was stirred for 1 h and warmed to room 

temperature. The reaction was kept at that temperature and treated after 2 h with H2O2 

(6% aq. solution, 265 µL, 530 µmol) and LiOH (1 M aq. solution, 265 µL, 132 mol). After 

2 h, NaOH (15% (w/v) aq. solution, 1 mL) was added and the mixture was stirred for 72 

h at room temperature. The solvents were evaporated under reduced pressure, the 

residue was co-evaporated with toluene (2x5 mL) and dissolved in MeOH (5 mL). The 

solution was treated at room temperature with NaOMe (143 mg, 2.65 mmol) and stirred 

for 96 h at that temperature. The solvent was evaporated and the residue was dissolved 

in water (5 mL). The solution was acidified at 0 °C with 0.5 M aq. NaHSO4 to approx. 

pH 4 and extracted with EtOAc (5x5 mL). The combined organic fractions were dried 

over Na2SO4 and concentrated to give the intermediate acid as a white foam. 

The intermediate acid in MeOH (2 mL) was added at room temperature to a 

suspension of Pd/C (50 mg) in MeOH (1 mL), water (0.1 mL) and AcOH (5 drops). The 

mixture was purged with hydrogen, stirred under hydrogen atmosphere for 48 h at room 

temperature, filtered and concentrated. The residue was purified by solid phase 
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extraction (Chromabond C18, Macherey-Nagel) and lyophilized to give tetrasaccharide 

3-5 (acetate salt, 13.6 mg, 18 µmol, 69% over three steps) as a white solid. 1H NMR (400 

MHz, D2O) δ 5.49 (d, J = 3.8 Hz, 1H), 4.89 (d, J = 3.8 Hz, 1H), 4.51 – 4.43 (2xd, J = 

7.9 and 7.9 Hz, 2H), 4.11 – 4.01 (m, 3H), 3.97 – 3.83 (m, 4H), 3.82 – 3.53 (m, 13H), 3.48 

(dd, J = 10.0, 3.8 Hz, 1H), 3.44 – 3.27 (m, 3H), 3.20 (t, J = 5.0 Hz, 2H); 13C NMR (150 

MHz, D2O) δ 177.7, 104.7, 104.5, 102.8, 100.9, 81.01, 80.97, 78.8, 78.7, 78.6, 77.4, 76.6, 

75.7, 75.4, 75.3, 74.5, 74.4, 73.5, 71.9, 71.3, 71.1, 68.4, 62.7, 62.5, 62.4, 42.0; HRMS 

(MALDI) calcd. for C26H45NO22 (M+Na)+ 746.2330 found 746.2323 m/z. 

4-O-Benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-

galactopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (31)  

 

Imidate 3-9 (200 mg, 0.173 mmol) and alcohol 3-20355 (74 mg, 0.259 mmol) were co-

evaproated with anhydrous toluene (2x5 mL) and kept under high vacuum for 30 min. 

The mixture was dissolved in Et2O (2.8 mL) and CH2Cl2 (0.7 mL) and stirred over 

activated molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was 

cooled to -40 °C and treated with TMSOTf (6.2 µL, 35 µmol). The mixture was stirred 

for 10 min at that temperature and then slowly warmed to -10 °C. The reaction was 

quenched with sat. aq. NaHCO3 (5 mL), extracted with CH2Cl2 (3x20 mL) and the 

combined organic fractions were dried over Na2SO4 and concentrated. The residue was 

purified by flash chromatography (EtOAc/hexanes 0:1 to 1:6 to 1:4) to give disaccharide 

3-21 (160 mg, 0.128 mmol, 74%) along with the corresponding β-anomer (32 mg, 0.026 

mmol, 15%). Analytical data for 3-21: Clear oil. Rf (EtOAc/hexanes 1:3) = 0.58; [α]D
20 

= +68.2° (c = 1.48, CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 8.03 – 7.86 (m, 2H), 7.58 (t, 

J = 7.4 Hz, 1H), 7.48 – 7.04 (m, 42H), 5.52 (t, J = 9.8 Hz, 1H), 5.22 – 5.12 (m, 2H), 5.08 

(s, 1H), 4.94 – 4.65 (m, 8H), 4.65 – 4.52 (m, 3H), 4.45 (d, J = 8.8 Hz, 1H), 4.38 (d, J = 

12.1 Hz, 1H), 4.17 (m 5H), 4.06 – 3.96 (m, 1H), 3.96 – 3.79 (m, 3H), 3.76 – 3.60 (m, 2H), 

3.58 – 3.34 (m, 4H), 3.12 (m, 2H); 13C NMR (100 MHz, CDCl3) δ 165.2, 156.6, 156.3, 

138.7, 138.33, 138.30, 138.2, 138.0, 137.9, 136.8, 133.1, 130.3, 129.8, 128.6, 128.53, 128.51, 
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128.4, 128.3, 128.2, 128.1, 128.01, 127.96, 127.9, 127.82, 127.77, 127.61, 127.57, 127.5, 

127.4, 127.3, 99.6, 98.1, 98.0, 80.1, 79.7, 77.4, 76.2, 76.1, 75.7, 75.6, 75.3, 74.1, 73.6, 73.3, 

73.2, 73.1, 72.7, 71.1, 69.7, 69.6, 69.4, 68.1, 68.1, 67.7, 67.43, 67.37, 66.9, 51.4, 46.5, 45.6; 

IR (thin film) 3031, 2922, 1727, 1699, 1497, 1453, 1417, 1363, 1267, 1097, 1041, 1028, 736, 

697 cm-1; HRMS (ESI) calcd. for C78H79NO14 (M+Na)+ 1276.5398 found 1276.5405 m/z. 

4-O-Benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-

galactopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-22)  

 

To a stirred solution of ester 3-21 (126 mg, 0.100 mmol) in THF (5 mL) and MeOH (5 

mL) was added at 0 °C sodium methoxide (0.5 M in MeOH, 1 mL, 0.500 mmol). The 

reaction was slowly warmed to room temperature and stirred for 24 h. Sodium methoxide 

(0.5 M in MeOH, 1 mL, 0.500 mmol) was added and the reaction was warmed to 37 °C. 

The mixture was stirred for 7 h at that temperature, neutralized with Amberlite IR120 

(H+ form), filtered and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 0:1 to 1:6 to 1:4) to give alcohol 3-22 (98 mg, 85 µmol, 85%) as a clear 

oil. Rf (EtOAc/hexanes 1:3) = 0.51; [α]D
20 = +65.3° (c = 0.5, CH2Cl2); 

1H NMR (400 

MHz, CDCl3) δ 7.44 – 7.07 (m, 40H), 5.19 – 5.10 (m, 2H), 5.01 (s, 1H), 4.94 (d, J = 11.3 

Hz, 1H), 4.89 – 4.72 (m, 5H), 4.72 – 4.61 (m, 3H), 4.55 (q, J = 15.5 Hz, 2H), 4.40 (d, J = 

12.2 Hz, 1H), 4.22 (dd, J = 15.8, 11.1 Hz, 4H), 4.09 (d, J = 6.0 Hz, 1H), 4.01 – 3.67 (m, 

7H), 3.65 – 3.27 (m, 6H), 3.19 (dd, J = 10.2, 3.9 Hz, 1H), 2.44 (s, 1H); 13C NMR (100 

MHz, CDCl3) δ 156.6, 156.3, 139.1, 138.82, 138.77, 138.63, 138.55, 138.4, 138.2, 138.14, 

138.05, 137.9, 137.7, 136.8, 136.7, 128.6, 128.52, 128.50, 128.45, 128.4, 128.3, 128.1, 128.0, 

127.78, 127.75, 127.7, 127.6, 99.7, 98.2, 81.8, 80.1, 77.4, 76.4, 76.3, 75.5, 75.4, 73.9, 73.5, 

73.4, 73.2, 72.7, 71.8, 70.4, 69.7, 69.6, 69.2, 68.1, 68.0, 67.4, 66.9, 66.8, 51.4, 46.5, 45.5; IR 

(thin film) 3031, 2925, 1699, 1497, 1454, 1364, 1234, 1096, 1059, 736, 698 cm-1; HRMS 

(ESI) calcd. for C71H75NO13 (M+Na)+ 1172.5136 found 1172.5103 m/z. 
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2,3-Di-O-benzoyl-β-D-glucopyranosyl-(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-

glucoyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-

α-D-galactopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-23) 

 

Alcohol 3-22 (47 mg, 41 µmol) and thioglycoside 3-8xxiv (60 mg, 61 µmol) were co-

evaporated with anhydrous toluene (2x5 mL) and kept under high vacuum for 30 min. 

The mixture was dissolved in CH2Cl2 (2 mL) and stirred over activated molecular sieves 

(3 Å-AW) for 30 min at room temperature. The solution was cooled to -10 °C and 

treated with NIS (13.8 mg, 61 µmol) and TfOH (1 µL, 11 µmol). The mixture was kept 

for 1 h at that temperature and slowly warmed to 0 °C. The reaction was quenched with 

Et3N (50 µL), filtered and concentrated to give the intermediate benzylidene acetal as a 

yellow oil. 

To a stirred solution of the intermediate benzylidene acetal in CH2Cl2 (2 mL) 

were added at room temperature ethanethiol (0.3 mL, 4.06 mmol) and p-toluenesulfonic 

acid (10 mg, 0.053 mmol). The mixture was stirred for 1 h at that temperature, 

quenched with Et3N (20 µL) and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 0:1 to 1:3 to 1:2) to give diol 3-23 (78 mg, 39 µmol, 

95% over two steps) as a clear oil. Rf (EtOAc/hexanes 1:1) = 0.67; [α]D
20 = +46.1° (c = 

0.5, CH2Cl2); 
1H NMR (400 MHz, CDCl3) δ 8.00 (d, J = 7.8 Hz, 2H), 7.95 (d, J = 7.9 Hz, 

2H), 7.89 (d, J = 7.8 Hz, 2H), 7.70 (d, J = 7.8 Hz, 2H), 7.59 (t, J = 7.4 Hz, 1H), 7.55 – 

7.10 (m, 56H), 5.44 – 5.26 (m, 3H), 5.26 – 5.05 (m, 4H), 4.96 (s, 1H), 4.75 (t, J = 13.1 

Hz, 2H), 4.69 – 4.56 (m, 4H), 4.55 – 4.42 (m, 4H), 4.35 – 4.05 (m, 8H), 4.03 – 3.84 (m, 

5H), 3.79 – 3.60 (m, 5H), 3.59 – 3.25 (m, 10H), 3.23 – 3.08 (m, 2H), 3.02 (d, J = 10.0 Hz, 

2H), 2.00 (s, 1H), 0.98 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 167.5, 165.0, 164.9, 164.7, 

156.5, 156.2, 140.0, 138.8, 138.7, 138.5, 138.3, 138.2, 138.0, 137.9, 137.5, 136.8, 133.7, 

                                         
xxiv Disaccharide 3-8 was synthesized by Dr. Sharavathi G. Parameswarappa and Dr. 
Subramanian Govindan. 
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133.6, 133.4, 133.2, 130.1, 130.0, 129.8, 129.7, 129.4, 129.2, 129.1, 129.0, 128.9, 128.84, 

128.80, 128.73, 128.65, 128.6, 128.43, 128.37, 128.3, 128.13, 128.10, 128.0, 127.9, 127.6, 

127.5, 127.4, 127.2, 127.0, 100.2, 99.9, 99.8, 98.5, 98.4, 80.7, 79.0, 77.4, 76.6, 76.5, 75.7, 

75.2, 74.9, 74.7, 74.5, 74.3, 74.1, 73.8, 73.7, 73.6, 73.4, 73.0, 72.1, 72.0, 71.5, 70.4, 69.5, 

67.74, 67.68, 67.3, 67.2, 66.9, 66.7, 61.7, 51.3, 46.4, 45.5, 29.8; IR (thin film) 2926, 1733, 

1602, 1453, 1364, 1315, 1272, 1094, 1070, 1028, 737, 710 cm-1; HRMS (ESI) calcd. for 

C118H117NO27 (M+Na)+ 2002.7710 found 2002.7731 m/z. 

2,3-Di-O-benzoyl-β-D-glucopyranosyluronate-(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-

glucoyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-

α-D-galactopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-24) 

 

To a vigorously stirred solution of alcohol 3-23 (45 mg, 23 µmol) in CH2Cl2 (2 mL) and 

water (0.8 mL) were added at 0 °C TEMPO (3 crystals) and PhI(OAc)2 (15.4 mg, 48 

µmol). The reaction was stirred for 20 min at that temperature and slowly warmed to 

room temperature. After 1 h, TEMPO (2 crystals) and PhI(OAc)2 (10 mg, 31 µmol) were 

added and the mixture was stirred for 2 h at room temperature. The reaction was diluted 

with CH2Cl2 (5 mL) and quenched with 10% (w/v) aq. Na2S2O3 (5 mL). The aqueous 

phase was extracted with EtOAc (2x10 mL), the combined organic fractions were dried 

over Na2SO4 and concentrated. The residue was purified by flash chromatography twice 

(EtOAc/hexanes 0:1 to 1:2 to 8:1, then EtOAc/hexanes 1:1 + 1% (v/v) AcOH) and co-

evaporated with heptane repeatedly to give acid 3-24 (33 mg, 17 µmol, 74%) as a clear 

oil. Rf (EtOAc/hexanes 1:1 + 0.5% (v/v) AcOH) = 0.63; [α]D
20 = +33.7° (c = 0.5, 

CH2Cl2); 
1H NMR (600 MHz, CDCl3) δ 7.88 (dd, J = 22.7, 7.7 Hz, 6H), 7.65 (d, J = 7.5 

Hz, 2H), 7.56 (t, J = 7.4 Hz, 1H), 7.52 – 7.27 (m, 26H), 7.24 – 7.06 (m, 30H), 5.36 – 5.26 

(m, 3H), 5.23 (d, J = 9.3 Hz, 2H), 5.17 – 5.03 (m, 2H), 4.92 (s, 1H), 4.75 – 4.66 (m, 3H), 

4.62 – 4.52 (m, 4H), 4.51 – 4.40 (m, 4H), 4.35 (t, J = 10.1 Hz, 2H), 4.22 (mz, 3H), 4.13 

(d, J = 9.9 Hz, 2H), 4.04 (d, J = 11.9 Hz, 2H), 3.96 (d, J = 11.9 Hz, 2H), 3.91 – 3.79 (m, 

4H), 3.76 – 3.56 (m, 5H), 3.46 (m, 6H), 3.30 (m, 3H), 3.05 (d, J = 9.3 Hz, 1H), 2.97 (d, J 

= 9.6 Hz, 1H); 13C NMR (150 MHz, CDCl3) δ 166.2, 166.1, 164.9, 156.6, 156.3, 140.0, 
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138.8, 138.5, 138.4, 138.3, 138.0, 137.9, 137.6, 136.8, 136.7, 133.6, 133.4, 133.2, 130.0, 

129.9, 129.7, 129.3, 129.2, 129.0, 128.9, 128.72, 128.69, 128.64, 128.56, 128.5, 128.4, 128.3, 

128.1, 128.0, 127.9, 127.7, 127.6, 127.5, 127.4, 127.2, 127.0, 100.1, 100.0, 99.8, 98.4, 98.3, 

80.6, 79.3, 76.7, 75.2, 75.0, 74.4, 74.2, 74.1, 73.6, 73.4, 73.1, 72.4, 72.2, 71.3, 70.5, 70.2, 

69.6, 69.5, 67.9, 67.8, 67.5, 67.4, 67.0, 66.8, 66.8, 51.4, 46.5, 45.5; IR (thin film) 3031, 

2924, 1735, 1602, 1496, 1453, 1363, 1316, 1272, 1094, 1070, 1028, 737, 710 cm-1; HRMS 

(ESI) calcd. for C118H115NO28 (M+Na)+ 2016.7503 found 2016.7558 m/z. 

β-D-Glucopyranosyluronate-(1→4)-β-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-

(1→4)-α-D-galactopyranosyl-(1→1)-(2-amino)ethanol (3-6) 

To a stirred solution of ester 3-24 (45 mg, 23 µmol) in THF (4 mL) and MeOH (0.5 mL) 

was added at 0 °C NaOH (1 M aq. solution, 1 mL). The reaction was slowly warmed to 

room temperature and stirred for 16 h at that temperature. The solution was neutralized 

at 0 °C with 0.5 M aq. NaHSO4 and extracted with EtOAc (5x5 mL). The combined 

organic fractions were dried over Na2SO4 and concentrated to give the intermediate 

alcohol as a white foam. 

The intermediate alcohol in MeOH (3 mL) was added at room temperature to a 

suspension of Pd/C (20 mg) in MeOH (6 mL), water (6 drops) and AcOH (3 drops). The 

suspension was purged with hydrogen, stirred under hydrogen atmosphere for 96 h, 

filtered and concentrated. Since the reaction had not proceeded to completion, the 

residue was subjected to the same conditions again and stirred for 72 h at room 

temperature. The mixture was filtered and concentrated, the residue was purified by 

solid phase extraction (Chromabond C18, Macherey-Nagel) and lyophilized to give 

tetrasaccharide 3-6 (11.3 mg, 16 µmol, 70% over two steps) as a white solid. 1H NMR 

(600 MHz, D2O) δ 5.07 (d, J = 3.7 Hz, 1H), 4.93 (d, J = 3.9 Hz, 1H), 4.58 (d, J = 8.0 

Hz, 1H), 4.53 (d, J = 7.9 Hz, 1H), 4.28 – 4.21 (m, 1H), 4.10 (d, J = 2.7 Hz, 1H), 4.06 – 

3.97 (m, 4H), 3.97 – 3.90 (m, 3H), 3.90 – 3.82 (m, 4H), 3.80 – 3.72 (m, 2H), 3.72 – 3.64 

(m, 4H), 3.62 (dd, J = 10.1, 3.9 Hz, 1H), 3.56 – 3.51 (m, 2H), 3.40 – 3.36 (m, 2H), 3.35 – 

3.26 (m, 2H); 13C NMR (150 MHz, D2O) δ 178.1, 104.9, 104.8, 102.5, 101.2, 81.23, 81.17, 
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80.9, 78.4, 77.9, 77.4, 76.7, 75.53, 75.52, 74.3, 74.2, 74.1, 73.8, 73.3, 71.4, 70.8, 66.6, 63.1, 

62.6, 62.1, 41.9; HRMS (MALDI) calcd. for C26H45NO22 (M+Na)+ 746.2330 found 

746.2416 m/z. 

α-D-Glucopyranosyl-(1→4)-α-D-galactopyranosyl-(1→1)-(2-amino)ethanol (3-25) 

 

Benzyl ether 3-22 (10 mg, 8.69 µmol) in EtOAc (1 mL) was added at room temperature 

to a suspension of Pd/C (30 mg) in MeOH (3 mL), water (0.5 mL) and AcOH (3 drops). 

The reaction was purged with hydrogen, stirred under hydrogen atmosphere for 24 h, 

filtered and concentrated to give disaccharide 3-25 (acetate salt, 2.9 mg, 6.55 µmol, 

76%) as a white solid. 1H NMR (600 MHz, D2O) δ 5.04 (d, J = 3.7 Hz, 1H), 4.91 (d, J = 

3.8 H z, 1H), 4.16 – 4.05 (m, 2H), 3.99 (m, 3H), 3.91 (m, 2H), 3.86 – 3.69 (m, 6H), 3.54 

(dd, J = 10.1, 3.8 Hz, 1H), 3.45 (t, J = 9.7 Hz, 1H), 3.32 – 3.21 (m, 2H); 13C NMR (150 

MHz, D2O) δ 102.8, 101.2, 81.2, 75.3, 74.6, 74.3, 74.2, 71.8, 71.4, 70.9, 66.7, 63.1, 62.7, 

41.9, 25.8. HRMS (ESI) calcd. for C14H27NO11 (M+Na)+ 408.1481 found 408.1499 m/z. 

2,3-Di-O-benzoyl-β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-

(1→4)-2,3,6-tri-O-benzyl-α-D-galactopyranosyl-(1→1)-(2-N-benzyl-N-

benzyloxycarbonylamino)ethanol (3-34) 

 

Alcohol 3-22 (15 mg, 13 µmol) and thioglycoside 3-33333 (20.4 mg, 39 µmol) were co-

evaporated with anhydrous toluene (2x5 mL) and kept under high vacuum for 10 min. 

The mixture was dissolved in CH2Cl2 (1.3 mL) and stirred over activated molecular 

sieves (3 Å-AW) for 30 min at room temperature. The solution was cooled to -20 °C and 
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treated with NIS (8.8 mg, 39 µmol) and TfOH (1 µL, 11 µmol). The mixture was stirred 

for 1 h at that temperature and slowly warmed to 0 °C. The reaction was quenched with 

a 1:1 (v/v) mixture of sat. aq. NaHCO3 (10 mL) and 10% (w/v) Na2SO3 (5 mL) and 

extracted with CH2Cl2 (4x10 mL). The combined organic extracts were dried over 

Na2SO4 and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 1:5 to 1:4 to 1:3) to give the intermediate benzylidene acetal as a yellow 

oil. 

To a stirred solution of the intermediate benzylidene acetal in CH2Cl2 (2 mL) 

were added at room temperature ethanethiol (0.2 mL, 2.8 mmol) and p-toluenesulfonic 

acid (6 mg, 32 µmol). The mixture was stirred for 1 h at that temperature, quenched 

with Et3N (100 µL) and concentrated. The residue was purified by flash chromatography 

(EtOAc/hexanes 0:1 to 1:3 to 2:3) to give diol 3-34 (14.7 mg, 9.7 µmol, 75% over two 

steps) as a clear oil. Rf (EtOAc/hexanes 1:1) = 0.37; [α]D
20 = +26.4° (c = 0.1, CHCl3); 

1H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 7.3 Hz, 2H), 7.61 (d, J = 7.4 Hz, 2H), 7.52 – 

7.26 (m, 27H), 7.24 – 6.97 (m, 19H), 5.38 – 5.26 (m, 1H), 5.14 – 5.07 (m, 2H), 5.05 (d, J 

= 11.0 Hz, 1H), 5.01 – 4.94 (m, 2H), 4.84 – 4.80 (m, 2H), 4.70 (dd, J = 14.1, 12.4 Hz, 

2H), 4.62 – 4.39 (m, 6H), 4.33 – 4.25 (m, 1H), 4.18 (m, 3H), 4.10 – 3.91 (m, 4H), 3.86 (m, 

2H), 3.69 (m, 6H), 3.55 – 3.19 (m, 8H), 3.02 (s, 1H), 2.95 (d, J = 9.5 Hz, 1H); 13C NMR 

(150 MHz, CDCl3) δ 167.8, 164.9, 139.54, 138.47, 138.3, 137.8, 133.7, 133.3, 130.1, 129.7, 

129.1, 129.0, 128.9, 128.8, 128.6, 128.5, 128.4, 128.1, 128.0, 127.8, 127.7, 127.6, 127.4, 

127.2, 99.89, 99.87, 98.5, 80.1, 79.3, 77.8, 76.0, 75.2, 74.2, 73.8, 73.1, 72.3, 71.8, 70.51, 

70.48, 69.6, 67.9, 67.4, 66.9, 66.8, 62.1; IR (thin film) 3453, 2928, 1733, 1701, 1454, 1273, 

1094, 1029, 739, 699 cm-1; HRMS (MALDI) calcd. for C91H93NO20 (M+Na)+ 1542.6188 

found 1542.6145 m/z. 
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β-D-Glucoyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-galactopyranosyl-(1→1)-

(2-amino)ethanol (3-27) 

 

To a stirred solution of ester 3-34 (26 mg, 17 µmol) in CH2Cl2 (1 mL) and MeOH (1 

mL) was added at room temperature NaOMe (0.5 M solution in MeOH, 0.5 mL). The 

reaction was stirred for 2 h at that temperature, neutralized at 0 °C with Amberlite IR-

120 (H+ form), filtered and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 1:3 to 2:1) to give the intermediate tetraol as a white 

foam. 

The intermediate tetraol in CH2Cl2/tBuOH/water (1:6:2, 5 mL) was purged with 

argon and treated at 0 °C with a suspension of Pd(OH)2 on carbon (20% (w/w) loading, 

30 mg) in the same solvent mixture (1 mL). The suspension was purged with hydrogen, 

stirred under hydrogen atmosphere for 24 h, filtered and concentrated. Since the reaction 

had not proceeded to completion, the residue was subjected to the same conditions again 

and stirred for 48 h at room temperature. The mixture was filtered and concentrated, the 

residue was purified by solid phase extraction (Chromabond C18, Macherey-Nagel) and 

lyophilized to give trisaccharide 3-27 (7.3 mg, 13 µmol, 79% over two steps) as a white 

solid. 1H NMR (400 MHz, D2O) δ 5.01 (d, J = 3.3 Hz, 1H), 4.87 (d, J = 3.4 Hz, 1H), 

4.49 (d, J = 7.9 Hz, 1H), 4.19 (d, J = 10.1 Hz, 1H), 4.03 (s, 1H), 4.00 – 3.74 (m, 10H), 

3.67 (m, 3H), 3.55 (dd, J = 10.0, 3.5 Hz, 1H), 3.52 – 3.34 (m, 3H), 3.24 (m, 3H); 13C 

NMR (100 MHz, D2O) δ 102.4, 99.8, 98.4, 78.4, 78.2, 75.8, 75.4, 73.0, 71.5, 71.3, 71.1, 

70.5, 69.3, 68.7, 68.1, 63.8, 60.4, 60.3, 59.3, 39.1; HRMS (ESI) calcd. for C20H37NO16 

(M+Na)+ 570.2010 found 570.2000 m/z. 
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β-D-Glucopyranosyl-(1→4)-β-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-

D-galactopyranosyl-(1→1)-(2-amino)ethanol (3-28) 

 

To a stirred solution of ester 3-23 (20 mg, 10.1 µmol) in THF (1 mL) and MeOH (0.33 

mL) was added at room temperature NaOMe (0.5 M solution in MeOH, 0.5 mL). The 

reaction was warmed to 40 °C and stirred for 5 h at that temperature. The mixture was 

cooled to room temperature and stirred for 16 h at that temperature. The reaction was 

neutralized with Amberlite IR-120 (H+ form), filtered and concentrated. The residue was 

purified by size exclusion chromatography (CH2Cl2/MeOH 2:1, Sephadex® LH-20, GE 

Healthcare, Little Chalfont, UK) to give the intermediate hexaol as a white foam. 

The intermediate hexaol in CH2Cl2/tBuOH/water (1:16:8, 1 mL) was purged with 

argon and treated at 0 °C with a suspension of Pd(OH)2 on carbon (20% (w/w) loading, 

20 mg) in the same solvent mixture (1 mL). The suspension was purged with hydrogen, 

stirred under hydrogen atmosphere for 18 h, filtered and concentrated. The residue was 

purified by solid phase extraction (Chromabond C18, Macherey-Nagel) and lyophilized to 

give tetrasaccharide 3-28 (6.8 mg, 9.0 µmol, 89% over two steps) as a white solid. 1H 

NMR (600 MHz, D2O) δ 5.15 (d, J = 3.5 Hz, 1H), 5.02 (d, J = 3.7 Hz, 1H), 4.66 (d, J = 

7.9 Hz, 1H), 4.61 (d, J = 7.9 Hz, 1H), 4.33 (d, J = 10.1 Hz, 1H), 4.18 (d, J = 2.2 Hz, 

1H), 4.14 – 4.06 (m, 4H), 4.05 – 3.97 (m, 5H), 3.96 – 3.89 (m, 4H), 3.87 – 3.67 (m, 8H), 

3.64 – 3.56 (m, 2H), 3.55 – 3.49 (m, 1H), 3.46 (t, J = 8.4 Hz, 1H), 3.45 – 3.34 (m, 3H); 

13C NMR (150 MHz, D2O) δ 105.2, 104.9, 102.5, 101.2, 81.2, 81.0, 80.9, 78.6, 78.1, 77.4, 

76.7, 75.7, 75.6, 74.2, 74.1, 73.8, 73.3, 72.1, 71.4, 70.9, 66.6, 63.2, 63.1, 62.5, 62.1, 41.9; 

HRMS (ESI) calcd. for C26H47NO21 (M+Na)+ 732.2538 found 732.2504 m/z. 
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Methyl (2,3-di-O-benzoyl-β-D-glucopyranosyl)uronate-(1→4)-2,3-di-O-benzoyl-6-O-

benzyl-β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-

tri-O-benzyl-α-D-galactopyranosyl-(1→1)-(2-N-benzyl-N-

benzyloxycarbonylamino)ethanol (3-35) 

 

To a stirred solution of carboxylic acid 3-24 (100 mg, 50 µmol) in DMF (2.5 mL) were 

added at room temperature Cs2CO3 (24.5 mg, 75 µmol) and methyl iodide (10.7 mg, 75 

µmol) and the reaction was stirred at that temperature. After 2 h, methyl iodide (10.7 

mg, 75 µmol) was added and the mixture was stirred for another 2 h at room 

temperature. The reaction was quenched with sat. aq. NH4Cl (5 mL), extracted with 

EtOAc (4x10 mL), the combined organic extracts were dried over Na2SO4 and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 0:1 to 

2:3) to give methyl ester 3-35 (81 mg, 40 µmol, 80%) as a white foam. Rf 

(EtOAc/hexanes 1:1) = 0.83; [α]D
20 = +33.1° (c = 0.25, CH2Cl2); 

1H NMR (600 MHz, 

CDCl3) δ 8.07 – 7.91 (m, 6H), 7.76 (d, J = 7.4 Hz, 2H), 7.66 (t, J = 7.4 Hz, 1H), 7.62 – 

7.03 (m, 56H), 5.39 (m, 3H), 5.30 (t, J = 9.5 Hz, 1H), 5.25 (t, J = 9.5 Hz, 1H), 5.21 – 

5.14 (m, 2H), 5.00 (s, 1H), 4.81 (d, J = 11.9 Hz, 1H), 4.77 (d, J = 11.4 Hz, 1H), 4.71 (d, 

J = 8.0 Hz, 1H), 4.68 – 4.62 (m, 3H), 4.60 – 4.47 (m, 5H), 4.32 (m, 4H), 4.22 (d, J = 9.2 

Hz, 2H), 4.12 (d, J = 12.1 Hz, 2H), 4.08 – 3.87 (m, 6H), 3.83 – 3.64 (m, 5H), 3.62 – 3.47 

(m, 6H), 3.45 (s, 3H), 3.42 – 3.29 (m, 2H), 3.17 (d, J = 2.6 Hz, 1H), 3.05 (d, J = 9.4 Hz, 

2H); 13C NMR (150 MHz, CDCl3) δ 168.4, 166.7, 165.6, 164.83, 164.79, 156.6, 156.3, 

140.1, 138.80, 138.76, 138.6, 138.4, 138.34, 138.29, 138.1, 138.0, 137.9, 137.6, 136.83, 

136.76, 133.6, 133.5, 133.1, 132.6, 130.4, 130.0, 129.84, 129.80, 129.7, 129.3, 129.18, 

129.15, 129.1, 129.0, 128.9, 128.8, 128.7, 128.6, 128.51, 128.46, 128.44, 128.35, 128.3, 

128.2, 128.1, 128.0, 127.94, 127.87, 127.7, 127.6, 127.5, 127.43, 127.40, 127.0, 100.3, 100.2, 

99.8, 98.5, 80.7, 79.2, 76.7, 76.6, 75.2, 75.12, 75.07, 75.0, 74.8, 74.6, 74.4, 74.4, 74.1, 73.7, 

73.62, 73.59, 73.4, 73.1, 72.5, 72.1, 71.4, 70.5, 69.6, 69.5, 67.8, 67.3, 67.0, 66.8, 52.6, 51.4, 

46.5, 45.5; IR (thin film) 2928, 1734, 1602, 1453, 1364, 1272, 1094, 1070, 740, 710 cm-1; 

HRMS (MALDI) calcd. for C119H117NO28 (M+Na)+ 2030.7659 found 2030.7660 m/z. 
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2,3,4,6-Tetra-O-benzyl-α-D-galactopyranosyl-(1→4)-methyl (2,3-di-O-benzoyl-β-D-

glucopyranosyl)uronate-(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-glucoyranosyl-

(1→4)-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-

galactopyranosyl-(1→1)-(2-N-benzyl-N-benzyloxycarbonylamino)ethanol (3-36) 

 

Alcohol 3-35 (14 mg, 7 µmol) and thioglycoside 3-32346 (16 mg, 28 µmol) were co-

evaproated with anhydrous toluene (3x10 mL) and kept under high vacuum for 30 min. 

The mixture was dissolved in Et2O (1.05 mL) and CH2Cl2 (0.35 mL) and stirred over 

activated molecular sieves (3 Å-AW) for 30 min at room temperature. The solution was 

cooled to -20 °C and treated with NIS (6.3 mg, 28 µmol) and TMSOTf (1 µL, 5.5 µmol). 

The mixture was stirred for 1 h at that temperature and slowly warmed to 0 °C. The 

reaction was quenched with a 1:1 (v/v) mixture of sat. aq. NaHCO3 (10 mL) and 10% 

(w/v) Na2SO3 (5 mL) and extracted with CH2Cl2 (4x10 mL). The combined organic 

fractions were dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 0:1 to 1:4 to 1:3) to give pentasaccharide 3-36 (12.5 

mg, 4.9 µmol, 70%) along with the corresponding β-anomer (3.4 mg, 1.3 µmol, 19%). 

Analytical data for 3-36: Clear oil. Rf (EtOAc/hexanes 2:3) = 0.63; [α]D
20 = +20.4° (c = 

0.33, CH2Cl2); 
1H NMR (600 MHz, CDCl3) δ 7.97 – 7.82 (m, 5H), 7.67 (d, J = 7.3 Hz, 

2H), 7.57 (t, J = 7.4 Hz, 1H), 7.48 – 6.98 (m, 77H), 5.52 (t, J = 9.6 Hz, 1H), 5.37 (dd, J 

= 9.9, 8.2 Hz, 1H), 5.27 (t, J = 9.1 Hz, 2H), 5.17 (t, J = 9.5 Hz, 1H), 5.11 (t, J = 9.9 

Hz, 2H), 4.92 (s, 1H), 4.82 (d, J = 11.3 Hz, 1H), 4.77 – 4.53 (m, 9H), 4.52 – 4.37 (m, 

7H), 4.32 – 4.07 (m, 9H), 4.03 (d, J = 6.9 Hz, 1H), 3.96 (d, J = 12.0 Hz, 2H), 3.91 – 3.78 
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(m, 6H), 3.76 – 3.56 (m, 7H), 3.54 – 3.39 (m, 7H), 3.38 – 3.21 (m, 4H), 3.07 (s, 3H), 3.05 

– 2.91 (m, 2H); 13C NMR (150 MHz, CDCl3) δ 166.8, 165.49, 165.46, 164.84, 164.79, 

156.6, 156.3, 140.0, 139.1, 138.9, 138.8, 138.6, 138.5, 138.4, 138.3, 138.2, 138.1, 138.0, 

137.5, 136.8, 133.5, 133.0, 132.5, 130.2, 129.9, 129.8, 129.7, 129.4, 129.2, 129.1, 129.03, 

128.95, 128.8, 128.7, 128.6, 128.5, 128.43, 128.41, 128.35, 128.28, 128.26, 128.22, 128.15, 

128.03, 127.98, 127.93, 127.91, 127.8, 127.6, 127.52, 127.49, 127.45, 127.2, 127.0, 100.5, 

100.2, 99.8, 99.47, 98.46, 80.7, 79.2, 78.4, 76.8, 76.61, 76.55, 75.34, 75.30, 75.26, 75.1, 

75.0, 74.9, 74.8, 74.5, 74.2, 73.7, 73.6, 73.5, 73.4, 73.3, 73.1, 72.6, 72.1, 71.6, 70.5, 70.0, 

69.6, 67.9, 67.5, 67.3, 67.0, 66.9, 52.2, 51.4, 46.5, 45.5; IR (thin film) 2928, 1737, 1498, 

1454, 1271, 1094, 1047, 1028, 738, 699 cm-1; HRMS (MALDI) calcd. for C153H151NO33 

(M+Na)+ 2553.0066 found 2553.0066 m/z. 

α-D-Galactopyranosyl-(1→4)-β-D-glucopyranosyluronate-(1→4)-β-D-glucoyranosyl-

(1→4)-α-D-glucopyranosyl-(1→4)-α-D-galactopyranosyl-(1→1)-(2-amino)ethanol (3-

29) 

 
 

To a stirred solution of ester 3-36 (26 mg, 10.3 µmol) in THF (1 mL) and MeOH (1 mL) 

was added at 0 °C a 1:1 (v/v) mixture (450 µL) of H2O2 (6% (v/v) aq. solution, 397 

µmol) and LiOH (0.5 M aq. solution, 113 µmol). The reaction was warmed to room 

temperature and stirred for 1 h at that temperature. The reaction was treated with 

NaOH (0.5 M aq. solution, 1 mL) and stirred for 16 h at room temperature. The solvents 
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were evaporated under reduced pressure, the residue was co-evaporated with toluene 

(2x5 mL) and dissolved in MeOH (1 mL). The solution was treated at room temperature 

with NaOMe (0.5 M in MeOH, 1 mL) and stirred for 16 h at that temperature. The 

reaction was diluted with water (0.5 mL) and CH2Cl2 (0.5 mL), neutralized at 0 °C with 

Amberlite IR-120 (H+ form), filtered and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 0:1 to 1:4 to 1:2 to 1:2 + 1% (v/v) AcOH to 1:1 + 1% 

(v/v) AcOH) to give the intermediate carboxylic acid as a clear oil. 

The intermediate carboxylic acid in CH2Cl2/tBuOH/water (1:16:8, 1 mL) was 

purged with argon and treated at 0 °C with a suspension of Pd(OH)2 on carbon (20% 

(w/w) loading, 20 mg) in the same solvent mixture (0.5 mL). The suspension was purged 

with hydrogen, stirred under hydrogen atmosphere for 16 h, filtered and concentrated. 

Since the reaction had not proceeded to completion, the residue was subjected to the 

same conditions again and stirred for 24 h at room temperature. The mixture was 

filtered and concentrated, the residue was purified by solid phase extraction 

(Chromabond C18, Macherey-Nagel) and lyophilized to give pentasaccharide 3-29 (8.1 

mg, 9.1 µmol, 88% over two steps) as a white solid. 1H NMR (600 MHz, D2O) δ 5.52 (d, 

J = 3.5 Hz, 1H), 5.07 (d, J = 3.7 Hz, 1H), 4.93 (d, J = 3.8 Hz, 1H), 4.56 (2xd, J = 8.4 

and 8.4 Hz, 2H), 4.24 (d, J = 10.0 Hz, 1H), 4.09 (d, J = 2.6 Hz, 1H), 4.07 – 3.78 (m, 

18H), 3.77 – 3.58 (m, 8H), 3.39 (dt, J = 24.4, 8.5 Hz, 2H), 3.34 – 3.26 (m, 2H); 13C NMR 

(150 MHz, D2O) δ 104.86, 104.85, 102.5, 101.2, 101.0, 81.2, 81.0, 80.9, 78.7, 78.6, 77.4, 

76.6, 75.7, 75.5, 74.2, 74.1, 73.8, 73.31, 73.29, 71.8, 71.6, 71.5, 71.0, 70.9, 66.5, 63.3, 63.1, 

62.5, 62.1, 41.9; HRMS (MALDI) calcd. for C32H55NO27 (M+Na)+ 884.2883 found 

884.2942 m/z. 
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4-O-Benzoyl-2,3,6-tri-O-benzyl-α-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-

galactopyranosyl-(1→4)-methyl (2,3-di-O-benzoyl-β-D-glucopyranosyl)uronate-

(1→4)-2,3-di-O-benzoyl-6-O-benzyl-β-D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-

D-glucopyranosyl-(1→4)-2,3,6-tri-O-benzyl-α-D-galactopyranosyl-(1→1)-(2-N-benzyl-

N-benzyloxycarbonylamino)ethanol (3-37) 

 

Alcohol 3-35 (50 mg, 25 µmol) and imidate 3-9 (72.1 mg, 62 µmol) were co-evaproated 

with anhydrous toluene (3x10 mL) and kept under high vacuum for 30 min. The mixture 

was dissolved in Et2O (2 mL) and CH2Cl2 (0.67 mL) and stirred over activated molecular 

sieves (3 Å-AW) for 30 min at room temperature. The solution was cooled to -20 °C and 

treated with TMSOTf (2 µL, 11 µmol). The mixture was stirred for 1 h at that 

temperature and slowly warmed to 0 °C. The reaction was quenched with sat. aq. 

NaHCO3 (10 mL) and extracted with CH2Cl2 (4x10 mL). The combined organic fractions 

were dried over Na2SO4 and concentrated. The residue was purified by flash 

chromatography (EtOAc/hexanes 0:1 to 1:3 to 3:7 to 1:2) to give hexasaccharide 3-37 

(51 mg, 17 µmol, 68%) as a clear oil. Rf (EtOAc/hexanes 2:3) = 0.63; [α]D
20 = +36.6° (c 

= 0.21, CH2Cl2); 
1H NMR (600 MHz, CDCl3) δ 7.95 (d, J = 7.3 Hz, 2H), 7.89 (d, J = 7.7 

Hz, 4H), 7.84 (d, J = 7.3 Hz, 2H), 7.67 (d, J = 7.4 Hz, 2H), 7.55 (dt, J = 26.6, 7.4 Hz, 

2H), 7.48 – 6.98 (m, 88H), 5.49 (dt, J = 19.5, 9.8 Hz, 2H), 5.39 (dd, J = 9.9, 8.2 Hz, 1H), 

5.28 (m, 2H), 5.16 (t, J = 9.5 Hz, 1H), 5.09 (m, 3H), 4.92 (s, 1H), 4.74 (dd, J = 11.7, 9.1 
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Hz, 2H), 4.71 – 4.66 (m, 3H), 4.60 (m, 7H), 4.53 – 4.41 (m, 6H), 4.35 – 4.28 (m, 3H), 4.28 

– 4.20 (m, 5H), 4.18 – 4.01 (m, 8H), 4.00 – 3.78 (m, 9H), 3.77 – 3.59 (m, 8H), 3.55 (d, J 

= 9.6 Hz, 1H), 3.53 – 3.20 (m, 8H), 3.17 (dd, J = 8.8, 4.9 Hz, 1H), 3.06 (s, 3H), 2.97 (m, 

3H); 13C NMR (150 MHz, CDCl3) δ 167.0, 165.54, 165.50, 165.2, 164.8, 156.6, 156.3, 

140.1, 138.9, 138.8, 138.8, 138.6, 138.41, 138.36, 138.3, 138.2, 138.1, 138.0, 137.6, 136.84, 

136.77, 133.5, 133.1, 133.0, 132.5, 130.4, 130.2, 130.1, 129.9, 129.8, 129.7, 129.3, 129.2, 

129.1, 129.04, 128.95, 128.8, 128.7, 128.6, 128.44, 128.41, 128.37, 128.35, 128.33, 128.30, 

128.25, 128.18, 128.15, 128.1, 128.03, 127.99, 127.96, 127.94, 127.85, 127.8, 127.7, 127.64, 

127.61, 127.55, 127.4, 127.3, 127.2, 127.0, 100.4 (1JC-H = 165.6 Hz; β), 100.2 (1JC-H = 

165.6 Hz; β), 100.0 (1JC-H = 171.3 Hz; α), 99.8 (1JC-H = 171.0 Hz; α), 99.3 (1JC-H = 172.8 

Hz; α), 98.5 (1JC-H = 174.0 Hz; α), 80.7, 80.1, 79.7, 79.2, 77.6, 76.64, 76.56, 75.9, 75.3, 

75.2, 74.9, 74.4, 74.4, 74.2, 73.9, 73.6, 73.6, 73.4, 73.3, 73.2, 73.1, 73.0, 72.6, 72.4, 72.1, 

71.6, 71.1, 70.5, 70.1, 69.6, 69.5, 69.2, 67.9, 67.8, 67.6, 67.3, 67.0, 66.9, 66.8, 66.3, 52.2, 

51.40, 51.37, 46.5, 45.5; IR (thin film) 2926, 1736, 1454, 1271, 1095, 1045, 737, 699 cm-1; 

HRMS (MALDI) calcd. for C180H177NO39 (M+2Na)2+ 1511.0847 found 1511.0576 m/z. 

α-D-Glucopyranosyl-(1→4)-α-D-galactopyranosyl-(1→4)-β-D-glucopyranosyluronate-

(1→4)-β-D-glucopyranosyl-(1→4)-α-D-glucopyranosyl-(1→4)-α-D-galactopyranosyl-

(1→1)-(2-amino)ethanol (3-30) 
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To a stirred solution of ester 3-37 (22 mg, 7.4 µmol) in THF (1 mL) and MeOH (1 mL) 

was added at 0 °C a 1:1 (v/v) mixture (296 µL) of H2O2 (6% (v/v) aq. solution, 295 

µmol) and LiOH (0.5 M aq. solution, 74 µmol). The reaction was warmed to room 

temperature and treated after 2 h and 4 h with another 294 µL of the same lithium 

peroxide solution, respectively. The mixture was stirred for 16 h at room temperature 

and treated with NaOH (1 M aq. solution, 0.5 mL) and MeOH (0.5 mL). The reaction 

was stirred for 20 h at that temperature, quenched with 10% aq. Na2SO3 (0.8 mL) and 

concentrated under reduced pressure. The residue was dissolved in water (4 mL), 

acidified at 0 °C with 0.5 M aq. NaHSO4 to approx. pH 4 and extracted with EtOAc 

(4x10 mL). The combined organic fractions were dried over Na2SO4 and concentrated. 

The residue was treated with NaOMe (0.5 M solution in MeOH, 1 mL), warmed to 40 °C 

and stirred for 5 h at that temperature. The reaction was cooled to room temperature, 

stirred for another 16 h at that temperature and treated with water (0.5 mL). The 

mixture was neutralized with Amberlite IR-120 (H+ form), filtered and concentrated. 

The residue was purified by flash chromatography (EtOAc/hexanes 0:1:0 to 1:4 + 2% 

(v/v) AcOH to 1:1 + 2% (v/v) AcOH) to give the intermediate carboxylic acid as a clear 

oil. 

The intermediate carboxylic acid in CH2Cl2/tBuOH/water (1.5:16:8, 3 mL) was 

purged with argon and treated at 0 °C with a suspension of Pd(OH)2 on carbon (20% 

(w/w) loading, 30 mg) in the same solvent mixture (1 mL). The suspension was purged 

with hydrogen, stirred under hydrogen atmosphere for 18 h, filtered and concentrated. 

The residue was purified by solid phase extraction (Chromabond C18, Macherey-Nagel) 

and lyophilized to give hexasaccharide 3-30 (7 mg, 6.7 µmol, 86% over three steps) as a 

white solid. 1H NMR (600 MHz, D2O) δ 5.57 (d, J = 3.2 Hz, 1H), 5.07 (d, J = 2.9 Hz, 

1H), 4.97 (d, J = 3.0 Hz, 1H), 4.94 (d, J = 3.0 Hz, 1H), 4.56 (2xd, J = 8.0 and 7.9 Hz, 

2H), 4.24 (d, J = 9.8 Hz, 1H), 4.15 – 4.07 (m, 3H), 4.01 (m, 4H), 3.89 (m, 16H), 3.77 – 

3.60 (m, 7H), 3.56 (dd, J = 9.9, 3.1 Hz, 1H), 3.47 (t, J = 9.6 Hz, 1H), 3.43 – 3.28 (m, 

4H); 13C NMR (150 MHz, D2O) δ 104.9, 104.82, 102.80, 102.5, 101.2, 101.0, 81.2, 81.01, 

80.98, 80.9, 78.7, 78.7, 77.4, 76.6, 75.7, 75.5, 75.4, 74.5, 74.4, 74.2, 74.1, 73.8, 73.6, 73.3, 

71.9, 71.5, 71.3, 71.1, 70.9, 66.5, 63.1, 62.7, 62.5, 62.4, 62.1, 41.9; HRMS (ESI) calcd. for 

C38H65NO32 (M+Na)+ 1070.3387 found 1070.3391 m/z. 
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3.4.2 Methods of Biochemistry 

Figures were prepared using Illustrator CS5 (Adobe Systems, San Jose, USA). 

Antisera, Polysaccharides and Carrier Protein 

Human pooled pneumococcal antiserum (WHO 1st International Standard for Human 

Anti-pneumococcal capsule Reference Serum, prod. no. 007sp339 was obtained from 

NIBSC (South Mimms, UK). Rabbit ST8 typing serum (Type 8 Neufeld antiserum, cat. 

no. 16751), ST8 capsular polysaccharide (cat. no. 76875), ST3 capsular polysaccharide 

(cat. no. 76853) and pneumococcal cell wall polysaccharide (cat. no. 3459) were 

purchased from SSI Diagnostica (Hillerød, Denmark). CRM197 was purchased from 

Pfenex (San Diego, USA). 

ST8 CPS fragments were prepared according to a literature protocol.345 Briefly, 

ST8 CPS (200 µg) in 0.5 M aqueous trifluoroacetic acid (200 µL) was warmed to 100 °C 

in a sealed tube. The solution was directly shock-frozen and lyophilized to remove excess 

acid. 

Glycan Microarray Analysis 

Microarray slides were fabricated as described recently.155 Briefly, synthetic 

oligosaccharides [0.2 mM solutions in printing buffer (50 mM sodium phosphate buffer, 

NaPi, pH 8.5)], polysaccharides (0.02 or 0.04 µg/mL in printing buffer) and proteins (0.5 

µM in printing buffer) were spotted onto CodeLink N-hydroxysuccinimide-activated glass 

slides (SurModics Inc., Eden Prairie, USA) using an automated piezoelectric arraying 

robot (Scienion, Berlin, Germany) at 0.4 nL per spot and incubated for 24 h at room 

temperature in a humified chamber. Slides were quenched for 1 h at room temperature 

using 100 mM ethanolamine in 0.1 M NaPi pH 9, washed with water and stored in a 

anhydrous chamber until use. 

Slides were blocked for 1 h at room temperature with 1% (w/v) bovine serum 

albumin (BSA) in phosphate buffered saline (PBS, 10 mM Na2HPO4, 1.8 mM K2HPO4, 

137 mM NaCl, 2.7 mM KCl) and antibody dilutions were applied using a 64 well gasket 

(FlexWell 64, Grace Bio-Labs, Bend, US). The slides were incubated for 16 h at 4 °C in 

a humified chamber, washed three times with 0.1 % (v/v) Tween® 20 in PBS (PBS-T) 
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and treated with the appropriate secondary antibody solutions (see below). The slides 

were incubated for 1.5 h at room temperature in a dark, humified chamber, washed three 

times with washing buffer and with water. Fluorescence read-out was performed using an 

Axon GenePix 4300A microarray scanner and GenePix Pro 7 software (both MDS, 

Sunnyvale, US). Negative fluorescence intensities were arbitrarily set to 0. All statistical 

analyses were perfomed using Prism 6 (Graphpad Software Inc., La Jolla, USA). 

Brightness and contrast of related images (e.g. all sera of the same mouse) were adjusted 

equally using Photoshop CS5 (Adobe Systems).  

Conjugation of Tetrasaccharides 3-5 and 3-6 to CRM197 

To a stirred solution of di-N-succinimidyl adipate (DSAP, 10 mg, 29 µmol) and 

triethylamine (10 µL, 72 µmol) in anhydrous DMSO (150 µL) was added at room 

temperature dropwise a solution of tetrasaccharide 3-5 or 3-6 (approx. 2 mg, 2.8 µmol) 

in anhydrous DMSO (150 µL). The reaction was stirred for 2 h at that temperature 

under an Argon atmosphere and treated with conjugation buffer (100 mM NaPi pH 7.4, 

200 µL). The mixture was extracted with chloroform (10 mL) and the phases separated 

by centrifugation (2 min, 1800 g). The organic phase was discarded and the extraction 

step was repeated two times. The aqueous layer was clarified by centrifugation in a 1.5 

mL reaction tube (1 min, 14500 g, room temperature) and added to a stirred solution of 

CRM197 (1 mg, 17.3 nmol) in conjugation buffer (1 mL). The mixture was stirred for 16 

h at room temperature and dialyzed using a centrifugal filter (10 kDa molecular weight 

cut-off, Millipore, Darmstadt, Germany). The glycoconjugates were characterized by 

MALDI-TOF MS, SDS-PAGE and western blot. 

Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis (SDS-PAGE) 

Discontinuous SDS-PAGE was performed according to Lämmli’s protocol,316 using a 

MiniProtean system (Bio-Rad, Hercules, USA). An alkaline separating gel (375 mM 

Tris/HCl pH 8.8, 10 to 12% (w/v) of a 29:1 acrylamide/N,N’-methylenebisacrylamide 

mixture) and an acidic stacking gel (100 mM Tris/HCl pH 6.8, 4.5% (w/v) of a 29:1 

acrylamide/N,N’-methylenebisacrylamide mixture), polymerized by the addition of 

TEMED and 10% (w/v) ammonium peroxodisulfate, were used. Proteins were visualized 

using Coomassie G-250. Brightness and contrast of images were adjusted using 

Photoshop CS5 (Adobe Systems). 
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Western Blotting and Immunodetection of Proteins 

Tank western blotting of proteins was performed using a Mini Trans-Blot Cell (Bio-

Rad). After SDS-PAGE, proteins in the separating gel were transferred to a 

nitrocellulose membrane (GE Healthcare) using transfer buffer (25 mM Tris, 192 mM 

glycine, 15% (v/v) MeOH) at 100 V for 1 h. Transfer was confirmed by Ponceau S 

staining (0.1% (w/v) Ponceau S in 5% (v/v) aq. acetic acid). The membrane was washed 

briefly with Tris buffered saline (TrBS, 20 mM Tris/HCl pH 7.5, 154 mM NaCl) and 

blocked using blocking solution (5% (w/v) skimmed milk powder in TrBS) for 1 h at 

room temperature. Primary antibody (1:1500 rabbit ST8 typing serum or 0.4 µg/mL 

anti-ST8 mAb 28H11) in blocking solution was applied and the membrane was incubated 

for 1 h at room temperature or for 16 h at 4 °C. The membrane was washed with TrBS 

and TrBS supplemented with 0.1% (v/v) Tween® 20 (TrBS-T). Secondary antibody 

[goat anti-rabbit IgG HRP conjugate (ab6721, abcam) or goat anti-mouse IgM HRP 

conjugate (62-6820, Thermo Fisher Scientific, Waltham, USA)] was applied in the 

dilution specified by the manufacturer in blocking buffer. The membrane was incubated 

for 1 h at room temperature, washed with TrBS and TrBS-T and analyzed by 

chemiluminescence detection using Pierce™ ECL Western Blotting Substrate (Thermo 

Fisher). Brightness and contrast of images were adjusted using Photoshop CS5 (Adobe 

Systems). 

Ethics Statement 

All animal experiments were approved by local institutional (Charité - 

Universitätsmedizin Berlin) and governmental authorities (Landesamt für Gesundheit 

und Soziales Berlin, approval ID G0128/12 and A 0305/12). Animal housing and 

experiments were in strict accordance with the regulations of the Federation of European 

Laboratory Animal Science Associations (FELASA) and recommendations for the care 

and use of laboratory animals. All mice were housed under specific pathogen-free 

conditions. 

Glycoconjugate Immunization 

Mice (6-8 week old female BALB/c or C57BL/6N mice, Charles River, Sulzfeld, 

Germany) were immunized subcutaneously with the CRM197-FS A (3-5) CRM197-FS C 
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(3-6) glycoconjugates (corresponding to 4 µg synthetic glycan) formulated either as a 1:1 

(v/v) emulsion with Complete Freund’s Adjuvant (CFA, Sigma-Aldrich), a 1:1 (v/v) 

suspension with Alum (Alhydrogel, Brenntag, Mülheim, Germany) or without adjuvant 

at a total volume of 100 µL. Booster doses were given at days 14 and 28 using the same 

strategy (mice primed with CFA received booster doses with Incomplete Freund’s 

Adjuvant (Sigma-Aldrich). Blood (50 µL) was withdrawn once a week from the tail vein 

or the facial vein and centrifuged (5000 g, 10 min, room temperature) to retrieve serum. 

Enzyme-linked Immunosorbent Assay (ELISA) 

ELISA was performed using Costar™ high-binding polystyrene 96-well plates (cat. no. 

3361, Corning, Corning, US). Plates were coated using native ST8 polysaccharide (SSI 

Diagnostica, Kopenhagen) at a concentration of 10 µg/mL in PBS for 20 h at 4 °C. 

Plates were blocked with 10% (v/v) fetal calve serum in PBS for 2 h at 37 °C and 

washed once with PBS-T. After applying cell culture supernatants or mAb dilutions (30-

50 µL), Plates were incubated for 1 h at 37 °C, washed with PBS-T three times and 

treated with a horseradish peroxidase (HRP)-labeled secondary antibody (see below). 

Plates were washed with PBS-T three times and HRP activity was measured with TMB 

substrate (BD Biosciences, San Jose, US) according to the manufacturer’s instructions. 

Antibodies 

Monoclonal antibodies were prepared using BM-Condimed H1 (Roche, Penzberg, 

Germany) according to the manufacturer’s instructions. After fusion of plasma cells with 

P3X63Ag8.653 (ATCC CRL-1580™) cells, single clones were generated using limited 

dilution and two subsequent rounds of subcloning. Antibody production was monitored 

by glycan array and enzyme-linked immunosorbent assay (ELISA). 33 clones were 

eventually isolated that produced mAbs recognizing both ST8 FS C (cmpd. 3) and ST8 

CPS. Clones 1H8C6H4 (termed “1H8”) and 1F1F7H2 (termed “1F1”) were expanded in 

ISF-1 serum-free medium (Biochrom, Berlin, Germany) supplemented with Penicillin and 

Streptomycin (life Technologies, Carlsbad, US). MAb 1H8 was purified using a Protein 

G Antibody Purification kit (Pro-Chem, Littleton, USA). MAb 1F1 was purified by gel 

filtration chromatography using a Superdex HiLoad 16/600 200 prep grade column 

mounted on an ÄKTA 900 system (GE Healthcare). MAb isotypes were determined 
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using a Mouse Isotyping Test Kit (AbD Serotec, Kidlington, UK) and purity was 

confirmed by SDS-PAGE. Antibodies were stored in PBS supplemented with 0.02% 

(w/v) sodium azide at 4 °C or in 50% (v/v) glycerol/PBS at -20 °C. MAbs were dialyzed 

against azide-free PBS before application in animal or cell-based experiments.  

Table 3.2. Fluorescently labeled antibodies used in this study. 

Antibody Source cat. no. 

Goat anti-Rabbit IgG H+L FITC conjugate  abcam (Camrbidge, UK) ab6717 

Goat anti-Human IgG H+L Alexa Fluor® 647 conjugate life Technologies A-21445 

Goat anti-Mouse IgG H+L FITC conjugate Sigma-Aldrich F9137 

Goat anti-Mouse IgG H+L Alexa Fluor® 635 conjugate life Technologies A-31574 

Goat anti-Mouse IgM H chain Alexa Fluor® 680 conjugate life Technologies A-21048 

Donkey anti-Mouse IgM H chain Alexa Fluor® 594 conjugate 
dianova (Hamburg, 
Germany) 

715-585-
020 

Antibody isotype controls employed were an anti-Y. pestis lipopolysaccharide 

core trisaccharide mAb IgG1 (clone 1E12)83 and a purified mouse myeloma IgM (cat. no. 

02-6800, Invitrogen).  

Fluorescent antibodies were used from commercial sources (Table 3.2). Secondary 

antibodies used for ELISA were horseradish peroxidase (HRP)-labeled: Goat anti-Mouse 

IgG HRP conjugate (cat. no. 115-035-062, dianova, Hamburg, Germany) or Goat anti-

mouse IgM H chain HRP conjugate (cat. no. 62-6820, Life Technologies). 

Surface Plasmon Resonance 

Surface plasmon resonance was performed on a Biacore® T100 instrument (GE 

Healthcare). Murine antibodies were immobilized using the Mouse Antibody Capture Kit 

and Amine Coupling Kit (GE Healthcare). Approx. 10000 response units (RU) of capture 

antibody were immobilized. A commercial mouse IgG (cat. no. 026502, Invitrogen, 

Carlsbad, US) was immobilized as a dummy in the reference cell (approx. 10000 RU). 

Approx. 1000 RU of mAb 1H8 or 500 RU of mAb 1F1 were captured prior to every run. 

Runs were performed using PBS (for ST8 CPS analyte) or PBS supplemented with 

0.001% (v/v) Tween® 20 (for synthetic oligosaccharide analytes) as running buffers at a 

flow rate of 30-50 µL/min with 120 s association and 280-600 s dissociation periods. Flow 



3 STREPTOCOCCUS PNEUMONIAE SEROTYPE 8 

204 
 

cells were regenerated using 10 mM glycine-HCl pH 1.7 and 100 mM glycine-NaOH pH 

12 with 0.3% (v/v) Triton™ X100. To calculate the concentration of ST8 polysaccharide, 

a molecular weight of 150 kDa (assessed by gel filtration, data not shown) was 

assumed.327 Affinities and standard errors were calculated using Biacore® T100 

Evaluation Software (GE Healthcare). 

Immobilization of oligosaccharides was performed using the Amine coupling Kit 

(GE Healthcare) according to the manufacturer’s recommendations with 0.66 mM glycan 

solutions in printing buffer. Approx. 200 RU of each glycan were immobilized. 

Bacteria 

S. pneumoniae serotype 8 (ATCC 6308), serotype 1 (ATCC 6301) or serotype 3 (PN36, 

NCTC7978) bacteria (a gift from Prof. Sven Hammerschmidt, Universität Greifswald, 

Germany) were plated from frozen stocks on Columbia Agar plates with 5% (v/v) sheep 

blood, grown for approx. 9 h at 37 °C/5% CO2 and inoculated as single colonies in Todd 

Hewitt Broth with 0.5% (w/v) yeast extract (growth medium). Cultured were grown at 

37 °C/5% CO2 to log phase (OD600 approx. 0.3) and harvested by centrifugation. 

For UV-inactivation, bacteria were washed with PBS once, harvested, suspended 

in PBS to approx. 4x108 colony-forming units (cfu)/mL and inactivated by irradiation at 

λ = 254 nm for 10 min at room temperature. Cells were harvested, washed once with 

PBS and frozen at approx. 8x108 cfu/mL in growth medium supplemented with with 

20% (v/v) glycerol (freezing medium) at -20 °C. 

Immunofluorescence of UV-inactivated S. pneumoniae 

Bacteria were thawed, harvested by centrifugation (16800 g, 15 min, r.t.) and washed 

once in 50 mM NaHCO3, 100 mM NaCl, pH 7.5 (buffer A). Cells were resuspended in 

Buffer A (1 mL) and treated with fluorescein isothiocyanate (FITC, Sigma-Aldrich) 

solution (10 mg/mL in DMSO) to a final FITC concentration of 0.1 mg/mL. Bacteria 

were labeled in the dark for 1 h at 37 °C, harvested by centrifugation and washed twice 

with 0.25% (w/v) BSA in PBS (1 mL). Labeling was monitored by fluorescence 

microscopy using an Axio Imager.M2 system equipped with a LSM 700 confocal laser 

scanning microscope (Carl Zeiss Microscopy, Jena, Germany). Cells were suspended in 

1% (w/v) BSA in PBS (1 mL for ST8, 0.5 mL for ST1) and the suspension was 
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distributed into two aliquots. The suspensions were treated with mAb 1H8 or mAb 1E12 

as an isotype control to a final mAb concentration of 10 µg/mL. Bacteria were incubated 

in the dark for 16 h at 4 °C under agitation and washed with 1% (w/v) BSA in PBS (0.5 

mL). The cells were suspended in a solution of goat anti-mouse IgG-Alexa635 conjugate 

(1:100 dilution in 200 µL 1% (w/v) BSA in PBS, Invitrogen), incubated in the dark for 

1.5 h at room temperature and washed with 1% (w/v) BSA in PBS and PBS (0.5 mL, 

respectively). Fluorescently labeled bacteria were visualized by fluorescence microscopy 

and images were processed with using Zen 2011 software (Carl Zeiss Microscopy). 

Flow Cytometry 

S. pneumoniae serotype 8 (ATCC 6308), serotype 1 (ATCC 6301) or serotype 3 (PN36, 

NCTC7978) were UV-inactivated, FITC-labeled and treated with a fluorescent secondary 

antibody (anti-mouse IgG-Alexa635 conjugate or anti-mouse IgM-Alexa680 conjugate, 

see above) as described above. Flow cytometry was performed by counting 10000 

bacteria using a FACSCanto II flow cytometer (BD Pharmingen, Heidelberg, Germany) 

and analyzed using FlowJo software (Tree Star Inc., Ashland, OR, USA). 

Opsonophagocytic Killing Assay 

An opsonophagocytic killing (OPKA) assay was peformed as described by Romero-

Steiner et al.79 Briefly, HL-60 cells were differentiated for one week with N,N-

dimethylformamide as reported (Romero-Steiner et al., 1997), washed twice with Hanks’ 

buffer supplemented with 0.1% (w/v) gelatin (OPKA buffer) and diluted to a density of 

107 cells/mL in the same buffer directly before use. Bacteria were grown in growth 

medium at 37 °C/5% CO2 to log phase (OD600 approx. 0.2-0.3), diluted in freezing 

medium to a density of 106 cfu/mL and frozen in 0.5 mL aliquots at -80 °C. Bacteria 

were diluted with OPKA buffer and aliquoted (1000 cfu in 20 µL each) in a 96 well-

plate. Bacterial suspensions were treated with 10 µg/mL mAb solutions or control 

antisera (1:4) dilutions and incubated for 15 min at 37 °C. Complement source (10 

µL,baby rabbit complement, CedarLane, Ontario, Canada) and differentiated HL-60 cell 

suspension (40 µL, phagocyte/bacteria ratio 400:1) were added and the suspensions were 

incubated for 45 min at 37 °C with shaking (220 rpm). Opsonophagocytosis was 

performed in triplicates. 10% of the contents of each well were plated on Columbia Agar 
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plates with 5% (v/v) sheep blood, and cfu were counted after incubation at 37 °C/5% 

CO2 overnight. Control wells lacked either antibody or complement sources. 

Passive immunization and lethal pneumococcal challenge 

Streptococcus pneumoniae serotype 8 was cultured as described above and suspended in 

sterile PBS. Female BALB/c mice (12 weeks, 20-22 g, Charles River, Sulzfeld, Germany) 

were treated intraperitoneally (i.p.) with monoclonal antibodies 1H8 or anti-Y. pestis 

1E12 at doses of either 10 or 100 µg in 100 µL sterile PBS 2 h prior to infection. Mice 

were anaesthetized by i.p administration of ketamine (80 mg/kg, Ketavet®, Pfizer, 

Berlin, Germany) and xylazine (25 mg/kg, Rompun®, Bayer, Leverkusen, Germany) and 

transnasally inoculated with 1x105 cfu S. pneumoniae in 20 µL PBS. Disease severity was 

evaluated at 12 h intervals (more often if severely ill) for 96 h after bacterial infection to 

assess appearance, behavior, grooming, respiration, body weight and rectal temperature 

(BAT-12 Microprobe Thermometer, Physitemp Instruments, Clifton, USA). Blood 

samples (max. 20 µL) were removed from tail veins of surviving mice 30 h and 60 h post 

infection. 

Mice were humanely sacrificed when they reached at least one of the predefined 

criteria [(i) body temperature <30°C, (ii) body weight loss >20%, (iii) cumbersome 

breathing, (iv) accelerated breathing in combination with staggering, pain or paleness] by 

exsanguination via the caudal Vena cava after i.p. injection of ketamine (160 mg/kg 

body weight) and xylazine (75 mg/kg). 96 h after infection, surviving mice were 

anaesthetized with i.p. ketamine (160 mg/kg) and xylazine (75 mg/kg). After 

heparinization, blood was drawn from the Vena cava caudalis and lungs were removed. 

After each bleeding, serial dilutions of blood were plated on Columbia agar plates 

with 5% (v/v) sheep blood and incubated at 37°C under 5% CO2 overnight to count cfu. 

Blood antibody levels were monitored by glycan microarray analysis after 0.2 µm sterile 

filtration of 1:20 dilutions of blood samples and comparison of the FS C (3-6) binding 

signal with a standard curve of different concentrations of mAb 1H8. 

To assess the residual bacterial burden of mice 96 h after infection, lungs were 

homogenized by passage through a cell strainer (100 µm, BD Bioscience). Serial dilutions 

of lung homogenates were assessed for cfu growth as described above. 
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4 Introduction of a Linker System 
with Low Nucleophilicity and High 
α-Selectivity in Glycosylations 

4.1 Introduction 

Manufacturing novel synthetic oligosaccharide-based vaccines requires reliable methods 

that enable the construction of a variety of glycosidic linkages.2, 184 However, unusual 

glycosidic linkages especially found in bacterial polysaccharides pose a synthetic 

challenge to generating these glycans. Numerous strategies have been devised to address 

the difficulties associated with the installation of 1,2-cis-glycosidic bonds.184 In the past 

years, mechanistic studies have tried to rationalize experimental observations to develop 

kinetic principles that may help to increase 1,2-cis-selectivities.196, 270, 356, 357 However, 

kinetic pathways are often difficult to discern, and deducing general trends is 

cumbersome. A particular challenge is the 1,2-cis-stereoselective introduction of 

protected linker alcohols at the reducing end of oligosaccharide chains. Typically, N-

protected, aliphatic amino alcohols are used for that purpose. These alcohols are 

conformationally flexible, comparably strong nucleophiles, and common concepts to 

enhance 1,2-cis-selectivities in the corresponding glycosylation reactions have seen limited 

use (see Chapters 2 and 3).155, 156, 201, 238, 358-360 Due to the low 1,2-cis-stereoselectivities 

typically observed in the introduction of reducing-end linkers, these molecules are usually 

appended in early steps of oligosaccharide synthesis.156 An efficient strategy to introduce 

linker moieties at late synthetic stages would significantly boost synthetic flexibility. 

Strategies to increase 1,2-cis-selectivities (“α” in the D-galacto series studied here) 

in glycosylations comprise the use of certain solvent combinations, leaving groups and 

intermediates.184 Few studies, however, have focused on altering the properties of the 
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nucleophile. Woerpel found that nucleophile strength significantly alters the outcome of 

glycosylations.194, 195 Thereby, the reactivity of C-nucleophiles inversely correlated with 

α-selectivity in the reaction with a model glycosylating agent.194 Highly reactive C-

nucleophiles were associated with an erosion of stereochemistry.194, 195 The same trends 

were later confirmed using O-nucleophiles of different reactivities,193 and increasing the 

number of electronegative fluorine substituents in ethanol-derived nucleophiles led to 

increased α-selectivities. It was thus proposed that weak nucleophiles react via an 

energetically favored kinetic pathway, while strong nucleophiles exhibit reaction rates at 

the diffusion limit and thus erode stereoselectivities.193 These mechanistic studies did not 

provide conjugation-ready oligosaccharides, and it is not known whether the observed 

effects can be universally translated to other glycosylations to furnish biologically 

relevant glycosidic bonds. 

Fluorination is a well-practiced strategy to alter the physical and biochemical 

properties of organic compounds, with up to 25% of all drugs in development containing 

fluorine substituents.361 As a substituent, fluorine is closest to hydrogen in size, with van 

der Waals-radii of 1.47 Å and 1.10 Å, respectively.362 In contrast to their size, the 

physicochemical properties of both substituents differ substantially. The high 

electronegativity of fluorine affects pK values of neighboring acidic and basic functional 

groups, often leading to differences in drug bioavailability.361 Other physicochemical 

effects of fluorine substitution include conformational preferences and altered lipophilicity 

of the respective compounds.361 Biochemically, fluorine substitution can provide a 

protective effect towards biodegradation of organic compounds, leading to higher 

metabolic stability.361 Although there is little evidence for biodegradative pathways of 

organofluorine compounds,363 the effects of fluorine substitutions in a medicinal context 

are well-studied and widely employed. 

The lack of reliable methods to α-selectively introduce linker alcohols into synthetic 

glycans inspired the development of a linker with low O-nucleophilicity. In particular, 

the question whether the introduction of two fluorine substituents would decrease O-

nucleophilicity enough to increase α-selectivity was of interest. 



 

209 
 

4.2 Results 

4.2.1 Design of Linker Alcohols with Distinct O-Nucleophilicities 

Classically, N-protected aliphatic amino alcohols, such as 4-1, are used as linkers to 

attach glycans to carrier proteins, glycan array surfaces and reporter probes by virtue of 

a free amino group (Scheme 4.1).2 To enable the α-selective introduction of a linker at 

the reducing end of glycans, it was reasoned that the formal substitution of the 

methylene group in 4-1 by a difluoromethylene group (in 4-2) would reduce O-

nucleophilicity enough to increase the stereoselectivities of glycosylation reactions 

without abrogating the bifunctional nature of the linker. 

 

Scheme 4.1. Linker alcohols used in this study. An amine-containing linker is introduced into a 
synthetic glycan chain to enable the chemoselective conjugation to surfaces, reporter moieties or 
carrier proteins using appropriate electrophiles (see Chapter 3). Conventional, N-protected amino 
alcohol 4-1 bears a highly nucleophilic hydroxyl function, whereas difluorinated derivative 4-2 
exhibits reduced O-nucleophilicity. 

A strategy was thus envisioned to synthesize alcohol 4-2 from commercially 

available dimethyl difluoromalonate 4-3 as a precursor (Scheme 4.2). Treatment of 4-3 

with substoichiometric benzylamine in methanol provided amide 4-4 in 59% yield. The 

respective diamide was obtained as a side product but became the major product when 

toluene was used as a solvent. It is reasoned that the reactivity of the ester group in 

monoamide 4-4 towards a second amidation reaction is increased due to an 

intramolecular hydrogen bond in non-protic solvents (Scheme 4.2, insert). A two-step 

reduction of the ester and amide groups in 4-4 followed, employing sodium borohydride 

and, subsequently, borane dimethylsulfide at 50 °C, to give amino alcohol 4-5 in 73% 

yield over two steps. The amine moiety in 4-5 was then reacted with N-

benzylchloroformate to provide difluorinated linker 4-2 in 95% yield. 
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Scheme 4.2. Synthesis of difluorinated linker 4-2. Insert: proposed mechanism for the formation 
of the corresponding diamide using toluene as a solvent. Reagents and conditions: a) BnNH2, 
MeOH, 0 °C to r.t., 59%; b) i. NaBH4, MeOH, 0 °C; ii. BH3•Me2S, THF, reflux, 73% (2 steps); c) 
CbzCl, NaHCO3, EtOAc, H2O, r.t., 95%. 

4.2.2 Impact of O-Nucleophilicity on the Stereoselectivity of Gly-

cosylation Reactions 

Attention was then turned towards assessing the effect of difluorination on the 

stereoselectivity of glycosylation reactions. Tetrabenzylated galactose thioglycoside 4-6 

served as a glycosylating agent to assess the effects of various determinants on the 

stereochemical outcome of glycosylations with nucleophiles 4-1 and 4-2 (Table 4.1).  

Reaction temperature was selected as the first variable, and both activating agent 

(NIS/TfOH) and solvent (dichloromethane) were kept constant. Glycosylations using 

non-fluorinated alcohol 4-1 were generally β-selective with profound temperature 

dependence: increasing β-selectivities of up to 1:26 α:β were obtained when reactions were 

conducted at -40 °C or -78 °C (Table 4.1, entries 1 and 2, left column), while higher 

temperatures led to erosion of stereoselectivity (entries 3 to 5, left column). In contrast, 

difluorinated linker alcohol 4-2 produced an excess of the corresponding α-glycoside of at 

least 5.5:1 α:β at nearly all reaction temperatures tested (entries 2 to 5, right column). 

No conversion was observed at -78 °C (entry 1, right column), providing evidence for the 

limited reactivity of nucleophile 4-2. Nucleophiles 4-1 and 4-2 produced opposite 

stereoselectivities in glycosylations, confirming that the outcome of a glycosylation 

reaction is critically dependent upon O-nucleophilicity 

 It was next assessed whether the influence of O-nucleophilicity on stereoselectivity 

is sensitive towards the choice of glycosylating agent and activation method (Table 4.2). 

A plethora of strategies are available to activate thioglycosides. Similar to the most 
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widely employed NIS/TfOH system (Table 4.2, entry 1), mild thiophilic promoter 

DMTST264 led to opposing selectivities of 1:4 vs. 10:1 α:β using alcohols 4-1 and 4-2 as 

nucleophiles, respectively (Table 4.2, entry 2). 

Table 4.1. Impact of O-nucleophilicity on the stereoselectivities of glycosylation reactions at 
different temperatures. 

 

  Selectivity, α:β (yield, %)e,f 

Entrya,b,c,d Temperature Nucleophile 4-1 
(R = H) 

Nucleophile 4-2 
(R = F) 

1 -78 °C 1:26 (67) n.r. 

2 -40 °C 1:26 (83) 5.5:1 (88) 
3 -20 °C 1:5.4 (67) 8:1 (83) 

4 0 °C 1:2.6 (76) 9:1 (66) 

5 r.t. 1:1.9 (74) 6:1 (62) 

a1.5 equiv. glycosylating agent 4-6, 1.0 equiv. nucleophile. bReactions performed in CH2Cl2. 
c3 Å-AW mol. 

sieves were used. dNIS/TfOH was used as an activator system. eSelectivity determined by HPLC. fIsolated 
yield. 

Pre-activation of thioglycosides using the Ph2SO/Tf2O
259 activator system can lead 

to stereoselectivities that are inaccessible otherwise, presumably due to the emergence of 

covalent anomeric triflates.364 Pre-activation did not significantly alter the 

stereoselectivities obtained in glycosylation reactions of thioglycoside 4-6 with alcohols 

4-1 and 4-2, with α:β-ratios of 1:6 and 11.5:1, respectively (entry 3). Glycosyl phosphate 

4-9365 as well as glycosyl imidates 4-10366 and 4-11367 were included in the experiment to 

assess alternative anomeric leaving groups. Preferential formation of the β-anomer was 

observed in all reactions using non-fluorinated alcohol 4-1, whereas the α-anomer was 

preferred in reactions using fluorinated linker 4-2 (entries 4 to 6). Thereby, glycosyl 

phosphate displayed a remarkable selectivity difference (1:10 vs. 10:1 α:β for nucleophiles 

4-1 and 4-2, respectively), while trifluoroacetimidate 4-11 was associated with the 

smallest difference in stereoselectitvity (1:3 vs. 1.3:1 α:β for 4-1 and 4-2, respectively). 

Thus, O-nucleophilicity impacts stereoselectivity in glycosylations using a range of 
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different activator and leaving group systems. Pre-activation of thioglycosyides does not 

override this effect. 

Table 4.2. Impact of O-nucleophilicity on the stereoselectivities of glycosylation reactions using 
different leaving groups and activators. 

 

   Selectivity, α:βe,f 

Entrya,b,c,d LG (compound) Activator Nucleophile 4-1 
(R = H) 

Nucleophile 4-2 
(R = F) 

1 β-SEt, (4-6) NIS, TfOH 1:26 5.5:1 

2 β-SEt, (4-6) DMTSTh,i 1:4 10:1 

3 β-SEt, (4-6) 
Ph2SO, Tf2O, 
TTBPyg,h,i 1:6 11.5:1 

4 α/β-OPO(OBu)2 (4-9) TMSOTf 1:10 10:1 

5 α/β-C(NH)CCl3 (4-10) TMSOTf 1:9.6 2:1 

6 α/β-C(NPh)CCl3 (4-11) TMSOTf 1:3 1.3:1 

a1.5 equiv. glycosylating agent, 1.0 equiv. nucleophile. bReactions performed in CH2Cl2. 
c3 Å-AW mol. sieves 

were used. dReaction performed at -40 °C. eSelectivity determined by HPLC. fIsolated yields were generally 
between 60% and 90%. gPre-activation. hReaction performed at -40 °C to r.t. i4 Å mol. sieves were used. LG 
= leaving group. TTBPy = tri-tert-butylpyridine. 

The choice of the solvent can have a pronounced effect on the stereoselectivity of a 

glycosylation reaction. In D-galacto series such as building block 4-6, ethereal solvents 

are known to promote α-selectivity, while nitriles efficiently induce β-selectivity (“nitrile 

effect”).177, 368 It was thus interesting to assess to what extent the solvent affects 

stereoselectivities of glycosylation reactions between thioglycoside 4-6 and alcohols with 

different O-nucleophilicities (Table 4.3). In comparison to dichloromethane as a solvent, 

addition of diethyl ether markedly increased the α-selectivity of glycosylations using both 

4-1 and 4-2 as nucleophiles in the NIS/TfOH-promoted reaction at -40 °C (Table 4.3, 

entries 1 and 2). Nevertheless, stereoselectivities were still opposed, with preferential 

formation of the β-glycoside of alcohol 4-1 (1:5.9 α:β) and the α-glycoside of fluorinated 

alcohol 4-2 (15.7:1 α:β). When a mixture of toluene and 1,4-dioxane266 was used as 

solvent, both nucleophiles displayed α-selectivity (entry 3), yet of a significantly higher 

extent when using difluorinated alcohol 4-2 (3:1 vs. 28:1 α:β for 4-1 and 4-2, 
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respectively). Thus, a synergistic effect is found to yield increased α-selectivities when an 

alcohol with low nucleophilicity is employed in ethereal solvents instead of a non-

participating solvent. In turn, this solvent effect reduces, but does not nullify the β-

stereoselectivity associated with highly nucleophilic alcohols in the system studied. 

As expected, glycosylations were β-selectivite when conducted in acetonitrile due to 

the nitrile effect (entry 4).177, 368 Thereby, non-fluorinated alcohol 4-1 was associated 

with a notable 1:31 α:β-stereoselectivity, while fluorinated alcohol 4-2 produced a lower 

β-stereoselectivity of 1:3.5 α:β. These results complement the synergism observed for 

ethereal solvents (see above), and the use of a highly nucleophilic alcohol in combination 

with a nitrile solvent enhances the inherent β-stereoselectivity of this reaction even 

further. In contrast, low nucleophilicity and nitrile effect seem to somewhat counteract 

each other, leading to low β-stereoselectivity. 

Table 4.3.  Impact of O-nucleophilicity on the stereoselectivities of glycosylation reactions using 
different solvents. 

 

  Selectivity, α:β (yield, %) e,f 

Entrya,b,c,d Solvent Nucleophile 4-1 
(R = H) 

Nucleophile 4-2 
(R = F) 

1 CH2Cl2 1:26 5.5:1 

2 CH2Cl2/Et2O
g 1:5.9 15.7:1 

3 toluene/1,4-dioxaneh 3:1 28:1 

4 MeCN 1:31 1:3.5 

5 Trichloroethylene 1:6 9:1 

a1.5 equiv. glycosylating agent 4-6, 1.0 equiv. nucleophile. b3 Å-AW mol. sieves were used. cNIS/TfOH was 
used as an activator system. dReaction performed at -40 °C. eSelectivity determined by HPLC. f Isolated 
yields were generally between 60% and 90%. gA 1:4 (v/v) CH2Cl2:Et2O mixture was used. hA 1:3 (v/v) 
toluene:1,4-dioxane mixture was used. 

In addition to direct participation by oxacarbenium ion coordination, the polarity 

of a solvent exerts a crucial effect on the stereochemical outcome of a glycosylation.369 

The solvent trichloroethylene is less polar than dichloromethane and has been found to 

alter stereoselectivity by favoring less polar reaction intermediates.369 Using 

trichloroethylene as a solvent in the reactions between thioglycoside 4-6 and alcohols 4-1 
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and 4-2 led to β-selective (1:6 α:β) introduction of the former, non-fluorinated alcohol, 

while the latter, fluorinated alcohol displayed good α-selectivity (9:1 α:β) that was even 

higher than in the presence of dichloromethane as a solvent (Table 4.2, entry 5). Thus, 

O-nucleophilicity can be used to robustly tune the stereoselectivity of glycosylation 

reactions, especially in combination with solvents that confer synergism towards a 

particular anomeric configuration. 

4.3 Conclusion and Outlook 

Glycosidic bond formation remains one of the least predictable transformations in 

organic chemistry. A multitude of effects influence the outcome of a glycosylation, and 

just as many variables exist to manipulate glycosylations. With the exception of 

thermodynamically controlled Fischer glycosylations (see Chapter 1), glycosylation 

reactions are usually under kinetic control, and the selectivity-determining step is likely 

dependent on reaction intermediates (Scheme 4.3). The use of simplified model systems 

has provided important insight into the kinetic processes that govern stereoselectivity.186, 

193-196, 270, 357, 370, 371 However, the translation of that data into a comprehensive Curtin-

Hammett-type model to predict stereoselectivity has been precluded by the sheer number 

of stereodirecting parameters. A continuum of transient intermediates have been 

proposed ranging from covalent adducts via ion pairs to “naked” oxacarbenium ions.194 

Additionally, the relevance of these intermediates critically depends upon steric and 

stereoelectronic effects contributed by functional groups elsewhere in the molecule, 

rendering the prediction of stereoselectivity often impossible.196, 371 

Considering the efforts that have been invested into studying the intermediates of 

glycosylation reactions, it is surprising how little is known about the role of the 

nucleophile. Although nucleophilicity is irrelevant for the rate of a classical SN1 reaction, 

the structure and reactivity of a nucleophile can tremendously influence the outcome of 

the reaction.372 This notion is underlined by the cumbersome 1,2-cis-selective 

introduction of primary aliphatic alcohols as part of linker molecules through 

glycosylation. A method to reliably achieve this transformation would immensely 

facilitate oligosaccharide synthesis, and enable a scenario in which linker molecules could 

be stereoselectively introduced at a late stage of a synthetic route. 



 

215 
 

The development of a linker that displays low O-nucleophilicity was instigated by a 

recent finding that correlated nucleophilicity to stereoselectivity in model 

glycosylations.193 An appropriate linker was designed by formal substitution of a 

methylene group by a difluoromethylene group of a known linker alcohol. In proof-of-

principle experiments, a non-fluorinated control alcohol displayed excellent β(1,2-trans)-

selectivities in the glycosylation reaction studied, in contrast to recent findings reporting 

an erosion of stereoselectivity when highly reactive nucleophiles are used. Interestingly, 

difluorination led to a complete reversal of stereoselectivity to α(1,2-cis). Preliminary 

quantum mechanical modelling of both linker alcohols revealed very similar ground state 

conformations of both molecules, but a tremendous decrease of electron density at the 

alcohol oxygen due to the presence of the two fluoride substituents (data not shown). 

These findings rule out an influence of conformational or steric differences and highlight 

the importance of nucleophilicity for stereoselectivity. 

 

Scheme 4.3. Selectivity-determining factors of glycosylation reactions. A, activation of a 
glycosylating agent leads to the generation of intermediates that can be in equilibrium. Reaction 
conditions, steric and stereoelectronic effects enable the predominance of certain intermediates. 
Stereoselectivity is determined based on the reactivity and stability of these intermediates 
(Curtin-Hammett principle) when a highly reactive alcohol is used as a nucleophile. B, The 
stereoselectivity induced by the use of an alcohol with low nucleophilicity overrides many of the 
stereodirecting parameters of glycosylation reactions to predominantly yield the corresponding α-
glycoside (1,2-cis for galacto and gluco series, for instance). The use of participating solvents can, 
however, enhance or (to a certain extent) revert this stereoinduction. Act. = activation. 
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The stereochemical outcome of glycosylations is often temperature-dependent due 

to the interplay of multiple factors such as the stability of certain intermediates370 or the 

interconversion of distinct conformations.371 The temperature dependence of β(1,2-trans)-

selectivities obtained with the non-fluorinated control nucleophile is a testimony to that 

fact. Remarkably, α(1,2-cis)-selectivities were constantly above 5.5:1 α:β using the 

difluorinated linker irrespective of the reaction temperature. Furthermore, low O-

nucleophilicity led to the preferential formation of α(1,2-cis)-glycosides when using a 

range of different leaving groups and activators. These results suggest that low O-

nucleophilicity could be a general determinant that overrides many of the stereodirecting 

parameters of glycosylation reactions, such as the occurrence of covalent or ion pair 

intermediates and the conformational preferences of oxacarbenium ions (Scheme 4.3B). 

Although imidate-based glycosylating agents displayed lower α(1,2-cis)-selectivities than 

glycosyl phosphates and thioglycosides, the evaluation of different solvents suggests that 

a synergism between low O-nucleophilicity and the directing effect of ethereal solvents 

can be exploited to further improve selectivities. Importantly, combining the effects of 

alcohol nucleophilicity with solvent effects yielded stereoselectivities between 1:31 and 

28:1 α:β. These values correspond to diastereomeric ratios (d.r.) of 97:3 and are 

unparalleled by most other methods that mediate the 1,2-cis-selective introduction of 

glycosidic bonds, especially using aliphatic linker alcohols as nucleophiles. Thus, judicious 

choice of nucleophile and reaction conditions provides access to linker-bearing glycosides 

of either anomeric configuration with essentially complete stereoselectivity. 

Taken together, a method was devised to 1,2-cis-stereoselectively introduce an 

amine-functionalized linker alcohol at the reducing end of synthetic glycans. The method 

features the use of an alcohol with low nucleophilicity, and ought to be applicable to a 

range of different glycosylating agents. Furthermore, it will be interesting to study the 

introduction of that linker at a late synthetic stage of oligosaccharide synthesis. These 

studies are currently underway. 
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4.4 Experimental Section 

General Experimental Details 

Commercial grade solvents and reagents were used unless stated otherwise. Anhydrous 

solvents were obtained from a Dry Solvent System (Waters, Milford, USA). Solvents for 

chromatography were of technical grade and distilled under reduced pressure prior to 

use. Sensitive reactions were carried out in heat-dried glassware and under an argon 

atmosphere. Analytical thin layer chromatography (t.l.c.) was performed on Kieselgel 60 

F254 glass plates pre-coated with silica gel of 0.25 mm thickness (Macherey-Nagel, 

Düren, Germany). Spots were visualized with sugar stain (0.1% (v/v) 3-methoxyphenol, 

2.5% (v/v) sulfuric acid in EtOH) or CAM stain (5% (w/v) ammonium molybdate, 1% 

(w/v) cerium(II) sulfate and 10% (v/v) sulfuric acid in water) dipping solutions. Flash 

chromatography was performed on Kieselgel 60 with 230-400 mesh (Sigma-Aldrich, St. 

Louis, USA). Solvents were removed under reduced pressure using a rotary evaporator 

and high vacuum (<1 mbar). 

1H, 13C and two-dimensional NMR spectra were measured with a Varian 400-MR 

spectrometer or a Varian 600 spectrometer (both Agilent, Santa Clara, USA) at 298 K. 

Chemical shifts (δ) are reported in parts per million (ppm) relative to the respective 

residual solvent peaks (CDCl3: δ 7.26 in 1H and 77.16 in 13C NMR). Two-dimensional 

NMR experiments (HH-COSY, CH-HSQC, CH-HMBC) were performed to assign peaks 

in 1H and 13C spectra. The following abbreviations are used to indicate peak 

multiplicities: s singlet; d doublet; dd doublet of doublets; t triplet; m multiplet. Coupling 

constants (J) are reported in Hertz (Hz). NMR spectra were evaluated using MestreNova 

6.2 (MestreLab Research SSL, Santiago de Compostella, Spain). High resolution mass 

spectrometry by electrospray ionization (ESI-HRMS) was performed at Freie Universität 

Berlin, Mass Spectrometry Core Facility, with a 6210 ESI-TOF mass spectrometer 

(Agilent). High performance liquid chromatography (HPLC) was carried out with a 1200 

HPLC system equipped with an Evaporating Light Scattering Detector (both Agilent). 

Schemes were prepared using ChemBioDraw Ultra 12.0.2 (Cambridgesoft, Waltham, 

USA). 
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Methyl N-benzyl-2,2-difluoromalonate monoamide (4-4) 

 

To a stirred solution of dimethyl 2,2-difluoromalonate 4-3 (3.0 g, 17.85 mmol) in MeOH 

(100 mL) was added dropwise at 0 °C a solution of benzylamine (1.56 mL, 14.28 mmol) 

in MeOH (10 mL). The mixture was warmed to room temperature, stirred for 18 h at 

that temperature, filtered and concentrated. The residue was purified by flash 

chromatography (EtOAc/toluene 1:50 to 1:10) to give monoamide 4-4 (2.06 g, 8.47 

mmol, 59%) as a white foam. 1H NMR (400 MHz, CDCl3) δ 7.42 – 7.27 (m, 5H), 6.71 (s, 

1H), 4.54 (d, J = 5.8 Hz, 2H), 3.94 (s, 3H); 13C NMR (100 MHz, CDCl3) δ 136.3, 129.1, 

128.3, 128.0, 54.3, 44.0; HRMS (ESI) calcd. for C11H11F2NO3 (M+Na)+ 266.0604 found 

266.0597 m/z. 

N-Benzyl-2,2-difluoro-3-amino-1-propanol (4-5) 

 

To a stirred solution of ester 4-4 (2.0 g, 8.22 mmol) in MeOH (50 mL) was added at 0 

°C sodium borohydride (1.56 g, 41.1 mmol). The mixture was stirred for 2 h at that 

temperature, quenched with water (1 mL) and concentrated. The residue was dissolved 

in EtOAc (25 mL) and water (50 mL). After separation, the aqueous phase was 

extracted with EtOAc (2x25 mL), the combined organic fractions were dried over 

Na2SO4 and concentrated. The residue was purified by flash chromatography 

(EtOAc/toluene 1:50 to 1:10) to give the intermediate monoamide (1.4 g) as a white 

foam. 

To a stirred solution of the intermediate monoamide in THF (25 mL) was added 

dropwise at room temperature borane dimethylsulfide (2 M solution in THF, 16.3 mL, 

32.5 mmol). The reaction was refluxed for 3 h, slowly quenched with MeOH (5 mL) and 

cooled to room temperature. The mixture was stirred for 18 h at that temperature and 

concentrated. The residue was purified by flash chromatography (EtOAc/hexanes 1:10 to 

1:1) to give amine 4-5 (1.2 g, 5.96 mmol, 73% over two steps) as a clear oil. 1H NMR 
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(400 MHz, CDCl3) δ 7.38 – 7.27 (m, 5H), 3.93 – 3.82 (m, 4H), 3.11 (t, J = 13.1 Hz, 2H), 

2.67 (s, 1H); 13C NMR (100 MHz, CDCl3) δ 138.9, 128.8, 128.3, 127.7, 123.5, 121.1, 118.7, 

77.36, 64.7, 64.4, 64.1, 53.8, 51.8, 51.5, 51.2; HRMS (ESI) calcd. for C10H13F2NO (M+H)+ 

202.1043 found 202.1043 m/z. 

N-Benzyl-N-benzyloxycarbonyl-2,2-difluoro-3-amino-1-propanol (4-2) 

 

To a stirred solution of amine 4-5 (1.2 g, 5.96 mmol) in EtOAc (50 mL) and sat. aq. 

NaHCO3 (50 mL) was added at room temperature benzyl chloroformate (1.02 mL, 7.16 

mmol). The mixture was stirred for 2 h at that temperature and the layers were 

separated. The aqueous layer was extracted with EtOAc (3x20 mL), the combined 

organic fractions were washed with brine, dried over Na2SO4 and concentrated. The 

residue was purified by flash chromatography (EtOAc/hexanes 1:20 to 1:5) to give 

carbamate 4-2 (1.89 g, 5.64 mmol, 95%) as a clear oil. 1H NMR (400 MHz, CDCl3) δ 

7.44 – 7.28 (m, 8H), 7.23 – 7.06 (m, 2H), 5.23 (s, 2H), 4.60 (s, 2H), 4.23 (t, J = 7.9 Hz, 

1H), 3.77 – 3.54 (m, 4H); 13C NMR (100 MHz, CDCl3) δ 158.3, 136.2, 135.7, 129.0, 128.8, 

128.6, 128.2, 128.0, 127.7, 127.1, 124.9, 122.4, 120.0, 77.4, 68.7, 61.7, 61.4, 61.1, 51.8, 

47.4, 47.0, 46.7; HRMS (ESI) calcd. for C18H19F2NO3 (M+H)+ 358.1230 found 358.1221 

m/z. 

General Glycosylation Procedures Using Alcohols 4-1 and 4-2 as Nucleophiles 

Thioglycoside activation using NIS/TfOH 

Typically, linker alcohol 4-1 or 4-2 (0.075 mmol) and thioglycoside (0.112 mmol) were 

co-evaporated twice with anhydrous toluene and kept for 30 min under high vacuum. 

The mixture was dissolved in the indicated solvent (2 mL), and activated molecular 

sieves (3 Å-AW) were added. The solution was stirred for 15 min at room temperature 

and cooled to the indicated temperature. The mixture was treated with NIS (25 mg, 

0.112 mmol) and TfOH (1.3 µL, 0.015 mmol) and stirred until t.l.c. indicated 

consumption of the thioglycoside (at least 1.5 h). The reaction was then quenched with 

Et3N (1 mL) and stirred for another 10 min. The mixture was diluted with CH2Cl2 (9 

mL), filtered and concentrated. The residue was filtered through a pad of silica gel 

(EtOAc/hexanes 0:1 to 1:4). 
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Thioglycoside Activation Using DMTST 

Linker alcohol 4-1 or 4-2 (0.075 mmol) and thioglycoside 4-6346 (0.112 mmol) were co-

evaporated twice with anhydrous toluene and kept for 30 min under high vacuum. The 

mixture was dissolved in CH2Cl2 (2 mL), and TTBPy (41 mg, 0.164 mmol) and activated 

molecular sieves (4 Å) were added. The solution was stirred for 15 min at room 

temperature and cooled to -40 °C. The mixture was treated with a solution of DMTST 

(38.5 mg, 0.149 mmol) in CH2Cl2 (1 mL) and kept at that temperature for 15 min. The 

reaction was slowly warmed to room temperature over 1.5 h, quenched with sat. aq. 

NaHCO3 (1 mL) and stirred for another 10 min. The mixture was diluted with CH2Cl2 (9 

mL), filtered and concentrated. The residue was filtered through a pad of silica gel 

(EtOAc/hexanes 0:1 to 1:4). 

Thioglycoside Activation Using Ph2SO/Tf2O 

Thioglycoside 4-6 (0.112 mmol) was co-evaporated twice with anhydrous toluene and 

kept for 30 min under high vacuum. Ph2SO (45 mg, 0.224 mmol) and TTBPy (37 mg, 

0.15 mmol) were added, the mixture was dissolved in CH2Cl2 (2 mL) and activated 

molecular sieves (4 Å) were added. The solution was stirred for 15 min at room 

temperature and cooled to -40 °C. The mixture was treated with Tf2O (25 µL, 0.15 

mmol) and kept at that temperature for 10 min. Linker alcohol 4-1 or 4-2 (0.075 mmol) 

was added in CH2Cl2 (1 mL), the reaction was kept at that temperature for 15 min and 

slowly warmed to room temperature over 1.5 h. The reaction was then quenched with 

sat. aq. NaHCO3 (1 mL) and stirred for another 10 min. The mixture was diluted with 

CH2Cl2 (9 mL), filtered and concentrated. The residue was filtered through a pad of 

silica gel (EtOAc/hexanes 0:1 to 1:4). 

Glycosyl Phosphate Activation 

Linker alcohol 4-1 or 4-2 (0.075 mmol) and glycosyl phosphate 4-9365 (0.112 mmol) were 

co-evaporated twice with anhydrous toluene and kept for 30 min under high vacuum. 

The mixture was dissolved in the indicated solvent (2 mL), and activated molecular 

sieves (3 Å-AW) were added. The solution was stirred for 15 min at room temperature 

and cooled to -40 °C. The mixture was treated with TMSOTf (20 µL, 0.112 mmol) and 

stirred until t.l.c. indicated consumption of the glycosylating agent (at least 1.5 h). The 

reaction was then quenched with Et3N (1 mL) and stirred for another 10 min. The 
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mixture was diluted with CH2Cl2 (9 mL), filtered and concentrated. The residue was 

filtered through a pad of silica gel (EtOAc/hexanes 0:1 to 1:4). 

Glycosyl Imidate Activation 

Linker alcohol 4-1 or 4-2 (0.075 mmol) and glycosyl imidate 4-10366 or 4-11367 (0.112 

mmol) were co-evaporated twice with anhydrous toluene and kept for 30 min under high 

vacuum. The mixture was dissolved in the indicated solvent (2 mL), and activated 

molecular sieves (3 Å-AW) were added. The solution was stirred for 15 min at room 

temperature and cooled to -40 °C. The mixture was treated with TMSOTf (2.7 µL, 0.015 

mmol) and stirred until t.l.c. indicated consumption of the glycosylating agent (at least 

1.5 h). The reaction was then quenched with Et3N (1 mL) and stirred for another 10 

min. The mixture was diluted with CH2Cl2 (9 mL), filtered and concentrated. The 

residue was filtered through a pad of silica gel (EtOAc/hexanes 0:1 to 1:4). 

2,3,4,6-Tetra-O-benzyl-α-D-galactopyranosyl-(1→1)-(3-N-benzyl-N-

benzyloxycarbonylamino)propanol (4-8α) 

 
Clear oil. 1H NMR (400 MHz, CDCl3) δ 7.46 – 7.11 (m, 30H), 5.18 (s, 2H), 4.96 (d, J = 

11.5 Hz, 1H), 4.90 – 4.69 (m, 4H), 4.67 – 4.50 (m, 3H), 4.50 – 4.33 (m, 3H), 4.08 – 3.79 

(m, 4H), 3.68 – 3.26 (m, 6H), 1.97 – 1.79 (m, 2H); HRMS (ESI) calcd. for C52H55NO8 

(M+H)+ 844.3825 found 844.3773 m/z. 

2,3,4,6-Tetra-O-benzyl-β-D-galactopyranosyl-(1→1)-(3-N-benzyl-N-

benzyloxycarbonylamino)propanol (4-8β) 

 
Clear oil. 1H NMR (400 MHz, CDCl3) δ 7.51 – 7.09 (m, 30H), 5.18 (s, 2H), 4.96 (d, J = 

11.6 Hz, 1H), 4.88 – 4.68 (m, 4H), 4.64 (d, J = 11.7 Hz, 1H), 4.59 – 4.37 (m, 4H), 4.37 – 

4.24 (m, 1H), 4.00 – 3.87 (m, 2H), 3.83 – 3.75 (m, 1H), 3.61 – 3.56 (m, 2H), 3.56 – 3.47 
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(m, 2H), 3.46 – 3.31 (m, 2H), 1.99 – 1.79 (m, 2H); HRMS (ESI) calcd. for C52H55NO8 

(M+H)+ 844.3825 found 844.3773 m/z. 

2,3,4,6-Tetra-O-benzyl-α-D-galactopyranosyl-(1→1)-(3-N-benzyl-N-

benzyloxycarbonylamino)-2,2-difluoropropanol (4-9α) 

 
Clear oil. 1H NMR (400 MHz, CDCl3) δ 7.39 – 7.18 (m, 30H), 5.17 (s, 2H), 4.98 – 4.90 

(m, 2H), 4.82 – 4.71 (m, 2H), 4.71 – 4.53 (m, 5H), 4.51 – 4.30 (m, 3H), 4.10 – 3.73 (m, 

7H), 3.56 – 3.45 (m, 2H); HRMS (ESI) calcd. for C52H53F2NO8 (M+H)+ 880.3636 found 

880.3606 m/z. 

2,3,4,6-Tetra-O-benzyl-β-D-galactopyranosyl-(1→1)-(3-N-benzyl-N-

benzyloxycarbonylamino)-2,2-difluoropropanol (4-9β) 

 
Clear oil. 1H NMR (400 MHz, CDCl3) δ 7.45 – 7.14 (m, 30H), 5.20 (d, J = 29.3 Hz, 2H), 

4.94 (dd, J = 11.5, 2.7 Hz, 1H), 4.79 – 4.53 (m, 7H), 4.48 – 4.29 (m, 3H), 4.13 – 3.86 (m, 

3H), 3.84 – 3.64 (m, 4H), 3.59 – 3.44 (m, 3H); HRMS (ESI) calcd. for C52H53F2NO8 

(M+H)+ 880.3636 found 880.3606 m/z. 
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