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T he magnetohydrodynamic equilibrium and stability properties of toroidai I = 2 stel­
larator configurations of large aspect ratio A (A = RT/ a = 10 to 20 as for the WEN­
DELSTEIN VII-A device, RT is the major torus radius and a the mean m:nor plasma 
radius) are accessible to the asymptotic stellarator expansion procedure STEP 1•2•3). So 
this is an adequate tool to study some characteristic equilibrium and stability proper­
t ies of s tellarator configurations without longitudinal net-current, which also apply to 
Advanced Stellarators 4). Results of a mode analysis of Heliotron-E configurations using 
the three-dimensional BETA- code are given in Ref.5, and in Ref.6 ideal and resistive 
n = 1 modes are studied for that configurat ions based on the average MHD equations. 
In the present paper a classification of unstable free-boundary modes occurring in toroi­
dal I = 2 stellarators is given. The normalized eigenvalues of fixed- and free-boundary 
modes with mode numbers n = 1, 2, 3, .. in toroidal direction and various radial node 
numbers of the eigenfunctions are given as functions of the position of an electrically 
conducting wall the mean minor radius of which is denoted by b. 

2. Asymptotic Equilibria. 

The I = 2 equilibrium configurations consist of M = 5 field periods of period length 
Lp/a where the aspect ratio A is related to the period length by A = MLp/ 27ra = 
M/ha. The value of the twist (angle of rotational transform divided by 27r) at the 
boundary is kept below 0.5 for the finite-beta magnetic field configurations. For t hese 
equilibria, t he lowest-order resonance condition n/m = 1/ 2 = t is not satisfied inside 
the plasma region (m is the poloidal mode number of the dominant Fourier mode). 

The vacuum magnetic field is given by B = Bofez + (6/h)\7 I2(hr) sin(20 - hz)] in the 
pseudo-cylindrical coordinate system (r, O,z), where the Bessel function I2(hr) appears 
in the solution of the Laplace equation tor the straight system (Bessel model); 6 describes 
the amplitude of the helical I = 2 field. The asymptotic value of the twist on magnetic 
axis is given by t = M62 / 16 for the vacuum field. The 1>-profile of the vacuum field as 
function of the mean minor radius r of the magnetic surfaces is approximately given 
by t(r) ~ t 0[1 + (hr) 2 /2 + 7(hr) 4 /96]. At finite (J, the 1>-profile is changed as shown in 
Fig.1. The local shear rt! /t (~ (hr)2 in leading order) of these configurations is rather 
small compared to Heliotron-E configurations because of the long period length. The 
pressure profile p = Po(l -1/1) ~ Po(l - (r/ a) 2 ) is approximately a parabolic function in 
r (1/J is the normalized poloidal flux). The aspect ratio is A~ 7.7. 

Figure 1 shows the twist t and the normalized specific volume (V' - VJ) /VJ as functions 
of r / a and (r / a)2 , respectively, for two different (J-values and vanishing longitudinal net 
current. The corresponding vacuum fields have a large average magnetic hill meaning 
that (V' - VJ)/VJ > 0. By superimposing I = 3 fields with the same period length 
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Lp or half of that, vacuum fields with a magnetic well can be obtained having more 

favorable stability properties 7
). 
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Fig.1. Twist a nd normalized specific volume Fig.2. 
(V' - VJ) / VJ as functions of r /a and 
(r/ a) 2 , respectively (A::;:; 7.7). 

Eigenfunction and di~placement vec­
tor of a free-boundary n = 2 mode 
with one maximum (t0 = 0.43, tb = 
0.49). ~ 

3. St ability Results. 

For all stability computations the equilibrium mass density p is assumed to be p ~ JP 
except for the results in Fig.4. The eigenfunction T/ of a free-boundary n = 2, mm = 4 
mode is shown in F ig.2 as function of 1" together with the corresponding displacement 
vector. The eigenfunction assumes its maximum at the boundary. The equilibrium 
configurations have been chosen so that the n = 1, 2, 3 and m,.. = 2n (n/ m,0 , = 1/ 2) 
modes are not resonant to t inside the plasma region. As shown in Fig.3, the free-



421 

boundary n = 1, 2,3 (mm= 2n) modes are unstable if the conducting wall is at infinity 
(a/ b = O); as the wall approaches the plasma boundary (a/ b > 0), these modes are 
completefy stabilized at a finite but small wall distance (b f a~ 1.05). So fixed-boundary 
modes of that type have not been found. 

The scaling of the eigenvalues with the wall distance depends weakly on the equilibrium 
mass density pas shown in Figs.3,4, but the threshold value of a/b for marginal stability 
is not affected. In Fig.5 the normalized eigenvalues of unstable modes are computed for 
/Jo = 1.9% showing that the absolute eigenvalues increase and that the stability margin 
of a/ b is changed. 

Other classes of unstable modes with one or two main extrema of the eigenfunct ions 
inside the plasma region are shown in Fig.6 for n = 4, m,.. = 2n + 1 fixed-boundary 
modes which are resonant to t inside the plasma region and are rather localized around 
the resonant surface. The location of the resonant surface can be seen from Fig.6. In 
Figure 7 the eigenvalues of n = 4, 5, ... fixed boundary modes are p lot ted, the absolute 
eigenvalues increase with n. If unstable fixed-boundary modes occur, the corresponding 
free-boundary modes will also occure. 
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Fig.3. Eigenvalues as functions of (a/b) 4 

for n = 1, 2, 3 free-boundary modes. 
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Fig.4. Eigenvalues as functions of (a/b) 4 

for n = 1, 2, 3 free-boundary m.odes 
(p = 1). 
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Eigenvalues as functions of (a/b)1 

for n = 1,2,3,4 modes with m,., = 
2n (f3o = 1.9%). 
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Fig.6. Eigenfunctions of n = 4, m.., ;= 9 
fixed-boundary modes 
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Fig. 7. E igenvalues as funct ions of n for fixed­
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and m,., = 2n + 2. 
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